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Anomalous Dynamics of Superparamagnetic Colloidal
Microrobots with Tailored Statistics

Alessia Gentili, Rainer Klages, and Giorgio Volpe*

Living organisms have developed advanced motion strategies for efficient
space exploration, serving as inspiration for the movements of microrobots.
These real-life strategies often involve anomalous dynamics displaying
random movement patterns that deviate from Brownian motion. Despite their
biological inspiration, autonomous stochastic navigation strategies of current
microrobots remain much less versatile than those of their living
counterparts. Supported by theoretical reasoning, this work demonstrates
superparamagnetic colloidal microrobots with fully customizable stochastic
dynamics displaying the entire spectrum of anomalous diffusion, from
subdiffusion to superdiffusion, across statistically significant spatial and
temporal scales (covering at least two decades). By simultaneously tuning
microrobots’ step-length distribution and, critically, their velocity
autocorrelation function with magnetic fields, fundamental anomalous
dynamics are reproduced with tailored properties mimicking Lévy walks and
fractional Brownian motion. These findings pave the way for programmable
microrobotic systems that replicate optimal stochastic navigation strategies
found in nature for applications in medical robotics and environmental
remediation.

1. Introduction

Living organisms have evolved efficient locomotion strategies to
navigate complex landscapes, search their surroundings, and im-
prove their fitness.[1,2] Selecting an optimal navigation strategy
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maximizes their ability to locate resources,
reach targets, and evade threats.[1,2] Of-
ten, optimal strategies yield deviations
from normal diffusion known as anoma-
lous diffusion.[3] These processes are
characterized by a non-linear power-law
scaling of the mean squared displace-
ment (MSD) in time, MSD(t) ∼ t𝜇 , where
𝜇 is the anomalous diffusion exponent,
including superdiffusion (𝜇 > 1) and sub-
diffusion (𝜇 < 1), as opposed to normal
diffusion (𝜇 = 1).[4] Popular stochastic
models describing anomalous dynam-
ics in random navigation problems are
(superdiffusive) Lévy walks, featuring
heavy-tailed step-length distributions,[5,6]

and fractional Brownian motion, show-
ing long-range correlations with both
superdiffusion and subdiffusion.[7,8]

Inspired by these biological scenarios,[9]

self-propelled nano- and microrobots have
been designed for targeted applications
in, e.g., nanomedicine[10] and environ-
mental remediation.[11] Among these engi-
neered systems, active colloids are widely

recognized as synthetic models for living matter,[12,13] with sig-
nificant potential for microrobotic applications due to their sim-
plicity, versatility and ease of fabrication.[14]

Although advanced autonomous stochastic navigation strate-
gies displaying anomalous dynamics have been successfully
implemented and validated in macroscale robotics,[15,16] hard-
ware miniaturization constraints have posed significant hurdles
to implement the same on smaller scales. Beyond numerical
studies,[6,17–21] enhanced diffusion (𝜇 = 1), and directed motion
(𝜇 → 2) continue to be the dominant types of fully autonomous
navigation mechanisms for active colloids.[22–24] Attempts at
more advanced navigation strategies require information to be
stored in the environment[25,26] or external feedback loops to cor-
rect and steer trajectories in real time,[27–33] for example to imple-
ment reinforcement learning-based approaches.[34–37] However,
autonomous stochastic strategies resembling anomalous diffu-
sion patterns as in living organisms remain elusive for active col-
loids, where, only on rare occasions, short trajectories compat-
ible with Lévy walks have been observed with limited statistics
and without robust control over long-term dynamics or precise
control of the anomalous diffusion exponent.[38,39]

Here, unlike previous experiments, we demonstrate super-
paramagnetic colloidal microrobots driven by external mag-
netic fields that move according to fundamental anomalous
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Figure 1. Anomalous diffusion of superparamagnetic colloidal microrobots in the comoving frame. a) Two concentric Halbach cylinders (inner dipole;
outer quadrupole) generate a linear magnetic field B (color gradient) and a constant force FB (black arrow) on a sample of colloidal microrobots
(black rectangle). The cylinders’ magnetic north (N, red) and south (S, blue) are shown. Rotating the quadrupole (purple arrows) around the fixed
dipole (orange arrow) reorients FB and the microrobots’ direction. Two consecutive rotations define their turning angle 𝜑 as twice the quadrupole
rotation angle. b) Trajectory of a colloidal microrobot moving at approximately constant speed (4.6 ± 0.8 μm s−1) in a comoving frame defined by
its velocity vector v and 𝜑. Scale bar: 25 μm. c–d) Bespoke sequences 𝜑n in time t of uniformly distributed 𝜑 in [−𝜋, 𝜋), obtained by sampling the
quadrupole rotation time 𝜏n (solid lines) from c) a half-Gaussian and d) a power-law (anomalous exponent 𝜇 = 1.5) distribution. e) Time-averaged mean
squared displacements (MSD, symbols) and trajectories (inset) of individual microrobots yielding long-time normal diffusion (𝜇 = 1) and superdiffusion
(𝜇 = 1.5) as confirmed by a logarithmic curve fit (dashed lines). Diffusive (∝ Δt) and ballistic (∝ Δt2) slopes shown for reference. Scale bar: 1 mm.

diffusion patterns with fully tailored statistics spanning the
entire spectrum of anomalous diffusion, from subdiffusion
(𝜇 < 1) to superdiffusion (𝜇 > 1), and over statistically sig-
nificant temporal and spatial scales (covering at least two
decades). Supported by theoretical reasoning, we achieve fine
control over the microrobots’ long-term dynamics by simul-
taneously tuning their step-length distribution and, critically,
their velocity autocorrelation function. Thanks to this fine
control, our microrobots describe 2D trajectories displaying
anomalous dynamics compatible with Lévy walks and frac-
tional Brownian motion with tailored anomalous diffusion ex-
ponents, hence better mimicking natural stochastic navigation
patterns.[1,2]

2. Results

2.1. Anomalous Dynamics of Colloidal Microrobots in the
Comoving Frame

In Figure 1, we show typical trajectories of microrobots yield-
ing anomalous dynamics. Our microrobots are colloidal super-
paramagnetic silica spheres of diameter 13.8 ± 0.4 μm driven
by external planar rotating magnetic fields (Experimental Sec-
tion). We use two concentric Halbach cylinders,[40] a dipole and a
quadrupole, to generate a constant magnetic field gradient |∇|B||
≈ 0.9 T m−1 (Figure 1a; Figure S1 and Table S1 (Supporting In-
formation) and Experimental Section). This gradient translates
into a constant magnetic force FB = |m|∇|B|, wherem is the par-
ticles’ magnetic moment, that drives the colloidal microrobots
at constant speed in its direction, vc= |v|= |FB|

