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Abstract—Federated Learning (FL) enables privacy-preserving
machine learning by allowing clients to collaboratively train
models without sharing raw data. Federated Learning as a
Service (FLaaS) extends this approach to cloud infrastructures.
However, conventional secure aggregation protocols, such as
Google’s SecAgg and SecAgg+, introduce high computation
and communication overheads, particularly in large-scale FLaaS
deployments where client dropout rates are limited. To address
these challenges, we propose ACCESS-FL, a lightweight, secure
aggregation method designed for honest-but-curious FLaaS sce-
narios with stable network conditions. ACCESS-FL eliminates
double masking, Shamir’s Secret Sharing, and excessive encryp-
tion/decryption by creating shared secrets only between two peers
per client, which reduces computation and communication com-
plexity to constant O(1) and makes the algorithm independent
of network size and comparable to standard FL. ACCESS-FL
preserves privacy against inversion attacks and maintains model
accuracy equivalent to the FL, SecAgg, and SecAgg+ protocols,
proving that reducing overhead does not compromise learning
performance and achieves communication and computation costs
comparable to standard FL. Experimental evaluations on bench-
mark datasets (MNIST, FMNIST, and CIFAR-10) demonstrate
lower overhead, making ACCESS-FL practical for service-based
stable FLaaS applications such as healthcare analytics.

Index Terms—Federated Learning as a Service (FLaaS), secure
aggregation, communication cost, computation cost, honest-but-
curious scenario.

I. INTRODUCTION

Federated Learning (FL) [1] is a promising approach to
privacy-preserving collaborative learning that enables clients
to keep data local while exchanging model updates with a cen-
tral aggregator. Federated Learning as a Service (FLaaS) [2]
has extended this concept to managed cloud infrastructures [3],
[4]. However, FL remains vulnerable to model inversion at-
tacks [5] when the aggregator is honest-but-curious [6], [7],
and can reconstruct sensitive client data by analyzing model
updates. To mitigate such privacy risks, Google proposed
Secure Aggregation (SecAgg) [8], and SecAgg+ [9], by mask-
ing client updates using cryptographic techniques. However,

Fig. 1: Comparison between vanilla FL and FL with SecAgg.

Google’s protocols lead to O(|C|2) and O(|C| log |C|) over-
head, respectively, where |C| is the number of clients. These
overheads become especially higher in large-scale FLaaS
scenarios where the number of clients can be substantial, but
the network is relatively stable (i.e., low dropout rates). Fig. 1
illustrates the SecAgg approach compared to traditional FL.

In this paper, we propose ACCESS-FL, a first-of-its-kind
lightweight secure aggregation protocol (to the best of our
knowledge) that achieves constant overhead O(1) per client
in stable FLaaS environments with the honest-but-curious ag-
gregator, such as fraud detection [10] and the IBM anti-money-
laundering system [11]. Additionally, healthcare providers
deploy FLaaS with platforms such as NVIDIA Clara [12],
where a cloud-side coordinator manages encrypted model
updates while each hospital keeps imaging data private [13],
[14]. In the aforementioned applications, privacy is crucial
as participants and the aggregator are deployed and reliable
elements of a system. Instead of creating shared secrets
with all other clients (SecAgg) or log(|C|) − 1 neighbors
(SecAgg+), each client in ACCESS-FL derives only two
shared secrets (generated based on Diffie-Hellman (DH) [15]
algorithm) for masking. Additionally, ACCESS-FL eliminates
private masking, Shamir’s Secret Sharing (SSS) [16], [17], and
all encryption/decryption, reducing both communication and
computation (caused by state-of-the-art protocols) to constant
O(1) per client while preserving privacy in honest-but-curious
scenarios. This cost makes ACCESS-FL more efficient for



Fig. 2: SecAgg (left) vs. ACCESS-FL (right) in pair selection
for shared masking.

