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In this work, a central-moment-based discrete Boltzmann method (CDBM) is constructed
for fluid flows with variable specific heat ratios. The central kinetic moments are employed
to calculate the equilibrium discrete velocity distribution function in the CDBM. In com-
parison to previous incompressible central-moment-based lattice Boltzmann method, the
CDBM possesses the capability of investigating compressible flows with thermodynamic
nonequilibrium effects beyond conventional hydrodynamic models. Unlike all existing
DBMs which are constructed in raw-moment space, the CDBM stands out by directly
providing the nonequilibrium effects related to the thermal fluctuation. The proposed
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method has been rigorously validated using benchmarks of the Sod shock tube, Lax
shock tube, shock wave phenomena, two-dimensional sound wave, and the Taylor-Green
vortex flow. The numerical results exhibit an exceptional agreement with theoretical
predictions.

Keywords: Compressible flows; nonequilibrium effects; central-moment-based discrete
Boltzmann method.

1. Introduction

Compressible flows, characterized by both hydrodynamic and thermodynamic
nonequilibrium effects, are ubiquitous in natural and engineering contexts, includ-
ing applications such as inertial confinement fusion, gas pipelines, jet engines, and
rocket motors [1]. Notably, modern high-speed airplanes and the jet engines are
wonderful examples of the application of compressible flows. Additionally, during
an aircraft’s reentry into the atmosphere at high Mach numbers, the surrounding
shock wave induces intense air acceleration and heating, with compressibility play-
ing a crucial role under these extreme conditions. Therefore, in the modern world
of aerospace and mechanical engineering, a deep understanding of the principles of
compressible flows is essential [2].

To predict the thermal process and nonequilibrium effects, there are three main
categories of numerical methodologies. The first class involves modifying tradi-
tional macroscopic models, for example, the Navier-Stokes (NS) equations plus slip
boundary conditions [3–5], the NS-type equations with multi-components and/or
multi-temperatures [6,7], Burnett and super-Burnett equations [8,9], etc. Since the
macroscopic models are constructed under the continuum assumption, the appli-
cation scope is limited at small Knudsen numbers. The second type encompasses
microscopic models, such as the molecular dynamics (MD) [10, 11]. The MD pro-
vides details of physical systems, but is only applicable to small temporal and spatial
domains due to an excessive computational burden.

Moreover, to address the aforementioned challenges, the third category of meth-
ods encompasses mesoscopic approaches based on kinetic theory, such as the direct
simulation Monte Carlo (DSMC) method [12], discrete velocity methods (DVM)
[13,14], (discrete) unified gas-kinetic schemes ((D)UGKS) [15–18], the lattice Boltz-
mann method (LBM) [19,20], and the discrete Boltzmann method (DBM) [21,22],
among others. These approaches act as a bridge connecting microscopic and macro-
scopic scales. The DSMC method, first introduced by G. A. Bird, has been ex-
tensively developed and widely applied in rarefied gas dynamics, particularly for
high-speed flows [12]. However, DSMC is not well-suited to the simulation of low-
speed flows, and has to balance the noise level and computational efficiency [23].
DVM represents another widely used approach, where the continuous particle veloc-
ity space is discretized into a finite set of velocity coordinate points, and numerical
quadrature is employed to approximate the integration of moments [13, 14]. How-
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ever, for high-speed compressible flows, especially in the near continuous flow region,
the DVM exhibits limited computational efficiency [14]. Besides, in order to solve
the discrete velocity Boltzmann equation, Xu et al. [15, 16] and Guo et al. [17, 18]
proposed the unified gas-kinetic scheme (UGKS) and the discrete unified gas-kinetic
scheme (DUGKS), respectively. In UGKS, the local integration of the discrete ve-
locity Boltzmann equation is used to compute the flux of the distribution function,
whereas in DUGKS, the flux is derived directly from the evolution equation.

