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Abstract

The global issue of water loss due to leakage in Water Distribution Networks (WDN) is considerable.

Acoustic methods are preferred for leak detection because they are non-invasive, efficient, and cost-

effective. However, distinguishing leaks from background noise remains a major challenge due to the

reliance on predetermined thresholds in conventional methods and the substantial dependence of

mainstream supervised deep learning approaches on the quality of training data. To overcome these

obstacles, this study proposes an Unsupervised Acoustic Denoising Model (UADM), designed

specifically for identifying and reducing noise to enhance leak detection accuracy within a WDN. This

model uses an encoder-decoder architecture and incorporates domain-specific loss functions to guide the

denoising process. Tests with publicly available datasets show that the proposed UADM significantly

enhances the distinction between leak and non-leak signals. The improvements in accuracy, recall, F1
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score, and precision were notable, with average increases of 8.1%, 14.5%, 8.0%, and 6.4%, respectively.

The proposed UADM offers a stable and efficient tool for stakeholders involved in WDN management.

By enhancing the anti-noise capability of acoustic leak detection systems, the UADM model contributes

to the proactive identification and mitigation of water leaks, thereby minimizing water loss and associated

financial costs.

Keywords: Domain Knowledge Integration, Unsupervised Leakage Detection, Encoder-Decoder

Neural Networks, Water Distribution Networks

1. Introduction

The issue of water leakage in Water Distribution Networks (WDN) is a prevalent and significant

global concern. Estimations (Liemberger and Wyatt 2018) projected the global non-revenue water

RW), water that is pumped and then lost or unaccounted for, to reach an alarming 126 billion m"3
(N pump g

annually, incurring a staggering annual loss cost of approximately USD 39 billion. Notably, WDN

leakage stands out as the primary contributor to NRW (Tornyeviadzi and Seidu 2023; Zyoud et al. 2016;

Shao et al. 2023). In the United States, it is believed that WDN leakage contributes to over 20% of potable

water loss (Momeni et al. 2022). Moreover, data from the "Urban Water Supply Statistical Yearbook of

China" (Xinyue and Shihu 2018) for the year 2015 revealed a national average water loss rate of 14.32%.

Recognizing the severity of this issue, the Chinese government has outlined an ambitious goal to reduce

the leakage rate of the national urban public water supply network to below 9% by the year 2025

(Ministry of Housing and Urban-Rural Department of the Republic of China 2022). While this target

signifies progress, it still represents a relatively high ratio of water loss within the system. The importance

of reducing NRW is underscored by the fact that the United Nations (UN) has listed ensuring the
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availability and sustainable management of water and sanitation for all as UN Sustainable Development

Goal (SDG) number 6. The UN’s high prioritization of water and sanitation (SDG #6) is due to both

being at the core of sustainable development, for the range of services both provide underpin health,

poverty reduction, economic growth and environmental sustainability (United Nations, Department of

Economic and Social Affairs Sustainable Development 2022).

Acoustic signal-based detection stands as one of the most prevailing and effective automated

methods for monitoring WDN leaks. Dating back to the 1960s (Morgan 1966), the incorporation of

acoustic equipment significantly revolutionized the prompt discovery and management of WDN leaks,

enhancing the timeliness and convenience of monitoring tasks. The evolution of acoustic equipment

hardware and signal analysis algorithms has sparked numerous studies proposing real-time or non-real-

time solutions for WDN leakage detection. The prevalent framework for WDN leakage detection entails

the use of acoustic sensors, such as hydrophones (Cody et al. 2018), noise loggers (El-Zahab et al. 2019),

and more, to gather data, followed by time domain (Zhang et al. 2022), frequency domain (Yu et al.

2023), time-frequency analysis (Guo et al. 2021; Xie et al. 2020), or cross-correlation analysis (Guo et

al. 2022). Advancements in analysis tools have progressed in chronological order, encompassing the

Fourier Transform, Fast Fourier Transform, Wavelet Transform, Empirical Mode Decomposition (EMD),

Variational Mode Decomposition (VMD) (Fazai et al. 2019; Song and Li 2021; Fan et al. 2022), and

others for signal feature extraction. Following feature extraction, traditional classification algorithms

(SVM, Random Forest, etc.) or deep learning algorithms (CNN, RNN, etc.) are employed to classify leak

and non-leak signals. In recent years, the rapid advancements in deep learning technology have shown

promise when fused with the aforementioned methods. Studies by Liu et al. (2024) and Guo et al. (2022)
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showcased the successful application of advanced convolutional neural networks in analyzing acoustic

data, reporting impressive leak monitoring accuracy of 90.77% and 100% for metal pipelines and 95%

for non-metal pipelines, respectively. These studies demonstrate significant achievements in detection

accuracy.

However, the detection of leaks in WDN using acoustic methods faces substantial challenges when

dealing with environmental noise interference. Given the relatively shallow depths at which WDN are

typically buried (within 3m), environmental noise easily interferes with the effectiveness of acoustic

methods (Wu and Liu 2017; Liu et al. 2022). The impact of environmental noise presents difficulties in

various analytical domains. First, in time domain analysis, noise interference disrupts the waveform, as

noise is reflected in amplitude, often complicating its differentiation from the signal. Second, in

frequency domain analysis, noise manifests within specific frequency components, potentially

overlapping with the frequencies of the target signal, thus complicating accurate discrimination.

