

The rise in teenagers skipping school across English-speaking countries following the COVID-19 pandemic: evidence from PISA

Jake Anders¹ · John Jerrim² · María Ladrón de Guevara Rodríguez³ · Oscar David Marcenaro-Gutierrez³

Received: 17 December 2024 / Accepted: 21 September 2025 © The Author(s) 2025

Abstract

Many countries are grappling with the long shadow that COVID has cast over their education systems, including dramatic increases in absence from school. This paper presents new insights into this issue by investigating how the proportion of teenagers skipping school has changed following the COVID-19 pandemic across the developed world. We find that this problem is mainly confined to industrialised English-speaking nations, especially affecting teenage girls. In contrast, the proportion of 15-year-olds skipping school remains similar to pre-pandemic levels in most other members of the OECD. Counter to much of the previous literature on COVID-induced learning loss, we find no evidence of a link between student truancy and length of school closures. Our results do highlight, however, that English-speaking nations risk falling behind their international competitors unless radical action is taken to reduce the growing number of teenagers regularly skipping school.

Keywords Truancy · PISA · Skipping school · COVID-19 · School closures

☑ John Jerrim j.jerrim@ucl.ac.uk

María Ladrón de Guevara Rodríguez marialadron@uma.es

Oscar David Marcenaro-Gutierrez odmarcenaro@uma.es

University College London, London, UK

Published online: 01 November 2025

- Social Research Institute, University College London, 20 Bedford Way, London WC1H 0AL, UK
- Departamento de Economía Aplicada (Estadística y Econometría), Facultad de Ciencias Económicas y Empresariales, Universidad de Málaga, Plaza de El Ejido S/N, 29013 Málaga, Spain

1 Introduction

Attendance has long been a key issue for the education sector (Klein & Sosu, 2024). Put simply, if young people are not in school, then how can we expect them to learn? A host of international evidence conducted prior to the pandemic has highlighted the link between attendance and achievement, as well as the factors driving children to not attend school. For instance, Liu et al. (2021) find that higher levels of school absence during middle and high school in the United States lead to significant declines in course grades, the probability of entering higher education, and consequently have profound social and economic consequences. Gottfried and Kirksey (2017) also illustrate how attendance levels are clearly linked to students' performance in standardised tests, noting that absences in the spring term (leading up to the tests) are particularly problematic. Other studies have shown how such absenteeism is driven by a wide array of factors, including the extent to which students retain the same school peers (Kirksey & Elefante, 2022), teacher quality (Gershenson, 2016), and sleep (Gottfried & Kirksey, 2021). Indeed, a systematic review conducted shortly before the pandemic found that attitudes towards school, substance abuse, externalising and internalising problems, and low parent-school involvement had amongst the largest impacts on students' attendance at school (Gubbels et al., 2019).

While there are several factors that can lead young people not to attend school (e.g. long-term illness, mental health issues), truancy—i.e. skipping classes without good reason—is of particular concern. Such behaviour has previously been linked to a range of negative outcomes, including dropping out of school (National Forum on Education Statistics, 2009), involvement with crime (Rocque et al., 2017), and lower school grades (Bosworth, 1994; Buscha & Conte, 2014). Studies from the United States have shown how such 'excused' absences have a particularly large negative impact on pupils' learning outcomes (Gottfried, 2009; Gershenson, 2017; Henderson & Fantuzzo, 2021). Weathers et al. (2021) provide a systematic review of such issues, highlighting how skipping school is a key link in what they term the 'school to prison pipeline'. Truancy is also most prevalent amongst the most vulnerable groups (Sosu et al., 2021), thus perpetuating intergenerational inequalities. Minimising instances of young people skipping school is hence likely to play an important role in raising levels of educational achievement, particularly amongst the most socially disadvantaged groups.

Unfortunately, concerns regarding school attendance have increased sharply since the COVID-19 pandemic. Studies drawing on data from individual countries have pointed towards increasing rates of school absence, particularly amongst English-speaking industrialised countries. Recent examples include evidence for England (Long & Roberts, 2024), Australia (Parliament of Australia, 2023), New Zealand (Devine et al., 2023), and the United States (Fuller et al., 2023). A common explanation for increasing levels of school absence is that the pandemic—and associated school closures—led to young people getting out of the habit of going to school (Malkus, 2024). This is then posited to have had lasting consequences, with some children no longer feeling compelled to attend.

Moreover, since the pandemic, several studies have also pointed towards a decline in student behaviour (Scottish Government, 2023). Thus, while other factors may be contributing to increased school absence rates since the pandemic (e.g. increasing occurrence of mental health problems), heightened levels of truancy—particularly amongst adolescents—are important to understand as a distinct issue.

Much has already been written about the educational impacts of COVID-19 and associated school closures (e.g. Montacute et al., 2022). This includes a now substantial international literature on learning loss (Betthäuser et al., 2023). Yet, while there are some existing studies into the link between COVID-19, school closures, and lasting impact on school attendance, the evidence here remains more limited. For instance, in qualitative interviews with 39 parents and 31 professionals, McDonald et al. (2023) found that anxiety, challenges with adapting to school routines, and concerns regarding academic catch-up are driving post-COVID absences in England, particularly amongst young people with special educational needs and pre-existing anxiety problems. Research by the Welsh Parliament (2022) indicated how a range of factors—including anxiety, wellbeing, and school engagement issues—have got worse since COVID-19, contributing to the sustained increase in school absence rates. They also suggest that this has been exacerbated by more relaxed attitudes to learning and attendance amongst both pupils and parents. Lester and Michelson (2024) argue that rising school absence rates are being driven by 'emotionally based school avoidance', including negative (e.g. avoidance of anxiety and stressful situations) and positive (e.g. gaining attention from parents, pursuit of pleasurable activities outside of school) reinforcers. They go on to argue that 'there is compelling evidence that the pandemic have acted to amplify known risk factors' (Lester & Michelson, 2024, p. 3). This is supported by Hamilton (2024), who links the rise in school absences to young people's sense of belonging at school, suggesting that bullying, peer-rejection, disciplinary policies, and non-inclusive teaching practices may be having a particularly detrimental impact on the attendance of neurodiverse pupils. Using state-level data from the United States, Dee (2024a, 2024b) finds a positive and statistically significant correlation between the length of remote instruction and growth in school absence rates. However, they fail to find any association between the increasing prevalence of wellbeing issues (e.g. unhappiness, hopelessness) since the pandemic and the post-pandemic growth in chronic absenteeism. Similar evidence has also emerged from South Africa, where Anakpo et al. (2024) have highlighted large declines in school attendance following the COVID-19 pandemic, with this being a particular challenge facing non-White females living in rural locations. Noting the recent rise in chronic absenteeism in the United States, Malkus (2024, p. 13) argues that 'post-pandemic chronic absenteeism looks more like a cultural problem. During the pandemic, altered school practices loosened established norms for school attendance, and over the past few years, students and families have grown accustomed to these new norms. The pandemic surge in chronic absenteeism may not support this cultural diagnosis, but the post-pandemic durability of that surge does'.

While these studies have built our understanding of the lasting impacts of COVID-19 on the education sector, important gaps in the evidence base remain. In particular, the key issue currently facing policymakers and school leaders in

several countries—continued high levels of school absence—remains underexplored. This includes analyses focused on specific types of school absence—such as truancy—that may require different responses by policymakers and practitioners than others (e.g. increased physical and mental health issues). Likewise, most existing analyses have considered the evidence from single countries in isolation and have not taken a global perspective. For instance, is the post-pandemic rise in truancy only affecting a handful of specific, culturally similar nations, or is this a truly global problem? And to what extent can this increase in truancy be linked back to the length of COVID-induced school closures?

The central aim of this paper is to provide international evidence on such issues. Our analysis begins by identifying the countries where truancy rates have risen substantially since COVID-19, also checking whether such identification is robust to the potential presence of existing upward trends in truancy. In other words, is this truly a global phenomenon, and to what extent do increases coincide with the timing of the COVID-19 pandemic? We also explore variation in these trends across key demographic groups (gender and socio-economic background) to understand better whether this is a particularly pressing matter for young people from certain social backgrounds. Research question 1 is therefore:

 Research question 1. Which countries have experienced an increase in student truancy rates following the COVID-19 pandemic? How do increases vary across key demographic groups?