Among the kinetic methodologies, the LBM stands out [19, 20]. The LBM has
emerged as a competitive scheme for simulating various complex flows due to its
canonical “collision-streaming” algorithm which disentangles non-linearity and non-
locality and is easy to implement. Owing to these inherent advantages, LBM has
been successfully applied to simulate various physical problems including multi-
phase [24], reactive [25], magnetohydrodynamic [26], nano- [27], biomechanics [28],
and porous media flow [29]. Although the LBM has achieved significant success
in simulating nearly incompressible complex flows, its application to compressible
flows continues to present significant challenges.

Alexander et al. devised the first multi-speed lattice Boltzmann model contain-
ing 13 discrete velocities, representing the earliest application of the LBM to the
compressible NS equations [30]. Shortly after the introduction of Alexander’s model,
in 1993, Qian proposed a series of multi-speed models based on the DnQb thermal
lattice Bhatnager–Gross–Krook (BGK) isothermal model for thermohydrodynam-
ics, in which a proper internal energy is introduced and the energy equation is
obtained [31]. In 1994, Chen et al. introduced a thermal lattice BGK model capa-
ble of recovering the standard compressible NS equations through a higher-order
velocity expansion of the Maxwellian-type equilibrium distribution [32]. However,
this model was constrained by assumptions of zero bulk viscosity and unit Prandtl
number [32]. In 1997, Chen et al. constructed a two time relaxation parameters
thermal lattice BGK model to achieve adjustable Prandtl number [33]. In the same
year, McNamara et al. derived the distribution functions of thermal LBM using a
series of moment conservation equations, enabling variability in the Prandtl number
within this model [34]. Subsequently, compressible lattice Boltzmann models with
a flexible specific heat ratio were introduced by Hu et al. in 1997 [35] and Yan et al.
in 1999 [36]. With the aim of simulating compressible flows, Sun et al. developed
an adaptive compressible LBM based on a simple delta function, where the lattice
velocities vary with mean flow velocity and internal energy [37–41]. In 2007, Li et
al. proposed a coupled double-distribution-function LBM for the NS equations with
a flexible specific heat ratio and Prandtl number [42].

In recent years, Yang et al. developed a platform for constructing one-
dimensional compressible LBM and subsequently extended the finite volume LBM
to simulate compressible flows, including shock waves [43,44]. Li et al. introduced a
novel LBM model designed for fully compressible flows. Building upon a multi-speed
model, an extra potential energy distribution function is introduced to recover the
full compressible NS equations, featuring a flexible specific heat ratio and Prandtl
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number [45]. In 2018, Dorschner et al. constructed a particles-on-demand (PonD)
method which is suitable for both incompressible and compressible flows [46]. In
the PonD method, the discrete particle velocities are defined relative to a local ref-
erence frame, determined by the local flow velocity and temperature, which vary in
both space and time. Subsequently, Kallikounis et al. further refined PonD method
with a revised reference frame transformation using Grad’s projection to enhance
stability and accuracy [47]. In 2024, Kallikounis et al. improved the PonD method
for variable Prandtl number by employing the quasi-equilibrium relaxation, and the
model was validated via simulations of high Mach compressible flows [48].

Generally, lattice Boltzmann methods (LBMs) are broadly classified into the
single-relaxation-time (SRT) model and the multiple-relaxation-time (MRT) model.
The SRT or BGK operator is the simplest collision operator in the standard LBM,
where all distribution functions relax to their local equilibrium values at a constant
rate. However, the BGK-LBM may encounter accuracy issues when implementing
boundary conditions, as well as numerical instability at high Reynolds numbers or
in low-viscosity flows [49]. To mitigate this issue, numerous strategies have been
proposed, including modifications to the numerical discretization, collision model,
or both [50, 51]. In 2006, Geier et al. introduced a cascaded operator, conducting
collisions in the central-moment space rather than that of raw moments as in the
MRT-LBM [52]. Consequently, the corresponding method gradually interpreted as
“central-moment-based” lattice Boltzmann method (CLBM) [49, 53–57]. However,
the CLBM does not necessarily provide enhanced stability. For example, when re-
laxation in the central moment space is implemented using a uniform relaxation
parameter for all moments, the approach reduces to a BGK collision operator with
an extended equilibrium [58,59]. To improve the stability of CLBMs, the relaxation
frequencies of higher-order moments, including the trace of second-order moments,
should be set to one or a value close to one [60,61].

