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G E O P H Y S I C S

Present- day Earth mantle structure set up by crustal 
pollution of the basal magma ocean
Maxim D. Ballmer1*, Rob J. Spaargaren2,3, Ananya Mallik4, Antonio Manjón- Cabeza Córdoba1, 
Miki Nakajima5, Kenny Vilella6

The crystallization of a global magma ocean during early terrestrial planet evolution and the subsequent segrega-
tion of a longer- lived “basal magma ocean” (BMO) atop the core set up the evolution of the mantle- atmosphere 
system. Although seismic evidence for a BMO exists on present- day Mars and the Moon, the Earth’s BMO is (near- ) 
completely solidified. Seismically observed “large low- velocity provinces” (LLVPs) are thought to have resulted from 
the canonical “fractional” style of BMO crystallization. However, we show using thermodynamic modeling that BMO 
fractional crystallization yields lowermost- mantle densities much higher than those of LLVPs. In turn, pollution of 
the BMO by progressive addition of recycled basaltic crust and related “reactive crystallization” can reconcile LLVP 
volumes, densities, and compositions. This model also makes testable predictions of the compositions of “ultralow- 
velocity zones,” enigmatic deep Earth seismic domains, and possible BMO remnants. The critical role of crustal pol-
lution elucidates the survival of a BMO on Mars, but implies an Earth- like fate for any Venusian BMO.

INTRODUCTION
The formation of a basal magma ocean (BMO) in the early Earth is 
a natural consequence of planetary differentiation. The accretion 
and segregation of the planet releases massive extents of potential 
energy, melting most if not all of the mantle as a global magma 
ocean. For dominant crystal settling (or “fractional crystallization”) 
of the global magma ocean (1), a BMO with a thickness of ~350 km 
segregates from the rest of the mantle because magmas at lowermost-
mantle conditions are denser than corresponding crystals (2–4). A 
BMO with such an origin would initially assume bulk-silicate Earth 
(i.e., similar to present-day upper-mantle “pyrolitic” compositions) 
(5) compositions (2, 3) but may also preserve proto-Earth signatures 
(6,  7). For dominant “batch crystallization” of the global magma
ocean due to ultrafast turbulent cooling (8), a lower-mantle crystal
mush is formed and eventually spawns a thick (~900 km) Fe-
enriched BMO (3). Alternatively, the overturn and deep re-melting 
of early crust can generate (or contribute to) a silica-enriched, or 
roughly spoken “basaltic”, BMO (9, 10). In either case, a BMO with 
variable initial size and composition is virtually inevitably formed, 
eventually cooling over billions of years (2). Related convection 
within such an early-Earth BMO may help to explain paleomagnet-
ic evidence for an early geodynamo (11, 12).

Seismic data provide evidence for the preservation of a highly Fe-
enriched BMO on present-day Mars (13–15) and a similar partially 
molten basal layer on the Moon (16, 17), further supporting the BMO 
hypothesis. However, although BMO formation tends to be more 
likely for larger planets (2), an analogous (partially) liquid rocky layer 
covering the Earth’s core-mantle boundary (CMB) can be ruled out 
geophysically (18). To resolve this discrepancy, we here compute the 
crystallization sequence of the BMO using a thermodynamic model 

(19) (see Materials and Methods) and explore the related implica-
tions for deep Earth structure.

RESULTS AND DISCUSSION
BMO fractional crystallization
For the BMO, upward crystal setting is promoted by slow cooling, 
clearly favoring fractional (over batch) crystallization (1, 2). During 
BMO fractional crystallization, the first mineral phase to crystallize 
is bridgmanite (bm) (3, 19). As bm is extracted fractionally, a BMO 
with pyrolytic initial composition (evolves such that eventually bm+ 
ferropericlase (fp) crystallize over most of BMO evolution (Fig. 1A, 
solid lines). For basaltic initial compositions, bm+stishovite (sti) 
crystallize over most of BMO evolution (Fig. 1A, dashed lines). In 
both cases, the BMO becomes progressively Fe-enriched during 
crystallization (Fig.  1A, red solid/dashed lines), culminating at 
highly Fe-enriched “eutectic” compositions (Fig.  1A, yellow star). 
The eutectic is the composition with the lowest melting tempera-
tures, and is inevitably reached during progressive fractional crys-
tallization. Accordingly, final-stage crystal cumulates also assume 
highly Fe-enriched eutectic compositions (Fig.  1A, green lines). 
About ~10% of crystallized cumulates achieve near-eutectic compo-
sitions with densities >1000 to ~2140 kg/m3 higher than the ambi-
ent mantle (Fig. 2, red/pink lines).