We then turn to how truancy rates are linked to the length of school closures. Specifically, given the previous evidence on learning loss (Jakubowski et al., 2024), our hypothesis is that the increase in truancy rates is greater in countries where schools were shut for longer. This may be due, for instance, to young people's detachment from school increasing the longer they were not required to attend in-person (Lester & Michelson, 2024). Following prior research into the link between school closures and learning loss, our second research question begins by exploring this issue at the country-level:

Research question 2. To what extent is there an association between country-level length of school closures and increases in student truancy? (Country-level analysis).

We recognise, however, that there are important limitations to studying this association at the country level. For instance, in some countries (e.g. those with federal systems such as Canada, Australia, and the United States), the extent of school closures varied substantially across states and provinces. Moreover, even within these smaller geographic areas within countries, experiences of school closures may have varied across students (e.g. whether they had a parent who was a key worker). Our third research question hence explores this issue at the student level (i.e. when a student's school was closed for longer, are they now more likely to play truant)?

• Research question 3. To what extent is there an association between school-level length of school closures and student truancy (within-country analysis)?

2 Data

2.1 The PISA sample

The data that we use are drawn from four waves (2012, 2015, 2018, 2022) of the Organisation for Economic Co-Operation and Development (OECD) Programme for International Student Assessment (PISA). This is an international study of 15-yearolds' academic achievement that is now conducted in around 80 countries, including all members of the OECD. Our analysis focuses on members of the OECD, though we at times supplement this with alternative estimates including all participating countries with the relevant data available. The data are collected using a stratified, clustered sample design. In each country, at least 200 schools are first selected as the primary sampling unit, with a random selection of around 40 15-year-olds then selected within each. Response rates in most countries are high (e.g. in the 2022 wave, the average across all countries was that 93% of schools and 89% of students selected participated), though in some nations (e.g. the United States, the United Kingdom) overall participation rates were lower. In Online Appendix E, we provide detailed information on school, student, and item non-response, illustrating how student non-response seems to have increased by more than in other countries following the COVID-19 pandemic. This is likely a reflection of the increasing student absence rates from school in these countries. Indeed, we also find that countries with greater increases in student non-response also tend to be the countries with greater increases in the student truancy rate (see Online Appendix E for further details). Throughout our analysis, we account for the complex PISA survey design by applying the student and Balanced Repeated Replication (BRR) weights supplied within the international dataset. These fully account for the clustering and stratification used in the survey design (Jerrim et al., 2017), while also providing some (limited) adjustment for school and student non-response.

2.2 Measurement of truancy

As part of PISA, students respond to a 30-min background questionnaire. From the 2012 study onwards, this has included the following question, with four possible response options:

'In the last two full weeks of school, how often did the following things occur? I skipped a whole school day' [Never, one or two times, three or four times, five or more times].

¹ Earlier waves were not used as they did not include questions about truancy.

However, our preliminary investigations of the data—and of the national adaptations made to the PISA questionnaire—have highlighted an issue that seems to have affected responses to this question in the 2015 wave in a small number of countries. Specifically, for some countries, the wording of the question differed in PISA 2015, when students were asked whether they *missed* a school day (rather than *skipped*). This materially alters the question, so that it encompasses all forms of absence rather than just truancy. We have therefore excluded the PISA 2015 data for the following countries that were affected by this issue: England, Northern Ireland, Wales, United States and Finland. We are aware, however, that at least a subset of data for some other countries may also be impacted by changes to the truancy question across cycles. This includes Estonia, Italy, Portugal, the Slovak Republic, Colombia and Costa Rica (the Czech Republic has also consistently asked about "absence" from school rather than "skipping"). Further details are provided in our companion paper (Jerrim et al., forthcoming). Thus, while we present estimates for these countries in our results tables, they should be interpreted with particular care.

To facilitate the presentation of our results across many countries at several time points, we convert responses to this question into a binary variable. When doing so, we analyse the proportion of 15-year-olds who report having skipped any school over the last 2 weeks (i.e. the top three categories are combined and compared to the Never category as the reference group). We note that this measure has certain limitations—it does not distinguish between excused versus unexcused absences or provide any further detail regarding the reasons for this absence. It is also possible that the wording of the question captures a broader array of factors other than intentional truancy—an issue the authors study in detail in a companion paper (Jerrim et al., forthcoming). Moreover, while item non-response to this item is low in most countries in the 2012, 2015, and 2022 PISA cycles, it is notably higher in PISA 2018 (see Online Appendix E for further details). Consequently, in Online Appendix G, we provide alternative sets of estimates excluding data from the PISA 2018 wave (see Online Appendix Tables G1 to G4). Yet, despite these limitations, these data provide perhaps the best available resource to study changes in student truancy levels globally before and after the COVID-19 pandemic.

2.3 Student-level measure of school closures

In our third research question, we consider how the change in the student truancy rate following the pandemic is associated with the length of COVID-induced school closures. As part of the PISA background questionnaire, students were asked the following question on this issue:

In the last three years, was your school building ever closed for more than a week because of the following reasons? Because of COVID-19. [1. No, Yes, up to 1 month; 2. Yes, more than 1 month and up to 3 months; 3. Yes, more than 3 months and up to 6 months; 4. Yes, more than 6 months and up to 12 months; 5. Yes, more than 12 months].

 Table 1
 Student reports of length of time building was closed due to COVID

Country	Average length (months)	Standard deviation (months)	Intra-cluster correlation
Mexico	8.18	6.73	0.18
Turkey	7.20	6.17	0.10
Scotland	7.19	4.29	0.06
Ireland	6.59	4.17	0.04
Chile	6.58	6.58	0.12
USA	6.20	5.30	0.20
Czech Republic	6.17	4.78	0.14
England	5.83	5.08	0.08
Wales	5.70	5.42	0.07
Germany	5.65	4.10	0.16
Italy	5.30	4.58	0.12
Greece	5.29	4.70	0.07
Poland	5.28	4.77	0.11
Slovak Republic	5.06	4.61	0.17
Netherlands	4.98	3.87	0.09
Canada	4.78	4.39	0.08
Northern Ireland	4.68	5.06	0.05
Hong Kong	4.63	4.59	0.05
Israel	4.36	4.15	0.11
Slovenia	4.36	3.87	0.12
Estonia	4.17	3.46	0.05
Australia	4.06	4.06	0.33
Austria	4.03	3.78	0.13
Hungary	3.92	3.76	0.15
Belgium	3.88	3.55	0.11
Spain	3.62	3.86	0.04
Portugal	3.48	3.75	0.06
Lithuania	3.44	4.76	0.06
New Zealand	3.28	2.80	0.13
France	2.86	2.93	0.09
Finland	2.80	2.69	0.07
Switzerland	2.39	2.57	0.10
South Korea	1.99	3.36	0.05
Japan	1.71	2.22	0.07
Sweden	1.60	2.40	0.15
Iceland	1.44	2.36	0.04
OECD average	4.52	4.15	0.10

With the following guidance provided:

'Do not count the time that your school was scheduled to be closed for school holiday or vacations. If you changed schools during the past three years, please count the time across all schools you attended. If your school had to close and reopen multiple times, please count all closing times'.

We have used responses to this question to derive a continuous measure for each student capturing the number of months they reported their school building to be closed during the pandemic.² Table 1 provides details on this measure for each country, including the mean, standard deviation, and intra-cluster correlation (which captures the extent that students attending the same school reported experiencing similar lengths of school closures).

2.4 School-level measures of school closures

An advantage of the student-level measure of school closures described in the subsection above is that it arguably captures how school closures impacted individual pupils. For instance, in some countries, key workers were still allowed to attend school during the pandemic (Southall et al., 2021) and who may thus have considered their school building to not be closed. On the other hand, responses of individual pupils may be measured with a degree of error—which may partly explain the relatively low intra-cluster correlations reported in Table 1. To test the robustness of our findings to potentially noisy student-level measures of school closures, we also create a school-level aggregate of this variable, calculated as the mean response provided by students within each school.