large-scale, enterprise-grade FLaaS stable networks where
dropout rates and adversarial activities are limited, including
multi-hospital collaborations. The main contributions of this
paper are as follows:
1) O(1) overhead: We propose, to the best of our knowledge,
the first secure aggregation protocol specified for stable FL
networks that achieve O(1) communication and computation
overhead per client, independent of network scale.
2) Dynamic, privacy-preserving pairing: We introduce a dy-
namic client pairing mechanism (based on a deterministic
function) with a secret seed (accessible only to clients), to
hide the exact pairs from the aggregator (Fig. 2).
3) FLaaS Efficiency: By generating just two shared secrets per
client and removing the need for SSS, encryption/decryption,
and private masking, we significantly simplify the secure
aggregation workflow in FLaaS.
4) Experimental validation: We demonstrate on multiple
benchmark datasets (MNIST [18], Fashion-MNIST [19] and
CIFAR10 [20]) that ACCESS-FL preserves the same model
accuracy as vanilla FL while reducing overhead and runtime
compared to SecAgg and SecAgg+.
5) Open-source code: This is publicly available at [21].

The rest of this paper is organized as follows: Section II
explains the state-of-the-art protocols (SecAgg and SecAgg+).
Section III explains security primitives. Section IV reviews re-
lated work. ACCESS-FL is explained in Section V. Section VI
evaluates ACCESS-FL’s performance in comparison to state-
of-the-art protocols. We conclude the paper and discuss future
directions in Section VII.

II. PRELIMINARY STUDY: SECAGG AND SECAGG+

In this section, we provide an overview of Google’s Se-
cure Aggregation protocol (SecAgg) and its improved variant
(SecAgg+). Table I summarizes notations used in this paper.

A. SecAgg

SecAgg proceeds in eight rounds as follows: (1) Model
broadcast: The server broadcasts the initial global model to
clients. (2) Key pair generation: Client i generates two private-
public key pairs as (SK1

i , PK1
i ) and (SK2

i , PK2
i ). Then, it

sends its public keys to the server. (3) Broadcasting public
keys: The server broadcasts public keys to all clients. (4) Secret
splitting & encryption: Client i ∈ C generates a random seed
bi and splits bi and SK1

i into |C| parts (using SSS algorithm).

TABLE I: Declaration of main notations
Notations Definition
n Round number of FL
C The list of participating clients in an FL round
|C| Number of clients in the FL system
|Di| Size of client i’s local dataset
SKi Private key of client i
PKi Public key of client i
PKall List of public keys
si,j Shared secret generated by SKi and PKj

fpi First pair of client i for generating shared secret
spi Second pair of client i for generating shared secret
mi,j Shared mask between client i and client j
wi Local model parameters trained by Client i
wmsk

i Masked model update sent by client i to the server
G Global model

Then, it encrypts each part for peer j ∈ C (by the key derived
from SK2

i and PK2
j ) to generate bi,j and SK1

i,j . Finally, it
sends the ciphertext ei,j = (i||j||bi,j ||SK1

i,j) to the server. (5)
Ciphertext distribution: The server creates the participants set
as C1, then forwards the (|C| − 1) ciphertexts designed for
each client along with C1 set to the correspondent client. (6)
Masking: Client i creates (|C| − 1) shared secrets with every
client j as si,j (by using SK1

i and PK1
j ), then expands bi and

si,j by the pseudo-random generator function PRG to create a
private mask mi and shared masks mi,j ∀j ∈ C1, respectively.
Finally, the client applies these masks to its local model wi and
computes its masked model wmask

i , which is sent to the server.
(7) Participant reveal: The server announces the set C2 of
clients that sent their masked models. Then, each active client
i decrypts ciphertext ej,i ∀j ∈ C1 (by using a key generated
from SK2

i and PK2
j ) to obtain bj,i ∀j ∈ C2 of the participants

and mj,i ∀j ∈ C1 \C2 of the dropped-out clients, and returns
them to the server. (8) Global model aggregation: The server
reconstructs random seed of participants and shared secrets
of dropped-out clients (by SSS algorithm), then expands
each reconstructed value by PRG to generate private mask
mj ∀j ∈ C2 and shared masks mj,i ∀j ∈ C1 \ C2. Finally, it
aggregates the global model by:∑

i∈{C2}

wmsk
i −

∑
i∈{C2}

mi +
∑

i∈C2,j∈{C1\C2}

mj,i. (1)

In SecAgg, the communication cost for each client and the
server are calculated as O(|C|) and O(|C|2), respectively [8].

