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Abstract 38 

 The global issue of water loss due to leakage in Water Distribution Networks (WDN) is considerable. 39 

Acoustic methods are preferred for leak detection because they are non-invasive, efficient, and cost-40 

effective. However, distinguishing leaks from background noise remains a major challenge due to the 41 

reliance on predetermined thresholds in conventional methods and the substantial dependence of 42 

mainstream supervised deep learning approaches on the quality of training data. To overcome these 43 

obstacles, this study proposes an Unsupervised Acoustic Denoising Model (UADM), designed 44 

specifically for identifying and reducing noise to enhance leak detection accuracy within a WDN. This 45 

model uses an encoder-decoder architecture and incorporates domain-specific loss functions to guide the 46 

denoising process. Tests with publicly available datasets show that the proposed UADM significantly 47 

enhances the distinction between leak and non-leak signals. The improvements in accuracy, recall, F1 48 



score, and precision were notable, with average increases of 8.1%, 14.5%, 8.0%, and 6.4%, respectively. 49 

The proposed UADM offers a stable and efficient tool for stakeholders involved in WDN management. 50 

By enhancing the anti-noise capability of acoustic leak detection systems, the UADM model contributes 51 

to the proactive identification and mitigation of water leaks, thereby minimizing water loss and associated 52 

financial costs. 53 

Keywords: Domain Knowledge Integration, Unsupervised Leakage Detection, Encoder-Decoder 54 

Neural Networks, Water Distribution Networks 55 

1. Introduction 56 

 The issue of water leakage in Water Distribution Networks (WDN) is a prevalent and significant 57 

global concern. Estimations (Liemberger and Wyatt 2018) projected the global non-revenue water 58 

(NRW), water that is pumped and then lost or unaccounted for, to reach an alarming 126 billion m^3 59 

annually, incurring a staggering annual loss cost of approximately USD 39 billion. Notably, WDN 60 

leakage stands out as the primary contributor to NRW (Tornyeviadzi and Seidu 2023; Zyoud et al. 2016; 61 

Shao et al. 2023). In the United States, it is believed that WDN leakage contributes to over 20% of potable 62 

water loss (Momeni et al. 2022). Moreover, data from the "Urban Water Supply Statistical Yearbook of 63 

China" (Xinyue and Shihu 2018) for the year 2015 revealed a national average water loss rate of 14.32%. 64 

Recognizing the severity of this issue, the Chinese government has outlined an ambitious goal to reduce 65 

the leakage rate of the national urban public water supply network to below 9% by the year 2025 66 

(Ministry of Housing and Urban-Rural Department of the Republic of China 2022). While this target 67 

signifies progress, it still represents a relatively high ratio of water loss within the system. The importance 68 

of reducing NRW is underscored by the fact that the United Nations (UN) has listed ensuring the 69 



availability and sustainable management of water and sanitation for all as UN Sustainable Development 70 

Goal (SDG) number 6. The UN’s high prioritization of water and sanitation (SDG #6) is due to both 71 

being at the core of sustainable development, for the range of services both provide underpin health, 72 

poverty reduction, economic growth and environmental sustainability (United Nations, Department of 73 

Economic and Social Affairs Sustainable Development 2022). 74 

 Acoustic signal-based detection stands as one of the most prevailing and effective automated 75 

methods for monitoring WDN leaks. Dating back to the 1960s (Morgan 1966), the incorporation of 76 

acoustic equipment significantly revolutionized the prompt discovery and management of WDN leaks, 77 

enhancing the timeliness and convenience of monitoring tasks. The evolution of acoustic equipment 78 

hardware and signal analysis algorithms has sparked numerous studies proposing real-time or non-real-79 

time solutions for WDN leakage detection. The prevalent framework for WDN leakage detection entails 80 

the use of acoustic sensors, such as hydrophones (Cody et al. 2018), noise loggers (El-Zahab et al. 2019), 81 

and more, to gather data, followed by time domain (Zhang et al. 2022), frequency domain (Yu et al. 82 

2023), time-frequency analysis (Guo et al. 2021; Xie et al. 2020), or cross-correlation analysis (Guo et 83 

al. 2022). Advancements in analysis tools have progressed in chronological order, encompassing the 84 

Fourier Transform, Fast Fourier Transform, Wavelet Transform, Empirical Mode Decomposition (EMD), 85 

Variational Mode Decomposition (VMD) (Fazai et al. 2019; Song and Li 2021; Fan et al. 2022), and 86 

others for signal feature extraction. Following feature extraction, traditional classification algorithms 87 

(SVM, Random Forest, etc.) or deep learning algorithms (CNN, RNN, etc.) are employed to classify leak 88 

and non-leak signals. In recent years, the rapid advancements in deep learning technology have shown 89 

promise when fused with the aforementioned methods. Studies by Liu et al. (2024) and Guo et al. (2022) 90 



showcased the successful application of advanced convolutional neural networks in analyzing acoustic 91 

data, reporting impressive leak monitoring accuracy of 90.77% and 100% for metal pipelines and 95% 92 

for non-metal pipelines, respectively. These studies demonstrate significant achievements in detection 93 

accuracy. 94 

 However, the detection of leaks in WDN using acoustic methods faces substantial challenges when 95 

dealing with environmental noise interference. Given the relatively shallow depths at which WDN are 96 

typically buried (within 3m), environmental noise easily interferes with the effectiveness of acoustic 97 

methods (Wu and Liu 2017; Liu et al. 2022). The impact of environmental noise presents difficulties in 98 

various analytical domains. First, in time domain analysis, noise interference disrupts the waveform, as 99 

noise is reflected in amplitude, often complicating its differentiation from the signal. Second, in 100 

frequency domain analysis, noise manifests within specific frequency components, potentially 101 

overlapping with the frequencies of the target signal, thus complicating accurate discrimination. 102 