2.5 Country-level measures of school closures

In our second research question, we explore how school closures are associated with truancy rates at the country level. When doing so, information on school closures is drawn from two sources. First, we take the average length of school closure reported by students described in the subsections above. This has the advantage of specifically attempting to measure how the students in the PISA sample were affected by school closures. Second, we draw upon data from the Oxford COVID-19 Government Response Tracker (OxCGRT) (Hale et al., 2021). For each country and each day from 1 January 2020 to 31 December 2022, the dataset records whether schools were subject to (0) no measures, (1) recommended closing or all schools open with alterations resulting in significant differences compared to normal operations, (2) required closing of at least some kinds of schools, or (3) required closing of all

² "No" was coded as 0 months. "More than 1 month" and "up to 3 months" was coded as 2 months. "Yes, more than 3 months" and "up to 6 months" was coded as 4.5 months. "Yes, more than 6 months" and "up to 12 months" was coded as 9 months. "Yes, more than 12 months" was coded as 15 months.

schools.³ We sum up the number of days up until May 2022 in which all schools are closed (i.e. category 3). This provides an alternative country-level indicator of the length of school closures. The correlation between our two country-level school closure measures is 0.56 when including all PISA countries, rising to 0.69 when we just include data from members of the OECD. Some of this difference will be driven by measurement error, while some will be due to the different handling of holidays (where schools are closed at the start of a holiday period and open immediately thereafter; OxCGRT defines schools as closed due to COVID-19 up until the last day of the holiday, which is consistent for its purposes but different from the PISA question). Nevertheless, the two measures lead to very similar results. The results using the first measure (average of student reports) are presented in the main text, while those using the second measure (using data from the COVID-19 Government Response Tracker) are provided in Online Appendix A.

2.6 Measurement of socio-economic background

Within parts of our analysis, we also draw on other measures captured in the PISA background questionnaire, including gender and socio-economic background. The latter is captured by the PISA Economic, Social and Cultural Status (ESCS) index, which combines information on parental education, parental occupation, and household possessions into a single scale. Our focus is typically on the difference in truancy rates across the most and least third of students within each country when using this scale.

3 Methods

3.1 Research question 1

To address research question 1, we explore in which countries the truancy rate has increased post pandemic (2022) relative to before (2012–2018). This will be done in two ways. First, for each country, we pool the data across the 2012–2018 PISA sweeps, calculate the truancy rate, and then compare it to the truancy rate in PISA 2022. A two-sample *t*-test is then conducted to establish whether the change in the truancy rate pre/post pandemic is statistically significant. These are the results reported in the main text. In Online Appendix B, we replicate this analysis focusing on just the change between PISA 2015/2018 and PISA 2022 instead (see Online Appendix B1 to B4). This approach is also used to explore differences within each country by (a) gender and (b) terciles of the socio-economic status scale.

³ We use the Majority variant of this measure, as providing the best guide to the experience of most young people without being able to disaggregate by vaccination status. Further notes on the interpretation of the variable is provided at https://github.com/OxCGRT/covid-policy-dataset/blob/main/documentation_and_codebook.md#c1---school-closures

While simple, transparent, and easy to interpret, a potential limitation of this approach is that it does not take into account that levels of truancy in a country could have been rising before the pandemic. We, thus, also use a second approach where we pool the data across all four (2012–2022) sweeps and then estimate a linear probability model of the form:

Truancy_{ijt} =
$$\alpha + \beta$$
. Year_t + γ . 2022_t + ε _{ijt} (1)

where

Truancy $_{ij}$ = A binary variable coded 0 if student i in school j in year t reports not truanting at all over the last 2 weeks, and 1 if they reported playing truant at all over the past 2 weeks.

Year, = A linear time trend.

 2022_t = A binary variable, coded 1 for the 2022 sweep and 0 for the 2012, 2015 and 2018 sweeps.

 ε_{iit} = a random error term.

This model is estimated separately for each country.

The intuition underpinning this model is that the β parameter will reflect that trend in truancy rates that had already been occurring over the 2012–2018 period. The γ parameter—which is our primary interest—thus estimates the extent to which truancy levels in the 2022 PISA sweep were above what one would have anticipated extrapolating from the pre-pandemic (2012–2018) trend. Results from this model are reported separately in Online Appendix C.

3.2 Research question 2

Following much of the international evidence on school closures and learning loss (Jakubowski et al., 2024; Kennedy & Strietholt, 2023), we begin by presenting results from a country-level analysis; have student truancy rates increased more in countries that experienced longer school closures? Estimates will be presented on a scatterplot, with the length of school closures plotted along the horizontal axis and our estimates of the increase in the truancy rate since the pandemic (taken from our main analysis for Research Question 1) plotted on the vertical axis. Additional results are also presented in Online Appendix D, where we provide alternative estimates using a regression modelling approach.

3.3 Research question 3

We then turn to our student-level analysis. The following linear probability model is estimated using the PISA 2022 data for each country:

Truancy_{ijk} =
$$\alpha + \beta . C_{ijk} + \gamma . D_{ijk} + \mu_k + \epsilon_{ij}$$
 (2)

where

Truancy $_{ijk}=$ A binary variable, coded 1 if young person i in school j in country k reported played truant at any point over the last 2 weeks; $C_{ijk}=$ Student reports of how many months their school building was closed over the previous three years; $D_{ijk}=$ A vector of background student controls, including gender, immigrant status, ESCS index and whether the student has repeated a grade; $\mu_k=$ A vector of country-level fixed effects; and $\varepsilon_{ijk}=$ A random error term.

The parameter estimate of interest (β) captures the association between length of school closures experienced by the student (C_{ijk}) and whether they were truant at any point over the last two weeks (T_{iik}), conditional on the other factors included in the model.

Note that—following our discussion in the data section—two sets of estimates are presented when addressing this research question. The first set are where information on school closures is based on students own reports (C_{ijk}) , while the second set are where the average reports of pupils within the school are used $(\overline{C_{ik}})$.

4 Results

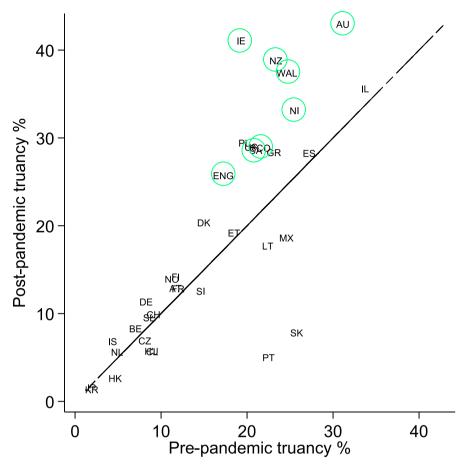

4.1 Research question 1: change in truancy rates following the pandemic

Figure 1 begins by illustrating how the percentage of 15-year-olds skipping school has changed before (horizontal axis) and after (vertical axis) the COVID-19 pandemic. The diagonal line illustrates where the pre/post pandemic truancy rate is equal. This is supplemented by Table 2, illustrating the change in truancy across OECD countries pre/post pandemic, and where the differences are statistically significant.

One immediately striking feature is the substantial increase in truancy that has occurred across the nine Anglophone countries, highlighted in green circles (Fig. 1) and shading (Table 2). All nine English-speaking nations sit well above the 45-degree line and have experienced among the largest percentage point increases in truancy since the pandemic. Indeed, among OECD nations, only Poland and Italy have experienced a similar increase. For instance, in New Zealand, the truancy rate reported among teenagers in PISA 2022 was around 16 percentage points higher than the average across the 2012-2018 PISA waves. Similar increases can also be seen for the other Anglophone nations, including Wales (13 percentage points), Australia (12 percentage points), the United States (9 percentage points), and England (9 percentage points). This compares to an average across OECD nations of less than three percentage points. In fact, most other OECD nations have seen little change in the truancy rate following the pandemic, or even a decline. This result is further confirmed in Online Appendix F (see Online Appendix Table F1 to F5), where we compare the results for English-speaking countries within the OECD to other country groupings (e.g. Scandinavian countries; Eastern Europe). The result is that now the nine Anglophone nations have among the highest truancy rates among 15-yearolds across the developed world.