Narrowband noise or spurious signals further complicate the analysis, interfering with the desired

frequency components. Efforts in time-frequency domain analysis aim to combine time and frequency

information to enhance signal assessment. Despite being among the most effective analysis methods, this

approach's reliance on short-term signal spectrum conversion makes it more susceptible to noise

variations within brief periods. Abruptly changing or burst noise patterns can disrupt the time-frequency

domain representation, challenging the separation of signal and noise. Existing research often integrates

denoising into the input feature extraction process, typically under the constraints of pre-set threshold

parameters. Traditional denoising methods, such as linear filtering, spectral subtraction, statistical model-

based techniques, and methods based on mode decomposition like EMD, VMD, and Wavelet (Wu et al.
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2018; Guo et al. 2016; Pan et al. 2018), heavily rely on the rationality of preset parameters. However,

these parameters often lack generalizability due to the complex nature of target signals and noise in WDN

scenarios, influenced by network topology, leak type, background noise, flow conditions, etc. The

challenge is further compounded as a supervised deep learning model is difficult to implement due to the

absence of a clear quantitative evaluation between target signals and noise, making it arduous to define

the required input mapping for training purposes.

To address the aforementioned challenges, this study proposes an Unsupervised Acoustic Denoising

Model, named UADM. The model utilizes an encoder-decoder framework and directs the noise reduction

process of the input signal via domain knowledge-based innovative loss function design. This unique

approach eliminates the need for preset threshold parameters or mode decomposition parameters. To

validate the denoising efficacy of the proposed UADM model, this study employs various mainstream

methods, including SVM, Random Forest, IDCNN, RNN, and Wavelet-based algorithms for comparison

and verification. Utilizing a public dataset from the Aghashahi et al. (2023) team at Texas A&M

University, which encompasses hydrophone signals collected across different leak types, network

topologies, background noise, and flow conditions, the experimental results reveal the UADM model's

significant enhancement in acoustic leak detection accuracy within WDN. Comparative analysis against

data pre-denoising showcases a noteworthy average improvement across five sets of verification

experiments. The metrics, including Accuracy, Recall, F1 score, and Precision, exhibited an average

improvement of 8.1%, 14.5%, 8.0%, and 6.4%, respectively. From a theoretical perspective, this research

contributes a novel outlook on enhancing the anti-noise capability of acoustic WDN leakage detection,

specifically by addressing the challenge through an unsupervised learning approach integrating domain
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knowledge. From an engineering standpoint, the UADM model offers a stable and efficient tool for

detecting leaks within WDN system, proving beneficial for stakeholders in water distribution networks.

2. Related work

Acoustic-based leakage detection encounters an inherent challenge due to the amalgamation of

environmental noise and leakage signals. Given the typical shallow burial depth of WDN, ambient noise

from sources such as operating pumps, rain impacting chamber lids, and passing vehicles can easily

infiltrate acoustic sensors (Fan et al. 2022; Aghashahi et al. 2023). Hence, the core objective of acoustic-

based leakage detection revolves around the extraction of leakage-relevant patterns from the original

signal by mitigating interference from ambient noise. These discernible patterns serve as the benchmark

for distinguishing between leak and non-leak conditions. Notably, prevailing research in acoustic-based

leakage detection encompasses various methodologies, including analysis in the time domain, frequency

domain, time-frequency domain, and correlation analysis.

2.1 Time domain analysis

Time domain analysis is a method that employs time as the independent variable and tracks changes

in the audio signal as the dependent variable. It serves as the most intuitive and fundamental approach

for characterizing acoustic signals. Consequently, time domain analysis stands as the earliest method

applied to leakage detection. Common techniques within this domain include Root Mean Square (RMS)

(Banjara et al. 2020), Peak Analysis (Meng et al. 2012), and Envelope Analysis (Ahn et al. 2019), among

others. Lim et al. (2014) proposed the utilization of the crest factor and acoustic emission energy features

in the time domain to assess pipe leakage, successfully identifying four distinct leaks in various areas.

Similarly, Zhang et al. (2022) reported a novel leak localization method for buried natural gas pipelines
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using four microphones placed in detection holes. While time domain analysis offers simplicity and

clarity, with the substantial advantage of low computational load, it has limitations (Fazai et al. 2019;

Duan et al. 2011). It might be inadequate for non-stationary signals and complex signal scenarios, as it

is often insufficient to solely use time domain parameters to describe them. Additionally, methods based

solely on time domain analysis might not detect leakage before the acoustic signal collection begins (Fan

et al. 2022). Consequently, pure time domain analysis is scarcely used in contemporary applications.