Narrowband noise or spurious signals further complicate the analysis, interfering with the desired 103 

frequency components. Efforts in time-frequency domain analysis aim to combine time and frequency 104 

information to enhance signal assessment. Despite being among the most effective analysis methods, this 105 

approach's reliance on short-term signal spectrum conversion makes it more susceptible to noise 106 

variations within brief periods. Abruptly changing or burst noise patterns can disrupt the time-frequency 107 

domain representation, challenging the separation of signal and noise. Existing research often integrates 108 

denoising into the input feature extraction process, typically under the constraints of pre-set threshold 109 

parameters. Traditional denoising methods, such as linear filtering, spectral subtraction, statistical model-110 

based techniques, and methods based on mode decomposition like EMD, VMD, and Wavelet (Wu et al. 111 



2018; Guo et al. 2016; Pan et al. 2018), heavily rely on the rationality of preset parameters. However, 112 

these parameters often lack generalizability due to the complex nature of target signals and noise in WDN 113 

scenarios, influenced by network topology, leak type, background noise, flow conditions, etc. The 114 

challenge is further compounded as a supervised deep learning model is difficult to implement due to the 115 

absence of a clear quantitative evaluation between target signals and noise, making it arduous to define 116 

the required input mapping for training purposes. 117 

 To address the aforementioned challenges, this study proposes an Unsupervised Acoustic Denoising 118 

Model, named UADM. The model utilizes an encoder-decoder framework and directs the noise reduction 119 

process of the input signal via domain knowledge-based innovative loss function design. This unique 120 

approach eliminates the need for preset threshold parameters or mode decomposition parameters. To 121 

validate the denoising efficacy of the proposed UADM model, this study employs various mainstream 122 

methods, including SVM, Random Forest, 1DCNN, RNN, and Wavelet-based algorithms for comparison 123 

and verification. Utilizing a public dataset from the Aghashahi et al. (2023) team at Texas A&M 124 

University, which encompasses hydrophone signals collected across different leak types, network 125 

topologies, background noise, and flow conditions, the experimental results reveal the UADM model's 126 

significant enhancement in acoustic leak detection accuracy within WDN. Comparative analysis against 127 

data pre-denoising showcases a noteworthy average improvement across five sets of verification 128 

experiments. The metrics, including Accuracy, Recall, F1 score, and Precision, exhibited an average 129 

improvement of 8.1%, 14.5%, 8.0%, and 6.4%, respectively. From a theoretical perspective, this research 130 

contributes a novel outlook on enhancing the anti-noise capability of acoustic WDN leakage detection, 131 

specifically by addressing the challenge through an unsupervised learning approach integrating domain 132 



knowledge. From an engineering standpoint, the UADM model offers a stable and efficient tool for 133 

detecting leaks within WDN system, proving beneficial for stakeholders in water distribution networks. 134 

2. Related work 135 

 Acoustic-based leakage detection encounters an inherent challenge due to the amalgamation of 136 

environmental noise and leakage signals. Given the typical shallow burial depth of WDN, ambient noise 137 

from sources such as operating pumps, rain impacting chamber lids, and passing vehicles can easily 138 

infiltrate acoustic sensors (Fan et al. 2022; Aghashahi et al. 2023). Hence, the core objective of acoustic-139 

based leakage detection revolves around the extraction of leakage-relevant patterns from the original 140 

signal by mitigating interference from ambient noise. These discernible patterns serve as the benchmark 141 

for distinguishing between leak and non-leak conditions. Notably, prevailing research in acoustic-based 142 

leakage detection encompasses various methodologies, including analysis in the time domain, frequency 143 

domain, time-frequency domain, and correlation analysis. 144 

2.1 Time domain analysis 145 

 Time domain analysis is a method that employs time as the independent variable and tracks changes 146 

in the audio signal as the dependent variable. It serves as the most intuitive and fundamental approach 147 

for characterizing acoustic signals. Consequently, time domain analysis stands as the earliest method 148 

applied to leakage detection. Common techniques within this domain include Root Mean Square (RMS) 149 

(Banjara et al. 2020), Peak Analysis (Meng et al. 2012), and Envelope Analysis (Ahn et al. 2019), among 150 

others. Lim et al. (2014) proposed the utilization of the crest factor and acoustic emission energy features 151 

in the time domain to assess pipe leakage, successfully identifying four distinct leaks in various areas. 152 

Similarly, Zhang et al. (2022) reported a novel leak localization method for buried natural gas pipelines 153 



using four microphones placed in detection holes. While time domain analysis offers simplicity and 154 

clarity, with the substantial advantage of low computational load, it has limitations (Fazai et al. 2019; 155 

Duan et al. 2011). It might be inadequate for non-stationary signals and complex signal scenarios, as it 156 

is often insufficient to solely use time domain parameters to describe them. Additionally, methods based 157 

solely on time domain analysis might not detect leakage before the acoustic signal collection begins (Fan 158 

et al. 2022). Consequently, pure time domain analysis is scarcely used in contemporary applications. 159 

2.2 Frequency domain analysis 160 

 Frequency domain analysis is an analytical method that dissects time domain signals into a series 161 

of combined sine and cosine waves through Fourier Transformation. By scrutinizing signal components 162 

at various frequencies and their overall statistical distribution patterns, frequency domain analysis 163 

enables the differentiation between leak and non-leak signals. Notable methods within frequency domain 164 

analysis encompass peak frequency, frequency centroid of a band, skewness, kurtosis (Fazai et al. 2019; 165 