Table 3—in conjunction with Online Appendix C—provides further detail on this matter, focusing on whether an increasing trend in truancy can be observed across Anglophone nations prior to COVID-19 (i.e. between 2012 and 2018). There is no

Fig. 1 The percentage of 15-year-olds skipping school before (2012–2018) and after (2022) the COVID-19 pandemic. **Notes**: Figures refer to the percent of 15-year-olds who reported having skipped school at any point over the past two weeks. Pre-pandemic figures along the horizontal axis is the average across the 2012–2018 PISA waves. Post-pandemic figures along the vertical axis uses data from PISA 2022. English-speaking countries highlighted in green circles. See Table 2 for the two-letter country codes. Data for Italy and Turkey not presented in the scatterplot to aid presentation of results (see Table 2 for the estimates for these countries)

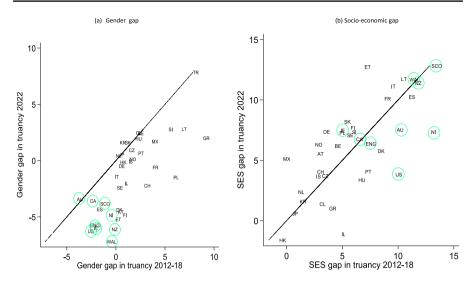
evidence that this is the case in Australia, Northern Ireland, the United States, Scotland, Canada, and England, where truancy figures were similar across the 2012, 2015, and 2018 waves. While there was a seven-percentage point increase in the truancy rate in Wales prior to the pandemic, this is based on data from just two time points (2012 and 2018), with it thus unclear as to whether this was an established trend or not. On the other hand, in New Zealand, there has clearly been a sustained increase in truancy over the last decade, although this may still have been exacerbated by COVID. With respect to Ireland, the truancy rate reported by students in PISA 2012 was unusually low, meaning that the pre/post-pandemic change reported in Fig. 1 and Table 2 may be overstated. However, as Online Appendix B illustrates,

Table 2 The percentage of 15-year-olds skipping school before (2012–2018) and after (2022) the COVID-19 pandemic

Country	Two-letter code	Pre-pandemic truancy %	Standard error	Post-pandemic truancy %	Standard error	Change since pandemic
Ireland	IE	19.3	0.4	41.1	0.8	21.8**
New Zealand	NZ	23.3	0.4	38.8	0.9	15.5**
Wales	WAL	24.6	0.8	37.4	1.4	12.8**
Australia	AU	31.1	0.3	43.0	0.5	11.8**
Poland	PL	19.7	0.5	29.4	1.0	9.8**
USA	US	20.5	0.5	29.0	0.9	8.5**
England	ENG	17.2	0.5	25.7	0.9	8.5**
Italy	IT	53.1	0.4	60.8	0.8	7.7**
Northern Ireland	NI	25.5	0.7	33.1	1.2	7.6**
Canada	CA	21.0	0.3	28.6	0.6	7.6**
Scotland	SCO	21.5	0.5	28.9	1.0	7.3**
Denmark	DK	15.0	0.3	20.4	0.6	5.4**
Greece	GR	23.1	0.4	28.4	0.8	5.2**
Germany	DE	8.3	0.3	11.4	0.6	3.1**
Norway	NO	11.3	0.3	13.9	0.5	2.7**
Finland	FI	11.7	0.4	14.2	0.5	2.5**
Iceland	IS	4.4	0.2	6.8	0.5	2.5**
Turkey	TR	50.9	0.6	53.2	0.8	2.4**
Israel	IL	33.7	0.4	35.6	0.9	1.9*
Austria	AT	11.6	0.3	12.9	0.5	1.3**
Belgium	BE	7.0	0.2	8.3	0.4	1.3**
Spain	ES	27.2	0.4	28.3	0.5	1.0
Sweden	SE	8.7	0.3	9.5	0.4	0.9*
France	FR	12.0	0.3	12.8	0.5	0.9
Switzerland	CH	9.1	0.4	9.9	0.5	0.8
Netherlands	NL	4.9	0.2	5.6	0.4	0.7
Estonia	ET	18.5	0.4	19.2	0.7	0.7
Japan	JP	1.8	0.1	1.6	0.2	-0.2
South Korea	KR	1.9	0.2	1.4	0.3	-0.6*
Czech Republic	CZ	8.1	0.3	6.9	0.3	-1.2**
Hong Kong	HK	4.7	0.2	2.6	0.3	-2.0**
Slovenia	SI	14.6	0.3	12.6	0.4	-2.0**
Hungary	HU	8.9	0.3	5.7	0.4	-3.1**
Chile	CL	9.0	0.3	5.7	0.4	-3.3**
Lithuania	LT	22.4	0.4	17.7	0.6	-4.6**
Mexico	MX	24.6	0.4	18.6	0.8	-5.9**
Portugal	РТ	22.5	0.4	5.0	0.3	-17.5**
Slovak Republic	SK	25.8	0.5	7.8	0.5	-17.9**
OECD average		17.9		20.3		2.5

Notes: Figures refer to the percent of 15-year-olds who reported having skipped school at any point over the previous 2 weeks. The change column indicates the percentage-point difference before (PISA 2012–2018) and after (PISA 2022) the COVID-19 pandemic. * and ** indicate where the change following the pandemic is statistically significant at the 5% level. English-speaking countries are italicised

isii speaking countries				
Country	2012	2015	2018	2022
Australia	32	29	33	43
Ireland	4	24	30	41
New Zealand	17	25	29	39
Wales	22	-	29	37
Northern Ireland	26	-	25	33
USA	21	-	20	29
Scotland	23	19	22	29
Canada	22	18	23	29
England	17	-	18	26
Anglophone				
average	20	23	25	34
OFCD average	15	18	21	19


Table 3 The percentage of 15-year-olds reporting skipping school by PISA cycle. Comparison across English-speaking countries

there continues to be a substantial increase in the truancy rate in Ireland in the PISA 2022 cycle, relative to PISA 2015 and 2018. The bottom two rows of Table 3 then serve to reiterate our key finding—while truancy rates across the OECD remained broadly stable between 2012 and 2022, they have increased sharply within English-speaking nations, particularly since COVID-19. This is again reiterated in Online Appendix F, where we find a steep increase in truancy within English-speaking groupings since the COVID-19 pandemic, which is not observed in other groupings of linguistically/culturally similar countries.

Next, we turn to how gender differences in teenagers skipping school have evolved since the pandemic. These results are presented in Fig. 2a. Values along the horizontal axis refer to the percentage point differences in skipping school between boys and girls within the 2012–2018 PISA cycles. Analogous figures from PISA 2022 are presented on the vertical axis. Negative values indicate that girls are more likely to report skipping school than boys. Likewise, countries that sit below the 45-degree line are where the gender gap has grown following the pandemic—i.e. where girls are increasingly more likely to report skipping school than boys.

An immediate point of note is that almost all countries sit below the 45-degree line. In other words, girls have become increasingly more likely to skip school relative to boys across OECD countries since COVID-19, increasing the size of the gender gap in countries where girls were already more likely to play truant. This result is supported by the evidence presented in Table 4, which illustrates the size of the gender gap in skipping school before (PISA 2012–2018) and after (PISA 2022) the pandemic. Out of the 38 OECD countries with data available, there has been a statistically significant change in the gender gap in 15 nations at the 5% level, and a further four nations at the 10% level. On each occasion, it is girls who have become significantly more likely to report skipping school than boys. Indeed, there is no country where the opposite holds true.

