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Summary
Background Parkinson’s disease is linked to increased beta rhythms (13–30 Hz) in the subthalamic nucleus, which 
correlate with motor symptoms. However, findings across studies are inconsistent. Furthermore, the contribution of 
other frequencies to symptom severity remains underexplored.

Methods We analysed subthalamic local field potentials from 119 patients with Parkinson’s disease (31 female; 
mean age 60 ± 9 years) across five independent datasets. Power spectra were parametrised and studied in relation to 
Levodopa administration and the severity of motor symptoms.

Findings Our findings suggest that small sample sizes contributed to the variable correlations between beta power 
and motor symptoms reported in previous studies. Here, we demonstrate that more than 100 patients are required 
for stable replication. Aperiodic offset and low gamma (30–45 Hz) oscillations were negatively correlated with motor 
deficits (rOffset = − 0.32, p = 4e−4; rLγ = − 0.21, p = 0.021), whereas low beta oscillations were positively correlated 
(rLβ = 0.24, p = 0.010). Combining offset, low beta, and low gamma power (rLin. reg. (Offset,Lβ,Lγ) = 0.47, p = 1e − 4) 
explained significantly more variance in symptom severity than low beta alone (J-test: p = 2e−5). Interhemispheric 
within-patient analyses showed that, unlike beta oscillations, aperiodic broadband power (2–60 Hz)–likely reflecting 
spiking activity–was increased in the more affected hemisphere (Levodopa off-state: p = 0.015; on-state: p = 0.005).
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Interpretation Spectral features beyond conventional beta rhythms are critical to understanding Parkinson’s path
ophysiology. Aperiodic broadband power shows potential as a new biomarker for adaptive deep brain stimulation, 
providing important insights into the relationship between subthalamic hyperactivity and motor symptoms in 
Parkinson’s disease.
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Introduction
Parkinson’s disease (PD) is characterised by progressive 
motor impairments due to basal ganglia dysfunction. 
Within the basal ganglia, abnormal subthalamic nu
cleus (STN) activity plays a central role, exhibiting two 
major abnormalities in PD: excessive beta (13–30 Hz) 
rhythms and increased neuronal spiking activity.1,2 

Deep brain stimulation (DBS) of the STN alleviates 
motor symptoms and enables local field potential (LFP) 
recordings.3,4 Since LFPs primarily capture oscillatory 
activity rather than spiking, research in humans has 
been skewed toward studying beta oscillations.

This research focus on beta has led to numerous 
reports linking subthalamic beta activity with motor 
impairment in PD.5 These reports inspired beta-based 
adaptive DBS (aDBS)—a closed-loop stimulation 
approach that uses beta power as an electrophysiolog
ical biomarker to adapt DBS dynamically.6 Early trials 
suggest aDBS may outperform continuous DBS,7 but a 

deeper characterisation of the beta–symptom correla
tion may refine its clinical application. Furthermore, 
current aDBS implementations assume that beta power 
most reliably reflects motor dysfunction—a premise 
that remains uncertain.

While the beta–symptom correlation has been 
extensively studied (Supplementary Table S2), its 
robustness is unclear due to methodological variability; 
its replicability awaits testing in large, diverse cohorts; 
and its strength varies considerably across studies.8–12 

Furthermore, most studies use across-patient correla
tions, though aDBS biomarkers must track symptoms 
within individuals. Finally, beta–symptom correlations 
are predominantly studied in the Levodopa off-state, 
whereas most DBS patients remain on medication.

To address these challenges, we conducted a multi
centre STN-LFP analysis, integrating five independent 
datasets (Fig. 1) to create a large and heterogeneous 
cohort of 119 patients with PD. In Part 1, we extensively 

Research in context

Evidence before this study
Parkinson’s disease can be treated with deep brain 
stimulation of the subthalamic nucleus, which also enables 
direct recordings of brain activity. Many studies investigated 
whether the power of beta rhythms (13–30 Hz) relates to the 
severity of motor symptoms. These studies varied widely in 
sample sizes (7–103 patients, median 13), the frequency 
ranges defined as “beta,” and statistical outcomes (17 
significant vs. 22 non-significant correlations). These 
inconsistencies motivated our large-scale, standardised 
analysis.

Added value of this study
Integrating five datasets comprising 119 patients—far 
exceeding the typical sample sizes in prior studies—we 
demonstrate that inconsistencies in beta power vs. symptom 
correlations primarily stem from underpowered studies. By 

disentangling rhythmic from non-rhythmic brain activity, we 
enhanced symptom associations and improved physiological 
specificity. Moreover, we identified aperiodic broadband 
power as a marker that reflects symptom severity at the 
individual level, applicable across medication states. Total 
mid gamma power (45–60 Hz) also tracked symptom 
asymmetry.

Implications of all the available evidence
Our findings underscore the importance of large datasets and 
physiologically grounded, multiparametric spectral analysis 
for biomarker discovery. Aperiodic broadband power is a 
promising spiking-related marker for invasive 
electrophysiology. Total mid gamma power, as a real-time 
extractable proxy of aperiodic broadband power, may enable 
dynamic symptom tracking relevant for adaptive deep brain 
stimulation in Parkinson’s disease.
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characterise the beta–symptom correlation. Part 2 
compares three spectral analysis frameworks to deter
mine which best reflects neural dynamics. In Part 3, we 
leverage PD’s asymmetric nature and compare STN 
activity between more vs. less affected hemispheres, 
providing additional insights into how spectral features 

correlate with symptom lateralisation at the individual 
patient level. We identify spectral features that correlate 
within patients and across medication states—two re
quirements for aDBS biomarkers.

We find that aperiodic broadband power meets both 
requirements, offering a promising target for aDBS. It is 
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Fig. 1: Investigating the relationship between subthalamic nucleus activity and Parkinson’s disease symptoms. (a) Illustration of 
subthalamic nucleus (STN) deep brain stimulation (DBS) at three increasing anatomic scales. The 3D visualisations show a typical positioning 
of the DBS leads relative to the brain. The DBS contact closest to the stimulation sweet spot30 (blue sphere) is the estimated stimulation 
contact (yellow). (b) Left: The two contacts adjacent to the stimulation contact are referenced in a bipolar montage and used for analysis 
(DBS leads with directional contacts are averaged so all leads have four levels of contacts). Middle: Three seconds of raw bipolar local field 
potential (LFP) time-series traces from one exemplary patient with and without Levodopa administration. Right: Spectrum of the entire 
recording. The patient shows characteristic 14 Hz low beta oscillations off Levodopa (black), which disappear after Levodopa administration 
(grey). (c) Part 1: Multicentre reproducibility—the reproducibility of the correlation between beta power vs. motor symptoms is assessed in 
terms of replicability across datasets and robustness to different analyses. Part 2: Spectral framework comparison—different methods to 
extract spectral features, such as absolute total, relative total, and absolute periodic beta power, are evaluated for their motor symptom 
correlation. Part 3: Within-patient correlations—the relationships between spectral features and motor symptoms are tested for within- 
patient predictability. While within-patient correlations are imperative for successful aDBS, these might not be truthfully reflected in 
across-patient correlations.
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strongly elevated in the more affected hemisphere and has 
been reported to correlate with spiking activity13—the 
second major abnormality in PD, which, however, 
remained understudied relative to beta synchronisation.

Methods
Study design
This is a cross-sectional, observational, multicentre anal
ysis of resting-state STN-LFP recordings from patients 
with PD. We analysed five independent datasets: 
Berlin,14–16 London,17 Düsseldorf 1,18–22 Düsseldorf 2,23–25 

and Oxford.26–28 The patient demography, disease charac
teristics, and acquisition details are presented in Table 1, 
Fig. 2a, Supplementary Fig. S1, and Supplementary 
Table S1. Participant sex was obtained from clinical re
cords (biological sex; male/female). No self-reported 
gender information was available. Sex data were used 
for demographic description; exploratory analyses showed 
no significant influence of sex on the reported results.