2.2 Frequency domain analysis

Frequency domain analysis is an analytical method that dissects time domain signals into a series

of combined sine and cosine waves through Fourier Transformation. By scrutinizing signal components

at various frequencies and their overall statistical distribution patterns, frequency domain analysis

enables the differentiation between leak and non-leak signals. Notable methods within frequency domain

analysis encompass peak frequency, frequency centroid of a band, skewness, kurtosis (Fazai et al. 2019;

Song and Li 2021), etc. Guo and Yang (2009) proposed a pipeline leak detection method solely relying

on frequency domain analysis. Similarly, Yu et al. (2023) utilized energy distribution in the frequency

domain as an indicator to classify WDN leakage signals. However, the straightforward frequency domain

analysis method exhibits limitations when handling non-stationary signals (those with frequencies

changing over time). It can only capture the frequency components encompassed within a segment of the

signal as a whole, without identifying the specific moment when each component emerges. Consequently,

this method entirely disregards valuable information inherent in the time series.

2.3 Time-frequency domain analysis

To address the limitations of solely analyzing acoustic signals in the time and frequency domains,
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a range of time-frequency domain analysis tools have emerged. The most classic among these is the

Short-Time Fourier Transform (STFT), which conducts Fourier Transform on small signal segments via

a sliding window and then combines these segments frame by frame. This technique aims to preserve

both time-series relationships and frequency domain features simultaneously. For instance, in 2009, Lay-

Ekuakille et al. (2009) developed an urban waterworks leakage detection tool based on STFT. Building

upon the concept of localized signal decomposition from STFT, the Wavelet Transform (WT) was

introduced in the 1980s (Grossmann and Morlet 1984). WT employs a more adaptable wavelet basis

function for signal decomposition, addressing the limitation of fixed window size across frequencies. As

various wavelet basis functions continually evolve, they are better suited for diverse and complex

situations compared to single sine and cosine functions. WDN leakage detection based on WT has

become one of the most extensively utilized analysis methods (Yang et al. 2010; Ahadi and Bakhtiar

2010; Ting et al. 2021). However, the wavelet base selection requires manual intervention based on the

specific scenario. Due to the Heisenberg uncertainty principle, improvements in time accuracy come at

the expense of frequency accuracy, and vice versa. Another significant approach, Empirical Mode

Decomposition (EMD) (Huang et al. 1998), decomposes any signal, especially non-stationary nonlinear

time series signals, into a series of linear steady-state signals (Intrinsic Mode Functions, IMF). By

decomposing signals into multiple IMFs and a residual component, EMD aids in distinguishing between

leak and non-leak signals (Guo et al. 2016; Bakhti et al. 2019). Furthermore, several analysis methods

have evolved from these approaches and are widely employed in the field of WDN leakage detection.

These include Variational Mode Decomposition (VMD) (Zhao et al. 2023; Xu et al. 2021), Hilbert-Huang

Transform (HHT) (Lukonge et al. 2021), and various fusion methods (Fu et al. 2024; Spandonidis et al.
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2022). These diverse time-frequency domain tools offer enhanced capabilities to tackle the complexities

of acoustic signal analysis in identifying and differentiating leakage within water distribution systems.

However, these methods also have shortcomings. For instance, VMD can be sensitive to noise and may

require careful parameter tuning to ensure accuracy, while HHT often struggles with mode mixing issues,

which can complicate the interpretation of transient signals in noisy environments. Additionally, fusion

methods can be computationally intensive and require significant data preprocessing to achieve optimal

results.

2.4 Correlation analysis

In addition to examining leakage characteristics in the time and frequency domains, there exists a

specialized method known as Correlation Analysis. This technique utilizes the correlation between

signals from two different sensors to ascertain whether a leak event has transpired. For instance, in 2017,

Muntakim et al. (2017) presented a leak detection method founded on a function measuring the degree

of correlation between two time series, successfully validating the method in a real metal WDN scenario

in Canada. Similarly, Yang et al. (2013) proposed an algorithm to extract and evaluate signal self-

similarity through approximate entropy, enabling leak detection even in the presence of non-leak noise

within and outside the pipeline, achieving correct detection rates of 93.8% and 86.3%, respectively.

Correlation analysis offers a new research perspective on acoustic WDN leakage; however, it does come

with certain limitations. Firstly, the method necessitates multiple signal sources, rendering scenarios with

only a single sensor impractical. Secondly, the results derived from correlation analysis are heavily

contingent on the quality and accuracy of the data. Inaccurate, noisy, or missing sensor measurement data
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could bias the outcomes of correlation analysis.

2.5 Acoustic Leak Detection in WDN: Recent Deep Learning Approaches

Recent advancements in deep learning-based acoustic leak detection for WDN have focused on

improving data quality, feature selection, and model robustness. Wu et al. (2024) emphasized a data-

centric approach, demonstrating that advanced data augmentation techniques, such as IAAFT and

masking, significantly enhance detection accuracy by increasing data diversity. Meanwhile, Xu et al.