Fig. 2 Gender and socio-economic gaps in skipping school at any point in the last 2 weeks pre and post pandemic. Notes: Negative figures in the left-hand panel indicate the truancy rate is higher for girls than for boys. Figures in the right-hand panel illustrate differences between teenagers in the bottom versus top third of the socio-economic status distribution. English-speaking countries are in green circles. Diagonal lines illustrate where the gender/socio-economic gap has remained unchanged before/after the pandemic. See Table 2 for two-letter country codes

The nine Anglophone nations also exhibit this pattern; following the pandemic, girls have become increasingly likely to report skipping school relative to boys. This change is, however, only statistically significant at the 5% level in three of the English-speaking nations (New Zealand, Wales, Ireland), with one further (England) at the 10% level. What is more striking, however, is the magnitude of the gender gap in truancy in these nations in the most recent (2022) PISA cycle. In particular, the nine Anglophone nations are amongst the furthest south in Fig. 2a, indicating that the difference in skipping school between girls and boys is now bigger than in most other developed countries. This is again supported by the results presented in Table 4. In the average OECD nation, there is virtually no difference between girls and boys in their tendency to skip school in the 2022 PISA wave (a -1.4 percentage-point difference). Yet, in England, the United States, Ireland, and New Zealand, girls are six percentage points more likely to skip school than boys, with this reaching seven percentage points in Wales. Hence, English-speaking education systems now seem to have a particular problem in the level of unauthorised absences amongst teenage girls. In Online Appendix F, we illustrate how the increase in the gender gap in truancy in English-speaking countries since the pandemic is of a similar magnitude to the increase observed in Scandinavia and Eastern Europe.

To conclude, Fig. 2b and Table 5 present evidence on socio-economic differences in skipping school, defined as the difference between the most and least advantaged third of students according to the PISA ESCS scale. Positive values indicate that teenagers from disadvantaged socio-economic backgrounds are more likely to skip school than their more advantaged peers.

 $\textbf{Table 4} \ \ \text{Gender differences in the percentage of 15-year-olds skipping school before (2012–2018) and after (2022) the COVID-19 pandemic}$

Country	Two-letter code	Pre-pan- demic gender gap	Standard error	Post-pan- demic gender gap	Standard error	Change since pandemic
South Korea	KR	0.7	0.3	1.6	0.5	0.9
Slovak Republic	SK	1.2	1.1	1.6	0.8	0.4
Australia	AU	-3.7	0.5	-3.4	1.0	0.2
Chile	CL	2.3	0.5	2.5	0.7	0.2
Netherlands	NL	0.3	0.4	0.4	0.7	0.1
Japan	JP	0.6	0.2	0.5	0.3	-0.1
Belgium	BE	2.5	0.4	2.4	0.7	-0.1
Turkey	TR	8.1	1.0	7.8	1.4	-0.3
Hungary	HU	2.3	0.6	1.9	0.6	-0.4
Czech Repub- lic	CZ	1.6	0.5	0.9	0.6	-0.7
Hong Kong	HK	0.8	0.4	-0.1	0.5	-0.9
Germany	DE	0.6	0.5	-0.5	0.9	-1.1
Canada	CA	-2.3	0.5	-3.6	1.3	-1.2
Italy	IT	0.1	0.7	-1.4	1.3	-1.5
Iceland	IS	1.5	0.4	-0.1	0.8	-1.6*
Norway	NO	1.7	0.6	0.1	1.0	-1.6
Portugal	PT	2.6	0.8	0.6	0.7	-1.9*
Mexico	MX	4.0	0.6	1.7	1.1	-2.3*
Spain	ES	-1.6	0.5	-4.3	0.9	-2.7**
Scotland	SCO	-1.1	0.8	-3.8	1.6	-2.7
Slovenia	SI	5.6	0.6	2.8	0.9	-2.8**
Sweden	SE	0.4	0.5	-2.4	0.8	-2.8**
Israel	IL	1.1	0.9	-2.0	1.6	-3.1
England	ENG	-2.1	1.0	-5.8	1.6	-3.6*
USA	US	-2.6	0.9	-6.3	1.4	-3.7
Ireland	IE	-2.0	0.8	-6.0	1.6	9**
Lithuania	LT	6.9	0.7	2.8	1.0	-4.1**
Northern Ireland	NI	-0.5	1.6	-4.9	2.4	-4.4
France	FR	4.0	0.6	-0.6	0.8	-4.6**
Denmark	DK	0.4	0.6	-4.4	1.2	-4.7**
Austria	AT	0.5	0.6	-4.6	0.8	-5.0**
Switzerland	CH	3.2	0.6	-2.2	0.8	-5.4**
Estonia	ET	0.2	0.7	-5.2	1.0	-5.5**
Finland	FI	0.9	0.7	-4.8	0.8	-5.7**
New Zealand	NZ	-0.1	0.8	-6.1	1.5	-6.0**
Wales	$W\!AL$	-0.4	1.1	-7.2	1.8	-6.8**
Greece	GR	9.2	0.8	2.0	1.1	-7.2**
Poland	PL	6.1	0.8	-1.5	1.6	-7.6**

Table 4 (conti	nued)					
Country	Two-letter code	Pre-pan- demic gender gap	Standard error	Post-pan- demic gender gap	Standard error	Change since pandemic
OECD average		1.4		-1.4		-2.7

Notes: Gender gap refers to the truancy rate for boys minus the truancy rate for girls. Negative values therefore indicate where girls are more likely to skip school than boys. Negative values in the change column indicate where girls are increasingly more likely to skip schools than boys following the pandemic. * and ** indicate where the change since the pandemic is statistically significant at the 10% and 5% levels. English-speaking countries are italicised

Overall, there is no clear pattern to the results; the countries in Fig. 2b are somewhat randomly scattered around the 45-degree line, with (generally small) increases in some countries offset by (generally small) decreases in others. Indeed, there are only four OECD nations where the increase in the socio-economic gap in truancy is statistically significant at the 5% level following COVID-19 (Estonia, Mexico, Germany, and Norway). Yet, in the same number of countries, we observe that the socio-economic gap in truancy has declined (United States, Israel, Hungary, and Portugal). It is consequently unsurprising to see that—in the bottom row of Table 5—the socio-economic gap in skipping school amongst teenagers across the OECD remains unchanged (standing at six percentage points both before and after the COVID-19 pandemic).

With respect to the nine Anglophone countries, only the results for the United States are particularly notable. This is the country with the greatest reduction in the socio-economic gap in truancies following COVID-19, falling from a 10-percentage point difference across PISA 2012–2018 to 4-percentage points in PISA 2022. This, however, is *not* being driven by a reduction in truancy amongst the most disadvantaged students. Rather, it is a symptom of the most socio-economically advantaged teenagers in the United States being more likely to skip school now than previously.

4.2 Research question 2: the link between length of school closures and increases in student truancy (country-level analysis)

To address our second research question, we begin by presenting the cross-country correlation between the length of school closures and the increase in the truancy rate each country has experienced since the pandemic. These results are presented in Fig. 3. Panel (a) includes only OECD countries, while all countries with data available are included in panel (b). The dashed line reflects the line of best fit (bivariate OLS regression estimate). Online Appendix A presents alternative results using a different measure of the length of school closures (very similar results are obtained).

There is no clear evidence of an association between school closures and an increase in the student truancy rate at the country level. The results in panel (a)—based on only OECD countries—point towards a positive, though very weak, correlation (Pearson r = +0.17). In panel (b)—where data is included from all

 $\textbf{Table 5} \ \ Socio\text{-}economic \ differences in the percentage of 15-year-olds \ skipping \ school \ before \ (2012-2018) \ and \ after \ (2022) \ the \ COVID-19 \ pandemic$