Because of these predicted extreme density anomalies, the conse-
quences of BMO fractional crystallization are at odds with Earth 
structure. Such a dense and highly iron-enriched layer (Figs.  1B 
and 2) cannot be entrained and stirred into the mantle by subse-
quent solid-state convection (20–22). It would remain gravitation-
ally stable in the lowermost mantle, stabilizing a global dense layer 
with a volume of ~10% of the initial BMO (Fig. 2, blue lines) until 
the present day (20, 22–24), inconsistent with seismic constraints. 
The seismic properties of such a solidified layer with a composition 
similar to wüstite (FeO; Fig. 1A) would be similar to those of the 
observed “ultralow-velocity zones” (ULVZs) (25), but the ULVZs 
are much too small (18, 26) to accommodate ~10% of the initial 
BMO (3). Although there is evidence of large seismic anomalies in 
the lowermost mantle [e.g., large low-velocity provinces (LLVPs)], 
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which are interpreted as thermochemical piles and have been con-
ceptually related to BMO crystallization (2), their estimated intrin-
sic density excess is much smaller (<300 kg/m3; orange/yellow bar 
in  Fig.  2) than that predicted for fractional crystallization (20–
22, 27–31). Moreover, the eutectic temperature of the crystallizing 
BMO (19, 32, 33) is notably lower than most estimates for present-
day CMB temperatures (34–36), particularly if enrichment of minor 
elements and volatiles is taken into account (2, 37). Thus, a BMO 
with up to ~10% of its initial volume should actually still be present 
at the CMB in the fractional-crystallization scenario (Fig.  3A). 
However, neither a (partially) liquid nor a solid global basal layer 
(i.e., more than 1 to 2 km thick) exists on our planet, ruled out by 
seismic observations (18).

An additional process that can remove iron from the BMO and 
therefore promote solidification is FeO disproportionation (38). As 
the BMO crystallizes, bm cumulates incorporate Al as Al3+Fe3+O3, 
for which any available Fe2+O is oxidized (38,  39). To maintain 
charge balance, another Fe atom must be reduced. We account for 
the effects of this process by removing one elemental Fe0 to the core 
for any two Al atoms incorporated into bm (see Materials and Meth-
ods). We find that this iron removal reduces the thickness of the 
highly enriched layer, but notably not its density anomaly (Fig. 2, 
red/pink dashed lines). Accordingly, this process is insufficient to 
reconcile BMO fractional crystallization with present-day Earth’s 
structure; alternative scenarios need to be explored.

BMO reactive crystallization
Here, we propose a “reactive-crystallization” mechanism that is 
driven by the continuous recycling of basaltic crust and chemical 

interaction of this crust with the BMO. In the modern Earth, oce-
anic crust is efficiently cycled into the mantle during subduction 
and tends to segregate from the ambient mantle to settle at the CMB 
(24,  40,  41). Although the tectonic regime(s) of the early Earth 
remain(s) debated, the proposed regimes involve efficient crustal 
recycling (42–46), consistent with geochemical constraints (47). As 
oceanic crust has likely been three to four times thicker in the early 
Earth (48, 49), crustal recycling may have been even more efficient 
than in the present day (50). Moreover, early CMB temperatures 
have been higher (51) and thus above the solidus of basaltic crustal 
rocks (52), promoting melting at the BMO-mantle boundary. Any 
such deep mantle melts would have mixed or at least chemically 
equilibrated (“reacted”) with the BMO (Fig. 3B). We quantify the 
consequences of such crustal addition (or “crustal pollution”) and 
BMO reactive crystallization, assuming that crustal material (with 
time-evolving composition; see Fig. 1B and Materials and Methods) 
is continuously mixed into the BMO as it cools. In this case, the 
crystallizing BMO is an open system, as opposed to being a closed 
system for fractional crystallization.