B. SecAgg+

SecAgg+ [9] is an improvement over SecAgg designed
to reduce computational and communication costs. Instead
of generating shared secrets with every client, the server
generates a random k-regular graph for k = (log |C|), where
|C| is the number of clients. Clients only generate shared
masks with their neighbors in this graph. Although SecAgg+
reduces the costs compared to SecAgg, for a larger number of
clients, it leads to unnecessary overhead in stable networks.

III. SECURITY PRIMITIVES

This section introduces the fundamental cryptography used
in ACCESS-FL, including the pseudo-random generator func-
tion and the key agreement protocol:



Algorithm 1: Client i’s algorithm in ACCESS-FL to
generate a key pair (in the first training round).

1 Waits for the server to send the initial G; # Algorithm 4.
2 Waits for a trusted third party to send public parameters;
3 # Generates a key pair with public parameters.
4 (SKi, PKi)← key_gen(param);
5 Stores SKi securely;
6 Sends PKi to the server;
7 Waits to receive PKall from the server; # Algorithm 4.

Algorithm 2: Client i’s algorithm in ACCESS-FL to
find two pairs (during all training rounds).

1 # Calculates the distance value to find its pairs
2 setni = {d | d ∈ [1, ⌊(|C| − 1)/2⌋], d ̸= distancen−1

i };
3 distanceni = RandInt(setni );
4 # Finds its pairs from the sorted participant list.
5 fpi ← (i+ distanceni )%|C|; # 1st pair idx
6 spi ← (i− distanceni + |C|)%|C|; # 2nd pair idx
7 # Generates shared masks with peers by Algorithm 3.

A. The Pseudo-Random Generator function (PRG) [22], [23] is
a deterministic function that produces a sequence of outputs
that appear random from a given seed input. In this paper,
PRGs are used to generate masks out of secrets.
B. Key Agreement Protocols [24], such as Diffie-Hellman
(DH) [25] and Elliptic Curve Diffie-Hellman (ECDH) [26],
enable two parties to derive the same secret without exposing
it to the server [27] through the following steps: (1) Public
parameters: A trusted third party generates public param-
eters by param ← param_gen(key_size)function. These
parameters include a large prime number p and a generator
g modulo p and are shared between both clients. (2) Key
pairs: Each client generates a public-private key pair through
(SK,PK) ← key_gen(param) function and shares its PK
with its peers. Despite using the same param, the key pairs
generated by both clients are unique to each individual. (3)
Shared secret: Each client computes the shared secret using its
SK and the peer’s PK. Both clients arrive at the same shared
secret value, which seeds the PRG for pairwise masking.

IV. RELATED WORK

Various studies have focused on secure aggregation for
FL to optimize communication and computation. CESA [28]
theoretically reduces communication cost. Authors in [29] pro-
posed a non-interactive key establishment protocol, removing
Shamir’s Secret Sharing to reduce overhead. FastSecAgg [30]
used a multi-secret sharing approach [31] to lower computation
costs while keeping communication costs similar to SecAgg.
Addressing communication overhead, the SAFER method [32]
compressed neural network updates by using TopBinary Cod-
ing and one-bit quantization. Additionally, SAFELearn [33]
with only two communication rounds per iteration, supports
client dropouts and avoids trusted third parties. Furthermore,
Rathee et al. [34] introduced ELSA to reduce communication
and computation costs. Authors in [35] addressed honest-but-
curious scenarios. The FAlkor protocol proposed in [36] em-

Algorithm 3: Client i’s algorithm in ACCESS-FL to
generate its masked model (during all training rounds).