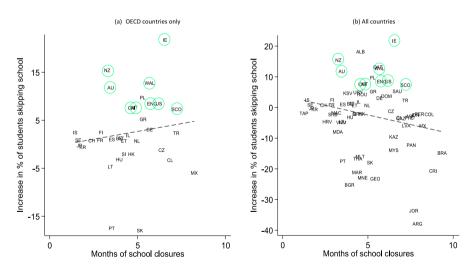

Country	Two-letter code	Pre-pan- demic SES gap	Standard error	Post-pan- demic SES gap	Standard error	Change since pandemic
Estonia	ET	7.3	-0.8	12.7	-1.4	5.5**
Mexico	MX	0.0	-0.9	5.1	-1.6	5.1**
Germany	DE	3.6	-0.7	7.4	-1.1	3.8**
Norway	NO	2.9	-0.6	6.3	-1.0	3.4**
Slovak Republic	SK	5.5	-1.0	8.2	-1.1	2.7*
Austria	AT	3.0	-0.7	5.5	-1.3	2.5*
Ireland	IE	5.0	-1.0	7.5	-1.8	2.4
Poland	PL	5.0	-0.9	7.3	-1.9	2.3
Finland	FI	5.9	-0.8	7.7	-1.1	1.8
Belgium	BE	4.6	-0.5	6.2	-0.8	1.6*
Italy	IT	9.6	-1.0	11.1	-1.8	1.5
Sweden	SE	5.7	-0.6	7.1	-0.9	1.4
Slovenia	SI	6.1	-0.8	7.3	-1.2	1.3
Lithuania	LT	10.5	-0.9	11.7	-1.3	1.2
Netherlands	NL	1.3	-0.5	2.4	-0.9	1.1
France	FR	9.1	-0.6	10.1	-1.1	1.0
Switzerland	CH	3.0	-0.6	4.1	-1.0	1.0
Iceland	IS	2.9	-0.6	3.7	-1.1	0.8
Czech Repub- lic	CZ	3.5	-0.7	3.7	-0.8	0.3
Canada	CA	6.5	-0.6	6.8	-1.5	0.2
Wales	WAL	11.5	-1.3	11.7	-2.7	0.2
South Korea	KR	1.5	-0.3	1.6	-0.8	0.1
Japan	JP	0.8	-0.3	0.6	-0.5	-0.2
New Zealand	NZ	11.8	-0.8	11.4	-2.0	-0.4
Turkey	TR	-8.1	-1.2	-8.7	-1.4	-0.6
Scotland	SCO	13.5	-1.3	12.8	-2.4	-0.6
Spain	ES	11.2	-0.8	10.3	-1.0	-1.0
England	ENG	7.6	-1.1	6.4	-1.8	-1.2
Hong Kong	HK	-0.3	-0.5	-1.6	-0.8	-1.3
Chile	CL	3.2	-0.6	1.4	-0.8	-1.8*
Australia	AU	10.2	-0.8	7.5	-1.4	-2.7*
Denmark	DK	8.5	-0.8	5.8	-1.5	-2.7*
Greece	GR	4.1	-0.8	1.0	-1.6	-3.1*
Portugal	PT	7.3	-1.0	4.1	-0.7	-3.3**
Hungary	HU	6.7	-0.8	3.4	-0.8	-3.4**
Northern Ireland	NI	13.2	-1.8	7.3	-3.1	-5.8
Israel	IL	5.1	-0.9	-1.1	-1.6	-6.2**
USA	US	10.1	-1.1	3.8	-1.6	-6.2**

Table 5 (conti	nued)					
Country	Two-letter code	Pre-pan- demic SES gap	Standard error	Post-pan- demic SES gap	Standard error	Change since pandemic
OECD average		5.8		5.8		0.0

Notes: Socio-economic gap refers to the truancy rate for the most disadvantaged third of students minus the truancy rate for most advantaged third of students. Positive values therefore indicate where disadvantaged students are more likely to skip school than their more advantaged peers. Negative values in the change column indicate where the socio-economic gap in skipping school has *decreased* following the pandemic. * and ** indicate where the change since the pandemic is statistically significant at the 10% and 5% levels. English-speaking countries are italicised

available countries—the correlation is negative and weak (Pearson r = -0.16). Figure 3 thus provides little evidence that the length of school closures due to COVID-19 is associated with the on-going increase in the student truancy rate. We have explored the robustness of this finding by estimating a regression model using a similar specification to that presented within Jakubowski et al. (2024) and Kennedy and Strietholt (2023). These results are reported in Online Appendix D, confirming a small negative association between school closures and truancy rates when all countries are included in the analysis, but there being essentially no association when the sample is just restricted to members of the OECD.

Fig. 3 The country-level relationship between school closures and the increase in the truancy rate. Notes: Values along the horizontal axis refer to the number of months schools were closed due to COVID-19. This information is based upon the country-level average of student reports. Values on the vertical axis refer to the increase in the percent of students skipping school before (PISA 2012–18) and after (PISA 2022) the pandemic (these are the values in the right-hand column of Table 2). The country-level OLS estimate of the association is represented by the dashed line. Correlation is +0.17 in the panel on the left and -0.16 in the panel on the right. See Table 2 for two-letter country codes. English-speaking countries in green circles

4.3 Research question 3: to what extent is there an association between school-level length of school closures and increases in student truancy (within-country analysis)?

Table 6 builds on the analysis presented above by presenting results from our student-level models. Figures in the left-hand column are where students' own reports regarding the length of school closures are used. The right-hand column presents analogous results, but now measures school closures using the average report of sampled students within their school. The estimates refer to the percentage point increase in the likelihood that a student plays truant for each additional month their school was closed (e.g. a coefficient of one would imply that for each month a school was closed, the student truancy rate increased by one percentage point).

There is again no clear pattern to the results, either when looking across countries or when comparing estimates based on students' own versus school-average reports. Focusing on the left-hand column (students' own reports of school closures), the average coefficient across OECD countries stands at just 0.2. This implies that 5 months of school closures during COVID (a typical length in many countries—see Table 1) is associated with just a one percentage point increase in the proportion of students' skipping school (a negligible effect). There are also only 8 OECD nations where the estimate is both positive and statistically significant at the 5% level; the remaining 27 countries produce a null effect. Moreover, it is only in Canada and Iceland where we find consistent evidence of a positive, statistically significant association between school closures and truancy across the two sets of results (student and school-average reports). Indeed, on average across OECD countries, the estimate using school-average reports of school closures is effectively zero. Together, the results from Table 6 thus fail to provide convincing evidence that the length of school closures and student truancy rates are linked.

One potential explanation for these null findings could be that the information reported on school closures by individual students contains non-trivial amounts of measurement error. The descriptive data presented in the Data section (Table 1)—specifically, the intra-cluster correlation for student reports of how long their school buildings were closed—provides a degree of support for this view. This illustrates how, for several countries, the intra-cluster correlation was relatively low; for 7 of the 35 countries, the intra-cluster correlation sits at 0.05 or below, with it averaging 0.10 across OECD countries.

There are, however, some countries in Table 1 where the intra-cluster correlation is higher, and thus where there are greater levels of agreement amongst students within the same school about how long their school buildings were closed. Notable examples include Australia (intra-cluster correlation=0.33), the United States (0.20), and Mexico (0.18). Examining the results for these specific countries in Table 6, one can see that there are again null (or even negative) effects in each. Thus, even in instances where there are higher levels of agreement amongst students about the length of school closures, we still find no evidence that this is related to increases in truancy rates.

 Table 6
 The association between school closures and student truancy rates

	Student report		School-average report	
Country	Percentage point change in truancy per each month increase in school closure	Standard error	Percentage point change in truancy per each month increase in school closure	standard error
Iceland	0.76**	0.25	1.86**	0.71
Finland	**89.0	0.18	-0.35	0.86
Ireland	0.46**	0.19	0.40	0.95
Switzerland	0.46	0.28	-0.20	0.92
Sweden	0.40**	0.19	0.54	0.55
Canada	0.39**	0.10	3.26**	0.42
Wales	0.30	0.24	-2.54**	1.04
Greece	0.28*	0.15	69.0	0.76
Turkey	0.28**	0.08	*86.0	0.55
Hungary	0.27**	0.11	0.35	0.56
Spain	0.27**	0.11	0.40	0.71
Poland	0.24	0.16	0.29	0.79
Northern Ireland	0.23	0.17	-2.86**	1.04
Austria	0.21*	0.12	-0.01	0.56
USA	0.17	0.16	0.04	0.33
Lithuania	0.17	0.10	1.74**	0.57
France	0.16	0.19	0.53	0.85
Israel	0.15	0.15	3.09**	0.72
Belgium	0.14	0.10	-0.77	0.48
Estonia	0.12	0.19	-1.48*	0.88
Hong Kong	0.12**	0.05	0.22	0.43
England	0.11	0.16	0.00	0.61
Slovak Republic	0.08	0.10	-0.54*	0.32