6𝜋𝜂R
(Experimental

Section), where v is the particle’s velocity, R its radius, and 𝜂

the fluid’s viscosity.[41] By rotating the quadrupole around the
fixed dipole at discrete times tn with n an integer (Figure 1a, Ex-
perimental Section), we can reorient FB and, hence, the micro-

robots’ motion direction to generate extended tailored trajecto-
ries in a 2D comoving frame (Figure 1b). This is a coordinate
frame that defines the microrobot’s motion in terms of its speed
|v| ⩾ 0 and turning angle 𝜑 ∈ [−𝜋, 𝜋), where here only the latter
changes at times tn (Figure 1c,d, Supporting Text). Originally in-
troduced by Ross and Pearson about a century ago (Supporting
Information), this coordinate frame has been used to analyze and
model foraging organisms in movement ecology[42] and to for-
mulate advanced stochastic processes such as 2D Lévy walks.[6,43]

Arguably, the comoving frame is also the most natural one to
study the (anomalous) dynamics of active agents, such as liv-
ing organisms and robots, driven by an internal source of ran-
domness generated by the agents themselves[16,44] or to imple-
ment dynamics from the agents’ perspective using external fields
as in this work. Generating stochastic dynamics in a comoving
frame implies a fundamental change of perspective compared to
defining stochastic processes in a more standard fixed Cartesian
frame (Supporting Information). Assuming overdamped dynam-
ics, two decoupled time-discrete stochastic equations allow us to
formulate our microrobot’s 2Dmotion in the comoving frame as
(Supporting Information)[44]

𝜑n = 𝜉𝜑,n (1)

vn = 𝜉v,n (2)

where 𝜉𝜑,n and 𝜉v,n represent arbitrarily complex noise terms
driving each coordinate’s dynamics sampled at (non-necessarily
equally spaced) discrete times tn = tn − 1 + 𝜏n with 𝜏n the
quadrupole rotation time (Experimental Section, Figure 1). Given
constant speed, the microrobot runs a distance ℓn = vc𝜏n ballisti-
cally during flight time 𝜏n. If we sample 𝜏n from an arbitrary noise
distribution 𝜉𝜏,n, we can replace Equation (2) with (Supporting
Information)
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𝓁n = vc𝜉𝜏,n (3)

where the step length and flight time distributions are related
by 𝜉ℓ,n = vc𝜉𝜏,n. By defining appropriate distributions for 𝜉𝜑,n
(through the quadrupole rotation angle) and 𝜉𝜏,n (through the
quadrupole rotation time) and by sampling independent and
identically distributed random variables from these distributions
in time, random walks with different statistical properties can be
generated in the comoving frame experimentally under the con-
straint of constant speed (Figure 1, Experimental Section, Sup-
porting Information). For example, sampling 𝜉𝜑,n from the uni-
form distribution on the circle, our microrobots can describe tra-
jectories yielding long-time normal diffusion or superdiffusion
(Figure 1e; Movie S1, Supporting Information) when 𝜉𝜏,n is sam-
pled from either a half-Gaussian distribution[45] (Figure 1c) or a
power-law distribution with exponent 𝛼 = 3− 𝜇 as in the uniform
model of 2D Lévywalks[43] (Figure 1d for 𝛼 =𝜇= 1.5) (Experimen-
tal Section, Supporting Information). Unlike the normal diffu-
sion case, sampling 𝜏n from a heavy-tailed power-law distribution
with exponent 𝜇 leads to occasional long-lasting flight times dur-
ing which the microrobot moves ballistically in the direction of
the externally applied magnetic field before a reorientation event
occurs due to a random field rotation. Under our experimental
constraint of constant speed, these rare long-lasting flight times
translate into occasional large spatial displacements according
to ℓn = vc𝜏n that are typical of a Lévy walk with exponent 𝛼 =
3 − 𝜇 and contribute disproportionally to the MSD, making it
increase faster than linear, i.e. superdiffusively (Figure 1e).[1,5]

The superdiffusive trajectory in Figure 1e indeed shows that the
microrobot performs occasional long jumps displaying the typ-
ical spatial features of Lévy walks (Movie S1, Supporting Infor-
mation). The random nature of these long jumps is confirmed
by the mean displacement of the microrobot’s trajectory being
nearly zero (the absolute value of the mean displacement over
the whole trajectory is 1.16 μm < 0.17R, with R the particle’s ra-
dius). The narrow distributions of the instantaneous speed v̂ for
each trajectory confirm that our microrobots move at an approxi-
mately constant speed (Figure S2, Supporting Information), val-
idating the use of Equations (1) and (3) to formulate their mo-
tion. Since the microrobot’s reorientation timescale is controlled
by the implemented stochastic dynamics rather than rotational
Brownian motion, our colloidal microrobots have a controllable
variable average step length (from 12 μm for normal diffusion
to 16 μm for superdiffusion) even at constant speed, unlike sys-
tems governed by enhanced diffusion.[22] A long-time fit of the
time-averaged MSD calculated from each trajectory (for Δt > 8 s,
i.e., above the short-time persistence of the trajectory due to the
magnetic drive)[46] confirms the two desired diffusion regimes
over two decades (Figure 1e, Experimental Section). From the
fits, we indeed estimate the anomalous diffusion exponents to be
𝜇̂ = 1.0653 ± 0.0002 and 𝜇̂ = 1.5473 ± 0.0004, respectively. Our
microrobots therefore travel distances two orders of magnitude
longer than their own size while reliably maintaining the desired
anomalous diffusion dynamics (Experimental Section).

2.2. Analysis of Microrobots’ Trajectory Statistics

A deeper analysis of the experimental trajectories’ statistics,
based on their segmentation with the detected turning points

(Figure S3, Supporting Information, Experimental Section), fur-
ther confirms that the final microrobots’ dynamics are consistent
with the desired diffusion regimes (Figure 2). Beyond the mean
squared displacements (Figure 1e), we can extract the flight times
𝜏n, the step lengths 𝓁n and the turning angles 𝜑̂n of our micro-
robots directly from each trajectory (Experimental Section). The
step lengths 𝓁n depend linearly on the respective flight times 𝜏n
(Figure S4, Supporting Information), thus providing an indepen-
dent confirmation of the microrobots’ approximately constant
speed. The probability distribution functions (PDFs) of 𝜑̂n, 𝜏n and
𝓁n (Figure 2a,b and Figure S5, Supporting Information) confirm
that the microrobots are reproducing the desired distributions
as defined by the quadrupole’s rotation angle and time (Experi-
mental Section): for both trajectories in Figure 1e, the distribu-
tion of the turning angle is uniform on the circle (Figure S5a,b,
Supporting Information), thus matching the intended sampling
specified by the quadrupole’s rotation in line with Equation (1)
(i.e., PDF(𝜑̂n) ∼ PDF(𝜑n), Supporting Information); both distri-
butions of 𝓁n and 𝜏n show exponential and power-law scaling
(with 𝜇̂ ≈ 1.5 over two decades, Table S2, Supporting Informa-
tion), respectively consistent with normal diffusion (𝜇 = 1) and
superdiffusion for 𝜇 = 1.5 (Figure 2a,b; Figure S5c, Support-
ing Information)[43], thus matching the intended sampling spec-
ified by the quadrupole’s rotation times in line with Equation (3)
(i.e., PDF(𝓁n) ∼ PDF(⟨v̂⟩𝜏n) ∼ PDF(⟨v̂⟩𝜏n), Supporting Informa-
tion). The time-averaged experimental velocity auto-correlation
function Cv(Δt) at lag times Δt is also in agreement with theo-
retical expectations for the two regimes (Figure 2c, Experimental
Section).[23,47] The tail of this function decays as an exponential
for the diffusive case due to the short-term persistence in the
magnetic field[23] and, asymptotically, as a power-law (∼ Δt𝜇̂−2
with 𝜇̂ = 1.434 ± 0.005, Table S2, Supporting Information) for
the superdiffusive case, as expected for unbiased Lévy walks.[5]