We find that, in contrast to fractional crystallization, the BMO 
does not reach extremely enriched eutectic compositions in this 
reactive-crystallization scenario. Figure 1B shows that a BMO with 
initially pyrolytic composition (black circle) evolves similarly as for 
fractional crystallization at first (red line) due to the dominant ef-
fects of cooling. First, bm and then bm+fp are crystallized. Howev-
er, as cooling slows down over time (fig. S1) and crustal material is 
continuously added, the BMO becomes progressively enriched in 
silica, leaving the bm+fp phase boundary. From this point, exclu-
sively bm crystallizes, but the BMO continues to become further 
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Fig. 1. Crystallization sequences for fractional and reactive crystallization of the BMO. Ternary phase diagrams [from ref. (19) at 130 GPa] with mineral stability fields 
(colors) as labeled. Lines show the progressive (i.e., from left to right) compositional evolution of the liquid BMO and corresponding solid crystal cumulates. White lines 
mark cotectic valleys. Fractional crystallization (A) ultimately yields extremely iron-enriched, (near-)eutectic liquid and solid compositions. Reactive crystallization 
(B) yields low-to-moderately (arrows) iron-enriched liquid and solid compositions (because BMO/cumulate compositional evolution terminates at the red/green arrows).
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enriched in silica (intermittently actually growing in volume; purple 
solid line in Fig. 4A) until it eventually crystallizes bm+sti. Upon 
further cooling, the BMO shrinks again, travelling down the bm+sti 
cotectic line (Fig. 1B), where both these minerals crystallize togeth-
er (here in an ~3:1 ratio; Fig. 4B). Last, the BMO crosses the “point 
of return” (red circle in Fig. 1B). Beyond this point, the cumulates, 
which crystallize upon crustal pollution, become more iron en-
riched than the continuously added crustal material (brown circle 
in Fig. 1B). Thus, iron is effectively pumped out of the BMO into 
these cumulates and eventually into the mantle. At this point, the 
BMO would completely crystallize chemically due to crustal pollu-
tion and related reaction even if no further cooling occurred (i.e., if 
BMO temperatures were fixed at ~4150 K). In our model, however, 
cooling continues (fig. S1), such that the BMO evolves further than 
the “point of return.” Nevertheless, the BMO fully solidifies well be-
fore reaching eutectic compositions (Fig. 1B), such that maximum 
cumulate density anomalies do not exceed 200~300 kg/m3 (i.e., an 
order of magnitude lower than for fractional crystallization), consis-
tent with estimates for LLVP intrinsic density anomalies (Fig. 2).

FeO disproportionation further helps to remove iron from the 
crystallizing BMO into the core. Accounting for this process reduces 
the lifetime of the BMO, as well as the total volume, maximum Fe 
enrichment, and maximum density anomaly of the cumulates 
(Fig. 4). FeO disproportionation is more efficient for reactive crys-
tallization than for fractional crystallization because the continu-
ously added basaltic material is enriched in Al (table S3), driving 
disproportionation (38,  53). Nevertheless, most BMO iron (i.e., 
>80% of initial plus crustal-pollution budget) is still pumped into 
the mantle as oxidized cumulates (Fe3+/ΣFe ≈ 0.6; Fig. 4B). Accord-
ingly, with or without considering FeO disproportionation, maxi-
mum density anomalies in the crystal cumulate pile in the lowermost 
mantle do not exceed ~350 kg/m3 (Fig. 2).