The DBM is a coarse-grained framework for physical model construction and
complex physical field analysis, developed based on the Boltzmann equation [21,62].
In 2011, Xu et al. introduced the first DBM model for compressible flows [21].
Furthermore, they were the first to propose the use of non-conservative moments
of distribution functions to characterize the nonequilibrium state of a system and
extract nonequilibrium information in their study [21]. Subsequently, Yan et al.
developed the first combustion DBM model in 2013 [22]. In 2016, Lai et al. explored
the effects of compressibility on Rayleigh-Taylor instability using the DBM model
[63]. In 2022, Gan et al. formulated and validated a multi-scale DBM based on
density functional kinetic theory for thermal multiphase flow systems, ranging from
continuum to transition flow regime [64]. In the same year, Su et al. recovered the
equilibrium and nonequilibrium distribution functions in one and two-dimensional
velocity spaces based on the physical quantities obtained from DBM simulations
[65]. In 2024, Ji et al., building upon the idea of the PonD method, improved the
DBM model and simulated hypersonic reactive flows [66]. In 2025, Chen et al.
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developed a Burnett-level DBM for the compressible flow in a force field [67].
In this work, we constructed a central-moment-based discrete Boltzmann

method (CDBM) tailored specifically for the simulation of compressible flows. The
“central-moment-based” indicates that physical quantities and higher-order kinetic
moments are computed through central moments. Unlike the majority of previ-
ously proposed CLBMs, which are constrained to incompressible flows and neglect
the thermodynamic nonequilibrium effects inherent to the Boltzmann equation, the
CDBM possesses significantly broader applicability. Based upon the Boltzmann
equation, in addition to capturing the general hydrodynamic behaviors described
by the NS model, the CDBM provides deeper insights into more detailed ther-
modynamic nonequilibrium behaviors in various complex fluids. Moreover, distinct
from all existing DBMs constructed in raw-moment space [21,22,63,65,68–75], the
CDBM, using the peculiar velocity, can quantify the nonequilibrium effects related
to the thermal fluctuation directly. These distinctive features make the CDBM
particularly valuable for investigating compressible flows that exhibit significant
thermodynamic nonequilibrium effects.

2. Method

The governing equations for the CDBM are expressed as follows:
∂fi
∂t

+ vi ·
∂fi
∂rα

= −1

τ
(fi − feq

i ) , (1)

where the relaxation time τ is a constant which governs the relaxation speed of
the discrete velocity distributions fi towards the corresponding equilibrium coun-
terparts feq

i . The subscript i denotes the velocity index, which is shown in Fig 1.
The discrete velocities are given by:

vi =


cyc : (±va, 0) , 1 ≤ i ≤ 4,

(±vb,±vb) , 5 ≤ i ≤ 8,

cyc : (±vc, 0) , 9 ≤ i ≤ 12,

(±vd,±vd) , 13 ≤ i ≤ 16,

(2)

where va, vb, vc and vd are adjustable. Besides, in order to describe the vibrational
and/or rotational energies, I is introduced for extra degrees of freedom due to
vibration and/or rotation, and the corresponding parameters for degrees of freedom,
ηi, are defined as follows,

ηi =


ηa, 1 ≤ i ≤ 4,

ηb, 5 ≤ i ≤ 8,

ηc, 9 ≤ i ≤ 12,

ηd, 13 ≤ i ≤ 16.

(3)

Similarly, ηa, ηb, ηc and ηd are also adjustable.
It is worth noting that the values of these parameters are chosen based on the

specific application to ensure numerical stability. In general, the magnitudes of va,



June 16, 2025 11:39 ijmpc-review

6 Chuandong Lin, Xianli Su, Linlin Fei, and Kai H. Luo

1

2

3

4

5

6

7
8

911

10

12

1314

1615

1

1

Nx2

2

Ny

Nx-1

Ny-1

… … … … …

…
…

…
…

…

Fig. 1. The schematic of discrete velocities.

vb, vc and vd should approximate key physical quantities such as flow velocity u,
sound speed vs =

√
γT , and shock speed, etc. Similarly, the magnitudes of ηa, ηb,

ηc and ηd should be around the value of
√
IT . This is because, in thermodynamic

equilibrium, mη̄2/2 = IT/2 where m = 1 is the particle mass, and η̄2 represents
the average value of η2, according to the equipartition of energy theorem. Hence,
η̄ =

√
IT , and the values of ηa, ηb, ηc and ηd should be around η̄.