(2024) introduced an optimized feature selection framework (MDMR_ISFFS), identifying four key

acoustic features that improve classification performance across multiple machine learning models

(XGBoost and SVM). To address the challenge of long-range temporal dependencies in acoustic signals,

Liu et al. (2024) proposed a Time-Transformer model, which outperforms CNN and CNN-LSTM models

in accurately detecting leaks, especially in noisy environments. Additionally, data scarcity remains a

bottleneck for training deep models, and Liu et al. (2024) tackled this issue by developing an LSTM-

GAN approach that generates high-quality synthetic leak signals, enhancing the robustness of detection

models. On the application side, Fares et al. (2023) validated deep learning-based leak detection in real-

world WDNSs, demonstrating that noise loggers combined with machine learning techniques (e.g., SVM,

ANN, and deep neural networks), achieve stable and accurate performance across varying pipeline

materials and conditions.

3. Methodology

3.1 Framework

The proposed UADM model primarily comprises an autoencoder architecture with multiple loss
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functions, as outlined in Fig. 1. It features two main modules: the encoder and the decoder. The encoder,

composed of a single linear layer followed by a ReLU activation function, focuses on diminishing the

input audio's dimensionality from its original size to 128 units. Subsequently, the decoder takes the 128-

dimensional representation from the encoder and reverts it back to the original input dimension. Utilizing

the Tanh activation function, the output values are scaled to a range of -1 to 1, a common practice for

audio data. To summarize, the UADM model operates by encoding the input audio into a lower-

dimensional representation via the encoder and then reconstructing it back to the original dimensions

using the decoder. This model serves as the foundation for unsupervised learning, examining differences

between the input and output data within the autoencoder architecture. The WDN leakage acoustic signal

undergoes denoising through the model's loss functions (MES, TC, Spectral, and MAE loss) designed

based on pertinent domain knowledge, refined through continuous iterations.

3.2 Loss function design

The functional implementation of the proposed UADM model centers around the design of its loss

functions. Given the characteristics of unsupervised learning, the structure of the UADM model itself

does not markedly influence the denoising process but serves to establish an ongoing iterative framework

for learning. The denoising path of the input acoustic signal is entirely steered by the loss functions

designed within the model. Drawing from a comprehensive literature review and pertinent domain

knowledge in acoustic-based WDN leakage detection, this section elaborates on the concept of the four

core loss functions within the UADM model: MSE, Temporal Consistency, Spectral, and MAE loss.

3.2.1 Mean Square Error loss

The primary role of Mean Square Error (MSE) loss is to prevent excessive noise reduction that
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might distort the acoustic signal. Within the influence of the UADM model, the original input signal
undergoes continuous compression and reconstruction in a loop iteration. If the entire training process
remains unconstrained, the final output could lose the original leak signal characteristics while reducing
noise. This scenario might significantly diminish the effectiveness of leak detection. Hence, the UADM
model employs MSE loss to compare the average error between the input and the reconstructed output
in each cycle of unsupervised learning. MSE loss serves to control the iterative process, ensuring that the
reduction in noise remains within certain bounds to avert signal distortion. This control maintains a
balance between noise reduction and signal preservation. For the detailed calculation formula of MSE
loss, please refer to formula (1), where # represents the number of samples, y represents the input before
each iteration cycle, and y denotes the output signal after reconstruction.
MSE loss = % x* 2 (y— 9)2 (D
3.2.2 Temporal Consistency loss

The Temporal Consistency (TC) loss is an innovative loss function designed for guiding the UADM
model to retain components of the signal that persist over time, particularly focusing on preserving the
persistent nature of the leak signal. In instances of WDN leakage, barring occasional bursts, the leakage
primarily exhibits a continuous pattern. This continuous pattern often endures throughout the entire
signal cycle, as opposed to environmental noise, which typically occurs intermittently, like the sound of
rain or passing cars (Fan et al. 2022). Leveraging this disparity, the study devises a novel loss function
to suppress burst-like components during the unsupervised learning process. This approach aims to better
preserve the continuous leak signal to enhance detection accuracy. The TC loss accomplishes its function

by comparing the one-dimensional convolution outcomes of the audio data before and after the
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unsupervised loop, as depicted in formula (2). Since signal components in the original signal with
sustained temporal characteristics exhibit minimal change following the 1D convolution operation, the
TC loss effectively filters out sporadic noise while retaining more persistent leak signals. In formula (2),
ConviD(y) and ConvID(y) respectively represent the input and output of the 1D convolution after each
learning iteration.
TC loss = % * »(Conv1D(y) — Conv1D(¥))? )
3.2.3 Spectral loss

The Spectral loss serves as an innovative tool within the UADM model, aiming to enhance the
retention of low-frequency signals. In the context of water distribution networks leakage detection, the
primary essence lies in measuring the sounds emitted by the turbulent jet of water escaping the pipes
(Khulief et al. 2012). Studies have revealed that the predominant characteristics of the leak signal
primarily reside within the low-frequency portion of the audio spectrum (Sitaropoulos et al. 2023). To
reinforce the prominence of these critical low-frequency components carrying leak-related information,
this study introduces the Spectral loss. This novel loss function accentuates the low-frequency segments
in the original signal, magnifying the features of the leak signal component. The specific calculation
formula for the Spectral loss is depicted in formula (3). Here, STFT(y) and STFT(y) respectively represent
the results of the input and output signals before and after each unsupervised learning cycle, processed
via the Short-Time Fourier Transform (STFT). Low-frequency signals, occupying a wider spectrum
range, are more readily captured by STFT during spectrum calculations. Additionally, the mean squared
error calculation tends to be more sensitive to the larger amplitude of the low-frequency parts within the

spectrum. Consequently, the Spectral loss prioritizes preserving the low-frequency segment, which is
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more likely to encompass the leak signal, compared to the high-frequency portion. This emphasis helps
retain critical components integral to leak identification.
Spectral loss = % « Y(ISTFT(y)| — |STFT()])? (3)
3.2.4 Mean Absolute Error loss