Such moderate maximum density anomalies occur for all our 
reactive-crystallization cases. In our reference case (Figs.  4 and  5, 
purple line), we consider a BMO initially ~350 km thick and with 
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pyrolytic composition (i.e., ~bulk silicate Earth) (2, 3). Crustal 
addition rates, Φ, are fixed over time at present-day subduction fluxes 
(table S2), but we explore cases with variable early [<2.5 billion years 
ago (Ga)] crustal addition rates, Φearly. BMO cooling histories are 
anchored by the present-day CMB temperature, Tfinal  =  3850 K 
(fig. S1). For a detailed discussion of the parameter sensitivity of our 
models, see Supplementary Results. In summary, we find that the 
total volume of cumulates (colored numbers in Fig. 5) increases with 

the (early) crustal addition rate and lifetime of the BMO. In turn, 
BMO lifetimes decrease with early addition rates (fig. S2), and in-
crease with Tfinal and BMO initial size and Fe content (figs. S3 to S5). 
Average cumulate oxidation due to FeO disproportionation also var-
ies between cases shown in Fig. 5 and figs. S2 to S6 (0.42 < Fe3+/
ΣFe < 0.89). However, we emphasize that cumulate mineralogy, Fe 
contents, and density anomalies are largely independent of crustal-
addition or BMO-cooling history (Fig. 5 and figs. S2 to S4), as well as 
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BMO initial thickness (Fig. 5A and fig. S4) or composition (Fig. 5B 
and fig. S5). For all our cases, the maximum predicted density anom-
alies are moderate (reaching just 200~300 kg/m3), consistent with 
the structure of Earth’s lower mantle:

Consequences for earth evolution and structure
The BMO cumulate sequence can be separated into three parts 
(Fig.  4). The first part is depleted (e.g., in iron) and notably less 
dense than the ambient mantle. It is expected to actively rise to the 
upper mantle and/or being stirred into the mantle. The second part 
of the cumulate sequence is enriched in silica (dominantly bm 
and  ≤25% sti) with near-neutral (gray band in  Fig.  5) density 
anomalies. This material would float in but only partly mixed into 
the mantle within a few billion years, due to its high intrinsic vis-
cosity (54).

The first, buoyant part of BMO cumulates (numbers in Fig. 4) 
may contribute to the stabilization of continental/cratonic keels in 
the Hadean/Archean (55). Entrained BMO cumulates (i.e., with 
high Fe3+/ΣFe) may moreover contribute to the progressive oxida-
tion of the (upper) mantle over time (56–58). Accordingly, the deep 
Earth oxygen cycle may be powered by BMO crustal pollution, po-
tentially linked to the Great Oxidation Event of the atmosphere with 
implications for the evolution of higher life (56–59). In turn, the 
nonentrained portion of the second part of the cumulate sequence is 
a good candidate material to be preserved as mid-sized to large 
bridgmanitic blobs (54, 60, 61), also referred to as “BEAMS” (54, 61). 
These high-viscosity bridgmanitic domains (62, 63) can account for 
widespread seismic reflectors (64), slab stagnation (65) and deflec-
tion of plume upwellings (66) in the mid-mantle. The predicted 
abundance of stishovite in such blobs (Fig. 4B) can further promote 
floating and hence preservation of blobs in the mid-mantle owing to 
a density crossover relative to the ambient mantle at ~1600 km 
depth (67).

Last, the third part of the cumulate sequence is also enriched in 
bm but notably exhibits progressive iron enrichments (Fig. 4). Den-
sity anomalies of this material are therefore moderately positive, 
ranging from 50 to 200 kg/m3, up to maximally ~300 kg/m3 in some 
cases, but usually 100~150 kg/m3 on average (Fig. 5 and figs. S2C to 
S6C). Such moderately dense materials will not form a stable global 
layer that covers most of the CMB but rather long-lived isolated 
thermochemical piles (yellow/orange bar in Fig. 2 and Supplemen-
tary Discussion), as shown by many previous geodynamic studies 
(20, 22, 23, 68, 69). Therefore, the third part of the BMO reactive 
crystallization cumulate sequence is a good candidate to account for 
seismically observed LLVPs (23, 27, 29).

The predicted volumes and compositions of the third part of 
BMO cumulates are consistent with LLVP seismic signatures: The 
distinct response of LLVPs to traversing shear versus pressure waves 
points to bm enrichment, moderate iron enrichment, and high oxida-
tion (27, 28), as predicted here (Fig. 4B and figs. S2D to S6D). Our pre-
dicted volumes of intrinsically dense cumulates mostly range between 
1.5 and 3.5% of that of the mantle (numbers in Fig. 5) (or up to 4.8% 
depending on bm-melt iron partitioning; fig.  S6), consistent with 
seismic estimates for LLVP volumes. Seismic estimates range from 
2~3% (70) up to ~8% (71), but at least the latter estimate likely includes 
a purely thermal region around chemically distinct piles (29, 69, 72).