Surgery
All patients were diagnosed with idiopathic PD of pri
mary bradykinetic-rigid motor phenotype and underwent 
bilateral DBS lead implantation. Recruitment sites were: 
Berlin (n = 50, Charité – Universitätsmedizin Berlin), 
London (n = 14, National Hospital of Neurology and 
Neurosurgery), Düsseldorf 1 (n = 27) and Düsseldorf 2 
(n = 22, University Hospital Düsseldorf), and Oxford (n = 
17, St. George’s University Hospital NHS Foundation 
Trust and King’s College Hospital NHS Foundation 
Trust). Intraoperative microelectrode recordings were 
performed for the Berlin dataset (n = 2), Düsseldorf 1 
(mean ± SD: 3.4 ±1.2), and Düsseldorf 2 (up to 5). Final 
DBS lead positions were reconstructed using Lead-DBS29 

for Berlin, London, and Düsseldorf 1 (Supplementary 
Fig. S1b).

Levodopa administration
For the off-state evaluation, patients were withdrawn 
from all dopaminergic medication for ≥12 h. For the 
on-state, patients received Levodopa ≥30 min before 
assessment, and movement disorder neurologists 
confirmed a clear motor on-state. Patients received 
either their usual dose of Levodopa (Berlin, London, 

Oxford) or 1.5 times their usual dose (Düsseldorf 1, 
Düsseldorf 2).

Symptom evaluation
Movement disorder neurologists evaluated motor 
symptoms using the Unified Parkinson’s Disease Rating 
Scale Part 3 (UPDRS-III) with and without Levodopa 
medication. Assessments were conducted pre-operatively 
for London and Oxford, post-operatively for Düsseldorf 
2, and both pre- and post-operatively for Berlin and 
Düsseldorf 1 (Fig. 2a). The total UPDRS-III score was 
used as a patient-level measure of motor impairment. 
Hemisphere-specific bradykinesia-rigidity and tremor 
subscores were calculated by summing contralateral 
UPDRS items 22–26 and 20–21, respectively.

Recordings
Recordings were performed 1–7 days after surgery 
while electrodes remained externalised (Fig. 2a). On- 
and off-state recordings took place on the same day for 
Düsseldorf 1, Düsseldorf 2, and Oxford, and on 
different days for Berlin (off: day 4.3 ± 1.3, on: 3.8 ± 1.5) 
and London (day 2 or 3 counterbalanced across pa
tients). For the resting-state recordings, patients were 
instructed to rest with their eyes open for ≥3 min. 
Amplifiers, DBS lead models, recording sample rates, 
hardware filters, and recording references differed 
across datasets (Supplementary Fig. S1a, 
Supplementary Table S1). However, multicentre LFPs 
were harmonised using a standardised processing 
pipeline that involved conversion to microvolts, down
sampling, filtering within the original hardware ranges, 
and bipolar re-referencing.

Ethics
All patients provided informed consent to participate in 
the research, and recordings were performed according 
to the standards set by the Declaration of Helsinki. The 
study protocol for Berlin was approved by the ethics 
committee at Charité Universitätsmedizin Berlin (EA2/ 
129/17), for Düsseldorf 1 and 2 by the ethics committee 
of the medical faculty of Heinrich Heine University 
Düsseldorf (study no. 3209 and 5608R), for London by 
the joint ethics committee of the National Hospital of 
Neurology and Neurosurgery and the University Col
lege London Institute of Neurology (07/Q0512/10), and 
for Oxford by the Health Research Authority UK, the 
National Research Ethics Service local Research Ethics 
Committee (IRAS: 46576), and the South Central– 
Oxford C Research Ethics Committee (19/SC/0550).

Signal processing
Preprocessing
All recordings were manually screened to reject bad 
segments and channels, then high-pass filtered at 1 Hz. 
Before downsampling to 2000 Hz, a low-pass filter was 
applied to prevent aliasing.

Characteristics All (n = 130) Female (n = 34) Male (n = 95)

Age [years] 60.0 ± 8.5 63.0 ± 6.7 59.1 ± 8.8
Disease duration [years] 9.6 ± 4.6 9.1 ± 4.5 9.8 ± 4.6
UPDRS-III (off) 34.9 ± 12.9 33.3 ± 12.9 35.3 ± 12.9
UPDRS-III (on) 19.0 ± 9.2 21.0 ± 8.7 18.5 ± 9.2

Sample sizes differ across analyses throughout the paper depending on the availability of UPDRS scores, MNI 
coordinates, and medication condition. Sex information was unavailable for one patient. UPDRS-III: Unified 
Parkinson’s Disease Rating Scale Part III (motor symptom severity).

Table 1: Patient demographics (mean ± SD).
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Fig. 2: Multicentre analysis of STN-LFP recordings in Parkinson’s disease patients. (a) Dataset and patient characteristics. Top row: 
Number of patients per dataset; sex distribution; time point of UPDRS-III assessment. Y-axis: number of patients, filled bars: proportion of 
evaluated patients; time point of recording. Bottom row: Kernel density estimates of age, disease duration, and UPDRS-III subscores, showing 
comparable demographic and clinical characteristics across datasets. Additional details on DBS lead manufacturers, localisations, and 
symptoms in the on-state are in Supplementary Fig. S1. (b) Exemplary STN-LFP spectrum from a single patient (Berlin) in the Levodopa off 
and on states, normalised to the 5–95 Hz frequency range. White vertical grid lines indicate canonical frequency band borders. Left: Total 
relative band power was calculated as the average power within each canonical frequency band. Right: Normalisation equalises the area under 
the spectral curve to 100% between 5 and 95 Hz. (c) Levodopa modulation of STN spectral power across datasets. Upper: Averaged spectra by 
dataset and Levodopa condition, shading shows standard error. Horizontal colored lines indicate frequency ranges with significant power 
differences. Below: Effect sizes (Cohen’s d) for Levodopa-induced spectral changes. Vertical colored lines indicate 99th-percentile confidence 
intervals; asterisks note Bonferroni-corrected significant effect sizes (p < 0.008). Complete statistics in Table 2. Absolute spectra results are in 
Supplementary Fig. S1c. (d) Correlations between average band power vs. motor symptoms. X-axis: Spearman’s correlation coefficient ρ, 
y-axis: datasets, horizontal lines: 95th percentile confidence intervals, symbol sizes represent the dataset sample sizes. Triangles indicate 
significant correlations (p < 0.05); squares indicate non-significant findings. Pooled correlation coefficients and p-values are shown at the 
bottom. “Required npat” indicates sample size estimations (80% power requirement) for the observed correlation coefficients. (e) Patient 
spectra split by median UPDRS-III score after averaging their hemispheres. The horizontal line shows a 14–17 Hz cluster of significant 
difference. (f) Frequency-wise correlation between relative spectral power and motor symptoms. Horizontal lines indicate frequencies with 
uncorrected p-values < 0.05 for the pooled data.
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Channel selection
Directional DBS contacts were averaged at each level 
along the electrode shaft, and we estimated the most 
likely monopolar stimulation contact (either contact 2 
or 3) based on proximity to the DBS sweet spot.30 When 
MNI coordinates were unknown, we estimated the 
stimulation contact based on the largest high beta po
wer.31 For each STN, we select one bipolar LFP for 
further analysis. We chose the neighbouring electrodes 
adjacent to the estimated stimulation contact, either 
contacts 1–3 or 2–4, as suggested for aDBS sensing.6,32

Absolute spectra
Power spectra were computed using the Welch algo
rithm with a frequency resolution of 1 Hz (1-s Ham
ming windows) and 50% overlap between neighbouring 
windows. Line noise artefacts were linearly interpolated 
in the spectrum.