To recover the NS equations, through the Chapman-Enskog expansion, the dis-
crete equilibrium distribution functions should satisfy the following seven central
kinetic moments, ∫∫

feqΨdvdη =
∑

i
feq
i Ψi, (4)

where Ψ = 1, v∗, v∗ ·v∗+η2, v∗ ·v∗,
(
v∗ · v∗ + η2

)
v∗, v∗v∗v∗,

(
v∗ · v∗ + η2

)
v∗v∗,

correspondingly, Ψi = 1, v∗
i , v∗

i · v∗
i + η2i , v∗

i · v∗
i ,
(
v∗
i · v∗

i + η2i
)
v∗
i , v∗

i v
∗
i v

∗
i ,(

v∗
i · v∗

i + η2i
)
v∗
i v

∗
i . Here v∗ = v − u and v∗

i = vi − u, with u the flow veloc-
ity. In addition, the equilibrium distribution function feq is

feq = ρ

(
1

2πT

)D/2(
1

2πIT

)1/2

exp

[
−|v∗|2

2T
− η2

2IT

]
, (5)

where D = 2 denotes the dimensional translational degree of freedom, I stands for
extra degrees of freedom due to vibration and/or rotation, and η is used to describe
the corresponding vibrational and/or rotational energies. The other parameters in-
clude T the temperature, and ρ the mass density. Besides, the specific heat ratio
is γ = (D + I + 2) / (D + I), the dynamic viscosity µ = ρTτ , kinematic viscosity
ν = µ/ρ = Tτ , and bulk viscosity µB = µ (2/D − 2/(D + I)).
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The central kinetic moments can be expressed in a unified form

f̄eq = Mfeq. (6)

Here, f̄eq =
(
f̄eq
1 f̄eq

2 · · · f̄eq
16

)T and feq =
(
feq
1 feq

2 · · · feq
16

)T represent the equilib-
rium velocity distribution functions in the central moment space and velocity space,
respectively. In fact, the elements of f̄eq are given by f̄eq

1 = ρ, f̄eq
4 = ρ(I + 2)T ,

f̄eq
5 = P , f̄eq

7 = P , f̄eq
14 = ρT (D + I + 2)T , and f̄eq

16 = ρT (D + I + 2)T , with all re-
maining elements being zero. In addition, the matrix M = (M1 M2 · · · M16)

T

acts as the bridge for transforming the velocity distribution function between
the moment space and the discrete velocity space, which contains the blocks,
Mi =

(
Mi1 Mi2 · · · Mi16

)
, with elements M1i = 1, M2i = v∗ix, M3i = v∗iy,

M4i = v∗2i + η2i , M5i = v∗2ix , M6i = v∗ixv
∗
iy, M7i = v∗2iy , M8i = (v∗2i + η2i )v

∗
ix,

M9i = (v∗2i + η2i )v
∗
iy, M10i = v∗3ix , M11i = v∗2ix v

∗
iy, M12i = v∗ixv

∗2
iy , M13i = v∗3iy ,

M14i = (v∗2i + η2i )v
∗2
ix , M15i = (v∗2i + η2i )v

∗
ixv

∗
iy, M16i = (v∗2i + η2i )v

∗2
iy . Consequently,

Eq. (6) can be expressed as

feq = M−1f̄eq. (7)

It should be stressed that the equilibrium discrete distribution functions, feq
i , are

uniformly computed via a matrix inversion method in Eq. (7). In contrast to prior
DBM constructions, this study employs central kinetic moments.