1 # Generates two shared secrets with its two pairs.
2 si,fpi ← key_agree(SKi, PKfpi); # 1st shared secret.
3 si,spi ← key_agree(SKi, PKspi); # 2nd shared secret.
4 # Creates its shared masks by PRG function.
5 mi,fpi ← PRG(si,fpi); # 1st shared mask.
6 mi,spi ← PRG(si,spi); # 2nd shared mask.
7 # Determines signs based on indices
8 if fpi < i then signfp ← −1 else 1;
9 if spi < i then signsp ← −1 else 1;

10 # Calculates its masked model.
11 wmsk

i ← wi + signfp ×mi,fpi + signsp ×mi,spi ;
12 Sends wmsk

i to the server;
13 Waits to receive the new G from the server; # Algorithm 4.

Algorithm 4: Server’s algorithm in ACCESS-FL.
1 # First training round
2 Broadcasts initial G;
3 Waits for all clients to send their public keys; # Algorithm 1.
4 for ∀i ∈ C do
5 PKall ∪ [PKi]; # List of public keys
6 end
7 Broadcasts list of PKall;
8 # All training rounds
9 Waits for clients to send their masked models; # Algorithm 2.

10 if |{ i ∈ C | wmsk
i }| < |C| then

11 # Updates C with participants.
12 for ∀i ∈ C do
13 Sends updated C to client i;
14 end
15 Waits for clients to send their new wmsk; # Algorithm 5.
16 end
17 G← 0;
18 G← 1

|D|
∑

i∈C |Di| wmsk
i ; # Aggregates masked models

19 Broadcasts new G;

ploys GPU acceleration and stream cipher-based masking for
computational efficiency. Moreover, SHFL [37], EdgeSA [38],
and BSDA [39] proposed secure FL approaches in edge
environments. Finally, authors in [40]–[43] analyzed FL secure
aggregation to identify security issues. Nevertheless, in the
mentioned schemes, communication and computation still
increase with the number of clients, especially in stable FLaaS.
ACCESS-FL removes this growth by proposing constant-cost
secure aggregation in honest-but-curious scenarios.

V. ACCESS-FL PROTOCOL

This section proposes ACCESS-FL, a communication and
computation-efficient secure aggregation protocol for stable
FLaaS deployments with limited client dropouts and low delay
variations in honest-but-curious scenarios, as follows:
1) Initialization: The server broadcasts the initial global model.
Each client receives common public parameters from a trusted
third party to generate a unique DH public-private key pair
once for all FL rounds and sends the public key to the server
(Algorithm 1). Then, the server broadcasts public keys once in
ACCESS-FL for all FL rounds. Unlike SecAgg and SecAgg+,
no new keys are generated per round; therefore, the key setup



Fig. 3: Finding new pairs in the presence of a client dropout.

Fig. 4: Comparison between SecAgg and ACCESS-FL.

Algorithm 5: Client i’s algorithm in ACCESS-FL for
handling client dropout or delayed updates.

1 # Calculates the new_distanceni .
2 setni = {d | d ∈ [1, ⌊(|C| − 1)/2⌋], d ̸= distancen−1

i , d ̸=
distanceni };

3 new_distanceni = RandInt(setni );
4 distanceni ← new_distanceni ;
5 Finds new pairs with new distance by Algorithm 2;

traffic drops from (2 × |C|) keys/round to (|C|) keys in
total, thereby costs associated with key pair generation and
distribution are significantly reduced in ACCESS-FL.
2) Pairs Selection: Clients are sorted into a participat-
ing list, and each runs a trusted deterministic function
(only accessible to clients), given the current training
round number and the public parameters as the seeds.
This function generates a random integer value, called
as distance, within the range [1, ⌊(|C| − 1)/2⌋]. The dis-
tance generator function leads to the same value for all
clients and varies at each training round. Then each client
i pairs with client ((i+ distance) mod |C|) and client
((i+ distance) mod |C|) (where |C| is the number of clients
in the sorted participating list), to generate two shared secrets
(each shared secret is derived by the client’s private key and the
peer’s public key). This dynamic pair selection process ensures
that clients have different pairing partners in each round.
To prevent identical pairs in different rounds, the function
excluded the distances used in previous rounds. The mentioned
process is detailed in Algorithm 2.