The role of Mean Absolute Error (MAE) loss is to prevent the inadvertent deletion of leak signals
owing to their relatively small energy content compared to background noise. From an energy perspective,
the energy carried by the leak signal is relatively small compared to the background noise. The input
signal, being a time domain signal, exhibits an amplitude that strongly correlates with the energy of the
relevant signal. To safeguard signals with lower energy levels, the MAE loss is employed, computing the
average of the absolute differences between predicted and true values, as depicted in formula (4). The
linearity of MAE loss sensitivity to error size ensures that each error contributes equally to the total error.
As a result, it robustly reflects the average error and mitigates the risk of disproportionately discarding
signals with lower energy content due to power operations within other loss functions.
MAE loss = % ) |y — 9| 4)

In summary, the overall loss function of the proposed UADM model can be expressed as formula
(5).
Total loss = MSE loss + TC loss + Spectral loss + MAE loss 5)
3.3 Evaluation metrics

The core objective of acoustic-based WDN leakage detection is to classify unknown input signals
into leak and non-leak categories. To validate the efficacy of the unsupervised denoising model proposed

in this study, various prevalent detection models from existing research were employed, both with and
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without UADM model processing. Consequently, this study employed the four primary binary

classification evaluation metrics in the machine learning domain to assess the effectiveness of the

proposed model: Accuracy, Recall, F1, and Precision.

These evaluation metrics are determined by the counts of samples categorized by the four models:

TP (True Positive), TN (True Negative), FP (False Positive), and FN (False Negative) in accordance with

the actual classification outcomes, as demonstrated in Table 1. The specific calculation formulas for

Accuracy, Recall, F1, and Precision are displayed in formulas (6), (7), (8), and (9), respectively.

Accuracy = (TP + TN) /(TP + FP + TN + FN) (6)
Recall = TP /(TP + FN) @)
Precision = TP /(TP + FP) ®)
F1 = 2 * Precision * Recall / (Precision + Recall) ©)

These metrics aid in quantitatively assessing the model's performance in distinguishing between

leak and non-leak signals, providing a comprehensive evaluation of its classification effectiveness.

Accuracy is the proportion of correctly predicted instances to the total instances, measuring overall

correctness. Recall is the proportion of true positive predictions to all actual positives, assessing the

model's ability to find relevant instances. Precision is the proportion of true positive predictions to all

positive predictions, indicating the accuracy of positive predictions. F/ score is a harmonic mean of

precision and recall, offering a balance between precision and recall for binary classification.

4. Experiments

4.1 Data collection

To assess the applicability of the proposed UADM model, this study utilized a public dataset
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provided by Aghashahi et al. (2023) from Texas A&M University in 2023

(https://data.mendeley.com/datasets/tbrnp6vrnj/). It's essential to note that the original dataset

encompasses three distinct data types: hydrophone, accelerometer, and dynamic pressure sensor. For this

study, only the hydrophone data, widely employed in engineering practice, was utilized. The dataset was

curated through controlled leak experiments conducted within a laboratory-scale water distribution

testbed, featuring 152.4 mm diameter PVC pipes and a total pipe length of 47 meters, as depicted in Fig.

2. During the data collection process, various factors were altered, as detailed in Table 2, including

network topology (looped and branched), leak types (orifice, longitudinal, circumferential, and gasket),

and non-leak conditions. Background flow rates, ranging from 0 to 0.47 L/s, and transient flow changes

from 0.47 to 0 L/s, were also manipulated. Furthermore, background noise sources such as traffic and

tool noise were introduced.

4.2 Data processing

To adapt the dataset introduced in Section 4.1 for various acoustic-based leakage detection methods,

this study undertook specific preprocessing steps. Initially, the original dataset was in a RAW format,

which was then converted to the more accessible WAV format for ease of data reading and processing.

Moreover, the original dataset contained an imbalance between the number of leak and non-leak signal

samples. To avert potential decreases in detection accuracy due to this imbalance, the study performed

data augmentation on the original dataset. Through a process of offsetting and introducing random noise

enhancement, as shown in Fig. 3, the data underwent a balancing operation. Following this augmentation

procedure, both the leak and non-leak signal samples were equated to 100 instances each.
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4.3 Experiment configurations

4.3.1 UADM

The proposed UADM model was implemented as a single-layer autoencoder with 128 bottleneck

nodes. Each input was a full-length normalized waveform loaded from a .wav file with a sampling rate

of 44,100 Hz. For 1-second recordings, this corresponds to an input dimension of 44,100 samples. Each

signal was normalized between -1 and 1, and further standardized to have zero mean and unit variance

before being processed. The autoencoder was trained independently for each signal using the Adam

optimizer with an initial learning rate of 0.001, for 50 epochs. Due to per-sample training, batch

processing was not used, and early stopping was not applied.