It should be mentioned that the mass, momentum and energy conservation are
described by the first three kinetic moments in Eq. (4), where feq

i can be replaced by
fi. In other words, the density, flow velocity and temperature are obtained from the
kinetic moments of fi. Replacing feq

i with fi results in the imbalance in the last four
kinetic moments. The difference between the results calculated by feq

i and fi can be
used to describe the deviation of the system from equilibrium state. Consequently,
the CDBM contains the following nonequilibrium manifestations:

∆∗
2 =

∑
i

(
fi − feq

i

)
v∗
i v

∗
i , (8)

∆∗
3,1 =

∑
i

(
fi − feq

i

)(
v∗
i v

∗
i + η2i

)
v∗
i , (9)

∆∗
3 =

∑
i
(fi − feq

i )v∗
i v

∗
i v

∗
i , (10)

∆∗
4,2 =

∑
i
(fi − feq

i )
(
v∗
i v

∗
i + η2i

)
v∗
i v

∗
i . (11)

The second order tensor ∆∗
2 corresponds to the viscous stress tensor and twice

the nonorganized energy. The vector ∆∗
3,1 is associated with the heat flux and

twice the nonorganized energy flux. ∆∗
3 and ∆∗

4,2 are higher-order nonequilibrium
quantities beyond traditional NS models [76]. It is crucial to note that, in comparison
with previous DBMs constructed in raw-moment space, the CDBM can provide the
nonequilibrium effects related to the thermal fluctuation directly.
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In addition, in the basic lattice Boltzmann model, spatial and temporal dis-
cretizations are coupled, which restricts the choice of discrete velocities and also
affects the construction of the discrete equilibrium distribution function. By con-
trast, the discrete Boltzmann method retains the use of discrete velocities but elim-
inates dependence on specific discretization schemes. Instead, it directly solves the
continuous Boltzmann equation, allowing the CDBM to adopt spatial and tem-
poral discretization schemes flexibly. In the subsequent simulations, the temporal
derivatives are computed using the second-order Runge-Kutta scheme [77], while the
spatial discretization employs the second-order non-oscillatory, non-free-parameter
dissipation finite difference (NND) scheme [78]. The details are as follows,

vir
∂fi
∂r

= − 1

∆r
[H(ir +

1

2
)−H(ir − 1

2
)], (12)

H(ir +
1

2
) = HL(ir +

1

2
) +HR(ir +

1

2
), (13)

HL(ir +
1

2
) = f+

i (ir) +
1

2
minmod[∆f+

i (ir +
1

2
),∆f+

i (ir − 1

2
)], (14)

HR(ir +
1

2
) = f−

i (ir + 1)− 1

2
minmod[∆f−

i (ir +
1

2
),∆f−

i (ir +
3

2
)]. (15)

where ir denotes the i-th grid point in the r direction, and ∆r = ∆x or ∆y. The
NND scheme achieves second-order spatial accuracy. The function minmod is also
a type of flux limiter, defined as follows:

minmod [X,Y ] =


0, Y = 0 or XY ⩽ 0

X,
∣∣X
Y

∣∣ ⩽ 1

Y,
∣∣X
Y

∣∣ > 1

. (16)

In addition,

∆f+
i (ir +

1

2
) = f+

i (ir + 1)− f+
i (ir), (17)

∆f−
i (ir +

1

2
) = f−

i (ir + 1)− f−
i (ir), (18)

f+
i (ir) =

1

2
(vir + |vir|)fi, (19)

f−
i (ir) =

1

2
(vir − |vir|)fi. (20)

This scheme can suppress odd-even decoupling oscillations and effectively capture
strong discontinuities.



June 16, 2025 11:39 ijmpc-review

Central-moment-based discrete Boltzmann modeling of compressible flows 9

* 2
,x
x

D

(a) (b)

Fig. 2. Profiles of the density ρ (a) and the nonequilibrium quantity ∆∗
2,xx (b) in the Sod shock

tube.