Song and Li 2021), etc. Guo and Yang (2009) proposed a pipeline leak detection method solely relying 166 

on frequency domain analysis. Similarly, Yu et al. (2023) utilized energy distribution in the frequency 167 

domain as an indicator to classify WDN leakage signals. However, the straightforward frequency domain 168 

analysis method exhibits limitations when handling non-stationary signals (those with frequencies 169 

changing over time). It can only capture the frequency components encompassed within a segment of the 170 

signal as a whole, without identifying the specific moment when each component emerges. Consequently, 171 

this method entirely disregards valuable information inherent in the time series. 172 

2.3 Time-frequency domain analysis 173 

 To address the limitations of solely analyzing acoustic signals in the time and frequency domains, 174 



a range of time-frequency domain analysis tools have emerged. The most classic among these is the 175 

Short-Time Fourier Transform (STFT), which conducts Fourier Transform on small signal segments via 176 

a sliding window and then combines these segments frame by frame. This technique aims to preserve 177 

both time-series relationships and frequency domain features simultaneously. For instance, in 2009, Lay-178 

Ekuakille et al. (2009) developed an urban waterworks leakage detection tool based on STFT. Building 179 

upon the concept of localized signal decomposition from STFT, the Wavelet Transform (WT) was 180 

introduced in the 1980s (Grossmann and Morlet 1984). WT employs a more adaptable wavelet basis 181 

function for signal decomposition, addressing the limitation of fixed window size across frequencies. As 182 

various wavelet basis functions continually evolve, they are better suited for diverse and complex 183 

situations compared to single sine and cosine functions. WDN leakage detection based on WT has 184 

become one of the most extensively utilized analysis methods (Yang et al. 2010; Ahadi and Bakhtiar 185 

2010; Ting et al. 2021). However, the wavelet base selection requires manual intervention based on the 186 

specific scenario. Due to the Heisenberg uncertainty principle, improvements in time accuracy come at 187 

the expense of frequency accuracy, and vice versa. Another significant approach, Empirical Mode 188 

Decomposition (EMD) (Huang et al. 1998), decomposes any signal, especially non-stationary nonlinear 189 

time series signals, into a series of linear steady-state signals (Intrinsic Mode Functions, IMF). By 190 

decomposing signals into multiple IMFs and a residual component, EMD aids in distinguishing between 191 

leak and non-leak signals (Guo et al. 2016; Bakhti et al. 2019). Furthermore, several analysis methods 192 

have evolved from these approaches and are widely employed in the field of WDN leakage detection. 193 

These include Variational Mode Decomposition (VMD) (Zhao et al. 2023; Xu et al. 2021), Hilbert-Huang 194 

Transform (HHT) (Lukonge et al. 2021), and various fusion methods (Fu et al. 2024; Spandonidis et al. 195 



2022). These diverse time-frequency domain tools offer enhanced capabilities to tackle the complexities 196 

of acoustic signal analysis in identifying and differentiating leakage within water distribution systems. 197 

However, these methods also have shortcomings. For instance, VMD can be sensitive to noise and may 198 

require careful parameter tuning to ensure accuracy, while HHT often struggles with mode mixing issues, 199 

which can complicate the interpretation of transient signals in noisy environments. Additionally, fusion 200 

methods can be computationally intensive and require significant data preprocessing to achieve optimal 201 

results. 202 

 203 

2.4 Correlation analysis 204 

 In addition to examining leakage characteristics in the time and frequency domains, there exists a 205 

specialized method known as Correlation Analysis. This technique utilizes the correlation between 206 

signals from two different sensors to ascertain whether a leak event has transpired. For instance, in 2017, 207 

Muntakim et al. (2017) presented a leak detection method founded on a function measuring the degree 208 

of correlation between two time series, successfully validating the method in a real metal WDN scenario 209 

in Canada. Similarly, Yang et al. (2013) proposed an algorithm to extract and evaluate signal self-210 

similarity through approximate entropy, enabling leak detection even in the presence of non-leak noise 211 

within and outside the pipeline, achieving correct detection rates of 93.8% and 86.3%, respectively. 212 

Correlation analysis offers a new research perspective on acoustic WDN leakage; however, it does come 213 

with certain limitations. Firstly, the method necessitates multiple signal sources, rendering scenarios with 214 

only a single sensor impractical. Secondly, the results derived from correlation analysis are heavily 215 

contingent on the quality and accuracy of the data. Inaccurate, noisy, or missing sensor measurement data 216 



could bias the outcomes of correlation analysis. 217 

2.5 Acoustic Leak Detection in WDN: Recent Deep Learning Approaches 218 

 Recent advancements in deep learning-based acoustic leak detection for WDN have focused on 219 

improving data quality, feature selection, and model robustness. Wu et al. (2024) emphasized a data-220 

centric approach, demonstrating that advanced data augmentation techniques, such as IAAFT and 221 

masking, significantly enhance detection accuracy by increasing data diversity. Meanwhile, Xu et al. 222 

(2024) introduced an optimized feature selection framework (MDMR_ISFFS), identifying four key 223 

acoustic features that improve classification performance across multiple machine learning models 224 

(XGBoost and SVM). To address the challenge of long-range temporal dependencies in acoustic signals, 225 

Liu et al. (2024) proposed a Time-Transformer model, which outperforms CNN and CNN-LSTM models 226 

in accurately detecting leaks, especially in noisy environments. Additionally, data scarcity remains a 227 

bottleneck for training deep models, and Liu et al. (2024) tackled this issue by developing an LSTM-228 

GAN approach that generates high-quality synthetic leak signals, enhancing the robustness of detection 229 

models. On the application side, Fares et al. (2023) validated deep learning-based leak detection in real-230 

world WDNs, demonstrating that noise loggers combined with machine learning techniques (e.g., SVM, 231 