2.3. Tuning Microrobots’ Step-Length Distributions

The statistics in Figures 1 and 2 demonstrate that our colloidal
microrobots can perform superdiffusion consistent with the uni-
form model of 2D Lévy walks over two decades in space and
time.[43] For our approach to be truly versatile, control over the
anomalous diffusion exponent 𝜇 is desirable, since this param-
eter allows us to tune the average step length of our micro-
robots even at constant speed. Figure 3 shows the possibility of
tuning the values of 𝜇 between the diffusive (𝜇 = 1) and bal-
listic (𝜇 = 2) limits by controlling the distributions of the step
lengths ℓn. By sampling 𝜑n from the uniform distribution on the
circle and 𝜏n from power-law distributions of varying exponent
𝛼 = 3 − 𝜇 (Figure S6, Supporting Information),[43] our micro-
robots can describe trajectories in the comoving frame accord-
ing to Equations (1) and (3) yielding different regimes of su-
perdiffusion in a controllable way under the experimental con-
straint of constant speed (Table S2, Supporting Information).
Figure 3a (inset) shows example trajectories for different val-
ues of 𝜇: as the anomalous diffusion exponent increases, the
microrobots tend to move ballistically over longer distances be-
fore a random change in orientation occurs (Movie S2, Support-
ing Information). Importantly, the four independent measure-
ments 𝜇̂ of the anomalous diffusion exponent obtained from
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Figure 2. Tailored diffusion statistics of superparamagnetic colloidal microrobots. a,b) Probability distribution functions (PDF) of a) flight times 𝜏n
between turns and b) step lengths 𝓁n extracted from three individual microrobots’ trajectories for the cases of normal diffusion (𝜇 = 1, green squares)
and superdiffusion (𝜇 = 1.5, blue circles) as in Figure 1e. c) Respective normalized time-averaged velocity autocorrelation Cv as a function of lag time Δt
for the individual microrobots’ trajectories in Figure 1e. In (a–c), fitting curves to the functions (dashed lines) show exponential and power-law scaling
respectively consistent with normal diffusion (𝜇 = 1) and superdiffusion (𝜇 = 1.5, Table S2, Supporting Information). The thick background lines in
(b) represent PDF(⟨v̂⟩𝜏n), showing that PDF(𝓁n) ∼ PDF(⟨v̂⟩𝜏n) with ⟨v̂⟩ the microrobot’s measured mean instantaneous speed (Figure S2, Supporting
Information). The axis colors in (a,b) reflect those of the respective distributions. Diffusive (a: ∝ 𝜏−3n ; b: ∝ 𝓁−3

n ; c: ∝ Δt−1) and ballistic (a: ∝ 𝜏−2n ; b:
∝ 𝓁−2

n ; c: ∝ Δt0) limits shown for reference.

fittingMSDs (Figure 3a,∼Δt𝜇), probability distribution functions
of flight times 𝜏n (Figure S6, Supporting Information ∼𝜏

𝜇−4
n ),

probability distribution functions of step lengths 𝓁n (Figure 3b–e,
∼𝓁𝜇−4

n ) and velocity autocorrelation functions (Figure S7, Sup-
porting Information ∼Δt𝜇−2) all scale in agreement with theo-
retical expectations for Lévy walks at the respective ground-truth
value of 𝜇 (Table S2, Supporting Information).[5] Consistent with
this scaling, the mean step length of the microrobots also in-
creases with increasing 𝜇, from ≈ 11 μm at 𝜇 = 1 to ≈ 118
μm at 𝜇 = 2. The ability to precisely tune the anomalous dif-
fusion exponent is particularly beneficial, as different environ-

ments may require distinct optimal search strategies. For exam-
ple, Lévy walks have been shown to be highly efficient in search
problems,[1] but their optimality can depend on the specific value
of 𝜇 according to environmental characteristics.[6,48] For exam-
ple, while trajectories with 𝜇 = 2 can be advantageous in terms
of search efficiency in homogeneous environments, complex or
obstructed landscapes can shift the optimum toward intermedi-
ate anomalous diffusion exponents.[6] Consistently with this no-
tion, when performing Lévy walks on a complex surface with
micro-obstacles (≈ 20% fractional surface coverage, Figure S8,
Supporting Information, Experimental Section), ourmicrorobots

Figure 3. Tailoring microrobots’ superdiffusion by controlling step-length distributions. a) Normalized time-averaged mean squared displacements
(MSD, dots) yielding long-time superdiffusion for individual microrobots’ trajectories (inset) generated according to Equations (1) and (3) by sampling
the turning angle𝜑n from the uniform distribution on the circle and the flight time 𝜏n from power-law distributions of varying exponent 𝛼 = 3− 𝜇 between
the normal diffusive (𝜇 = 1) and ballistic (𝜇 = 2) limits. Case for 𝜇 = 1.5 as in Figure 1e. Fit lines (dashed lines) confirm the different superdiffusive
regimes (Table S2, Supporting Information). The MSDs are normalized to the square of each microrobot’s short-term drift distance L in the driving
magnetic field. Scale bar: 5 mm. b–e) Probability distribution functions (PDF, dots) of experimental step lengths 𝓁n from three different microrobot’s
trajectories each for b) 𝜇 = 1, c) 𝜇 = 1.25, d) 𝜇 = 1.75, and e) 𝜇 = 2. PDF(𝓁n) ∼ PDF(⟨v̂⟩ 𝜏n) (thick background lines). Case for 𝜇 = 1.5 in Figure 2b. Fit
lines (dashed lines) show power-law scalings (∼ 𝓁𝜇̂−4

n ) consistent with the desired ground-truth values of 𝜇 (Table S2). Diffusive (a: ∝ Δt; b-e: ∝ 𝓁−3
n )