3. Verification

In this section, let us verify that the CDBM is not only applicable for high-speed
compressible flows, but can also capture the nonequilibrium effects accurately. To
this end, five representative benchmarks are considered: the Sod shock tube and
Lax shock tube validate the ability of the CDBM to capture discontinuities under
varying specific heat ratios, the shock wave test demonstrates the suitability of the
CDBM for hypervelocity compressible flows, the two-dimensional sound wave and
decaying Taylor-Green vortex flow are used to verify the efficiency of CDBM in
two-dimensional cases.

3.1. Sod shock tube

First, we consider two typical Riemann problems, i.e., the Sod shock tube and the
Lax shock tube. For the Sod shock tube, the initial conditions are given by{

(ρ, ux, uy, T )L = (1, 0, 0, 1) ,

(ρ, ux, uy, T )R = (0.125, 0, 0, 0.8) .

Here, L and R denote the regions 0 < x ≤ 0.075 and 0.075 < x ≤ 0.15, respectively.
The simulation parameters are specified as follows: the grid mesh is Nx × Ny =

1500× 1, the spatial resolution ∆x = ∆y = 1× 10−4, the time step ∆t = 2× 10−5,
the specific heat ratio γ = 2, and the relaxation time τ = 1 × 10−4. The discrete
parameters are (va, vb, vc, vd) = (2.5, 2.5, 1.2, 1.1) and (ηa, ηb, ηc, ηd) = (0, 0, 0, 1.2).

Figure 2 (a) illustrates the evolution of density in the Sod shock tube. The stars,
circles, and solid line correspond to the DBM results, CDBM results, and the Rie-
mann solutions, respectively. The simulation results exhibit good agreement with
the analytical Riemann solutions. Some discrepancies are observed between the nu-
merical results and the Riemann solutions, particularly near the rarefaction wave,
material interface, and shock front. These arise from the fact that the CDBM sim-
ulation results incorporate essential thermodynamic nonequilibrium effects, which
are neglected by the Riemann solutions.
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Figure 2 (b) shows the profile of twice the nonorganized energy along the x

direction. The stars and circles denote the simulation results obtained from the
DBM and CDBM, respectively. The solid line represents the exact solution [79]

∆∗
2,xx = 2ρTτ

(
1−D − I

D + I

∂ux

∂x
+

1

D + I

∂uy

∂y

)
. (21)

Obviously, the nonorganized energy near rarefaction wave exhibits negativity which
is illustrated in the upper subplot, and a peak emerges around the shock wave as de-
picted in the lower subplot. Furthermore, the nonorganized energy approaches zero
in other regions, with minor numerical oscillations observed at the contact wave. In
fact, the minor undershoot observed in the Sod shock tube arises due to the sharp
discontinuity in the physical field inherent in the initial configuration. This artificial
discontinuity deviates from the characteristics of a natural interface, which typically
exhibits a smooth transition layer. Consequently, a minor undershoot develops near
this discontinuity during the early stages and gradually dissipates over time. Im-
portantly, the CDBM results align more closely with the exact solution than the
DBM results across the entire profile, especially in the peak region. This provides
evidence that the CDBM is highly effective in capturing nonequilibrium effects in
various regions of the Sod shock tube.

3.2. Lax shock tube

The initial condition for the Lax shock tube is{
(ρ, ux, uy, T )L = (0.445, 0.698, 0, 7.928) ,

(ρ, ux, uy, T )R = (0.5, 0, 0, 1.142) ,

where L ∈ [0, 1) and R ∈ [1, 2] stand for the left and right sides, respectively. The
computational grid is specified as Nx ×Ny = 1000× 1, with a spatial resolution of
∆x = ∆y = 2×10−3 and a time step of ∆t = 2×10−5. In addition, the specific heat
ratio is γ = 1.4, the relaxation time is τ = 1×10−4, and the discrete parameters are
(va, vb, vc, vd) = (4.4, 4.4, 3, 1.8) and (ηa, ηb, ηc, ηd) = (0, 0, 5, 0). Figure 3 presents
the results of the Lax problem at t = 0.2. The Riemann solutions are represented by
lines, while the symbols denote the computed quantities obtained using the CDBM.
It can be observed that the simulation results exhibit a good agreement with the
analytical solutions. To be specific, there is a rarefaction wave propagating to the
left, a material interface in the middle, and a shock wave traveling to the right.
Consequently, the CDBM successfully captures all three distinct structures.