As proposed in ref. (2), the Earth’s BMO may not be completely 
crystallized at the present day. A very small partially molten rem-
nant may be seismically visible as ULVZs (2, 73). For any BMO 

crystallization scenario, volatiles and incompatible elements would 
be concentrated in the last small remnant, preventing complete so-
lidification. If this hypothesis is correct, BMO reactive crystallization 
makes geophysically testable predictions of ULVZ major-element 
compositions. The predicted ULVZ compositions are highly en-
riched in Fe with near-pyrolitic SiO2 (Fe# ≈ 90; see tip of red arrow 
in Fig. 1B), consistent with mineral-physics estimates (74), although 
uncertainties persist (26).

Crustal pollution of the BMO during reactive crystallization has 
further important geochemical implications. Early depleted cumu-
lates from an initially enriched BMO (e.g., in the overturn scenario 
of BMO formation) can account for the coupled Hf-W-Nd isotope 
systematics of Archean igneous rocks (75). Furthermore, the rather 
sharp decline of isotopic anomalies with primordial origin (e.g., 
142Nd/144Nd, 182W/184W) in the late Archean (2.0~2.5 Ga) (76, 77) 
overlaps with the switch from buoyant to intrinsically dense cumu-
lates in our reference case (Fig. 4A). Thus, the decline of these anom-
alies may be primarily related to the timing of BMO solidification 
and only secondarily to progressive mantle mixing (77). Improving 
geochemical data may help to constrain BMO formation scenarios 
and core-mantle interaction (78). Moreover, the pollution of the 
BMO by recycled crust may reconcile the proposed primordial BMO 
origin of LLVPs (2) with the hot spot isotopic record. Hot spot–feeding 
mantle plumes grazing LLVP sample mantle reservoir(s) with primitive 
noble-gas signatures (37, 79) but are dominated by recycled isotopic 
and trace-element fingerprints (80).

FeO disproportionation as driven by BMO crustal pollution also 
adds pure iron at the top of the core. The related total mass of added 
iron corresponds to ~14% of Earth’s inner core mass for our refer-
ence case, or ~41% for large BMO thicknesses (900 km) combined 
with high Φearly (4Φ). Accordingly, reactive crystallization can re-
lease up to ~41% of the potential (or convective) energy of inner-
core growth that is available to drive the geodynamo. Thus, (early) 
crustal recycling can substantially contribute to the (early) Earth’s 
magnetic field, perhaps along with other mechanisms (11, 81).

Implications for terrestrial planets
Here, we have shown that fractional crystallization of the BMO 
leads to a highly Fe-enriched layer that covers the CMB, inconsis-
tent with geophysical constraints. As the formation of a BMO early 
in the history of an Earth-sized planet is almost inevitable (82) and 
further supported by seismic evidence for a BMO on present-day 
Mars (13–15), an additional mechanism is required. We demon-
strate that BMO reactive crystallization driven by crustal pollution, 
as is expected to occur on a tectonically active planet, can reconcile 
present-day Earth structure.

Although estimated BMO cooling timescales span billions of 
years (2), BMO crystallization and reaction with recycled crust may, 
in principle, have also occurred consecutively, instead of simultane-
ously as suggested here. However, such a scenario requires very fast 
early core cooling and, subsequently, efficient solid-solid reaction/
metasomatism in a relatively cool lowermost mantle. In turn, fluxing 
massive amounts of (partially) molten crust through an already 
evolved BMO can explain how such a BMO can efficiently crystallize 
(chemically) in the first place, instead of being stabilized (thermally) 
by ever-increasing concentrations of heat-producing elements.