and ballistic (a: ∝ Δt2; b-e: ∝ 𝓁−2
n ) limits shown for reference.
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Figure 4. Tailoring anomalous diffusion by controlling the microrobots’ velocity autocorrelation function. a) Normalized time-averaged mean squared
displacements (MSD, dots) yielding different anomalous dynamics at long times, from subdiffusion (𝜇 < 1) to superdiffusion (𝜇 > 1) through normal
diffusion (𝜇 = 1), for individual microrobots’ trajectories (inset) consistent with fractional Brownian motion (Experimental Section, Supporting Infor-
mation). Fit lines (dashed lines) confirm the different anomalous diffusion regimes (Table S3, Supporting Information). The MSDs are normalized to
the square of each microrobot’s short-term drift distance L in the driving magnetic field. Subdiffusive (∝ Δt0.33) and ballistic (∝ Δt2) limits shown for
reference. Scale bar: 100 μm. b) Respective normalized time-averaged velocity autocorrelation functions Cv (dots) as a function of lag time Δt calculated
from the individual trajectories in (a) for different ground-truth values of 𝜇. Fitting the tail of the data with a quadratic polynomial scaled by a power
law (dashed lines) confirms the asymptotic scaling characteristic of fractional Brownian motion at different values of 𝜇 (∼ 𝜇̂(𝜇̂ − 1)Δt𝜇̂−2, Table S3,
Supporting Information).

with 𝜇 = 1.50 fare better (by at least 50%) than their diffusive and
ballistic counterparts in terms of area exploration rate, as they
reduce oversampling compared to microrobots with 𝜇 = 1 and
spend less time stuck at obstacles compared to those with 𝜇 = 2
(Figure S8, Supporting Information).

2.4. Tuning Microrobots’ Velocity Autocorrelation Functions

The superdiffusive dynamics discussed so far belong to a class
of memoryless anomalous dynamics, which means that the mi-
crorobot’s persistent motion does not depend on its past steps
in the trajectory. Introducing memory into diffusive dynamics
enables the adoption of both persistent and antipersistent mo-
tions, the trade-off of which can optimize time efficiency versus
area coverage in space exploration tasks.[2] Such anomalous dif-
fusion dynamics arise when the agent’s displacements are not
independent but correlated in time. A famous example for this
type of dynamics is fractional Brownian motion where the driv-
ing noise is no longer white but colored.[7] This stochastic pro-
cess can generate thewhole spectrumof anomalous diffusion un-
der parameter variation, from subdiffusion (𝜇 < 1) to superdiffu-
sion (𝜇 > 1) through normal diffusion (𝜇 = 1).[7] Experimentally,
as there is currently no self-consistent formulation of fractional
Brownian motion in the comoving frame in terms of stochastic
equations of motion, we implemented microrobots whose mo-
tion satisfies Equations (1) and (3) by pregenerating sequences
of flight times 𝜏n and turning angles 𝜑n that yield an analogue
of 2D fractional Brownian motion in the comoving frame un-
der the constraint of constant speed (Experimental Section, Sup-
porting Information). These preprogrammed sequences of turn-
ing angles and flight times are directly derived from fractional
Brownian motion trajectories numerically generated in the 2D
Cartesian frame (Experimental Section). Following the protocol
described in the Supporting Information, we then transformed
these preprogrammed dynamics into dynamics in the comov-

ing frame that replicate the long-range temporal correlations and
MSD scaling of fractional Brownian motion. In analogy to the
transformation between Lévy flights and walks, we refer to this
fractional Brownian motion-like process as fractional Brownian
walks, a constant-speed analogue that retains fractional Brown-
ian motion’s key statistical features. Figure 4 shows that, as 𝜇 in-
creases, the corresponding trajectories (Figure 4a, inset) become
less localized and more ballistic (Movie S3, Supporting Infor-
mation). The microrobots’ tendency to turn backward (negative
persistence) reduces in favor of its forward propagation (positive
persistence) (polar plots, Figure S9, Supporting Information). A
long-time fit of the time-averagedMSDs calculated from each tra-
jectory (Figure 4a; Table S3, Supporting Information) confirms
the shift from subdiffusion (sublinear MSD, 𝜇 < 1) to superdif-
fusion (superlinear MSD, 𝜇 > 1) through normal diffusion (lin-
ear MSD, 𝜇 = 1), when the microrobots’ velocities show a tran-
sition from negative to positive correlations (Figure 4b; Table S3,
Supporting Information) in agreement with theoretical expecta-
tions (Experimental Section, Supporting Information).[49] There-
fore, these two consistent independent measurements (i.e., by
fitting the MSD and Cv) of the anomalous diffusion exponent as-
sociated with each trajectory strongly support the tailored gener-
ation of different types of anomalous diffusion dynamics, com-
patible with fractional Brownian motion, for our colloidal super-
paramagnetic microrobots by the spatio-temporal control of their
turning angles and flight times in the comoving frame (Table S3,
Supporting Information).

3. Conclusion

We have demonstrated colloidal superparamagnetic microrobots
capable of programmable anomalous dynamics compatible with
2D models of normal diffusion,[23] Lévy walks,[5] and fractional
Brownian motion.[7] Supported by theoretical reasoning, we
have implemented these anomalous dynamics in a comoving
frame, i.e., a frame moving and rotating with the microrobot,
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directly capturing the motion from the perspective of the ac-
tive agent itself. We validated these dynamics over statistically
relevant temporal and spatial scales by precisely tuning two key
experimental parameters (i.e., the microrobot’s turning angles
and flight times). Our approach enables the computationally ef-
ficient motion planning of colloidal microrobots capable of au-
tonomous navigation based on diverse advanced random strate-
gies without requiring onboard circuitry[9] or the implementa-
tion of any external feedback based on the position and velocity of
the microrobots.[27–29,31–33] Such autonomous random navigation
strategies can prove beneficial in exploring complex unknown en-
vironments, where deterministic strategies may struggle and a
stochastic approach may be preferred,[2,6,50,51] e.g., for manipula-
tion and navigation tasks in therapeutic applications[52] and en-
vironmental remediation.[53] While we used external fields, our
work could serve as a steppingstone toward the development of
fully autonomous microrobots moving anomalously by exploit-
ing internal sources of randomness instead, as the comoving
frame representation we developed here is independent of the
microscopic details of the experimental implementation. In the
case of fractional Brownianmotion, this would also require a self-
consistent formulation of this process’ stochastic equations of
motion in the comoving frame to be developed first. Beyond
advancing the capabilities for autonomous navigation of micro-
robots, we also anticipate that our framework will provide a ro-
bust experimental platform for validating theoretical and pre-
dictive models and analysis methods of both ergodic and non-
ergodic anomalous diffusion dynamics in active matter and be-
yond,[54,55] thus contributing to deepen our general understand-
ing of anomalous diffusion processes across various fields and
scales, from the life sciences to macroscopic natural and human
processes.[56–61]