3) Shared Masks Generation: For each pair (i, j), clients
derive an identical shared secret s via DH (si,j = sj,i),
feed it to the PRG to generate shared mask (mi,j = mj,i),
and set opposite signs based on each client’s index in the
participant list, that is, the one with a smaller index gets the
-1 coefficient to make sure shared masks cancel out each other
in the aggregation process without server intervention (unlike
SecAgg and SecAgg+). Thus, mi,j +mj,i = 0.
4) Local Training & Masking: Each client trains the global
model on its local dataset (ACCESS-FL is designed to be
independent of model and data distribution type) and adds
the two pairwise masks to its update. The masked model is
then sent to the server; hence, the server does not have access
to the plain-trained model of each client (Algorithm 3).
5) Global Model Update: If all masked models arrive on time,
the server aggregates them to generate the new global model
(Algorithm 4 illustrates the process of ACCESS-FL running at
the server), otherwise it broadcasts the participant list, and then
every active client recomputes the distance, forms new pairs,
and resends a freshly masked model (Algorithm 5). This step
is mandatory to remove shared masks of dropped-out clients
without server involvement (unlike SecAgg and SecAgg+) and
keeps the aggregated model identical to vanilla FL.

ACCESS-FL is designed for stable FLaaS environments
with limited client dropouts and low delay variations in honest-
but-curious scenarios. Hence, the server does not get stuck in
the same training round waiting for new masked models. Fig. 3
illustrates the masked model recomputation process when one
of eight clients drops out. Fig. 4 contrasts the complexity



and message volume in one FL round between SecAgg (left)
and ACCESS-FL (right). In SecAgg, every client obscures its
update with one private mask plus (|C| − 1) pairwise masks.
Thus, mask generation and message count grow with the
number of clients. ACCESS-FL keeps the model-privacy goal
with the reduced cost: each client derives masks with only two
peers, a total independent of (|C|). The server then sums the
masked updates into the new global model. Fewer masks mean
fewer messages and a single masking layer, which delivers
the same privacy with significantly lower communication and
computation costs.

A. Message Passing in ACCESS-FL

This section analyzes the total number of messages ex-
changed between the server and C clients over n training FL
rounds in ACCESS-FL. This process is categorized into three
phases as follows: (1) Initialization: The server broadcasts
the initial model. Each client sends a single public key to
the server (|C|). The server, then broadcasts the set of all
public keys. (2) Shared mask generation at first training round:
Client i finds two pairs as fpi = [(i + distance) mod |C|]
and spi = [(i − distance + |C|) mod |C|]. Here, distance
is a random integer within the range of [1, ⌊(|C| − 1)/2⌋]
(where |C| ≥ 6). Having distance more than (|C| − 1)/2
makes the chosen pair equal to previously found pairs. After
finding the pairs, each client generates two shared secrets
and expands them with PRG to create two shared masks
(denoted as mi,fpi ) and mi,spi . (3) All training rounds: Each
round, client i sends one masked update to the server as
wmsk

i = wi + mi,fpi
+ mi,spi

, where w is the trained
model. Then, the server generates the new global model by
aggregating all masked models. Since mi,fpi

= −mfpi,spfpi
,

all masks cancel out each other, and the sum of masked models
equals the sum of unmasked trained models. Finally, the server
broadcasts the new global model G to all clients. Across n FL
rounds, clients send (n+1)× |C|, and the server sends n+1
messages. Thus, both client and server cost remain O(1).

VI. EVALUATION RESULTS

We benchmark ACCESS-FL, SecAgg and SecAgg+ on
three image datasets (MNIST, Fashion-MNIST, and CIFAR-
10) using a 2-layer neural network (2NN) and a convolutional
neural network (CNN). All runs last 100 FL rounds and are
optimized with SGD (learning rate = 0.01). To assess the com-
munication and computation costs, we present results based
on the accumulated message size, the number of exchanged
messages, and the running time for both clients and the server
in ACCESS-FL, SecAgg, and SecAgg+.