Relative spectra
Relative power spectra in percentage units were ob
tained by dividing the absolute spectra by their sum 
from 5 to 95 Hz and multiplying by 100% (Fig. 2b, 
right).33

Parameterized spectra
We applied specparam34 (formerly ‘FOOOF’) to separate 
periodic and aperiodic spectral components with the 
following parameters: fit range: 2–60 Hz, peak width 
limits: 2–12 Hz, maximum number of peaks: 4, mini
mum peak height: 0.1, peak threshold: 2, aperiodic 
mode: fixed. Fits with R2 values above 0.85 were kept 
for further processing.35

Band power
Band power was obtained from the total or periodic 
spectra by selecting the average power in the canonical 
frequency bands delta (2–4 Hz), theta (4–9 Hz), alpha 
(9–13 Hz), low beta (13–20 Hz), high beta (20–30 Hz), 
low gamma (30–45 Hz), and mid gamma (45–60 Hz).

Aperiodic broadband power
Aperiodic broadband power can be calculated from the 
offset a and the 1/f exponent m by summing the fitted 
aperiodic power from flow = 2 Hz to fhigh = 60 Hz:

Aperiodic power = a⋅(fhigh−flow) − m ∑

fhigh

f =flow

log10( f )

Please refer to the supplementary material for a 
Python implementation using specparam.

STN-LFP simulations
STN-LFP power spectra were simulated by constructing 
a Fourier power spectrum following a preset 1/f m po
wer law. The corresponding phases of the Fourier 

spectrum are distributed uniformly randomly. To add 
oscillations, we add Gaussian-shaped peaks to the 
Fourier power spectrum with amplitudes A and a 
spectral extent given by centre frequencies fcentre and 
variances σ2

f . The corresponding time series, consisting 
of periodic oscillations and aperiodic activity, is then 
obtained by applying the inverse fast Fourier transform. 
The simulated time series have a duration of 180 s at a 
sampling rate of fsample = 2400 Hz.

Spatial localisation of oscillations
The spatial localisation of oscillatory activity was con
ducted following protocols described in Horn et al.36 

and Darcy et al.,31 pooling datasets from Berlin, Lon
don, and Düsseldorf 1, where MNI coordinates were 
available. To maximise spatial resolution, we analysed 
adjacent bipolar channel pairs (1–2, 2–3, 3–4), and the 
site of maximum band power within each STN was 
identified. The power was mapped into MNI space, 
using the midpoint between bipolar recording co
ordinates, resulting in a 4D grid (3D spatial 
coordinates + power values) for each frequency band 
and levodopa condition. Interpolations between data 
points were performed using a scattered interpolant, 
and the resulting maps were smoothed with a Gaussian 
kernel (FWHM = 0.7 mm)—the Lead-DBS software 
integrated subcortical parcellations from the DISTAL 
atlas.37 Left hemisphere coordinates were flipped 
non-linearly to the right to increase data density and 
facilitate visualisation. Finally, power values were 
thresholded at their mean plus one standard deviation 
to highlight the regions of interest, as shown in the 
thresholded probability maps in Fig. 5.

Statistical analysis
Throughout the paper, we used an alpha level of 0.05 as 
a threshold for statistical significance and applied 
Bonferroni correction where appropriate. In figures and 
tables, p-values are abbreviated using asterisks 
(p < 0.05: ‘*’, p < 0.01: ‘**’, p < 0.001: ‘***’) if they fall 
below the Bonferroni-corrected alpha level.

Dataset comparison
Cohort characteristics (sex, age, disease duration, PD 
onset age, motor symptoms) were compared across 
datasets using the non-parametric Kruskal–Wallis test. 
For variables with significant differences, post-hoc 
Dunn’s test identified the specific dataset pairs and 
direction of the differences.

Levodopa modulation of spectra
Standard error for all spectra was calculated through 1000 
bootstrap iterations. Differences in spectra between the 
Levodopa off and on conditions were assessed using the 
PTE-stats toolbox (github.com/richardkoehler/pte-stats/ 
tree/paper-moritz-gerster), employing non-parametric 
permutation testing with 1,000,000 permutations at an 
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alpha level of 0.05. Cluster-based corrections were applied 
to adjust for multiple comparisons when significant 
p-values were detected, following the approach described 
by Maris & Oostenveld.38 Permutations were conducted 
by randomly reassigning conditions within patient pairs, 
with the mean difference used as the test statistic to 
compare the original and permuted datasets.

Levodopa modulation of canonical frequency 
bands
Levodopa off-on effect sizes were calculated using 
Cohen’s d based on the mean band power. Cohen’s 
d confidence intervals were calculated using 10,000 
bootstrap iterations. Using an alpha level of 0.05, we 
applied the Bonferroni correction to adjust for multiple 
comparisons of six frequency bands, leading to a con
fidence level of 1 − α/n = 1 − 0.05/6 = 0.992. Fre
quency bands were significantly modulated when the 
99.2% confidence interval did not cross zero.

Univariate band correlations across patients
If not indicated otherwise, correlations are computed 
using Spearman’s correlation. Correlation coefficient 
confidence intervals are calculated non-parametrically 
using 10,000 bootstrap iterations. Sample size estima
tions for correlation coefficients were computed based 
on Cohen (1988).39 Correlations with p-values below 
0.05 were significant. Multiple comparison corrections 
were not applied to correct for multiple analysis paths 
in the multiverse analysis40 in Part 1 because the goal of 
such analysis is to compare statistical results across 
multiple analysis paths, independent of the number of 
tested analysis paths. For the same reason, compari
sons between spectral frameworks in Part 2 were also 
not corrected. However, we did apply Bonferroni 
correction to multiple correlations tested within spec
tral frameworks to account for multiple frequency 
bands and multiple Levodopa conditions.

Frequency correlations across patients
Correlations between motor symptoms and spectral 
power at individual frequency bins were not 
Bonferroni-corrected due to the strong dependence of 
neighbouring frequency bins. Correlations with 
p-values below 0.05 were considered significant to 
check their overlap with canonical frequency bands.

Multivariate band correlations across patients
We analysed the relationship between STN band 
powers and motor symptom severity by predicting the 
UPDRS-III scores (y-variable) using linear regression:

yi = b0 + b1 xi1 + ... + bp xip + ϵi 

where i = 1,…, n corresponds to each patient, b are the 
regression coefficients, p is the number of predictors 

(band powers), and ϵi is the error term. In matrix no
tation, this simplifies to:

y=Xb + ϵ

The regression coefficients b were calculated by 
minimising the residuals:

ϵ= y − Xb 

To evaluate model fits, we used Pearson’s correla
tion for best comparability with previous studies.

Non-nested linear regression models were compared 
using J-tests.41 Additionally, we calculated the Akaike 
Information Criterion (AIC) and Bayesian Information 
Criterion (BIC) using the statsmodels.api.OLS function. 
To account for potential overfitting in models with small 
sample sizes n, we applied the corrected AIC42

AICcorrected =AIC +
2k2 + 2k
n − k − 1 

where k is the number of parameters.

Within-patient analysis
Within-patient correlations are visualised using repeated 
measures correlation43 and non-parametrically evaluated 
using ranked repeated measures correlation.44 Direct 
comparison of power between more and less affected 
hemispheres (Supplementary Fig. S8) was tested using 
the Wilcoxon signed-rank test. We consider the within- 
patient analysis in Part 3 of the manuscript as explor
atory. Therefore, we did not apply corrections for multiple 
comparisons when evaluating within-patient correlations 
across various spectral features.

Role of funders
The funding sources did not influence the study design, 
data collection, analysis, or interpretation.

Results
Part 1: multicentre reproducibility
In Part 1, we evaluated the reproducibility of Levodopa 
effects and beta–symptom correlations across multi
centre datasets.

Dataset comparability
Patient characteristics by dataset (sex, age, disease 
duration, motor symptoms) are shown in Fig. 2a. Sex, 
age, disease duration, and bradykinesia-rigidity sub
scores were comparable. In contrast, off-state UPDRS- 
III and tremor scores differed (p = 0.004 and p =

0.0001, respectively). Post-hoc Dunn’s test revealed 
higher UPDRS-III scores for London compared to 
Berlin and Düsseldorf 1. Tremor was more severe for 
London compared to Berlin and Düsseldorf 1, and 
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more severe for Düsseldorf 2 compared to Berlin and 
Düsseldorf 1 (Supplementary Table S3). DBS lead po
sitions were similar along the x-axis but differed in y- 
and z-axes (Supplementary Fig. S1b).