4. Experimental Section
Materials: Glass microscopy slides (25 mm × 75 mm × 1 mm,

Epredia) and glass coverslips (24 mm × 24 mm × 0.14 mm) for sam-
ple preparation were purchased from Thermo Fisher and VWR, respec-
tively. The following chemicals were purchased and used as received: ace-
tone (⩾99.8%, Sigma–Aldrich), ethanol (⩾99.8%, Fisher Scientific), ethy-
lene glycol (Sigma–Aldrich), Tween 20 (Sigma–Aldrich), sodium chloride
(NaCl, Sigma–Aldrich). Deionized (DI) water (≥18 MΩ cm, type II Water)
was collected from aMilli-Q purification system. Aqueous colloidal disper-
sions (5%w/v) of superparamagnetic and plain silica (SiO2) particles were
purchased from Microparticles GmbH. Parafilm (Bemis Parafilm M Labo-
ratory Wrapping Film), used as spacer for the sample chamber, was pur-
chased from Fisher Scientific. Two-part epoxy glue (Gorilla Epoxy) for seal-
ing the samples was purchased from RS Components. The neodymium
magnets used to build the Halbach cylinders were purchased from K&J
Magnetics, Inc. (B666-N52) and supermagnete (W-07-N). PA 2200 (ny-
lon powder) was used to 3D-print the encasing of the magnets for the
cylinders.

Colloidal Dispersion: As microrobots, superparamagnetic silica (SiO2)
colloidal particles with a diameter of 13.8 ± 0.4 μm, an iron oxide con-
tent greater than 5 wt. %, and a high density of approximately 1.5 g cm−3,
as estimated by the manufacturer were used. Before each experiment, the
original batch dispersion was gradually diluted in a 50% ethylene glycol
and 50% DI water solution by volume to achieve very low particle concen-
trations (<10−5 w/v%) and avoid interparticle interactions in a magnetic
field. The viscosity of this solution was approximately four times that of
pure DI water[62] to reduce the particles’ speed when exposed to the high
magnetic fields generated by the Halbach cylinders (Figure 1). Typical Pé-

clet numbers range between 4000 and 6000. Such high values indicate that
Brownianmotionwas negligible and directedmotion dominated the short-
term dynamics of the particles.[22] To prevent the particles from sticking to
the glass slides during experiments, small traces (<0.002 v/v%) of a 10%
Tween 20 aqueous solution were added to the final dispersion. By prevent-
ing sticking and by increasing viscosity to reduce occurrences of particles
exiting the field of view, their dynamics were controlled for durations of up
to 9 h.

Sample Chamber: A volume of 62 μl of the colloidal dispersion was
confined within a quasi-2D chamber assembled from a microscope slide
(bottom layer, cut to approximately 25 mm × 28 mm × 1 mm) and a cov-
erslip (top layer) using two strips of melted parafilm as spacers to obtain a
thickness of≈ 20 μm. First, both the glass slide and coverslip were cleaned
by sequentially immersing them in Coplin jars containing acetone, ethanol
and DI water in an ultrasonic bath for 5, 10, and 15min, respectively. Blow-
ing the slide and coverslip dry with nitrogen gas removed excess water.
For experiments with micro-obstacles only (Figure S8, Supporting Infor-
mation), the glass slide was additionally prepared with immobilized mi-
croparticle clusters serving as obstacles for themicrorobots according to a
previously developed protocol.[63] A ten μl drop of a 1.5 wt.% aqueous sus-
pension of silica microparticles (diameter 20.00± 0.64 μm) containing 0.1
M sodium chloride (NaCl) was deposited at the center of the cleaned glass
slide. After 2 min to allow the particles to sediment, the drop was dried by
capillarity using filter paper at its edge. The slide was then placed on a hot
plate at 60 °C for 1 min to promote long-term adhesion of the micropar-
ticle clusters to the glass surface and to remove residual water.[63] Finally,
the slide was immersed in a Petri dish filled with deionized water for 5 min
to dissolve excess salt, followed by gentle nitrogen drying. This method al-
lowed to obtain an average≈ 20% fractional surface coverage of the obsta-
cles in the entire field of view. After preparation of the sample chamber’s
bottom layer, two strips of parafilm (approximately 25 mm × 5 mm each)
were placed at opposite edges of the glass slide and let them melt on a
hotplate at 60 °C, near the melting point of parafilm. Once the parafilm
turned transparent (after about 3 min), the coverslip was placed on top,
and slight pressure was applied using the flat tip of a pair of tweezers to
close the chamber. After cooling and loading the particles’ dispersion, the
chamber was sealed with two-part epoxy glue, and let it cure and rest for
at least 20 min before each experiment. Due to the small volume and low
concentration of colloids in the dispersion, the experimental chamber con-
tained very few particles (typically less than 3), allowing to select and track
individual microrobots in each experiment.

Magnetic Fields with Halbach Cylinders: The constant magnetic field
gradient ∇|B| needed to drive our superparamagnetic colloidal micro-
robots at constant speed vc = |v| in the sample plane was generated us-
ing two concentrical Halbach cylinders (Figure 1a; Figure S1, Supporting
Information): an inner dipole (Figure S1a, Supporting Information) sur-
rounded by an outer quadrupole (Figure S1b, Supporting Information).[40]

These cylinders, constituted by circular arrays of permanent magnets
(Figure S1c, Supporting Information), can produce controlled magnetic
fields entirely within their core while canceling it on the outside. In
this case, the axis of the cylinders is aligned along the direction (z in
Figure S1, Supporting Information) perpendicular to the sample plane
(xy in Figure S1, Supporting Information). The inner Halbach cylinder
produces a strong homogeneous dipolar magnetic field BD in this plane
with constant intensity B0 along the y-axis (Figure S1a,d–f), maximiz-
ing the magnetic moment m of the superparamagnetic particles and
aligning it along the field lines. The outer cylinder generates a weaker
quadrupolar magnetic field BQ consisting of two orthogonal linear com-
ponents in space (i.e., each with a constant derivative of magnitude G)
(Figure S1b,g–i, Supporting Information). When the two arrays are coaxi-
ally aligned, the resulting field B(r) at position r = (x, y) is linear in space
and given by

B(r) = BD(r) + BQ(r) = B0

[
0
1

]
+ G

[
− cos 2𝛽 sin 2𝛽
sin 2𝛽 cos 2𝛽

] [
x
y

]
(4)

where 2𝛽 is the angle of rotation of the magnetic field gradient induced
by a 𝛽 rotation of the quadrupole around the dipole.[40] The direction of
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the gradient can therefore be adjusted by rotating the quadrupole with
respect to the dipole (Figure 1a), and the difference Δ𝛽 between two
consecutive rotations of the quadrupole defines the microrobot’s turning
angle 𝜑 as 𝜑 = 2Δ𝛽 (Figure 1a,b). As a result of combining a strong
homogeneous dipolar magnetic field with a weaker constantly graded one,
the microrobots move in a well-defined, spatially independent, and ad-
justable direction defined only by the component of the gradient parallel
to BD (the y-component in Equation (4)).[41]