3.3. Shock wave

The CDBM is suitable for high-speed compressible flow. To assess its performance
at high Mach numbers, we simulate a shock wave with a Mach number of Ma = 15.
The initial conditions are specified as follows,{

(ρ, ux, uy, T, P )L = (5.8696, 14.7245, 0, 44.6938, 262.3333) ,

(ρ, ux, uy, T, P )R = (1, 0, 0, 1, 1) .
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(a) (b)

(c) (d)

Fig. 3. Profiles of the density ρ (a), temperature T (b), Mach number Ma (c), and pressure P
(d) in the Lax shock tube.

Here, L and R stand for 0 < x ≤ 0.02 and 0.02 < x ≤ 1.5, respectively. The
simulation parameters are as follows: the grid mesh is Nx × Ny = 10000 × 1, the
spatial resolution is ∆x = ∆y = 2×10−4, the time step is ∆t = 2×10−6, the specific
heat ratio is γ = 1.4, and the relaxation time is τ = 1×10−4. The discrete velocity set
is given as (va, vb, vc, vd) = (21.8, 21.8, 17.8, 9.8) and (ηa, ηb, ηc, ηd) = (18.8, 0, 0, 0).

Figures 4 (a)-(d) illustrate the profiles of density, pressure, horizontal velocity
and temperature, respectively. The symbols represent the CDBM results, while the
solid lines denote the Riemann solutions. Clearly, the CDBM results align closely
with the Riemann solutions. Therefore, the CDBM successfully captures the shock
wave at a Mach number of Ma = 15. In other words, the model is suitable for a
wide range of flow regimes, from incompressible flows to hypervelocity compressible
flows.

3.4. Sound wave

Then, the sound wave simulation verifies the suitability of the CDBM for compress-
ible flows. Figure 5 illustrates the sketch of the propagation for the two-dimensional
sound wave. A perturbation is initially introduced at position x0, spreading at the
speed of sound. Simultaneously, the perturbation propagates rightward at twice the
speed of sound. Therefore, the angle of propagation can be utilized to verify the
accuracy of our model.

The grid mesh size is Nx × Ny = 1600 × 1200, the spatial step ∆x = ∆y =

5 × 10−4, and the temporal step ∆t = 2 × 10−5. In addition, the relaxation time
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(a) (b)

(c) (d)

Fig. 4. Profiles of the density (a), pressure (b), horizontal velocity (c) and temperature (d) in the
shock wave.

0
x

1
x

1
v

0
v

q

Fig. 5. The sketch of the propagation for the two-dimensional sound wave.

is τ = 1 × 10−4, the specific heat ratio is γ = 1.4, and the discrete parameters are
(va, vb, vc, vd) = (1.4, 1.1, 1.1, 1) and (ηa, ηb, ηc, ηd) = (3, 0, 0, 0).

Figure 6 illustrates the propagation of two-dimensional sound waves at different
time instants: (a) t = 0.02, (b) t=0.1, and (c) t=0.2. At t=0.2, the exact solution
is sin θ = 0.5, while the simulation result is sin θ = 0.50106. The relative error be-
tween the simulation result and the exact solution is 0.212%, indicating satisfactory
agreement. These results demonstrate that the CDBM is well-suited for modeling
two-dimensional compressible waves.
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(a)

(c)

(b)

Fig. 6. Profiles of the two-dimensional sound waves at various time instants, (a) t = 0.02, (b)
t=0.1, and (c) t=0.2.