During training, the combined loss function was implemented by summing four components

directly in the training loop. MSE and MAE were calculated in the time domain, while the spectral loss

was computed from the STFT magnitude (FFT size = 2048, hop length = 512). The temporal consistency

loss was applied by convolving the reconstructed waveform with a fixed smoothing kernel of size 5

before comparison. All loss terms were equally weighted and added to form the total loss.

4.3.2 Downstream leakage detection

In the downstream leakage detection task, we evaluated the effectiveness of the denoising process

by comparing the performance of several mainstream classifiers, including traditional machine learning

models (e.g., SVM, Random Forest) and deep learning models (e.g., ID-CNN, RNN, and Time-

Transformer). All models were trained and tested on the dataset both before and after denoising by the

UADM model. Table 3 summarizes the architecture and training configurations for each model. To
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ensure fair comparison, all models were trained using identical data splits and evaluated using Accuracy,

Precision, Recall, and F1 score.

4.4 Experiment results

To validate the denoising effect of the proposed UADM model in acoustic-based WDN leakage

detection task, this study implemented two prevalent traditional classification methods (MFCC + SVM

and MFCC + Random Forest) and three classification methods based on deep learning (Wavelet +

IDCNN, MFCC + 1DCNN, MFCC + RNN, MDMR _ISFFS and Time-Transformer). Among these

methods, MFCC (Mel-scale Frequency Cepstral Coefficients) stands as the most utilized time-frequency

analysis feature in the domain of speech recognition. Additionally, the Wavelet + 1DCNN method

employs the widely used Haar wavelet base as the feature extraction algorithm in the wavelet domain to

contrast with MFCC. Table 4 presents the leakage detection metrics results of all methods before and

after applying the UADM model for input denoising. For a more visually comprehensible comparison

among the various models, Fig. 4 illustrates a comparative analysis of these approaches. This detailed

analysis enables an assessment of the effectiveness of the UADM model in denoising input data and its

impact on the performance of diverse leakage detection methods. A detailed analysis of these results is

presented in Section 5.

5. Discussions

5.1 Performance impact of UADM denoising

The experimental results in section 4.4 demonstrate notable improvements in almost all leakage

detection indicators across both traditional and deep learning-based methods following the noise
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reduction process of the UADM model. On average, the Accuracy and Precision indicators increased by

approximately 8.1% and 6.4%, respectively. Additionally, the Recall and FI witnessed an average

increase of around 14.5% and 8.0%, respectively. These findings highlight the significant enhancement

effect of the UADM model on the task of acoustic-based WDN leakage detection. However, there were

two metrics that exhibited a drop after denoising. The Recall of the MFCC + Random Forest method

decreased by 11%. Yet, it is noteworthy that the Recall value prior to denoising was exceptionally high

at 1.00. Post noise reduction, although the Recall value dropped, the other three indicators (Accuracy,

F1, and Precision) all showcased improvements. This suggests that the model's ability to accurately

differentiate between leaks and non-leaks before denoising was poor. While all leak signals were

classified as positive, this resulted in an extremely high Recall. However, many non-leak signals were

incorrectly categorized as leak instances. The second metric that experienced a decrease was the

Precision value of the Wavelet + IDCNN method, dropping by 3%. Similar to the previous case, the

remaining three metrics (Accuracy, Recall, and F'I) exhibited improvements post-denoising. This reflects

the trade-off between Recall and Precision in the model. Considering the more comprehensive benefit

indicated by the F'/ score, which increased by 12%, the classification effect of the Wavelet + 1IDCNN

method was evidently better after denoising. After applying the UADM model, the MDMR_ISFFS

method achieved a slight improvement in F/ score while maintaining perfect Recall, suggesting

enhanced robustness in leak detection, although a marginal drop in Accuracy and Precision indicates a

possible trade-off in overall classification balance. For the Time-Transformer model, UADM denoising

significantly boosted both Recall (from 0.72 to 1.00) and F/ score (from 0.80 to 0.85), highlighting a

substantial gain in sensitivity and overall detection capability, despite a decrease in Precision due to more
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false positives.

5.2 Ablation experiments

The core functional implementation of the proposed UADM model hinges on the design of its loss

functions. To delve deeper into its operational mechanics, this study conducted ablation experiments on

the model. Ablation experiments involve systematically removing parts of the system to observe their

impact on the system's function or performance.

The steps involved in the ablation experiments were as follows: First, the total loss part of the

UADM model was modified, and one loss function was removed at a time in a sequential manner.

Subsequently, the modified UADM model was employed to denoise the original dataset, generating four

distinct datasets (lacking MSE, TC, Spectral, and MAE loss, respectively). Finally, these four datasets

served as inputs, and their performance, processed under the five mainstream leakage detection methods

detailed in Section 4.3, was recorded. Table 5 presents the comprehensive results of these experiments,

which are also illustrated in Fig. 5. This comparative visualization aids in discerning the impact of each

removed loss function on the performance of the model in the context of leakage detection methods.