A. Communication Cost of ACCESS-FL, SecAgg and SecAgg+

Figs. 5a and 5b illustrate the accumulated message size
sent from clients to the server and from the server to clients,
respectively, for ACCESS-FL, SecAgg, and SecAgg+ over
100 rounds. We observe that the total size of the message
for each client in ACCESS-FL remains constant through the
100 rounds. Furthermore, the communication cost for each
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Fig. 5: Accumulative message size (MNIST dataset).
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Fig. 6: Accumulated running time (MNIST dataset).

client does not increase with the number of participating
clients, since each client only generates shared masks with
two pairs. In contrast, in SecAgg, every client pairs with all
others, and in SecAgg+, with log(|C|)−1 neighbors, thus their
communication cost increases with the network size, reaching
over 350 MB and 30 MB after 100 rounds, respectively. The
server’s accumulated message size is also affected by the
protocol design, that is, only around 80 MB for ACCESS-
FL versus 3000 MB (SecAgg) and 200 MB (SecAgg+) by the
100th round. The accumulated number of messages exchanged
between the server and clients are demonstrated in Tables II
and III. Each client in ACCESS-FL sends 101 messages (one
public key plus 100 masked updates), and the server only
broadcasts public keys in the initial round and the aggregated
model in each round. Thus, the server overhead in large-scale
stable FLaaS networks is essentially the same as in traditional
FL. In contrast, each client in SecAgg and SecAgg+ sends
around 20,000 and 1,700 messages, respectively, while the
server sends about 10,000 and 700 messages, which include
broadcasting participant list, global model, and two public
keys per client, as well as sending (|C| − 1) ciphertexts
per client per each round. Clients in ACCESS-FL find their
pairs and change them in every round without the server’s
knowledge; the only per-round payload is the masked model
update, whose size stays constant with network scale. Hence,
ACCESS-FL improves the privacy of an honest-but-curious
stable FL system with approximately the same client load
as traditional FL. SecAgg and SecAgg+ have much higher
communication costs: each client must create many pairwise
secrets (all peers or log|C| − 1 neighbors), generate two key
pairs, and exchange encrypted values. The server in SecAgg
and SecAgg+ learns the pairings and must manage global-
model unmasking, whereas in ACCESS-FL the server does
not know the peers and is not responsible for unmasking.



TABLE II: Total number of messages sent from clients in scenarios with node dropout (D) and without node dropout (ND).
Round ACCESS-FL (ND) ACCESS-FL (D) SecAgg (ND) SecAgg (D) SecAgg+ (ND) SecAgg+ (D) FedAvg (ND)

10 1100 1099 202000 200802 17000 20999 1000
30 3100 3067 606000 590482 51000 62367 3000
50 5100 4995 1010000 964530 85000 102895 5000
70 7100 6883 1414000 1323266 119000 142583 7000
100 10100 9640 2020000 1833360 170000 200540 10000

TABLE III: Total number of messages sent from server in scenarios with node dropout (D) and without node dropout (ND).
Round ACCESS-FL (ND) ACCESS-FL (D) SecAgg (ND) SecAgg (D) SecAgg+ (ND) SecAgg+ (D) FedAvg (ND)

10 12 13 100041 99041 7041 6033 11
30 32 35 300121 291201 21121 17915 31
50 52 57 500201 475601 35201 29557 51
70 72 79 700281 652401 49281 40959 71
100 102 112 1000401 903701 70401 57612 101

TABLE IV: Accuracy comparisons between ACCESS-FL (AC)
and FedAvg (FA) for MNIST, FMNIST, and CIFAR10.

MNIST FMNIST CIFAR10
Round AC FA AC FA AC FA

10 0.5126 0.5126 0.4711 0.4711 0.1129 0.1137
30 0.6783 0.6783 0.6339 0.6338 0.1465 0.1477
50 0.7338 0.7338 0.6862 0.6862 0.2176 0.2117
70 0.7675 0.7675 0.7084 0.7084 0.2764 0.2720