Levodopa modulation of relative spectra
Beta-based aDBS was partly motivated by the observa
tion that Levodopa reduces beta power,1,45 but the con
sistency of this effect across datasets remains unknown. 
To assess its consistency, we examined subthalamic 
power spectra. Fig. 2b shows an exemplary spectrum 
for relative (i.e., normalised) power in the Levodopa off 
and on conditions. We studied relative power in our 
reproducibility analysis to align with previous reports 
(Supplementary Table S2). We applied Cohen’s d to 
grand mean spectra (Fig. 2c) to quantify Levodopa 
modulations, defining effect size magnitudes greater 
than |d| > 0.3 as moderate.46 We found at least moder
ate Levodopa-induced enhancements in the theta band 
in 4/5 datasets, reductions in low beta in 3/5, and re
ductions in high beta in 2/5 datasets.

While canonical frequency bands facilitate cross- 
study comparisons, they were primarily defined for 
cortical EEG and may not optimally capture STN os
cillations. To address this, we applied non-parametric 
cluster-based permutation tests. When pooling all 
datasets, Levodopa increased power from 3 to 9 Hz 
(theta) and decreased power from 12 to 29 Hz (beta, 
Fig. 2c, Table 2). While confirming Levodopa-induced 
reductions in beta, we also observed strong theta en
hancements. Because spectral normalisation enforces 
interdependencies between bands, the observed theta 
increase may reflect a mathematical consequence of 
beta suppression rather than a physiological effect. To 
disentangle these effects, we analyse absolute power in 
Part 2.

Reproducibility of beta vs. motor symptom correlations
Although Levodopa reduces relative beta power, its 
pathophysiological relevance depends on its correlation 
with motor symptoms, which we test next.

To assess the impact of methodological choices, we 
conducted a multiverse analysis,40 which tests a 

hypothesis across multiple analysis paths. We varied 
three key factors: 1) Levodopa state (off, on, or off-on 
difference); 2) sampling strategy (patients or hemi
spheres); and 3) beta frequency range. To ensure con
sistency with prior studies, we selected the three most 
commonly examined beta ranges (Supplementary 
Fig. S2a): alpha-beta (8–35 Hz), beta (13–30 Hz), and 
low beta (13–20 Hz). These key factors yielded 18 
distinct analyses (3 × 2 × 3).

To assess reproducibility, we examined replicability 
(consistency across datasets) and robustness (method
ological consistency). Here, we present results for the 
Levodopa off-state and sampling patients (left and right 
STNs averaged). Results for hemisphere sampling and 
other Levodopa states are shown in the supplementary 
material (Supplementary Figs. S2–S4).

Fig. 2d presents Spearman correlations between 
relative beta power and motor symptoms. Across data
sets, the alpha-beta band did not correlate with symp
tom severity. Significant beta and low beta correlations 
emerged only in the London dataset, whereas all other 
datasets failed to reach significance. When pooling all 
datasets, only low beta power correlated with motor 
symptoms (ρLβ = 0.26, p = 5e−3).

A power analysis indicated that at least n = 116 pa
tients are needed to replicate this correlation with 80% 
statistical power. These findings suggest that beta– 
symptom correlations require large cohorts (n > 100), 
precise frequency definitions (13–20 Hz), and that the 
relationship is weak (r < 0.3),47 prompting the question 
of whether additional spectral features could improve 
the explained variance.

Opposing beta and theta correlations with motor symptoms
To investigate possible spectral correlates of motor 
symptoms also beyond beta band frequencies, we split 
patients into ‘severe’ and ‘mild’ groups based on me
dian UPDRS-III symptom scores (Fig. 2e). Patients 
with severe symptoms showed significantly elevated 
low beta power (14–17 Hz).

Next, we examined correlations between power and 
motor symptoms across all frequencies from 1 to 45 Hz 
using all patients (Fig. 2f). Significant negative 

Band Freq. range Berlin London Düsseldorf 1 Düsseldorf 2 Oxford All datasets

Delta 2–4 Hz −0.21 0.10 −0.04 ↓ 0.36* (2–3 Hz) ↓ −0.43 (3–4 Hz) −0.12
Theta 4–9 Hz ↑ −0.54* (3–8 Hz) ↑ −0.52 (5–9 Hz) ↑ −0.38* (4–7 Hz) −0.23 (6–9 Hz) ↑ −0.59* (6–7 Hz) ↑ −0.39* (3–9 Hz)
Alpha 9–13 Hz 0.12 −0.16 −0.04 −0.11 0.05 0.00
Low Beta 13–20 Hz ↓ 0.56* (11–24 Hz) ↓ 0.66* (13–17 Hz) 0.15 ↓ 0.43* (13–30 Hz) 0.15 ↓ 0.41* (12–29 Hz)
High Beta 20–30 Hz 0.20 0.14 0.20 (23–35 Hz) ↓ 0.31* (13–30 Hz) ↓ 0.39 0.23*
Low Gamma 30–45 Hz 0.01 ↑ −0.51* (34–39 Hz, 41–43 Hz) 0.18 0.02 −0.02 −0.01

Corresponding to Fig. 2c. In OFF minus ON calculations, negative values indicate Levodopa-induced power increases (↑), while positive values indicate reductions (↓). Asterisks (*) denote Bonferroni- 
corrected significant effect sizes (p < 0.008). Arrows (↑↓) highlight at least moderate effect sizes |d| > 0.3, independent of dataset sample size. Frequency ranges in parentheses indicate clusters of 
significant modulation.

Table 2: Effect of Levodopa on STN power across datasets (Cohen’s d effect sizes).
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correlations (p < 0.05) were found in delta (1–2 Hz) and 
theta (5–8 Hz), while positive correlations appeared in 
low beta (14–18 Hz) frequencies.

Low beta correlates positively, while lower frequencies 
correlate negatively with motor symptoms. Because 
spectral normalisation enforces dependencies between 
frequency bands, relative power may confound beta– 
symptom correlations and Levodopa-induced modula
tions. To address this, we compare spectral frameworks 
that normalise power, retain absolute values, or separate 
periodic from aperiodic components next.

Part 2: spectral framework comparison
Spectral analysis frameworks differ in how neural power 
is quantified and interpreted. We compared three ap
proaches defined by two distinctions: relative vs. absolute 
power and total vs. parameterised power. Relative power 
expresses each band as a percentage of total spectral po
wer (5–95 Hz), while absolute power retains physical units 
(μV2/Hz). Total power combines periodic and aperiodic 
components, whereas parameterisation separates them, 
distinguishing oscillatory peaks from non-oscillatory 
broadband activity. We thus evaluated three frameworks: 
relative total power, absolute total power, and absolute 
parameterised power. Relative parameterised power was 
omitted as normalisation eliminates the broadband dif
ferences that parameterisation aims to model.

Absolute power reveals stronger levodopa modulation of 
theta than beta
Before examining symptom associations, we assessed 
Levodopa-induced modulations using absolute power to 
isolate band-specific changes.

Most previous studies (25 out of 35; Supplementary 
Table S2) analysed relative power, which can complicate 
interpretation by conflating changes across frequency 
bands and masking broadband effects. For example, 
Fig. 3a demonstrates how absolute spectra retain 
Levodopa-induced broadband power modulations (off: 
13.8 μV2 vs. on: 1.7 μV2), which are masked in relative 
power (Fig. 2b, same patient), as normalisation equal
ises the total to 100%.

Simulations (Fig. 3b) further illustrate these distor
tions. An increase in absolute theta power reduces rela
tive beta power, despite unchanged absolute beta (Case 1). 
Similarly, narrowing the beta peak width lowers absolute 
beta band power but leaves relative beta power unaffected 
and introduces a spurious peak increase (Case 2). These 
examples illustrate that absolute power more closely re
flects genuine band-specific changes.