The results obtained from the ablation experiments revealed the significance of the four proposed

loss functions in the denoising performance of the UADM model. When the individual loss functions

were removed sequentially, the evaluation metrics Accuracy, Recall, F1, and Precision displayed

fluctuations. Upon the removal of MSE loss, there was an average decrease of 6.8% in Accuracy, 4.2%

in Recall, 7.2% in F1, and 8.2% in Precision. Elimination of TC loss resulted in an average decrease of

4.6% in Accuracy, 5.4% in Recall, 4.8% in F1, and 5.2% in Precision. The removal of Spectral loss led

to an average reduction of 12.8% in Accuracy, 2.4% in Recall, 7.8% in F1, and 14.0% in Precision.
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Finally, eliminating MAE loss caused an average reduction of 6.0% in Accuracy, 4.2% in Recall, 5.4%

in F1, and 6.8% in Precision. These findings highlight that the proposed MSE, TC, Spectral, and MAE

loss functions each contribute to varying degrees in the denoising functionality of the UADM model.

Moreover, certain metrics displayed significant increases post-ablation experiments. For instance, after

removing MSE loss, the MFCC + RNN method experienced a 16% increase in the Recall. However, this

increase was accompanied by varying declines in Accuracy, F'1, and Precision. This suggests that the

model tends to emphasize capturing true positive instances at the cost of overall accuracy, resulting in

more negative examples being misclassified as positive. In summary, the results indicate that the four

proposed loss functions play significant roles in enhancing the denoising task for acoustic-based WDN

leakage detection.

5.3 Architecture

The encoder-decoder structure adopted by the proposed UADM model is relatively straightforward

and only contains one layer of structure. In order to discuss its rationality, the study conducted denoising

experiments using a more complex structure with three layers in both encoder and decoder modules,

while maintaining all other parameters unchanged, as demonstrated in Table 6. In this modified model,

the encoder was expanded to include additional layers, incrementally growing from 128 hidden units to

512 hidden units in several steps. The decoder's architecture mirrored that of the encoder, progressively

expanding the dimension back to the original input size, as illustrated in Fig. 6.

The experimental outcomes reveal that escalating the model's complexity does not effectively

enhance the performance of acoustic-based leakage detection tasks. Only the MFCC + Random Forest
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method displayed improvements across all evaluation metrics following denoising with the more intricate

model. The MFCC + SVM method experienced an increase solely in the Precision, while other indicators

remained unchanged or decreased. Notably, all deep learning methods, apart from the mentioned

conventional methods, witnessed decreases in their evaluation metrics. The rationale behind this trend is

attributed to the fact that as the model's complexity increases—particularly in terms of layer count and

parameter volume—it typically demands more data to learn these parameters. The autoencoder,

possessing an encoder-decoder structure, exhibits symmetry, signifying that with an increase in layer

count, the network's width also exponentially expands. This exponential growth contributes to a rapid

rise in the number of parameters. Especially within deeper autoencoders, the representation of latent

space may become more intricate, necessitating more complex computations for encoding and decoding.

Insufficient data volume might limit the model's capability to adequately learn the data features,

subsequently leading to a decline in model performance. Furthermore, the heightened complexity of the

model structure incurs substantial computational burden, particularly concerning the exponential growth

of the encoder-decoder model.

5.4 Impact of preprocessing on acoustic leak detection performance

Preprocessing plays a crucial role in acoustic leak detection, particularly when dealing with high-

frequency sensor data. Raw vibration and acoustic signals often contain significant background noise,

and their key discriminative features may exist at much lower frequencies than the original sampling rate.

If the sampling frequency is too high, deep learning models may struggle to extract meaningful patterns,

potentially leading to suboptimal detection accuracy.
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To explore the impact of different preprocessing methods on the accuracy of the WDN leakage

detection task, this section conducts experiments using preprocessing approaches: Raw data, Down

sampling (Moderate), Down sampling (Aggressive), Statistical features, and UADM (proposed). The

experimental methodology involves applying each preprocessing technique to the dataset and then

evaluating the processed data using all leakage detection methods mentioned in Section 4.3 (MFCC +

SVM, MFCC + Random Forest, Wavelet + IDCNN, MFCC + IDCNN, MFCC + RNN, MDMR_ISFFS,

and Time-Transformer). Finally, the results obtained from all methods are averaged to provide a

comprehensive performance assessment, as shown in Table 7.

The results presented in Table 7 demonstrate that the choice of preprocessing method has a

considerable impact on the overall performance of acoustic-based WDN leakage detection. Across all

models and configurations, it is observed that directly using raw high-frequency audio signals results in

relatively lower performance, with an average Accuracy of 0.80 and an F/ score of 0.82. This can be

attributed to the fact that critical discriminative patterns for leakage detection often reside in lower

frequency bands and exhibit temporal persistence, which raw signals at high sampling rates tend to

obscure. Moderate and aggressive downsampling help mitigate this issue by suppressing high-frequency

noise, yielding improved Accuracy (0.86) and F1 scores (0.85), although still limited by the lack of task-

specific temporal feature extraction.