A discrete version of the Halbach dipole with radius rc = 30.05mm was
implemented using k = 16 cubic neodymium magnets (grade N52, re-
manence BR ≈ 1.48 T, relative permeability 𝜇R = 1.05, side length am =
9.5mm) with B0 given by

B0 = BR ln
(
rout
rin

)
1√
𝜇R

sin(2𝜋∕k)
2𝜋∕k

k am
𝜋(r2out − r2in)

h(6r2c + h2)

(4r2c + h2)3∕2
≈ 85mT(5)

where rin = 23.3mm and rout = 36.8mm are the cylinder’s inner and outer
radii, respectively (Figure S1c, Supporting Information), and h = am its
height.[40] The cylinder radius rc can be calculated from these two values as
their average rc = (rin + rout)/2 and was chosen to bemore than double the
entire sample’s size to prevent edge effects due to field inhomogeneities
nearer to the magnets. Moreover, the Halbach dipolar cylinder was im-
plemented as a vertical stack of two identical circular arrays separated by
15.3 mm,[64] to reduce field inhomogeneity in the z-direction, thus min-
imizing any possible vertical magnetic drift of the colloids. Stacking the
two arrays also produced an expected increase in field intensity by a factor
of 1.351 with respect to the prediction in Equation (5). This increase was
confirmed using a Gaussmeter (Lake Shore Cryotronics, Inc., Model 420),
measuring an average magnetic field of 111.38 ± 0.66 mT (Figure S1d–f,
Supporting Information).

Similarly, a discrete version of the Halbach quadrupole was imple-
mented with a larger radius rc = 46.7 mm using k = 32 cubic neodymium
magnets (grade N42, remanence BR ≈ 1.32 T, relative permeability 𝜇R =
1.05, side length am = 7 mm) with G given by (ref. [40])

G =
2BR√
𝜇R

(
1
rin

− 1
rout

)
sin(3𝜋∕k)
3𝜋∕k

k a2m
𝜋(r2out − r2in)

h(h4 + 10h2r2c + 30r4c )

(4r2c + h2)5∕2

≈0.9 Tm−1 (6)

This value was confirmed calculating the gradient (0.98 ± 0.08 T m−1)
from the magnetic field intensities measured with the Gaussmeter
(Figure S1g–i, Supporting Information).

Table S1 (Supporting Information) summarizes all parameters used to
implement both Halbach cylinders. All magnets were held in place side
by side by plastic molds (one for the dipole and one for the quadrupole),
which were 3D-printed using Selective Laser Sintering (SLS) technology.

Experimental Setup: Individual microrobots’ trajectories were
recorded using a custom-built inverted microscope. The sample rested
in the region of homogeneous dipolar field at the center of the Halbach
dipole, which was supported by four metal pillars (Thorlabs). The sample
holder was uncoupled from the dipole support to reduce transmission of
vibrations due to the rotation of the quadrupole around the dipole. For the
same reason, the quadrupole was mounted on a third separate support,
vertically centered at the sample level, and connected to a high-speed mo-
torized rotational stage (Zaber, X-RSB060AD). To reorient the magnetic
field gradient instantaneously with respect to the microrobots’ dynamics,
the quadrupole was rotated at constant angular speed (60 rad s−1). This
value was chosen because, during the time required by the quadrupole
to complete the largest rotation in the experiments (Δ𝛽 = ±𝜋/2), a
microrobot traveled a distance comparable with the localization error
on the determination of its centroid (≈ 0.13 μm), thus with negligible
influence on the final trajectory. To reduce vibrations, the quadrupole

rotation was ramped up to (down from) its maximum speed with a
constant angular acceleration (deceleration) of 60 rad s−2. For sample
illumination, a monochromatic LED (𝜆 = 660 nm, Thorlabs, M660L4)
equipped with an adjustable collimation adapter (Thorlabs, SM2F32-A)
was mounted on this last support. To acquire long trajectories, the
imaging system was also uncoupled from the part of the setup containing
the sample. The imaging system was formed by two lenses projecting
the image of the sample with a 4× magnification on a monochrome
complementary metal–oxide–semiconductor (CMOS) camera (Thor-
labs, DCC1545M). This system was mounted on a computer-controlled
two-axis motorized translation stage (Thorlabs, PT1/M-Z8) to allow to
recenter the microrobot in the field of view of the camera (1.3 mm ×
1.6 mm), thus avoiding that the particle exited it in long linear stretches
of its motion. Videos of microrobots were recorded with a frame rate
of 11.94 frames per second (the inverse of the sampling time 𝛿t) using
a custom MATLAB program that triggered the camera acquisition. The
same program controlled the sequence of rotations of the quadrupole to
implement bespoke patterns of anomalous diffusion and the translation
of the imaging system based on the microrobot’s position. During
relatively long quadrupole rotation times (>15 s), video recording was
temporarily interrupted to automatically recenter the microrobot to the
field of view every 2 s before recording was resumed. The stage was trans-
lated with a constant speed of 1mms−1, approximately 200 times faster
than typical particles’ speeds, i.e., almost instantaneously compared
to the microrobots’ dynamics (Figure S2, Supporting Information). To
reduce vibrations, the stage translation was ramped up to (down from) its
maximum speed with a constant acceleration (deceleration) of 1mms−2.
Full microrobots’ trajectories were reconstructed by stitching together
individual trajectories (Figure S10, Supporting Information, see Trajectory
stitching below) obtained from sequences of videos corresponding to
each experiment using homemade Python scripts based on the Trackpy
package.[65] Like this, trajectories were acquired over centimeter-long
scales over extended periods of time (up to 9 h).

Trajectory Stitching: Full microrobots’ trajectories were reconstructed
by stitching together individual trajectories from a sequence ofN consecu-
tive videos. To facilitate stitching, any two consecutive videos respectively
finished and started with an at least 1-s long portion of the same step
length ℓn in the trajectory (Figure S10, Supporting Information). These

portions were reconnected by translating all the i points rj+1i of the trajec-
tory (with j and i both integers) defined in the coordinate system of the
(j + 1)th video back to the reference system of the jth video (Figure S10,
Supporting Information). The origin of the coordinate system associated
to each video was at the center of its field of view. As the microrobot was
moving ballistically at the time of its recentering, the additional distance it
traveled between recordings (Figure S10) was also accounted. The trans-
lation between the reference systems of two consecutive videos is then
given by

rji = rj+1i + rjM ≈
(
rj+1i − rj+10

)
+ 𝜏𝛿⟨v̂𝓁⟩uv + rjM (7)

where rji and rjM are respectively the positions of rj+1i and of the last

recorded point of the jth video in its reference system, and rj+10 identifies
the first particle’s position of the (j + 1)th video in its reference system. If
the microrobot was moving ballistically at approximately constant speed
(as in the experiments, Figure S2, Supporting Information), the vector
rj+10 ≈ 𝜏𝛿⟨v̂𝓁⟩uv, where 𝜏𝛿 was the time elapsed between recordings, ⟨v̂𝓁⟩
was the average particle’s speed in the two recorded portions of the step
length being reconstructed, and uv = (cos(𝜃), sin(𝜃)) was the unitary vec-
tor in the direction of motion, i.e., also defined by the same step length of
the full trajectory which was being reconstructed. Finally, the displacement
between the last point of the jth video and the first point of the (j + 1)th

video was linearly interpolated by resampling with the experimental sam-
pling time 𝛿t (the inverse of the frame rate). This procedure was repeated
iteratively until the trajectory was fully reconstructed in the coordinate sys-
tem of the first acquisition video. Importantly, Figure S11 (Supporting In-
formation) verifies that any two reconnected portions in the reconstructed
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trajectory maintain the same direction of motion (Figure S11b, Supporting