Analysing absolute spectra (Fig. 3c, Table 3), we 
observed that Levodopa significantly increased delta and 
theta power and decreased low beta power. Notably, high 
beta power remained unaffected. Effect sizes in absolute 
power were smaller than in relative power, where opposing 
modulations (theta increase vs. low beta decrease) exag
gerated differences (Fig. 3b, Case 1). Crucially, absolute 

power revealed that Levodopa modulation was stronger in 
theta than in low beta frequencies (Table 3).

Total theta power negatively correlates with symptom 
severity
We next examined absolute power for associations with 
motor symptom severity. Strongly affected patients 
exhibited slightly elevated low beta (dLβ = +0.23) and 
reduced theta power (dθ = − 0.26), though effect sizes 
were not significant (Fig. 3c, right). Correlation analysis 
(Fig. 3d) showed an overall predominance of negative 
correlations, suggesting a prokinetic role of broadband 
power, with significant negative low-frequency (1–11 Hz) 
and beta-gamma (26–35 Hz) correlations. The strongest 
correlations were observed for theta (rθ = − 0.31, p =

5e−4), while low gamma showed a negative but non- 
significant association (rLγ = − 0.16, p = 0.076), and 
low beta was not significantly correlated (rLβ = − 0.04, 
p = 0.671). A multiple linear regression model including 
theta, low beta, and low gamma as predictors yielded a 
stronger correlation (rLin. reg. (θ,Lβ,Lγ) = 0.42, p = 1e−4).

Levodopa reduces low beta oscillations and increases theta 
oscillations
Conventional spectral analysis conflates periodic and 
aperiodic components. We applied specparam34 to 
separate these components (Fig. 3e). Fig. 3f illustrates 
the advantages of parameterising spectra, where a larger 
offset (case 1) increases absolute and decreases relative 
band power despite constant periodic band power. A 
smaller 1/f exponent has the same effect (case 2).

Analysing absolute periodic power revealed that 
Levodopa significantly increased delta and theta oscil
lations and decreased low beta oscillations. In contrast, 
high beta oscillations remained unchanged (Fig. 3g). 
Additionally, the 1/f exponent and offset showed small 
but significant modulations (Table 3). These findings 
suggest that Levodopa-induced changes in theta and 
low beta power reflect true oscillatory modulations 
while high beta oscillations remain unaffected.

Aperiodic offset shows the strongest symptom correlation
To disentangle periodic and aperiodic contributions to 
symptom severity, we split patients based on median 
UPDRS-III scores (Fig. 3g, right). Low beta power was 
higher in severe patients (dLβ = 0.27), while theta power 
was lower (dθ = − 0.29), though neither effect reached 
significance. Correlation analysis (Fig. 3h) confirmed 
prokinetic theta (4–7 Hz), antikinetic low beta (13–18 Hz), 
and prokinetic low gamma (29–45 Hz) oscillations. While 
low beta and low gamma (anti-)correlated with symptoms, 
the strongest association was observed for the aperiodic 
offset (rOffset = − 0.32, p = 4e−4), which explains the 
negative correlation bias in absolute total power (Fig. 3d).

A combined regression model incorporating offset, 
low beta, and low gamma improved correlation strength 
(rLin. reg. (Offset,Lβ,Lγ) = 0.47, p = 1e−4). The absolute 
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Fig. 3: Spectral components beyond beta are associated with symptom severity. (a) Same spectrum as in Fig. 1b, but without nor
malisation. (b) Simulations highlight the advantages of investigating non-normalised spectra in absolute units over normalised spectra in 
relative units. (c) Left: Mean absolute spectra pooled across datasets. Bars show effect sizes, and horizontal lines indicate cluster statistics 
(paired statistics). Right: Levodopa off spectra for patients split by median UPDRS-III score (unpaired statistics). (d) Top left: Correlation 
between absolute power and motor symptoms across frequency bins. Top right: Correlation coefficients for band power in the theta, low 
beta, and low gamma ranges. Bottom left: Pearson correlations r for linear regression features. Bottom right: Linear regression model 
combining theta, low beta, and low gamma power. (e) Same spectrum as in (a) (off condition), but parameterised into periodic (orange) and 
aperiodic components (pink). The aperiodic component follows a 1/f power-law, modelled as Spectrumaperiodic = a+m⋅freqlog, where a 
represents the offset and m the exponent. (f) Simulations highlight the implications of investigating periodic power. (g) and (h), Same as (c) 
and (d) for the periodic component and aperiodic offset.
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total theta power used in the regression in Fig. 3d likely 
reflects both periodic theta oscillations and the aperi
odic offset, given their strong correlation (r = 0.91, 
p = 6e−48) (not shown).

Expanding beyond beta improves correlations with 
symptoms
We built three linear regression models to assess how 
well relative total, absolute total, and absolute periodic 
and aperiodic power predict motor symptoms. Because 
relative power conflates various frequency bands, we 
included only total relative low beta power as a predic
tor. To determine whether adding additional frequency 
bands improves symptom modeling, we incorporated 
theta, low beta, and low gamma power into the absolute 
total model (as in Fig. 3d) and the aperiodic offset, pe
riodic low beta, and periodic low gamma power into the 
absolute periodic model (as in Fig. 3h). To ensure 
comparability, we used a matched patient set across all 

models (Fig. 4a), as four patients were excluded from 
the specparam analysis (Materials and methods).

Performance was evaluated using J-tests, alongside 
corrected Akaike Information Criterion (AIC) and 
Bayesian Information Criterion (BIC), which assess 
model fit while penalising complexity. The absolute and 
periodic models (three predictors each) significantly 
outperformed the single-predictor relative low beta 
model (pAbs>Rel = 2e−4, pPer>Rel = 2e−5, Fig. 4b), and the 
periodic model outperformed the absolute model 
(pPer>Abs = 0.034). Furthermore, AIC and BIC values 
were lowest for the periodic model, followed by the 
absolute model, and highest for the relative model. 
Linear mixed-effects models showed that sex, age, dis
ease duration, PD onset age, and the number of days 
between surgery and recording did not confound the 
reported associations (Supplementary Material).

Methodologically, these findings indicate that the 
periodic power framework based on absolute units 

Band Frequency range Relative total Absolute total Absolute periodic

Delta 2–4 Hz −0.12 ↑ −0.17* ↑ −0.17*
Theta 4–9 Hz ↑ −0.39* (3–9 Hz) ↑ −0.26* (3–9 Hz) ↑ −0.28* (2–8 Hz)
Alpha 9–13 Hz 0.00 −0.02 0.08
Low Beta 13–20 Hz ↓ 0.41* (12–29 Hz) ↓ 0.15* (13–17 Hz) 0.18 (12–17 Hz)
High Beta 20–30 Hz ↓ 0.23* 0.02 0.03
Low Gamma 30–45 Hz −0.01 −0.03 −0.04 (37–45 Hz)
1/f exponent 2–60 Hz – - ↑ −0.15*
Offset 2–60 Hz – - ↑ −0.11*
Aperiodic broadband power 2–60 Hz – - 0.03

In OFF minus ON calculations, significant negative values indicate Levodopa-induced power increases (↑), while positive values indicate reductions (↓). Asterisks (*) 
denote Bonferroni-corrected significant effect sizes (p < 0.008 for relative and absolute, p < 0.006 for periodic). Frequency ranges in parentheses indicate clusters of 
significant modulation.

Table 3: Effect of Levodopa on STN power across spectral frameworks (Cohen’s d effect sizes).