BMO reactive crystallization due to crustal pollution can fur-
ther provide a unified model of Earth’s present-day lower-mantle 
structure, naturally explaining the coupled origins of moderately 
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enriched LLVPs and (partially) molten ULVZs. It can explain why 
Earth’s present-day CMB is not covered by a preserved BMO, or a 
(thick) very dense solid layer, in contrast to present-day Mars 
(13, 14) or the Moon (16). This difference in planetary structure and 
evolution is readily explained by their tectonic history. Proposed 
early-Earth tectonic regimes involve a heat pipe (44) or plutonic-
squishy lid (42, 43), and/or at least later on, plate tectonics (45, 46). 
All these regimes are characterized by efficient crustal recycling, 
promoting reactive BMO crystallization. Similarly, proposed tec-
tonic regimes for (early) Venus involve efficient crustal recycling 
(83), implying an Earth-like fate for any Venusian BMO [see ref. 
(84)]. In turn, Mars and the Moon have been governed by a stagnant 
lid with only minor crustal recycling (85, 86), reconciling the long-
term survival of a deep (partially) molten layer (13, 14, 16). Thus, 
the deep interior structure of terrestrial planets may help to con-
strain their magmatic and tectonic history, with implications for the 
magnetic field, atmospheric evolution, and habitability.

MATERIALS AND METHODS
BMO crystallization model
We use the thermodynamic model of ref. (19) to predict melt and 
solid compositions in equilibrium, as well as the relevant crystal 
fractions, during fractional and reactive crystallization in the lower 
mantle. For fractional crystallization, we incrementally remove sol-
id compositions that are in chemical equilibrium with the coexisting 
liquid (BMO) compositions and update the liquid composition ac-
cordingly. To calculate FeO and MgO partitioning, we consider 
mineral-melt equilibrium constants of Kbm  =  0.1 for bridgmanite 
and Kfp = 0.9 for ferropericlase. These values are calibrated for the 
ternary MgO-SiO2-FeO system (19).

For “reactive crystallization,” we consider coupled crustal addi-
tion, BMO cooling, and crystallization. In each incremental step, we 
first add crustal materials to the BMO, according to the crustal mass 
flux into the BMO, Φ. For model times t < 2.55 billion years (Gyr), 
2.55 ≤ t < 4.209 Gyr, and t ≥ 4.209 Gyr, we add “Archean Basalt,” 
“Proterozoic Basalt,” and MORB compositions, respectively (see ta-
ble S3). The former two compositions are based on ref. (51). As we 
assume perfect mixing between the added crustal material and the 
BMO, this addition results in an updated BMO composition. On the 
basis of this updated BMO composition as well as the updated BMO 
temperature (as constrained by our cooling curves in fig.  S1; see 
Supplementary Results for details), we then calculate the new melt 
and solid compositions (and crystal fractions) using the same ther-
modynamic model as for fractional crystallization (19). We then 
proceed to the next incremental step.

Because of coupled cooling and addition during “reactive crys-
tallization,” the crystal fraction is >0% in all incremental steps. In 
most of our cases, we consider Kbm = 0.1 and Kfp = 0.9, consistent 
with the thermodynamic model (19), but we also explore cases with 
different Kbm and Kfp (for details, see Supplementary Results and 
fig. S6). The nondimensional crustal addition rate, ψ = Φ/mBMO.init 
(with mBMO.init the initial mass of the BMO), is the main parameter 
to control the evolution of the BMO because there is a direct trade-
off between Φ and mBMO.init or, likewise, between Φ and initial BMO 
thickness (Supplementary Results and table S1). In most but not all 
cases (fig. S2), we consider constant crustal addition rates (i.e., con-
stant Φ and ψ) over time. We also explore the effects of different initial 
compositions of the BMO (table S3) and BMO cooling histories. 

Table S2 provides the range of parameters explored and our refer-
ence values.

Model cases explored
For our main cases with reactive crystallization and FeO dispropor-
tionation switched on, we vary only one parameter at the time, 
keeping all other parameters fixed at reference values (table S2). This 
gives 16 cases with fixed Kbm = 0.1 and Kfp = 0.9 (table S2). As dis-
cussed in Supplementary Results and shown in fig. S6, we also run 
four more cases with KD = Kbm/Kfp = 0.6. We further run a few ad-
ditional cases with other parameter combinations (but within the 
range shown in table S2), which are explicitly mentioned in the text 
when discussed. Then, we run several cases without FeO dispropor-
tionation (notably with variable Tfinal), but only the case with refer-
ence values is shown (Figs. 2 and 4) and discussed here. Last, we run 
four cases with fractional crystallization (Fig. 2, red and pink lines). 
These cases are independent of (early) crustal addition rate and 
cooling history (we confirm that conclusions remain robust by run-
ning fractional-crystallization cases with KD  =  0.6, analogous to 
those in fig. S6).