The use of handcrafted statistical features (min, max, mean, variance) over fixed time windows

introduces temporal aggregation, aiming to capture lag-based or segment-level characteristics. However,

this approach yields mixed results, with a slight drop in Accuracy (0.76-0.77) and F1I scores (0.73-0.74)

despite a relatively stable recall. This suggests that while statistical features can retain some relevant
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patterns, they may also lose important nuances, especially under aggressive downsampling. In contrast,

the proposed UADM model consistently achieves the best overall performance, with an accuracy of 0.88,

a recall of 0.93, and an F1 score of 0.90. This can be attributed to its unique design, which integrates

multiple domain-specific constraints into the learning objective through four loss components. The MSE

and MAE losses help maintain signal fidelity while suppressing noise. The Temporal Consistency loss

encourages the preservation of leak-related features that persist over time, which are commonly observed

in real leakage events. Additionally, the Spectral loss emphasizes low-frequency components, where leak

signals are most prominent. By combining these complementary objectives, UADM effectively balances

denoising and feature preservation, allowing downstream classifiers to better distinguish leak from non-

leak patterns. This demonstrates that embedding preprocessing principles into model design can lead to

more robust and generalizable leakage detection performance.

5.5 Limitations

This study encounters two primary limitations. Firstly, obtaining real-world leakage data is

inherently challenging. The acoustic signals used in this study were primarily collected from controlled

laboratory experiments, as acquiring authentic leakage signals from operational WDNs for validation is

highly difficult due to the unpredictability and rarity of actual leak events. Although our dataset

encompasses diverse leakage scenarios under controlled conditions, it may not fully capture the

variability encountered in complex real-world environments, including different pipeline materials,

hydraulic conditions, and background noise sources. Nevertheless, it is important to emphasize that the

public dataset used in this study was meticulously curated by a specialized research team under stringent
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experimental protocols, ensuring reproducibility and reliability as a benchmark for further studies.

Secondly, the study's scope of investigation encompassed a limited number of leakage detection methods.

Acoustic-based WDN leakage detection is a burgeoning field, marked by numerous studies proposing a

wide array of methods to address the classification task of distinguishing leak and non-leak signals. In

this study, only five relatively representative methods were selected for analysis. Exploring a more

extensive array of methodologies could provide a more comprehensive understanding of the field's

landscape and the potential for further advancements.

5.6 Future works

In the future, the field of WDN leakage research holds several promising directions: 1)

Unsupervised Learning: In contrast to the prevalent supervised learning models, unsupervised learning

offers a unique avenue to explore unlabeled data. It facilitates the discovery of inherent data structures,

patterns, and correlations, allowing for a more comprehensive understanding without relying on pre-

existing knowledge. This approach is instrumental in addressing data labelling cost and scarcity issues

often encountered in engineering practices. 2) Integration of Domain Knowledge: The distinction

between general artificial intelligence and its application in professional fields lies in the indispensable

role of domain knowledge in enhancing model capabilities. Future research should emphasize leveraging

scientific or engineering knowledge specific to WDN, thereby advancing the intelligent evolution of the

industry. 3) Hardware Innovation: The extensive use of contact acoustic sensors in existing research has

limited widespread adoption. Exploring contactless acoustic-based solutions from a hardware

perspective remains a challenging yet pivotal area for innovation and development. 4) While our current

study focuses on leak detection rather than precise localization, future work will explore advanced leak
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localization techniques using both data-driven and model-based approaches. One potential direction is

multi-sensor triangulation, where signals from multiple hydrophones are fused to estimate the leak’s

location based on time delays and frequency shifts. Additionally, physics-informed deep learning models

that incorporate fluid dynamics and acoustic wave propagation principles could be investigated to

improve localization accuracy in complex pipeline networks. These approaches would enhance the

practical applicability of Al-driven leak detection, enabling both detection and precise localization for

real-world water distribution networks.

6. Conclusion

WDN leakage is one of the most common issues encountered in the operation and maintenance of

underground infrastructure. To address the challenge of noise interference in acoustic-based WDN

leakage detection, this study proposed an unsupervised learning denoising model, UADM. This model,

based on an encoder-decoder structure, implements noise reduction using innovative loss functions

derived from domain knowledge. Results from experiments conducted on publicly available datasets

demonstrate that the proposed UADM model significantly improves the performance of acoustic-based

WDN leakage detection. The evaluation metrics, including accuracy, recall, F1 score, and precision,

display an average improvement of 8.1%, 14.5%, 8.0%, and 6.4%, respectively. The research contributes

a novel theoretical perspective to knowledge by enhancing the anti-noise capability of acoustic WDN

leakage detection, particularly through an unsupervised learning approach that integrates domain

knowledge. From an engineering standpoint, the UADM algorithm provides a stable and efficient tool

for detecting leaks within WDN systems, proving beneficial for stakeholders in water distribution

networks.
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Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the

corresponding author upon reasonable request.
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