ANN, and deep neural networks), achieve stable and accurate performance across varying pipeline 232 

materials and conditions. 233 

 234 

3. Methodology 235 

3.1 Framework 236 

 The proposed UADM model primarily comprises an autoencoder architecture with multiple loss 237 



functions, as outlined in Fig. 1. It features two main modules: the encoder and the decoder. The encoder, 238 

composed of a single linear layer followed by a ReLU activation function, focuses on diminishing the 239 

input audio's dimensionality from its original size to 128 units. Subsequently, the decoder takes the 128-240 

dimensional representation from the encoder and reverts it back to the original input dimension. Utilizing 241 

the Tanh activation function, the output values are scaled to a range of -1 to 1, a common practice for 242 

audio data. To summarize, the UADM model operates by encoding the input audio into a lower-243 

dimensional representation via the encoder and then reconstructing it back to the original dimensions 244 

using the decoder. This model serves as the foundation for unsupervised learning, examining differences 245 

between the input and output data within the autoencoder architecture. The WDN leakage acoustic signal 246 

undergoes denoising through the model's loss functions (MES, TC, Spectral, and MAE loss) designed 247 

based on pertinent domain knowledge, refined through continuous iterations. 248 

3.2 Loss function design 249 

 The functional implementation of the proposed UADM model centers around the design of its loss 250 

functions. Given the characteristics of unsupervised learning, the structure of the UADM model itself 251 

does not markedly influence the denoising process but serves to establish an ongoing iterative framework 252 

for learning. The denoising path of the input acoustic signal is entirely steered by the loss functions 253 

designed within the model. Drawing from a comprehensive literature review and pertinent domain 254 

knowledge in acoustic-based WDN leakage detection, this section elaborates on the concept of the four 255 

core loss functions within the UADM model: MSE, Temporal Consistency, Spectral, and MAE loss. 256 

3.2.1 Mean Square Error loss 257 

 The primary role of Mean Square Error (MSE) loss is to prevent excessive noise reduction that 258 



might distort the acoustic signal. Within the influence of the UADM model, the original input signal 259 

undergoes continuous compression and reconstruction in a loop iteration. If the entire training process 260 

remains unconstrained, the final output could lose the original leak signal characteristics while reducing 261 

noise. This scenario might significantly diminish the effectiveness of leak detection. Hence, the UADM 262 

model employs MSE loss to compare the average error between the input and the reconstructed output 263 

in each cycle of unsupervised learning. MSE loss serves to control the iterative process, ensuring that the 264 

reduction in noise remains within certain bounds to avert signal distortion. This control maintains a 265 

balance between noise reduction and signal preservation. For the detailed calculation formula of MSE 266 

loss, please refer to formula (1), where n represents the number of samples, y represents the input before 267 

each iteration cycle, and ŷ denotes the output signal after reconstruction. 268 

𝑀𝑆𝐸	𝑙𝑜𝑠𝑠 = 		 !
"
	 ∗ ∑(𝑦 − 	ŷ)#              (1) 269 

3.2.2 Temporal Consistency loss 270 

 The Temporal Consistency (TC) loss is an innovative loss function designed for guiding the UADM 271 

model to retain components of the signal that persist over time, particularly focusing on preserving the 272 

persistent nature of the leak signal. In instances of WDN leakage, barring occasional bursts, the leakage 273 

primarily exhibits a continuous pattern. This continuous pattern often endures throughout the entire 274 

signal cycle, as opposed to environmental noise, which typically occurs intermittently, like the sound of 275 

rain or passing cars (Fan et al. 2022). Leveraging this disparity, the study devises a novel loss function 276 

to suppress burst-like components during the unsupervised learning process. This approach aims to better 277 

preserve the continuous leak signal to enhance detection accuracy. The TC loss accomplishes its function 278 

by comparing the one-dimensional convolution outcomes of the audio data before and after the 279 



unsupervised loop, as depicted in formula (2). Since signal components in the original signal with 280 

sustained temporal characteristics exhibit minimal change following the 1D convolution operation, the 281 

TC loss effectively filters out sporadic noise while retaining more persistent leak signals. In formula (2), 282 

Conv1D(y) and Conv1D(ŷ) respectively represent the input and output of the 1D convolution after each 283 

learning iteration. 284 

𝑇𝐶	𝑙𝑜𝑠𝑠 = 	 !
"
	 ∗ ∑(𝐶𝑜𝑛𝑣1𝐷(𝑦) − 𝐶𝑜𝑛𝑣1𝐷(ŷ))#          (2) 285 

3.2.3 Spectral loss 286 

 The Spectral loss serves as an innovative tool within the UADM model, aiming to enhance the 287 

retention of low-frequency signals. In the context of water distribution networks leakage detection, the 288 

primary essence lies in measuring the sounds emitted by the turbulent jet of water escaping the pipes 289 

(Khulief et al. 2012). Studies have revealed that the predominant characteristics of the leak signal 290 

primarily reside within the low-frequency portion of the audio spectrum (Sitaropoulos et al. 2023). To 291 

reinforce the prominence of these critical low-frequency components carrying leak-related information, 292 

this study introduces the Spectral loss. This novel loss function accentuates the low-frequency segments 293 

in the original signal, magnifying the features of the leak signal component. The specific calculation 294 

formula for the Spectral loss is depicted in formula (3). Here, STFT(y) and STFT(ŷ) respectively represent 295 

the results of the input and output signals before and after each unsupervised learning cycle, processed 296 

via the Short-Time Fourier Transform (STFT). Low-frequency signals, occupying a wider spectrum 297 

range, are more readily captured by STFT during spectrum calculations. Additionally, the mean squared 298 

error calculation tends to be more sensitive to the larger amplitude of the low-frequency parts within the 299 

spectrum. Consequently, the Spectral loss prioritizes preserving the low-frequency segment, which is 300 



more likely to encompass the leak signal, compared to the high-frequency portion. This emphasis helps 301 