_
ed)
tin
con
9
<u>•</u>
9
മ

lagic o (commuca)				
	Student report		School-average report	
Country	Percentage point change in truancy per each Standard error month increase in school closure	Standard error	Percentage point change in truancy per each month increase in school closure	standard error
Germany	0.07	0.12	-0.20	0.45
South Korea	0.05	90.0	0.38	0.52
Chile	0.02	90.0	-0.17	0.31
Scotland	-0.02	0.21	0.58	1.24
Netherlands	-0.04	0.12	-1.50**	0.49
Czech Republic	-0.05	60.0	-0.61**	0.28
New Zealand	-0.06	0.29	-0.17	0.99
Portugal	-0.06	0.10	-0.52	0.35
Mexico	-0.07	60.0	-1.15**	0.40
Australia	-0.11	0.15	-0.70**	0.24
Italy	-0.21	0.15	0.83	0.51
Slovenia	-0.21	0.16	-1.95**	0.40
Average	0.17		0.01	

Notes: Figures refer to the percentage point change in the probability of skipping school associated with each additional month of school closure. Figures on the left use information on school closures reported by individual students. Figures on the right use the average length of school closure reported by students in the school. * and *** indicate where estimates are statistically significant at the 10% and 5% levels. English-speaking countries are italicised

5 Conclusions

The COVID-19 pandemic has had a significant impact on education systems across the world. While the crisis that led to widespread school closures is now over, its legacy continues to cast a dark shadow across many parts of the education sector. One such example is pupil absence rates, which remain above pre-pandemic levels in some parts of the world. This may undermine ongoing attempts to boost young people's knowledge and skills. It is consequently little wonder that, in some countries, the crisis in school attendance has risen to the top of the education policy agenda.

This paper has sought to contribute new insights into this matter by presenting a detailed analysis of one particularly important component of school absences—truancy (i.e. young people choosing to skip school). Few previous post-COVID studies have focused on this specific issue, particularly from a global perspective. In doing so, our analysis has presented novel evidence on where truancy is a growing problem, whether this is concentrated amongst specific demographic groups, and how this may be linked to COVID-induced school closures. It has thus presented the most comprehensive analysis of student truancy across the post-COVID world to date.

Our results illustrate how increasing numbers of teenagers skipping school is a particular challenge facing English-speaking members of the OECD. While most other developed nations have seen little increase in truancy rates since COVID-19, there have been considerable increases in Anglophone nations including Australia, England, Wales, and the United States. Yet we find little evidence that these increasing truancy rates are linked to longer school closures, either within most individual nations or globally. The results nevertheless highlight the stark challenges with unauthorised pupil absence that many (particularly English-speaking) countries now face.

Globally, the increase in truancy seems to be driven by an increasing proportion of teenage girls skipping school. Gender gaps again stand out in the English-speaking nations, where girls are significantly more likely to report skipping school than boys. In making this observation, we are mindful of the increasing rates of poor mental health, especially concentrated amongst girls, including as a result of the COVID-19 pandemic (Mansfield et al., 2022). It seems plausible that a rise in lower-level mental health challenges (that, hence, do not necessarily lead to sickness absence) disproportionately amongst girls could lead to a decision to skip school on a day when, for example, they are experiencing heightened anxiety and, hence, could play a role in explaining our findings. We stress that we are not able to test this hypothesis but think it may be worth future exploration.

The increase in truancy rates we observe in English-speaking nations is consistent with other recent studies. For instance, the pattern we observe for increasing truancy levels mirrors analyses of school absence data conducted in England (Long & Roberts, 2024), Australia (Parliament of Australia, 2023), New Zealand (Devine et al., 2023), and the United States (Fuller et al., 2023). However, our analysis has also shown how similar challenges are *not* being reported in many

other European and East Asian nations—and that this is a particular problem facing the English-speaking world.

There are, of course, limitations to our study which are important to note. First, information on student truancy is based on students' self-reports. It is possible that some demographic groups—and young people in some countries—may report this information more reliably than others. It is plausible—albeit somewhat unlikely that mis-reporting of this information could have changed following the pandemic, potentially affecting our results. Second, similarly, much of our analysis on school closures has been based on information reported by students. While this has some important advantages—including potentially capturing nuances of how individual students were impacted (given differences within and across countries on school closure rules)—these data may also suffer from some recall and reporting issues. Similar findings do, however, emerge in our robustness tests drawing on alternative information about school closures (see Online Appendix A), though we recognise that these data also have certain limitations (e.g. do not capture within-country variation in school closure policies). Third, in many countries, non-response rates increased in PISA 2022, particularly at the student level. This decrease in response and participation rates likely implies that our estimated increases in the truancy rates are conservative. In other words, the problem of increased truancy which, already troubling, is likely to be worse than our results imply. Finally, our analysis of the link between school closures and truancy rates is correlational rather than causal. Hence—like most existing literature into COVID-induced school closures—we are unable to establish cause and effect.

Our findings nevertheless have some important implications. As noted by Dee (2024a, 2024b), learning recovery efforts following the pandemic may be being hampered by attendance issues, including increased truancy, as reported in this paper. While we can only speculate about the factors driving the increasing truancy rate in English-speaking countries, other authors have suggested that cultural factors may be playing an important role (Malkus, 2024). Given the cultural similarities of industrialised Anglophone countries, our results are consistent with this view. A possible explanation is that established routines of children attending school whenever possible—and the social stigma attached to persistent absence—may have weakened since the pandemic. Following the advice of Dee (2024a, 2024b), educators in schools—particularly in Anglophone countries—should explore the extent that this has indeed become a barrier to attendance and base solutions on such data.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s11092-025-09470-z.

Author contribution Anders was involved in the conception and design of the paper, the drafting of the paper, and revising it critically for intellectual content. Jerrim was involved in the conception and design of the paper, data analysis, the drafting of the paper, and revising it critically for intellectual content. Marcenaro-Gutierrez was involved in the conception and design of the paper and revising it critically for intellectual content. Rodríguez was involved in the conception and design of the paper, data analysis, and reviewing the paper for intellectual content.

Funding Oscar David Marcenaro Gutierrez's contribution was funded by Fundacion BBVA – Prismas y Problemas – 2023 ("La inequidad socioeconómica derivada de la ineficiencia de los sistemas educativos (INESOCEF)").

Data availability The PISA database used in this paper is available from the OECD website. The 2022 round can be found at https://www.oecd.org/en/data/datasets/pisa-2022-database.html.

Declarations

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

- Anakpo, G., Nkungwana, S., & Mishi, S. (2024). Impact of COVID-19 on school attendance in South Africa: Analysis of sociodemographic characteristics of learners. *Heliyon*, 10(7), Article e29096. https://doi.org/10.1016/j.heliyon.2024.e29096
- Betthäuser, B. A., Bach-Mortensen, A. M., & Engzell, P. (2023). A systematic review and meta-analysis of the evidence on learning during the COVID-19 pandemic. *Nature Human Behaviour*, 7(4), 375–385. https://doi.org/10.1038/s41562-022-01506-4
- Bosworth, D. (1994). Truancy and pupil performance. *Education Economics*, 2(3), 243–264. https://doi.org/10.1080/09645299400000025
- Buscha, F., & Conte, A. (2014). The impact of truancy on educational attainment during compulsory schooling: A bivariate ordered probit estimator with mixed effects. *The Manchester School*, 82, 103–127. https://doi.org/10.1111/manc.12002
- Dee, T. S. (2024a). Higher chronic absenteeism threatens academic recovery from the COVID-19 pandemic. *Proceedings of the National Academy of Sciences of the United States of America*, 121(3), Article e2312249121. https://doi.org/10.1073/pnas.2312249121
- Dee, T. S. (2024b). No one-size-fits-all solution to chronic absenteeism. *Phi Delta Kappan*, 106(3), 8–12. Devine, N., Stewart, G. T., & Couch, D. (2023). And slowly to school... Reflecting on recent school attendance reports. *New Zealand Journal of Educational Studies*, 58(1), 1–4. https://doi.org/10.1007/s40841-023-00286-3
- Fuller, S. C., Swiderski, T., Mikkelsen, C., & Bastian, K. (2023). In school, engaged, on-track? The effect of the pandemic on student attendance, course grades, and grade retention in North Carolina. (EdWorkingPaper: 23–747). Annenberg Institute at Brown University. https://doi.org/10.26300/58h9-3r54
- Gershenson, S. (2016). Linking teacher quality, student attendance, and student achievement. *Education Finance and Policy*, 11(2), 125–149. https://doi.org/10.1162/EDFP_a_00180
- Gershenson, S., Jacknowitz, A., & Brannegan, A. (2017). Are student absences worth the worry in US primary schools? *Education Finance and Policy*, 12(2), 137–165.
- Gottfried, M. A. (2009). Excused versus unexcused: How student absences in elementary school affect academic achievement. *Educational Evaluation and Policy Analysis*, 31(4), 392–415.
- Gottfried, M. A., & Kirksey, J. J. (2017). "When" students miss school: The role of timing of absenteeism on students' test performance. *Educational Researcher*, 46(3), 119–130. https://doi.org/10.3102/ 0013189X17703945