Linear regression of symptomsn=115: r = 0.47 (p=0.0001)n=115: r = 0.45 (p=0.0001)n=115: r = 0.30 (p=0.001)
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Fig. 4: Comparison of off-state linear regression models explaining motor symptoms. (a) Linear regression models for relative total, 
absolute total, and absolute periodic power frameworks. The y-axis shows empirical motor symptoms (UPDRS-III scores), whereas the x-axis 
represents model predictions. Pearson’s correlation coefficient r and statistical significance p are shown for each model. ‘Relative’ linear 
regression coefficients: b0 = 27.6, bLβ = 22.3; ‘Absolute’ coefficients: b0 = 26.0, bθ = − 14.1, bLβ = 12.9, bLγ = − 10.1, ‘Periodic’ co
efficients: b0 = 38.3, bOffset = − 6.7, bLβ = 14.5, bLγ = − 45.1. b0 indicates the linear regression intercept. (b) The absolute and periodic 
three-parameter models outperform the one-parameter relative model, and the periodic model outperforms the absolute model.
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best models symptom severity. Clinically, the results 
suggest that motor symptom severity is better 
explained when low beta power is complemented with 
low-frequency (aperiodic offset or total theta) and low 
gamma activity.

High beta oscillations co-localise with the DBS 
sweet spot
Beyond symptom correlations, beta power in the STN has 
been proposed for guiding DBS contact selection.31,36,48–52 

Here, we evaluated which spectral framework best local
ises the DBS sweet spot using beta power.

We localised relative low and high beta power in the 
Levodopa off and on conditions (Fig. 5a). To assess 
spatial alignment, we correlated the localised beta po
wer with the distance to the DBS sweet spot30 (blue 
sphere). Relative low beta power showed no significant 
correlation, while relative high beta power correlated 
negatively in the off-condition, indicating closer prox
imity to the sweet spot. These findings align with Darcy 
et al.,31 who performed the same analysis in an inde
pendent cohort.

Repeating the analysis using absolute total and ab
solute periodic power (Fig. 5b–c) revealed consistent 
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Fig. 5: Spatial localisation of beta oscillations in the subthalamic nucleus. (a) Relative total power: Thresholded volumetric heatmaps show 
the spatial distribution of low beta (left) and high beta power (right) in the STN for Levodopa off (top) and on (middle) conditions. Electrode 
positions (black spheres) and the DBS sweet spot30 (blue sphere) are annotated. Bottom: Correlations between beta power and sweet spot 
distance, with each data point representing one STN. Significant correlations (Bonferroni-corrected for four comparisons, threshold 
p < 0.013) are shown in bold. (b) Absolute total power: Same as (a) without normalisation. (c) Absolute periodic power: Same as (b) after 
removal of the aperiodic component. High beta power in the off condition shows substantial spatial concentration at the DBS sweet spot. 
Sample sizes (a)–(c) off: nSTN = 137, on: nSTN = 132. (d) Summary: Correlations between high beta power and sweet spot distance in the 
Levodopa off condition for all three spectral frameworks. Absolute periodic high beta power showed a significantly stronger correlation with 
DBS sweet spot distance than relative total high beta power.
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negative correlations across beta bands, Levodopa con
ditions, and both frameworks.

To compare frameworks, we performed one-tailed 
non-parametric permutation testing (Fig. 5d). 
Although absolute and periodic frameworks had com
parable correlations, periodic high beta power corre
lated significantly more strongly with sweet spot 
distance than relative high beta power (p = 0.035). The 
top right panel of Fig. 5c highlights the close spatial 
overlap between localised periodic high beta power and 
the sweet spot, suggesting that beta-based DBS contact 
selection may be most effective using the periodic po
wer framework.

Part 3: within-patient correlations
Until now, the present analyses focused on across- 
patient correlations in the Levodopa off-state. Criti
cally, aDBS biomarkers must track symptoms within 
patients and across medication states. To explore this, 
we treated recordings from individual hemispheres in 
patients as repeated measures, motivated by the 
asymmetry of motor symptoms typical in PD. We 
then inspected whether spectral features on either 
side correlated with lateral assessments of clinical 
severity.

Fig. 6a presents conceptual examples of features 
showing strong across-patient but weak within-patient 
correlations and vice versa. We included patients with 
recordings from both STNs and consistent symptom 
asymmetry across medication conditions to exclude 
Levodopa-induced side effects (Fig. 6b). We defined 
symptom asymmetry as a ≥1 point difference between 
left and right bradykinesia-rigidity subscores. Relative 
low beta power showed no within-patient correlation 
(Fig. 6c).

Aperiodic broadband power reflects Parkinson’s disease 
severity
Comparing absolute spectra between hemispheres us
ing paired cluster-based permutation testing revealed 
elevated broadband power in the more affected hemi
sphere in both Levodopa conditions. In the off-state, the 
increase spanned significant clusters from 8–13 Hz and 
28–60 Hz, extending to 132 Hz (not shown). In the on- 
state, the shift was significant from 23 to 190 Hz 
(Fig. 6d, top). Separating periodic and aperiodic com
ponents demonstrated that this broadband shift pri
marily reflected aperiodic power (off: 6–60 Hz; on: 
10–60 Hz, Fig. 6f, top), with only minor contributions 
from periodic oscillations (off: 8–9 Hz and 29–30 Hz; 
on: 25–33 Hz and 43–45 Hz, Fig. 6e, top). Normal
isation removed the broadband shift (Supplementary 
Fig. S7b top).

Repeated measures correlations showed that abso
lute total and aperiodic power correlated with the 
combined bradykinesia-rigidity subscore across broad 
frequency ranges in both Levodopa conditions. In 

contrast, periodic power did not (Fig. 6d–f, middle). 
Among canonical frequency bands, absolute mid 
gamma power (45–60 Hz) correlated strongest (Fig. 6d, 
bottom), while no periodic band correlated (Fig. 6e, 
bottom). Aperiodic parameters showed a significant 
negative correlation for the 1/f exponent and a positive 
trend for the offset (Fig. 6f, bottom), aligning with 
broadband power elevation (Fig. 3f). Summing aperi
odic power from 2 to 60 Hz, which we term ‘aperiodic 
broadband power’, yielded the strongest within-patient 
correlations (off: rrank rm = 0.41, p = 4e−4; 
rrank rm = 0.42, p = 0.003; Fig. 6f, bottom).

Total mid gamma power: a practical candidate for aDBS
An aDBS biomarker must be symptom-relevant at the 
individual level and readily extractable in real time. 
Although aperiodic broadband power strongly corre
lates with symptoms (Fig. 7c), its extraction requires 
parameterisation, limiting its immediate clinical use. 
Instead, total mid gamma power can be rapidly ob
tained using simple ±2.5 Hz spectral means, as 
implemented in current aDBS devices (e.g., Medtronic 
Percept™ PC).

Using a maximum-centered ±2.5 Hz spectral mean, 
absolute mid gamma power remained significantly 
correlated with symptoms in both conditions (off: 
rrank rm = 0.38, p = 9e − 4; on: rrank rm = 0.38, p = 0.008; 
Fig. 7a). When tremor scores were added to the 
bradykinesia-rigidity measure of lateralized motor severity, 
correlations remained significant. Tremor-only scores 
showed no significant association, though interpretation is 
limited by the markedly reduced effective sample size after 
excluding patients with identical tremor scores on both 
sides (Supplementary Fig. S10). Many STNs lacked beta 
peaks even without medication (low beta: ∼50%; high 
beta: ∼30%; Fig. 7b), limiting their biomarker reliability. 
Only when considering the full alpha-beta range (8–35 Hz) 
did at least 88% of STNs have a peak (Supplementary 
Fig. S7c), as previously shown.31,53,54

The repeated measures scatter plots (Fig. 7a and c) 
highlight five representative patients whose spectra in 
the Levodopa on condition consistently show elevated 
broadband power in the more affected hemisphere 
(Fig. 7d). These findings suggest that total mid gamma 
power captures aperiodic broadband power and has 
potential as an aDBS biomarker.

Discussion
We analysed subthalamic nucleus (STN) local field 
potential (LFP) recordings from patients with Parkin
son’s disease (PD), emphasising the need for large, 
heterogeneous cohorts to improve research generaliz
ability. Among three spectral frameworks, para
meterised absolute spectra provided the most direct 
neurophysiological insights and explained motor 
symptom variance best. Moreover, our findings indicate 
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that aperiodic broadband power may serve as a within- 
patient biomarker for symptom severity.