FeO disproportionation
In natural Al-bearing systems, Al is incorporated into bm (87), driv-
ing FeO disproportionation (38, 39, 53). As Al2O3 is not included in 
the thermodynamic model applied here (19), we cannot account for 
its incorporation into bm explicitly. However, experimental work 
(although at shallow lower-mantle pressures) shows that the topol-
ogy of the MgO-FeO-SiO2 ternary cross section through the phase 
diagram (33) is similar than that of the true ternary in ref. (19). In 
other words, the effects of Al incorporation into bm on the shape of 
the liquidus surfaces and notably on the locations of the cotectic val-
leys is rather minor.

Accordingly, we account for the effects of FeO disproportion-
ation in a simplified way. We neglect the effects of Al incorporation 
into bm on the thermodynamic model, cumulate compositions and 
densities. We exclusively account for the related effects on the reduc-
tion of Fe2+O in the liquid BMO to Fe0 (i.e., through the dispropor-
tionation reaction) and removal of Fe0 from the BMO into the core. 
The incorporation of any 2 mol of AlO1.5 into bm as reduces 1 mol 
of FeO (in the liquid BMO) to Fe0. We assume that FeAlO3 is the 
preferred Al-bearing speciation of bm (39) and that all Fe in the 
initial BMO is present as ferrous iron (at the iron-wüstite buffer). 
We further assume a bm-melt partition coefficient for Al of 1.0 (87); 
FeO disproportionation is driven as long as Fe and Al are incorpo-
rated into bm together to stabilize FeAlO3. Any excess Al (or excess 
Fe) incorporated into bm does not drive disproportionation in 
our model.

Density calculations
We calculate the densities of crystal cumulates from their MgO-
SiO2-FeO compositions. In either cases with and without FeO dis-
proportionation, we neglect Al incorporation into bm in terms of 
calculating densities for consistency with the thermodynamic model. 
The densities of all relevant mineral components (MgSiO3, FeSiO3, 
MgO, FeO, and SiO2) are calculated from a Mie-Grüneisen-Debye 
equation of state (88). The details of this calculation and a compari-
son of the density model with experimental constraints are provided 
in the Supplementary Materials (text S6 and table S4). The resulting 
densities of mineral endmembers at pressures of 130 GPa (and 
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reference temperatures of 4000 K), from which all whole-rock cu-
mulate density profiles are calculated (e.g., Figs. 2, 4, and 5), are re-
ported in table  S5. Densities of the liquid BMO are not explicitly 
calculated. We assume that they are always higher than the corre-
sponding solid cumulates and the pyrolytic mantle.

Pressure approximation
In all our calculations, including the BMO crystallization model and 
density calculations, we fix the pressure at 130 GPa as a simplified 
approximation. This approximation is appropriate as the liquid adi-
abat and liquidus (i.e., the crystallization temperatures) are near 
parallel over pressure in the lowermost mantle [e.g., ref. (4)]. BMO 
crystallization and chemical liquid-solid equilibration occurs near 
the top of the BMO (2). As the CMB pressure is ~135 GPa, the as-
sumed pressure of 130 GPa is most appropriate for thin BMOs. For 
our reactive-crystallization cases, the BMO is relatively thin for 
most of its evolution. All our cases are characterized by fast initial 
solidification and an extended period, over which the BMO volume 
is rather small, i.e. ~10% of its initial volume (figs. S2A to S6A). For 
both reactive and fractional crystallization, the final stage of crystal-
lization, which is most relevant for our main conclusions, is par-
ticularly characterized by thin BMOs. Test cases show that the 
typical cumulate density anomalies do not depend on our pressure 
approximation.

Supplementary Materials
This PDF file includes:
Supplementary Methods
Supplementary Results
Supplementary Discussion
Figs. S1 to S10
Tables S1 to S5
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