retain critical components integral to leak identification. 302 

𝑆𝑝𝑒𝑐𝑡𝑟𝑎𝑙	𝑙𝑜𝑠𝑠 = 		 !
"
	 ∗ ∑(|𝑆𝑇𝐹𝑇(𝑦)| − |𝑆𝑇𝐹𝑇(ŷ)|)#         (3) 303 

3.2.4 Mean Absolute Error loss 304 

 The role of Mean Absolute Error (MAE) loss is to prevent the inadvertent deletion of leak signals 305 

owing to their relatively small energy content compared to background noise. From an energy perspective, 306 

the energy carried by the leak signal is relatively small compared to the background noise. The input 307 

signal, being a time domain signal, exhibits an amplitude that strongly correlates with the energy of the 308 

relevant signal. To safeguard signals with lower energy levels, the MAE loss is employed, computing the 309 

average of the absolute differences between predicted and true values, as depicted in formula (4). The 310 

linearity of MAE loss sensitivity to error size ensures that each error contributes equally to the total error. 311 

As a result, it robustly reflects the average error and mitigates the risk of disproportionately discarding 312 

signals with lower energy content due to power operations within other loss functions. 313 

𝑀𝐴𝐸	𝑙𝑜𝑠𝑠 = 		 !
"
	 ∗ ∑ |𝑦 − ŷ|              (4) 314 

 In summary, the overall loss function of the proposed UADM model can be expressed as formula 315 

(5). 316 

𝑇𝑜𝑡𝑎𝑙	𝑙𝑜𝑠𝑠 = 		𝑀𝑆𝐸	𝑙𝑜𝑠𝑠	 + 	𝑇𝐶	𝑙𝑜𝑠𝑠	 + 	𝑆𝑝𝑒𝑐𝑡𝑟𝑎𝑙	𝑙𝑜𝑠𝑠	 + 	𝑀𝐴𝐸	𝑙𝑜𝑠𝑠      (5) 317 

3.3 Evaluation metrics 318 

 The core objective of acoustic-based WDN leakage detection is to classify unknown input signals 319 

into leak and non-leak categories. To validate the efficacy of the unsupervised denoising model proposed 320 

in this study, various prevalent detection models from existing research were employed, both with and 321 



without UADM model processing. Consequently, this study employed the four primary binary 322 

classification evaluation metrics in the machine learning domain to assess the effectiveness of the 323 

proposed model: Accuracy, Recall, F1, and Precision. 324 

 These evaluation metrics are determined by the counts of samples categorized by the four models: 325 

TP (True Positive), TN (True Negative), FP (False Positive), and FN (False Negative) in accordance with 326 

the actual classification outcomes, as demonstrated in Table 1. The specific calculation formulas for 327 

Accuracy, Recall, F1, and Precision are displayed in formulas (6), (7), (8), and (9), respectively. 328 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	 = 	 (𝑇𝑃	 + 	𝑇𝑁)	/	(𝑇𝑃	 + 	𝐹𝑃	 + 	𝑇𝑁	 + 	𝐹𝑁)         (6) 329 

𝑅𝑒𝑐𝑎𝑙𝑙	 = 	𝑇𝑃	/	(𝑇𝑃	 + 	𝐹𝑁)              (7) 330 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 = 	𝑇𝑃	/	(𝑇𝑃	 + 	𝐹𝑃)             (8) 331 

𝐹1	 = 	2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙	/	(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)         (9) 332 

 These metrics aid in quantitatively assessing the model's performance in distinguishing between 333 

leak and non-leak signals, providing a comprehensive evaluation of its classification effectiveness. 334 

Accuracy is the proportion of correctly predicted instances to the total instances, measuring overall 335 

correctness. Recall is the proportion of true positive predictions to all actual positives, assessing the 336 

model's ability to find relevant instances. Precision is the proportion of true positive predictions to all 337 

positive predictions, indicating the accuracy of positive predictions. F1 score is a harmonic mean of 338 

precision and recall, offering a balance between precision and recall for binary classification. 339 

4. Experiments 340 

4.1 Data collection 341 

 To assess the applicability of the proposed UADM model, this study utilized a public dataset 342 



provided by Aghashahi et al. (2023) from Texas A&M University in 2023 343 

(https://data.mendeley.com/datasets/tbrnp6vrnj/). It's essential to note that the original dataset 344 

encompasses three distinct data types: hydrophone, accelerometer, and dynamic pressure sensor. For this 345 

study, only the hydrophone data, widely employed in engineering practice, was utilized. The dataset was 346 

curated through controlled leak experiments conducted within a laboratory-scale water distribution 347 

testbed, featuring 152.4 mm diameter PVC pipes and a total pipe length of 47 meters, as depicted in Fig. 348 

2. During the data collection process, various factors were altered, as detailed in Table 2, including 349 

network topology (looped and branched), leak types (orifice, longitudinal, circumferential, and gasket), 350 

and non-leak conditions. Background flow rates, ranging from 0 to 0.47 L/s, and transient flow changes 351 

from 0.47 to 0 L/s, were also manipulated. Furthermore, background noise sources such as traffic and 352 

tool noise were introduced. 353 

 354 

4.2 Data processing 355 

 To adapt the dataset introduced in Section 4.1 for various acoustic-based leakage detection methods, 356 

this study undertook specific preprocessing steps. Initially, the original dataset was in a RAW format, 357 

which was then converted to the more accessible WAV format for ease of data reading and processing. 358 

Moreover, the original dataset contained an imbalance between the number of leak and non-leak signal 359 

samples. To avert potential decreases in detection accuracy due to this imbalance, the study performed 360 

data augmentation on the original dataset. Through a process of offsetting and introducing random noise 361 

enhancement, as shown in Fig. 3, the data underwent a balancing operation. Following this augmentation 362 

procedure, both the leak and non-leak signal samples were equated to 100 instances each. 363 