In part 1, we performed a reproducibility analysis. 
Reproducibility challenges in neuroscience often arise 
from limited statistical power,55,56 methodological vari
ability,57,58 unpublished analysis code,59 and cohort ho
mogeneity.60 While previous studies linked STN beta 
power to motor symptom severity, inconsistencies 
across reports raised the need to study robustness and 
replicability. Therefore, we conducted a multicentre 
STN-LFP comparison to evaluate these relationships 
across five independent datasets.

Previous studies established that Levodopa medica
tion reduces beta power and that beta power scales with 

motor symptom severity. We successfully replicated 
these claims in a large dataset. However, significant 
variability across datasets challenges replicability. 
Despite typical cohort sizes ranging from 14 to 50 pa
tients, statistical outcomes varied considerably.

We assessed the beta–symptom correlation using 
three frequency bands, two sampling strategies, and 
three medication states (off, on, off-on improvement), 
totalling 18 analyses per dataset. Given the lack of 
consensus in previous studies on the optimal analysis 
method (Supplementary Table S2), we applied this 
multiverse approach40 to evaluate robustness (method
ological consistency) and replicability (consistency 
across datasets). With five datasets, this resulted in 90 
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total tests (five datasets × 18 analyses each). We found 
only five significant positive correlations, five signifi
cant negative correlations, and 80 nonsignificant results 
(Fig. 2d, Supplementary Figs. S2–S4). Notably, the five 
positive correlations emerged from four different anal
ysis methods, indicating that cohort differences had a 
stronger influence on outcomes than methodological 
differences.

This raises the question of whether cohort variability 
stems from random sampling error or systematic dataset 
differences. While datasets are heterogeneous regarding 
neurosurgery, recording setup, and patient characteris
tics, none displayed atypical attributes compared to prior 
studies (Fig. 2a, Supplementary Table S1, 
Supplementary Fig. S1). More importantly, sex, age, 
disease duration, PD onset time, and bradykinesia- 
rigidity symptoms did not differ significantly across 
datasets (Supplementary Table S3). Differences in total 
UPDRS-III and tremor scores were observed but can be 
partly explained by the stun effect, which lowers post- 
operative UPDRS scores (Supplementary Fig. S5a) 
without altering STN power–symptom correlations 
(Supplementary Fig. S5d). While UPDRS assessment 
involves some subjectivity, it exhibits high inter-rater 
reliability among trained clinicians.61,62

Some variation, such as DBS lead model and local
isation, administered Levodopa dose, and unmeasured 

factors like race or socioeconomic status, cannot be fully 
controlled. We are unaware of evidence that these factors 
systematically influence STN power–symptom correla
tions, but their impact cannot be entirely excluded. 
Crucially, follow-up analyses confirmed that sex, age, 
disease duration, PD onset age, and the number of days 
between surgery and recording did not confound the 
reported correlations (Supplementary Material). These 
findings favour random sampling error over systematic 
dataset differences as the more likely explanation for 
divergent results.

To improve generalizability, we pooled all datasets. 
While some independently published cohorts differ 
significantly from each other in age or motor symptom 
distributions, our pooled cohort covers this broader 
range and shows no significant differences compared to 
any single independent cohort (Supplementary Fig. S6, 
Supplementary Table S4), indicating representative 
patient sampling.

Pooling improved statistical power, revealing the 
significant relationship between relative beta power and 
symptom severity that remained obscured in single 
datasets. Low beta (13–20 Hz) correlated more consis
tently than wide-band beta (13–30 Hz) and alpha-beta 
(8–35 Hz) (Fig. 2d, Supplementary Figs. S2–S4), sup
porting prior findings that clinical beta-based applica
tions should prioritise a narrower frequency range.5,33 

Periodic and aperiodic model parameters

on: rrank rm = 0.42 (p=0.003)off: rrank rm = 0.41 (p=0.0004)off: rrank rm = 0.38 (p=0.0009) on: rrank rm = 0.38 (p=0.008)

Absolute ±2.5 Hz mean power at Mid γ  peak

Exemplary patients

Aperiodic broadband power

d

a b c

Fig. 7: Absolute total mid gamma power as a potential adaptive deep brain stimulation (aDBS) biomarker. (a) Mid gamma power 
(maximum ±2.5 Hz mean) correlates with symptom severity within patients both off and on Levodopa. (b) Probability of detecting oscillatory 
peaks across frequency bands using specparam. (c) Aperiodic broadband power (2–60 Hz) correlates with symptom severity in both condi
tions. (d) Spectra of five representative patients in the Levodopa on condition. Symbols correspond to those in (a) and (c). BR: Bradykinesia- 
rigidity subscore for each hemisphere.
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These results suggest that inconsistencies in reported 
beta–symptom correlations primarily result from 
insufficient sample sizes rather than fundamental 
limitations of beta power as a biomarker.

We estimate that at least 116 patients are needed to 
replicate the correlation between relative low beta po
wer and motor symptoms (ρ = 0.26) with 80% statis
tical power. However, a previous large-scale study 
reported a lower correlation coefficient,5 suggesting 178 
patients may be required. Given that prior studies had a 
median sample size of only 13 patients (Supplementary 
Table S2), these findings underscore the need for larger 
cohorts or within-patient analyses, such as long-term 
streaming data, to improve statistical power.43,44,63

In our review of prior studies (Supplementary 
Table S2), 22 out of 35 examined relative total beta 
power, while only six assessed absolute total, three 
relative periodic, and four absolute periodic power. We 
compared these spectral analysis frameworks to deter
mine how their methodological differences impact the 
detection of Levodopa modulation and motor symptom 
correlations.

Conceptually, our simulations illustrate that relative 
power is difficult to interpret due to its dependence on 
other frequency bands. Empirically, Levodopa-induced 
absolute theta power changes had a 73% larger effect 
size than absolute low beta power. The opposing 
modulations of theta and low beta inflated relative po
wer effect sizes, with relative low beta power exhibiting 
a 170% larger effect size than absolute low beta power.

Our findings on relative power align with previous 
reports of Levodopa-induced low beta power 
reductions,5,31,64–69 theta power increases,64,66,70–73 and 
high beta power reductions.64 However, absolute and 
periodic high beta power showed no Levodopa modu
lation, implying that the observed relative high beta 
power reduction is a normalisation artefact, dis
tinguishing low and high beta power.64

For symptom prediction, absolute power from theta, 
low beta, and low gamma bands outperformed relative 
low beta power alone. While incorporating additional 
bands could improve relative power models, their 
interpretation remains challenging due to inherent 
frequency conflation. In contrast, absolute power pro
vides a simpler interpretation by isolating band-specific 
effects. Our reported prokinetic roles of theta and low 
gamma have been described in PD before74,75; however, 
prokinetic subthalamic theta can also become patho
logical in tremor-dominant patients with PD76–80 or 
dystonia.81–83 Overall, theta, low beta, and low gamma 
carry crucial motor-related information, underscoring 
the importance of considering additional bands beyond 
beta to understand PD neurophysiology better.

While absolute power improves interpretability over 
relative power, parameterisation further enhanced 
symptom modelling, possibly because periodic and 
aperiodic components reflect distinct neural processes.34 

The periodic component of low beta correlated with 
motor symptoms, consistent with studies isolating peri
odic beta oscillations in LFPs,84–86 directly measuring 
neuronal beta bursting,77,80,81,87,88 and observing wors
ening motor symptoms during beta-frequency DBS.89,90 

However, beta oscillations do not correlate with tremor 
and thus reflect motor symptoms primarily in 
bradykinetic-rigid patients.12,76,77,86,91–94

Aperiodic offset negatively correlated with symptoms, 
consistent with prior work,9,85 but its interpretation re
mains uncertain due to its persistent correlation with 
low-frequency power. Disentangling low-frequency os
cillations, such as delta and theta, from the aperiodic 
component is inherently challenging, as these oscilla
tions often lack distinct spectral peaks at a typical 1 Hz 
resolution—an effect we previously demonstrated 
through simulations.95 As a result, the specparam algo
rithm may partially attribute low-frequency oscillatory 
power to the aperiodic component, thereby inflating the 
estimated offset. Overall, while spectral parameterisation 
provides valuable insights, determining optimal fitting 
parameters is challenging, particularly for STN-LFP 
data.95 Thus, parameterised spectra should be inter
preted cautiously, while absolute total power–without 
model fitting–is more robust and compatible with real- 
time applications.