Information) and the validity of the relationship rj+10 ≈ 𝜏𝛿⟨v̂𝓁⟩uv based on
direct measurements of rj+10 from image analysis and measurements of
stage displacements (Figure S11b, Supporting Information), thus further
confirming our constant speed approximation. The proportionality with
slope 1 (Figure S11, Supporting Information) between these two quanti-
ties (that is, rj+10 from direct stage displacement measurements and the
independent estimate of 𝜏𝛿⟨v̂𝓁⟩uv from the microrobot’s constant velocity
and the elapsed time between consecutive recordings) enables to rule out
the presence of systematic biases and artifacts in the trajectories recon-
structed with this stitching protocol.

Distributions of Quadrupole Rotation Times and Turning Angles: For tra-
jectories yielding normal diffusion (Figure 1 and 2, 𝜇 = 1), sequences of
N quadrupole rotation times 𝜏n were numerically generated from a half-
Gaussian distribution (Figure S5, Supporting Information). The probabil-
ity density function (PDF) of this distribution is

PDF(𝜏) = e−𝜏
2∕16

2
√
𝜋

, 𝜏 ≥ 0 (8)

For trajectories yielding Lévy walks of exponent 𝛼 = 3 − 𝜇 (Figures 1–3),
sequences of N quadrupole rotation times 𝜏n were numerically generated
using the inversemethod (Figures S5 and S6, Supporting Information):[66]

by drawing r as a random number from a uniform distribution in [0,1), the
variable 𝜏 = 𝜏min(1− r)−1/𝛼 follows a power-law distribution with exponent
(𝛼 + 1) and lower bound 𝜏min

PDF(𝜏) = C𝜏−(𝛼+1), 𝜏 ≥ 𝜏min (9)

where C = 𝛼𝜏𝛼min is a normalization constant. A power-law distribu-
tion with a lower bound was preferred over an 𝛼-stable Lévy distri-
bution to optimize experimental time by focusing directly on the tail
of the distributions. For this purpose, 𝜏min = 1 s was set to facilitate
the detection of turning points in the trajectories (see Turning point
detection).

Finally, sequences of N turning angles 𝜑n were drawn from a uniform
distribution over the half-open interval [−𝜋, 𝜋) for both normal diffusion
and Lévy walks (Figures S5 and S6, Supporting Information). To simplify
the task of detecting turning points, angles were drawn uniformly at ran-
dom from a discrete set of values space by 𝜋/6 in this interval. In all cases,
the value ofN was chosen so that the cumulative sum of all 𝜏n was at least
3-h long to observe anomalous diffusion in experiments over at least two
decades in space and time.

For fractional Brownian motion, sequences of (𝜏n, 𝜑n) yielding a
constant-speed analogue of this process in the comoving frame were gen-
erated, which satisfies Equation (1) and (3), by adopting the protocol de-
tailed in the Supporting Information. In analogy to the transformation
between Lévy flights and walk, realizations of this process were referred
as fractional Brownian walks. Briefly, trajectories generated in simulations
with a constant flight time 𝜏c and non-constant Gaussian-distributed ve-
locities ṽn in a Cartesian frame were transformed into trajectories of the
same path topology with constant speed vc and non-constant flight times
𝜏n in the comoving frame by doing the following (Supporting Informa-
tion): 2D (time-discrete) Cartesian fractional Brownian motion was first
generated from the Davies-Harte method[67] implemented in the Python
package stochastic for all values of the anomalous exponent 𝜇 used
in the experiments; in order to scale the average speed in simulations

(ṽc = ⟨ṽn⟩ = √
𝜋

2
𝜎ṽ for 𝜎ṽ = 1 μm s−1 and 𝜏c = 1 s) to a representative

a-priori estimate for the microrobot’s experimental average speed vc = 4.5
μm s−1, Equation (S33) (Supporting Information) was then applied with
a scale factor of 𝜅 = 3.6 (defined by Equation (S23), Supporting Informa-
tion), thus effectively matching the experimental length scales; finally, the
scaled sequences of speeds and turning angles (vn,𝜑n) associated to each
trajectory were transformed into the corresponding (𝜏n,𝜑n) sequences for
the rotation of the quadrupole implementing the transformation given by
Equation (S29) (Supporting Information).

MSD Calculation and Fitting: For each trajectory, the time-averaged
mean squared displacement (MSD) was calculated at discrete time
lags Δt = m𝛿t (with 𝛿t the experimental sampling time and m an
integer) as[46]

MSD(Δt) = 1
T − Δt

T−Δt∑
t=𝛿t

[
(x(t + Δt) − x(t))2 + (y(t + Δt) − y(t))2

]
(10)

where r = (x, y) are the trajectory’s coordinates sampled at time steps t =
p𝛿t (with p an integer), and T= P𝛿t (with P= 12500) is the total number of
data points in the MSD calculations. Time-averaging of the mean squared
displacement is appropriate, as normal diffusion and fractional Brownian
motion are ergodic processes, and the weak ergodicity breaking of Lévy
walks does not affect the power-law scaling of the MSD in homogeneous
environments.[54] The value T was chosen to be shorter than the trajec-
tory length, but large enough to extract anomalous diffusion exponents by
fitting the MSD over at least two decades with strong statistical reliabil-
ity. The scaling exponent 𝜇̂ of the MSD was estimated with a linear fit in
log–log scale in the asymptotic limit (i.e., for Δt > 8 s, after the short-time
persistence transition point, Figures 1c, 3a, 4a). The reported uncertainty
associated with the estimated exponent 𝜇̂ (Tables S2 and S3, Supporting
Information) corresponds to one standard deviation of the fit parameter.