100 0.7970 0.7970 0.7247 0.7247 0.3157 0.3109

These properties make ACCESS-FL an efficient solution for
large-scale, stable FLaaS deployments, such as healthcare
systems where data privacy is crucial. Fig. 6b illustrates
the accumulated running time for the server in ACCESS-FL,
SecAgg, and SecAgg+ over 100 training rounds. In ACCESS-
FL, the server’s running time at each round is essentially
constant (except for the initial broadcast of public keys) since
it only aggregates masked updates and is not responsible for
unmasking or handling dropouts (with 100 clients, the per-
round cost stays flat). In SecAgg, the curve rises sharply;
SecAgg+ reduces that cost by half. The higher overhead in
SecAgg and SecAgg+ arises from cryptographic operations
needed to reconstruct shared masks for dropped-out clients
and private masks for participants, which increases aggregation
complexity. Although SecAgg+ reduces the overall cost by
generating the random k-regular graph and having each client
peered with (log|C|)− 1 neighbors instead of |C| − 1, it has
a higher cost compared to ACCESS-FL.

Fig. 6a plots the accumulated client running time. For
ACCESS-FL, the curve stays low and flat and never grows
with |C|. Each client (1) runs the deterministic pairing func-
tion, (2) trains locally, (3) derives two pairwise masks (PRG
on two shared secrets), and (4) uploads the masked update.
Dropout handling is triggered only when the server announces
a missing client. SecAgg+ reduces SecAgg’s cost; however,
they rise with |C| since each client must create two key
pairs, build (log|C|−1) shared secrets, apply double masking,
execute PRG once for the private mask and (log|C| − 1)
times for pairwise masks, run SSS, create ciphertext for every
neighbor, and decrypt the peers’ ciphertext; the server must
then reconstruct masks for dropouts. Learning curves (Ta-
ble IV) demonstrate that ACCESS-FL and FedAvg are identical
on MNIST and FMNIST and differ by <1 % on CIFAR-10,
showing ACCESS-FL’s accuracy scales across datasets.

B. Client Dropout for ACCESS-FL, SecAgg, and SecAgg+

We evaluate ACCESS-FL, SecAgg, SecAgg+ and tradi-
tional FL under a 10% dropout of 100 clients over 100
rounds on MNIST. Tables II and III report message counts
in dropout and non-dropout scenarios. In ACCESS-FL, total
messages fall slightly, from 10,100 to 9,640 by round 100,
since every dropout leads to one extra resend but also shrinks
the participant set. In contrast, SecAgg and SecAgg+ retain
their high overhead driven by pairwise secrets. ACCESS-
FL shows only a minimal rise: the server’s role (initial key
broadcast and one model broadcast per round) is unchanged
by dropouts. SecAgg and SecAgg+ remain heavy as the server
must reconstruct shared masks. Thus, ACCESS-FL keeps com-
munication almost as low as plain FL while still preserving
privacy: each client needs one public key and two shared
masks, independent of |C|. To the best of our knowledge, this
is the first secure aggregation scheme to achieve privacy with
only two masks per client, with the cost of O(1), in honest-
but-curious scenarios.

VII. CONCLUSION AND FUTURE WORK

This paper proposed ACCESS-FL, an efficient, secure ag-
gregation protocol for honest-but-curious scenarios in sta-
ble FLaaS deployments such as healthcare organizations.
ACCESS-FL preserves the security of state-of-the-art proto-
cols (SecAgg and SecAgg+); however, it forms shared secrets
with only two peers, giving each client a constant O(1) cost.
By eliminating double masking, all encryption/decryption, and
Shamir’s Secret Sharing, ACCESS-FL reduces both commu-
nication and computation overhead. The proposed protocol
also handles limited dropouts, with remaining participants
finding new pairs for masking and resending masked updates
with no server intervention or access to any mask (unlike
SecAgg/SecAgg+). Experiments on MNIST, FMNIST, and
CIFAR-10 demonstrated reductions in traffic needed for secure
aggregation (lower message count and message volume) and
running time, comparable to vanilla FedAvg while matching
its accuracy and maintaining the privacy provided by SecAgg
and SecAgg+ in honest-but-curious scenarios. Future work
will extend ACCESS-FL to active-adversary settings, integrate
differential privacy, and address loop vulnerabilities under
frequent dropouts.
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