Despite these challenges, parameterisation signifi
cantly improved a previously reported correlation be
tween high beta power and DBS sweet spot distance.31 

Interestingly, the DBS sweet spot aligned better with 
high beta than low beta sources, despite its apparently 
stronger pathological relevance as indicated by Levo
dopa modulation (Table 3) and symptom correlation 
(Fig. 3). High beta likely propagates from the motor 
cortex to the STN via the hyperdirect pathway,14 

inducing pathological low beta oscillations.96 Thus, 
high beta power may peak where hyperdirect pathway 
terminals reach the STN, corresponding to the optimal 
stimulation site.97–100 LFP activity could, therefore, guide 
DBS contact selection,101 particularly using absolute 
periodic high beta power. Overall, our results suggest 
that absolute power better reflects neural dynamics 
than relative power, rendering spectral normalisation 
unnecessary. Moreover, parameterising absolute power 
into periodic and aperiodic components further im
proves symptom modelling performance and electro
physiological interpretability.

In part 3, we focused on STN-LFP biomarkers. 
Research on PD biomarkers in the Levodopa on-state is 
scarce. Moreover, a recent study emphasised the 
importance of distinguishing across-from within-patient 
correlations,63 as the latter control for inter-patient 
variability–critical in heterogeneous cohorts.102 This 
motivated our search for an STN-LFP marker that tracks 
symptoms within patients across medication states.

Conceptually, we demonstrate that an LFP feature 
can correlate across but not within patients and vice 
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versa (Fig. 6a). Empirically, this distinction is evident in 
our results. For example, while absolute theta and the 
aperiodic offset correlated negatively with PD symptoms 
across patients (off-state, Fig. 3d, h), their correlation 
coefficients were insignificant or positive within patients 
(Fig. 6d, f). Similarly, relative and periodic low beta po
wer correlated positively with symptoms across patients 
but not within patients (Fig. 6c and e). These discrep
ancies underscore the need to distinguish between 
across-patient and within-patient associations and reflect 
the distinct methodological requirements for population- 
level vs. individual-level biomarker identification.63

A prior within-patient study reported increased 
relative alpha-beta (8–35 Hz) power in the more 
affected hemisphere for adjacent bipolar channels in 
the off-state.53 We replicated this for adjacent channels 
(1–2, 2–3, 3–4; Supplementary Fig. S8) but not for 
distant bipolar channels (1–3, 2–4) used in aDBS 
sensing.6,32 Furthermore, this effect was absent in the 
Levodopa on-state (Supplementary Fig. S8), limiting its 
clinical applicability.

Our finding of absent within-patient beta correla
tions aligns with long-term streaming studies failing to 
predict symptoms based on beta power.8,103,104 However, 
a recent multicentre clinical trial on beta-based aDBS 
received regulatory approval,7 reaffirming beta’s utility 
as aDBS biomarker. Furthermore, STN beta activity 
may propagate between hemispheres, diminishing 
oscillatory asymmetries and concealing within-patient 
correlations.

In contrast to beta, absolute total broadband power (up 
to 200 Hz) correlated strongly with lateralized symptoms 
within patients, independent of medication. Spectral 
parameterisation revealed that these broadband eleva
tions primarily reflected aperiodic activity, characterised 
by larger offsets and smaller 1/f exponents. The 1/f 
exponent has been hypothesised to indicate excitation- 
inhibition balance,105 but aperiodic activity likely reflects 
multiple distinct physiological processes.106 Despite a high 
correlation between offsets and 1/f exponents,107 we 
observed inverse correlations with symptoms. Combining 
these parameters as ‘aperiodic broadband power’ pro
vided stronger within-patient symptom correlations than 
each parameter alone (Fig. 6f).

Why does the more affected hemisphere exhibit 
elevated aperiodic broadband power, and what could 
this signify at the neuronal level? In the cortex, 
neuronal spiking activity is known to increase LFP po
wer across a wide frequency range, spanning 30– 
100 Hz,108–113 up to 200 Hz,114–120 or even the entire 
broadband spectrum121,122—with the notable exception 
of the 10–20 Hz beta range.123 Although subcortical 
areas are less studied, similar trends appear in the rat 
hippocampus (100–600 Hz),124 rat STN (30–100 Hz),11 

human amygdala and hippocampus (2–150 Hz),125 

and human STN in PD (55–95 Hz).126 Applied to our 
findings, broadband power elevations in the more 

affected hemisphere may reflect increased STN spiking, 
consistent with evidence from PD animal models2,127–133 

and human intraoperative microelectrode re
cordings.80,87,134,135 Moreover, Levodopa and STN-DBS 
partially reverse the elevated STN spiking in PD.11

While we confirmed that Levodopa increases 1/f 
exponents,11,136 aperiodic broadband power remained 
unchanged (Table 3), distinguishing it from beta power 
and suggesting they reflect independent neural pro
cesses. Moreover, while neuronal beta bursting elevates 
LFP beta power,137,138 spiking outside bursts does not 
contribute to LFP beta power,139 indicating that both 
processes are differentially reflected in the LFP. Our 
results suggest that beta power, likely driven by 
neuronal bursting, and aperiodic broadband power, 
likely reflecting non-burst spiking, capture distinct 
pathological mechanisms that differentially affect mo
tor symptoms.

Therefore, aperiodic broadband power shows 
promise as a potential aDBS biomarker, possibly com
plementing beta. However, its extraction requires 
parameterisation, posing challenges for real-time 
implementation. In contrast, absolute total mid 
gamma power, which captures aperiodic broadband 
activity (ρ = 0.93, Supplementary Fig. S11), can be 
readily integrated into existing aDBS systems like the 
Medtronic Percept™ PC without additional technolog
ical advancements.

However, several limitations temper its clinical 
applicability. First, the correlations identified here 
might not be strong enough for clinical use, potentially 
requiring individualised machine learning models and 
wearable symptom-tracking devices.140 Second, our 
findings stem from single time-point DBS-off resting- 
state recordings, leaving its dynamics during active 
DBS or movement unknown. Third, we focused on 
spectral power below 60 Hz, although high-frequency 
oscillations (200–400 Hz) may also reflect PD pathol
ogy and could offer complementary or superior 
biomarker properties.12,72,141–144

Future research should assess whether absolute mid 
gamma power and symptoms co-fluctuate over time, 
especially in naturalistic settings and during DBS. More 
broadly, as a likely marker of neuronal spiking, aperi
odic broadband power may provide valuable insights for 
future invasive human LFP studies, where direct 
spiking measurements are often unavailable.

In summary, Part 1 revealed strongly diverging re
sults across five independent datasets processed 
through a standardised pipeline, highlighting the need 
for large samples while acknowledging that some re
sidual methodological differences remain. If such dif
ferences meaningfully affect results, single-centre 
studies using fixed protocols could be more prone to 
bias and less generalizable. Given these considerations, 
the within-patient correlations examined in Part 3 are 
particularly informative: they inherently control for 
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variation in patient characteristics, equipment, surgical 
approaches, and recording protocols. By spanning 
multiple sites and procedures, the pooled cohort re
duces potential biases and improves generalizability. 
Part 2’s systematic comparison of spectral analysis 
frameworks ensured that the method applied in Part 3 
was optimised to reflect the underlying neural dy
namics. Together, these elements underscore the po
tential of multicentre within-patient analyses using 
spectral parameterisation for identifying robust and 
replicable individual-level biomarkers.
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