 364 

4.3 Experiment configurations 365 

4.3.1 UADM 366 

The proposed UADM model was implemented as a single-layer autoencoder with 128 bottleneck 367 

nodes. Each input was a full-length normalized waveform loaded from a .wav file with a sampling rate 368 

of 44,100 Hz. For 1-second recordings, this corresponds to an input dimension of 44,100 samples. Each 369 

signal was normalized between -1 and 1, and further standardized to have zero mean and unit variance 370 

before being processed. The autoencoder was trained independently for each signal using the Adam 371 

optimizer with an initial learning rate of 0.001, for 50 epochs. Due to per-sample training, batch 372 

processing was not used, and early stopping was not applied. 373 

During training, the combined loss function was implemented by summing four components 374 

directly in the training loop. MSE and MAE were calculated in the time domain, while the spectral loss 375 

was computed from the STFT magnitude (FFT size = 2048, hop length = 512). The temporal consistency 376 

loss was applied by convolving the reconstructed waveform with a fixed smoothing kernel of size 5 377 

before comparison. All loss terms were equally weighted and added to form the total loss. 378 

4.3.2 Downstream leakage detection 379 

 In the downstream leakage detection task, we evaluated the effectiveness of the denoising process 380 

by comparing the performance of several mainstream classifiers, including traditional machine learning 381 

models (e.g., SVM, Random Forest) and deep learning models (e.g., 1D-CNN, RNN, and Time-382 

Transformer). All models were trained and tested on the dataset both before and after denoising by the 383 

UADM model. Table 3 summarizes the architecture and training configurations for each model. To 384 



ensure fair comparison, all models were trained using identical data splits and evaluated using Accuracy, 385 

Precision, Recall, and F1 score. 386 

4.4 Experiment results 387 

 To validate the denoising effect of the proposed UADM model in acoustic-based WDN leakage 388 

detection task, this study implemented two prevalent traditional classification methods (MFCC + SVM 389 

and MFCC + Random Forest) and three classification methods based on deep learning (Wavelet + 390 

1DCNN, MFCC + 1DCNN, MFCC + RNN, MDMR_ISFFS and Time-Transformer). Among these 391 

methods, MFCC (Mel-scale Frequency Cepstral Coefficients) stands as the most utilized time-frequency 392 

analysis feature in the domain of speech recognition. Additionally, the Wavelet + 1DCNN method 393 

employs the widely used Haar wavelet base as the feature extraction algorithm in the wavelet domain to 394 

contrast with MFCC. Table 4 presents the leakage detection metrics results of all methods before and 395 

after applying the UADM model for input denoising. For a more visually comprehensible comparison 396 

among the various models, Fig. 4 illustrates a comparative analysis of these approaches. This detailed 397 

analysis enables an assessment of the effectiveness of the UADM model in denoising input data and its 398 

impact on the performance of diverse leakage detection methods. A detailed analysis of these results is 399 

presented in Section 5. 400 

 401 

5. Discussions 402 

5.1 Performance impact of UADM denoising 403 

The experimental results in section 4.4 demonstrate notable improvements in almost all leakage 404 

detection indicators across both traditional and deep learning-based methods following the noise 405 



reduction process of the UADM model. On average, the Accuracy and Precision indicators increased by 406 

approximately 8.1% and 6.4%, respectively. Additionally, the Recall and F1 witnessed an average 407 

increase of around 14.5% and 8.0%, respectively. These findings highlight the significant enhancement 408 

effect of the UADM model on the task of acoustic-based WDN leakage detection. However, there were 409 

two metrics that exhibited a drop after denoising. The Recall of the MFCC + Random Forest method 410 

decreased by 11%. Yet, it is noteworthy that the Recall value prior to denoising was exceptionally high 411 

at 1.00. Post noise reduction, although the Recall value dropped, the other three indicators (Accuracy, 412 

F1, and Precision) all showcased improvements. This suggests that the model's ability to accurately 413 

differentiate between leaks and non-leaks before denoising was poor. While all leak signals were 414 

classified as positive, this resulted in an extremely high Recall. However, many non-leak signals were 415 

incorrectly categorized as leak instances. The second metric that experienced a decrease was the 416 

Precision value of the Wavelet + 1DCNN method, dropping by 3%. Similar to the previous case, the 417 

remaining three metrics (Accuracy, Recall, and F1) exhibited improvements post-denoising. This reflects 418 

the trade-off between Recall and Precision in the model. Considering the more comprehensive benefit 419 

indicated by the F1 score, which increased by 12%, the classification effect of the Wavelet + 1DCNN 420 

method was evidently better after denoising. After applying the UADM model, the MDMR_ISFFS 421 

method achieved a slight improvement in F1 score while maintaining perfect Recall, suggesting 422 

enhanced robustness in leak detection, although a marginal drop in Accuracy and Precision indicates a 423 

possible trade-off in overall classification balance. For the Time-Transformer model, UADM denoising 424 

significantly boosted both Recall (from 0.72 to 1.00) and F1 score (from 0.80 to 0.85), highlighting a 425 

substantial gain in sensitivity and overall detection capability, despite a decrease in Precision due to more 426 



false positives. 427 

5.2 Ablation experiments 428 

 The core functional implementation of the proposed UADM model hinges on the design of its loss 429 

functions. To delve deeper into its operational mechanics, this study conducted ablation experiments on 430 

the model. Ablation experiments involve systematically removing parts of the system to observe their 431 

impact on the system's function or performance. 432 

 The steps involved in the ablation experiments were as follows: First, the total loss part of the 433 

UADM model was modified, and one loss function was removed at a time in a sequential manner. 434 