- Gottfried, M. A., & Kirksey, J. J. (2021). Going to sleep and going to school: Linking bedtime to student absenteeism. *Journal of Sleep Research*, 30(6), Article e13396. https://doi.org/10.1111/jsr.13396
- Gubbels, J., van der Put, C. E., & Assink, M. (2019). Risk factors for school absenteeism and dropout: A meta-analytic review. *Journal of Youth and Adolescence*, 48(9), 1637–1667. https://doi.org/10.1007/s10964-019-01072-5
- Hale, T., Angrist, N., Goldszmidt, R., Kira, B., Petherick, A., Phillips, T., Webster, S., Cameron-Blake, E., Hallas, L., Majumdar, S., & Tatlow, H. (2021). A global panel database of pandemic policies (Oxford COVID-19 Government Response Tracker). *Nature Human Behaviour*, 5(4), 529–538. https://doi.org/10.1038/s41562-021-01079-8
- Hamilton, L. G. (2024). Emotionally based school avoidance in the aftermath of the COVID-19 pandemic: Neurodiversity, agency and belonging in school. *Education Sciences*, 14(2), 156. https://doi.org/10.3390/educsci14020156
- Henderson, C. M., & Fantuzzo, J. W. (2023). Challenging the core assumption of chronic absenteeism: Are excused and unexcused absences equally useful in determining academic risk status? *Journal of Education for Students Placed at Risk*, 28(3), 259–293.
- Jakubowski, M., Gajderowicz, T., & Patrinos, H. A. (2024). COVID-19, school closures, and student learning outcomes: New global evidence from PISA. IZA Discussion Paper No. 16731. https://docs. iza.org/dp16731.pdf
- Jerrim, J., Carvajal, M., Andres, J., Rodríguez, M. & Marcenaro-Gutierrez, O. (forthcoming). ALWAYS READ THE DATA DOCUMENTATION CAREFULLY. A case study using PISA data.
- Jerrim, J., Lopez-Agudo, L. L., Marcenaro-Gutierrez, O. D., & Shure, N. (2017). What happens when econometrics and psychometrics collide? An example using the PISA data. *Economics of Education Review*, 61, 51–58. https://doi.org/10.1016/j.econedurev.2017.09.007
- Kennedy, A. I., & Strietholt, R. (2023). School closure policies and student reading achievement: Evidence across countries. https://doi.org/10.31219/osf.io/93rgz
- Kirksey, J., & Elefante, J. (2022). Familiar faces in high school: How having the same peers from year-to-year links to student absenteeism. *Journal of Education for Students Placed at Risk (JESPAR)*, 29(1), 23–42. https://doi.org/10.1080/10824669.2022.2102982
- Klein, M., & Sosu, E. M. (2024). School attendance and academic achievement: Understanding variation across family socioeconomic status. Sociology of Education, 97(1), 58–75. https://doi.org/10.1177/ 00380407231191541
- Lester, K. J., & Michelson, D. (2024). Perfect storm: Emotionally based school avoidance in the post-COVID-19 pandemic context. BMJ Mental Health, 27, Article e300944. https://doi.org/10.1136/bmjment-2023-300944
- Liu, J., Lee, M., & Gershenson, S. (2021). The short- and long-run impacts of secondary school absences. *Journal of Public Economics*, 199, Article 104441. https://doi.org/10.1016/j.jpubeco.2021.104441
- Long, R., & Roberts, N. (2024). School attendance in England. House of Commons Library, Number 09710. https://researchbriefings.files.parliament.uk/documents/CBP-9710/CBP-9710.pdf
- Malkus, N. (2024). Long COVID for public schools: Chronic absenteeism before and after the pandemic.

 American Enterprise Institute. https://www.aei.org/research-products/report/long-covid-for-public-schools-chronic-absenteeism-before-and-after-the-pandemic/
- Mansfield, R., Santos, J., Deighton, J., Hayes, D., Velikonja, T., Boehnke, J. R., & Patalay, P. (2022). The impact of the COVID-19 pandemic on adolescent mental health: A natural experiment. *Royal Society Open Science*, 9(4), Article 211114. https://doi.org/10.1098/rsos.211114
- McDonald, B., Lester, K. J., & Michelson, D. (2023). She didn't know how to go back': School attendance problems in the context of the COVID-19 pandemic-A multiple stakeholder qualitative study with parents and professionals. *British Journal of Educational Psychology*, 93(1), 386–401. https://doi.org/10.1111/bjep.12562
- National Forum on Education Statistics. (2009). Every school day counts: The forum guide to collecting and using attendance data (NFES 2009–804). U.S. Department of Education, National Center for Education Statistics. https://nces.ed.gov/pubs2009/2009804.pdf
- OECD. (2023). PISA 2022 Technical Report. Paris: OECD. https://www.oecd.org/pisa/data/pisa2022technicalreport/
- Welsh Parliament. (2022). *Pupil absence. Welsh Parliament Children*, Young People and Education Committee. https://senedd.wales/media/jcvef0z5/cr-ld15456-e.pdf
- Parliament of Australia. (2023). The national trend of school refusal and related matters. https://parlinfo.aph.gov.au/parlInfo/download/committees/reportsen/RB000090/toc_pdf/Thenationaltrendofschoolrefusalandrelatedmatters.pdf

- Rocque, M., Jennings, W. G., Piquero, A. R., Ozkan, T., & Farrington, D. P. (2017). The importance of school attendance: Findings from the Cambridge Study in Delinquent Development on the life-course effects of truancy. *Crime and Delinquency*, 63(5), 592–612. https://doi.org/10.1177/00111 28716660520
- Scottish Government. (2023). Behaviour in Scottish Schools 2023. https://www.gov.scot/binaries/content/documents/govscot/publications/research-and-analysis/2023/11/behaviour-scottish-schools-research-report-2023/documents/behaviour-scottish-schools-2023/behaviour-scottish-schools-2023/govscot% 3Adocument/behaviour-scottish-schools-2023.pdf
- Sosu, E. M., Dare, S., Goodfellow, C., & Klein, M. (2021). Socioeconomic status and school absenteeism: A systematic review and narrative synthesis. *Review of Education*, 9, Article e3291. https://doi. org/10.1002/rev3.3291
- Southall, E., Holmes, A., Hill, E. M., Atkins, B. D., Leng, T., Thompson, R. N., Dyson, L., Keeling, M. J., & Tildesley, M. J. (2021). An analysis of school absences in England during the COVID-19 pandemic. *Bmc Medicine*, 19(1), Article 137. https://doi.org/10.1186/s12916-021-01990-x
- StataCorp. (2023). Stata statistical software: Release 18. StataCorp LLC.
- Weathers, E. S., Hollett, K. B., Mandel, Z. R., & Rickert, C. (2021). Absence unexcused: A systematic review on truancy. *Peabody Journal Of Education*, 96(5), 540–564. https://doi.org/10.1080/01619 56X.2021.1991696

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