3.5. Taylor-Green vortex flow

Finanlly, the CDBM was validated by a two-dimensional Taylor-Green vortex flow.
The solution of this flow problem can be given analytically as

ux(x, y, t) = −u0 cos(πx/L) sin(πy/L)e
−2π2u0t/(ReL), (22)

uy(x, y, t) = +u0 sin(πx/L) cos(πy/L)e
−2π2u0t/(ReL), (23)

p
(
x, y, t

)
= p0 −

p0u
2
0

4

[
cos
(
2πx/L

)
+ cos

(
2πy/L

)]
e−4π2u0t/

(
ReL
)
, (24)

where u0 = 0.01 denotes the reference velocity, p0 = 1.0 represents the reference
pressure, L = 0.05 signifies the reference length, and the Reynolds number is defined
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Fig. 7. Comparison of CDBM simulation and analytical solutions for Taylor-Green vortex velocity
fields at t = 0.1. (a) Horizontal velocity of CDBM, (b) vertical velocity of CDBM, (c) Horizontal
velocity of analytical solution, and (d) vertical velocity of analytical solution.

as Re = ρ0u0L/µ = 1, where kinematic viscosity is µ = 5 × 10−4. The computa-
tional domain for this flow problem extends over [0, 2L], with the grid discretization
performed using a mesh of size Nx×Ny = 100×100. Additional parameters for this
simulation include the spatial resolution ∆x = ∆y = 1 × 10−3, the temporal step
∆t = 2×10−5, the specific heat ratio γ = 1.4, the relaxation time τ = 5×10−4, the
discrete parameters (va, vb, vc, vd) = (0.2, 0.2, 2, 2), and (ηa, ηb, ηc, ηd) = (0, 5, 0, 2.6).
In this section, we compare the simulation results obtained from the CDBM with
the exact analytical solutions for the Taylor-Green vortex flow. Figures 7 (a) and
(b) depict the horizontal and vertical velocity fields obtained from the CDBM sim-
ulation, whereas Figs. 7 (c) and (d) illustrate the corresponding analytical results.
Both sets of results exhibit a high degree of qualitative agreement, demonstrating
similar periodic structures and symmetry in the velocity fields. The close alignment
of velocity magnitudes, as indicated by the color bars, further confirms the accuracy
of the CDBM simulation.

In addition, the relative error of velocity component between the numerical result
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Fig. 8. L2 norm of the relative error of horizontal velocity versus space step ∆x for decaying
vortex flow.

and the analytical solution is measured using the L2 norm, defined as follows,

L2

(
ux

)
relative

=

√√√√ 1

Nx ×Ny

∑
i,j

(
ux

numerical
(i,j) − ux

exact
(i,j)

u0

)2

. (25)

Five different uniform grid meshes with sizes of 20× 20, 30× 30, 40× 40, 50× 50,
and 60× 60 are used to discretize the domain. The corresponding spatial steps are
5 × 10−3, 3.34 × 10−3, 2.5 × 10−3, 2 × 10−3, and 1.67 × 10−3, respectively. Figure
8 showes the numerical results of L2 norms, where the space step ∆x is plotted on
a logarithmic scale. The slope of the line is 1.69, which is near the second order
in theory. These findings suggest that the CDBM method effectively captures the
dynamics of the Taylor-Green vortex flow, validating its reliability for studying
complex two-dimensional fluid flow phenomena.

4. Conclusion

In summary, a CDBM is developed for kinetic modeling of compressible flows with
both hydrodynamic and thermodynamic nonequilibrium effects. The central kinetic
moments are employed for calculating the equilibrium discrete distribution func-
tions. Conservation moments of the discrete velocity distribution function are uti-
lized to derive macroscopic physical quantities, while higher-order central kinetic
moments are employed to characterize nonequilibrium effects. Its ability to capture
nonequilibrium effects is demonstrated through the simulation of the Sod shock
tube. The results exhibit excellent agreement with exact solutions. Furthermore,
the Lax shock tube benchmark confirms that the CDBM can accurately capture
discontinuities under different specific heat ratios. Additionally, the simulation of
shock waves at Mach number Ma = 15 verifies the capability of the CDBM for
hypervelocity compressible flows. The results of two-dimensional sound wave prop-
agation and decaying Taylor-Green vortex flow further showcase the efficiency of
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the CDBM in two-dimensional cases. Overall, the proposed CDBM proves to be
a robust and promising tool for investigating complex compressible fluid systems,
particularly those with significant thermodynamic nonequilibrium effects at the
mesoscopic level.
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