Subsequently, the modified UADM model was employed to denoise the original dataset, generating four 435 

distinct datasets (lacking MSE, TC, Spectral, and MAE loss, respectively). Finally, these four datasets 436 

served as inputs, and their performance, processed under the five mainstream leakage detection methods 437 

detailed in Section 4.3, was recorded. Table 5 presents the comprehensive results of these experiments, 438 

which are also illustrated in Fig. 5. This comparative visualization aids in discerning the impact of each 439 

removed loss function on the performance of the model in the context of leakage detection methods. 440 

 The results obtained from the ablation experiments revealed the significance of the four proposed 441 

loss functions in the denoising performance of the UADM model. When the individual loss functions 442 

were removed sequentially, the evaluation metrics Accuracy, Recall, F1, and Precision displayed 443 

fluctuations. Upon the removal of MSE loss, there was an average decrease of 6.8% in Accuracy, 4.2% 444 

in Recall, 7.2% in F1, and 8.2% in Precision. Elimination of TC loss resulted in an average decrease of 445 

4.6% in Accuracy, 5.4% in Recall, 4.8% in F1, and 5.2% in Precision. The removal of Spectral loss led 446 

to an average reduction of 12.8% in Accuracy, 2.4% in Recall, 7.8% in F1, and 14.0% in Precision. 447 



Finally, eliminating MAE loss caused an average reduction of 6.0% in Accuracy, 4.2% in Recall, 5.4% 448 

in F1, and 6.8% in Precision. These findings highlight that the proposed MSE, TC, Spectral, and MAE 449 

loss functions each contribute to varying degrees in the denoising functionality of the UADM model. 450 

Moreover, certain metrics displayed significant increases post-ablation experiments. For instance, after 451 

removing MSE loss, the MFCC + RNN method experienced a 16% increase in the Recall. However, this 452 

increase was accompanied by varying declines in Accuracy, F1, and Precision. This suggests that the 453 

model tends to emphasize capturing true positive instances at the cost of overall accuracy, resulting in 454 

more negative examples being misclassified as positive. In summary, the results indicate that the four 455 

proposed loss functions play significant roles in enhancing the denoising task for acoustic-based WDN 456 

leakage detection. 457 

 458 

5.3 Architecture 459 

 The encoder-decoder structure adopted by the proposed UADM model is relatively straightforward 460 

and only contains one layer of structure. In order to discuss its rationality, the study conducted denoising 461 

experiments using a more complex structure with three layers in both encoder and decoder modules, 462 

while maintaining all other parameters unchanged, as demonstrated in Table 6. In this modified model, 463 

the encoder was expanded to include additional layers, incrementally growing from 128 hidden units to 464 

512 hidden units in several steps. The decoder's architecture mirrored that of the encoder, progressively 465 

expanding the dimension back to the original input size, as illustrated in Fig. 6. 466 

 The experimental outcomes reveal that escalating the model's complexity does not effectively 467 

enhance the performance of acoustic-based leakage detection tasks. Only the MFCC + Random Forest 468 



method displayed improvements across all evaluation metrics following denoising with the more intricate 469 

model. The MFCC + SVM method experienced an increase solely in the Precision, while other indicators 470 

remained unchanged or decreased. Notably, all deep learning methods, apart from the mentioned 471 

conventional methods, witnessed decreases in their evaluation metrics. The rationale behind this trend is 472 

attributed to the fact that as the model's complexity increases—particularly in terms of layer count and 473 

parameter volume—it typically demands more data to learn these parameters. The autoencoder, 474 

possessing an encoder-decoder structure, exhibits symmetry, signifying that with an increase in layer 475 

count, the network's width also exponentially expands. This exponential growth contributes to a rapid 476 

rise in the number of parameters. Especially within deeper autoencoders, the representation of latent 477 

space may become more intricate, necessitating more complex computations for encoding and decoding. 478 

Insufficient data volume might limit the model's capability to adequately learn the data features, 479 

subsequently leading to a decline in model performance. Furthermore, the heightened complexity of the 480 

model structure incurs substantial computational burden, particularly concerning the exponential growth 481 

of the encoder-decoder model. 482 

 483 

5.4 Impact of preprocessing on acoustic leak detection performance 484 

Preprocessing plays a crucial role in acoustic leak detection, particularly when dealing with high-485 

frequency sensor data. Raw vibration and acoustic signals often contain significant background noise, 486 

and their key discriminative features may exist at much lower frequencies than the original sampling rate. 487 

If the sampling frequency is too high, deep learning models may struggle to extract meaningful patterns, 488 

potentially leading to suboptimal detection accuracy. 489 



To explore the impact of different preprocessing methods on the accuracy of the WDN leakage 490 

detection task, this section conducts experiments using preprocessing approaches: Raw data, Down 491 

sampling (Moderate), Down sampling (Aggressive), Statistical features, and UADM (proposed). The 492 

experimental methodology involves applying each preprocessing technique to the dataset and then 493 

evaluating the processed data using all leakage detection methods mentioned in Section 4.3 (MFCC + 494 

SVM, MFCC + Random Forest, Wavelet + 1DCNN, MFCC + 1DCNN, MFCC + RNN, MDMR_ISFFS, 495 

and Time-Transformer). Finally, the results obtained from all methods are averaged to provide a 496 

comprehensive performance assessment, as shown in Table 7. 497 

The results presented in Table 7 demonstrate that the choice of preprocessing method has a 498 

considerable impact on the overall performance of acoustic-based WDN leakage detection. Across all 499 

models and configurations, it is observed that directly using raw high-frequency audio signals results in 500 

relatively lower performance, with an average Accuracy of 0.80 and an F1 score of 0.82. This can be 501 

attributed to the fact that critical discriminative patterns for leakage detection often reside in lower 502 

frequency bands and exhibit temporal persistence, which raw signals at high sampling rates tend to 503 

obscure. Moderate and aggressive downsampling help mitigate this issue by suppressing high-frequency 504 

noise, yielding improved Accuracy (0.86) and F1 scores (0.85), although still limited by the lack of task-505 

specific temporal feature extraction. 506 

The use of handcrafted statistical features (min, max, mean, variance) over fixed time windows 507 

introduces temporal aggregation, aiming to capture lag-based or segment-level characteristics. However, 508 

this approach yields mixed results, with a slight drop in Accuracy (0.76–0.77) and F1 scores (0.73–0.74) 509 

despite a relatively stable recall. This suggests that while statistical features can retain some relevant 510 



patterns, they may also lose important nuances, especially under aggressive downsampling. In contrast, 511 

the proposed UADM model consistently achieves the best overall performance, with an accuracy of 0.88, 512 

a recall of 0.93, and an F1 score of 0.90. This can be attributed to its unique design, which integrates 513 

multiple domain-specific constraints into the learning objective through four loss components. The MSE 514 

and MAE losses help maintain signal fidelity while suppressing noise. The Temporal Consistency loss 515 

encourages the preservation of leak-related features that persist over time, which are commonly observed 516 

in real leakage events. Additionally, the Spectral loss emphasizes low-frequency components, where leak 517 

signals are most prominent. By combining these complementary objectives, UADM effectively balances 518 

denoising and feature preservation, allowing downstream classifiers to better distinguish leak from non-519 

leak patterns. This demonstrates that embedding preprocessing principles into model design can lead to 520 

more robust and generalizable leakage detection performance. 521 

 522 

5.5 Limitations 523 

 This study encounters two primary limitations. Firstly, obtaining real-world leakage data is 524 

inherently challenging. The acoustic signals used in this study were primarily collected from controlled 525 

laboratory experiments, as acquiring authentic leakage signals from operational WDNs for validation is 526 

highly difficult due to the unpredictability and rarity of actual leak events. Although our dataset 527 

encompasses diverse leakage scenarios under controlled conditions, it may not fully capture the 528 

variability encountered in complex real-world environments, including different pipeline materials, 529 

hydraulic conditions, and background noise sources. Nevertheless, it is important to emphasize that the 530 

public dataset used in this study was meticulously curated by a specialized research team under stringent 531 



experimental protocols, ensuring reproducibility and reliability as a benchmark for further studies. 532 

Secondly, the study's scope of investigation encompassed a limited number of leakage detection methods. 533 

Acoustic-based WDN leakage detection is a burgeoning field, marked by numerous studies proposing a 534 

wide array of methods to address the classification task of distinguishing leak and non-leak signals. In 535 

this study, only five relatively representative methods were selected for analysis. Exploring a more 536 

extensive array of methodologies could provide a more comprehensive understanding of the field's 537 

landscape and the potential for further advancements. 538 

5.6 Future works 539 

 In the future, the field of WDN leakage research holds several promising directions: 1) 540 

Unsupervised Learning: In contrast to the prevalent supervised learning models, unsupervised learning 541 

offers a unique avenue to explore unlabeled data. It facilitates the discovery of inherent data structures, 542 

patterns, and correlations, allowing for a more comprehensive understanding without relying on pre-543 

existing knowledge. This approach is instrumental in addressing data labelling cost and scarcity issues 544 

often encountered in engineering practices. 2) Integration of Domain Knowledge: The distinction 545 

between general artificial intelligence and its application in professional fields lies in the indispensable 546 

role of domain knowledge in enhancing model capabilities. Future research should emphasize leveraging 547 

scientific or engineering knowledge specific to WDN, thereby advancing the intelligent evolution of the 548 

industry. 3) Hardware Innovation: The extensive use of contact acoustic sensors in existing research has 549 

limited widespread adoption. Exploring contactless acoustic-based solutions from a hardware 550 

perspective remains a challenging yet pivotal area for innovation and development. 4) While our current 551 

study focuses on leak detection rather than precise localization, future work will explore advanced leak 552 



localization techniques using both data-driven and model-based approaches. One potential direction is 553 

multi-sensor triangulation, where signals from multiple hydrophones are fused to estimate the leak’s 554 

location based on time delays and frequency shifts. Additionally, physics-informed deep learning models 555 

that incorporate fluid dynamics and acoustic wave propagation principles could be investigated to 556 

improve localization accuracy in complex pipeline networks. These approaches would enhance the 557 

practical applicability of AI-driven leak detection, enabling both detection and precise localization for 558 

real-world water distribution networks. 559 

6. Conclusion 560 

 WDN leakage is one of the most common issues encountered in the operation and maintenance of 561 

underground infrastructure. To address the challenge of noise interference in acoustic-based WDN 562 

leakage detection, this study proposed an unsupervised learning denoising model, UADM. This model, 563 

based on an encoder-decoder structure, implements noise reduction using innovative loss functions 564 

derived from domain knowledge. Results from experiments conducted on publicly available datasets 565 

demonstrate that the proposed UADM model significantly improves the performance of acoustic-based 566 

WDN leakage detection. The evaluation metrics, including accuracy, recall, F1 score, and precision, 567 

display an average improvement of 8.1%, 14.5%, 8.0%, and 6.4%, respectively. The research contributes 568 

a novel theoretical perspective to knowledge by enhancing the anti-noise capability of acoustic WDN 569 

leakage detection, particularly through an unsupervised learning approach that integrates domain 570 

knowledge. From an engineering standpoint, the UADM algorithm provides a stable and efficient tool 571 

for detecting leaks within WDN systems, proving beneficial for stakeholders in water distribution 572 

networks. 573 



Data Availability Statement 574 
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