Detection of Turning Points: Turning points along microrobots’ trajec-
tories were identified based on the detection of local extrema in their veloc-
ity. Given that the microrobots move at nearly constant speed (Figure S2,
Supporting Information), significant variations of this quantity should pri-
marily reflect directional changes. Experimentally, variations of the ab-
solute value of the acceleration magnitude gradient (|∇|a||, Figure S3a,
Supporting Information) were used as a noise-robust empirical proxy to
identify these directional changes. To further minimize the impact of the
experimental noise, this time series was preprocessed with a Savitzky-
Golay filter with a five-point kernel,[68] implemented with the Python
scipy.signal.savgol_filter function. Prominent peaks were then
identified using the Python scipy.signal.find_peaks function.[69]

This method was validated for the independent detection of the turning
points directly from the acquired trajectories by comparing their predicted
values 𝜏n against the ground truth from the sequences 𝜏n of quadrupole
rotations (Figure S3b, Supporting Information). For all trajectories, a F1
score of at least 0.83 was achieved. Here, themicro average of the F1 score
was computed using the Python sklearn.metrics.f1_score function
with a tolerance of five data points (≈ 0.42 s),[70] i.e., a predicted turning
point was considered a true positive if it was within five points of a ground
truth value.

Experimental Distributions of Flight Times and Step Lengths: After iden-
tifying the turning points along each trajectory, the probability density
functions (PDFs) of the flight times 𝜏n and step lengths 𝓁n of the parti-
cles were calculated (Figures 2 and 3; Figures S5, S6, and S12, Support-
ing Information). For normal diffusion (Figure 2a,b), the PDFs should
decay exponentially in the long-time limit, which was verified by fitting
them to a half-Gaussian function.[3,5] For trajectories yielding Lévy walks
(Figures 2a,b and 3b–e), the asymptotic power-law scaling and corre-
sponding anomalous exponent 𝜇 were verified with a linear fit of the distri-
bution tails on log–log scale (Table S2, Supporting Information).[3,5] To in-
crease tail statistics, data from three different trajectories were combined
for each value of 𝜇. For fractional Brownian walks, the PDFs should follow a
Rayleigh distribution independent of the anomalous diffusion exponent 𝜇
(Supporting Information), as confirmed experimentally (Figure S12, Sup-
porting Information).

Experimental Velocity Autocorrelation Functions: For each trajectory, the
normalized velocity autocorrelation function (VACF) was calculated as

Cv(Δt) =
⟨v(t) ⋅ v(t + Δt)⟩⟨v2(t)⟩ (11)

where v(t) is the instantaneous microrobot’s velocity at time t, Δt is the
time lag for the calculation of the VACF and 〈…〉 indicates a time aver-
age. The microrobot’s velocity was calculated as v(t) = r(t+5𝛿t)−r(t)

5𝛿
with
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𝛿t the experimental sampling time, i.e., using a time window of 0.42 s
(corresponding to five video frames) moving along the trajectory to min-
imize the impact of the tracking localization noise. For normal diffusion,
Cv(Δt) follows an exponential decay as expected (Figure 2c).[5,23] For tra-
jectories yielding Lévy walks, it was confirmed that Cv(Δt) decays as a
power law of consistent anomalous diffusion exponent 𝜇 asymptotically
(Figure S7 and Table S2, Supporting Information).[5] For fractional Brown-
ian walks, it was confirmed thatCv(Δt) decays as the asymptotic functional
form characteristic of this process given by Cv(Δt) ≃

1
2
𝜇(𝜇 − 1)Δt𝜇−2 for

each value of 𝜇 (Figure 4b; Table S3, Supporting Information).[71]

Navigation in Presence of Micro-Obstacles: Microrobots performing
Lévy walks on a surface with micro-obstacles (Figure S8, Supporting Infor-
mation) were controlled and recorded as previously described without in-
terrupting the recording to recenter the microrobot within the field of view,
as the interaction with the obstacles meant that the microrobot did not
leave the field of view within the experimental time. The turning times and
angles implemented followed the same distributions as the trajectories in
Figure 3a. For each value of 𝜇, four different trajectories were recorded,
each starting in a different field of view of same fractional surface cover-
age (≈ 20%). Within the same dataset (i.e., a complete set of trajectories
with all values of 𝜇), the microrobot was always restarted from approxi-
mately the same location for fairer comparison of exploration efficiency.
Trajectories were extracted from video recordings using custom Python
scripts based on the Trackpy package, after applying a binary mask to
remove obstacles from the video frames for ease of tracking. The binary
mask was generated from the first frame of each experiment using Otsu’s
thresholding method (implemented in scikit-image library) to identify
obstacle regions. The microrobot was excluded from the final mask by de-
tecting its position with the Trackpy package and removing a circular re-
gion centered on its coordinates. Efficiency was quantified as the average
area exploration rate 〈At〉 extracted from each trajectory. The coordinates
were discretized on a square grid with a bin size equal to the diameter of
the microrobot (13.81 μm) to calculate the histrogram of the sites it vis-
ited. For each trajectory, this 2D histogram was converted into a binary
map of uniquely visited sites, where each bin was marked as visited if oc-
cupied at least once by the particle. At was then defined as the sum of
the areas of these uniquely visited bins normalized by the duration of the
trajectory.

Statistical Analysis: All data were processed and analyzed using cus-
tom Python scripts. Statistical analyses were limited to descriptive model
fitting. Unless differently specified, results were typically presented as fit
parameters ± one standard deviation, obtained from the diagonal ele-
ments of the fit covariance matrix. All fittings were performed using un-
weighted least squares (scipy.optimize.curve_fit). Unless other-
wise stated, all analyses were performed on a single long trajectory. For
all processes, individual trajectories were obtained from video data us-
ing the Trackpy library and correspond to single microrobots tracked
for at least 1.5 h and up to 9 h with a sampling time of 0.08 s. Trajec-
tory lengths ensured a time range spanning at least two orders of mag-
nitude in the time-averaged MSD. MSDs were computed as a function of
the time lag, and the estimated anomalous diffusion exponent 𝜇̂ was ex-
tracted from a linear fit in log–log scale to the asymptotic regime, with
the fit slope used to determine 𝜇̂. Probability density functions (PDFs)
of flight times (𝜏n) and step lengths (𝓁n) were obtained from single
trajectories after turning point detection. Turning points corresponded
to significant peaks in the absolute gradient of the acceleration magni-
tude, identified using SciPy’s find_peaks function after smoothing with
a five-point Savitzky–Golay filter. PDFs were computed with a custom
function that produces normalized histograms using logarithmic bins
for Lévy walks and linear bins for fractional Brownian walks and normal
diffusion. For Lévy walks, step-length data from three independent tra-
jectories (three different experiments) per values of 𝜇 were pooled to
improve tail statistics, with the number of step lengths ranging from
838 at 𝜇 = 2.00 to 40985 at 𝜇 = 1.00. The tails of the distributions
were fitted in log–log scale using unweighted linear regression over at
least two decades in step length. For fractional Brownian walks, flight-
time PDFs were fitted in linear scale to a Rayleigh distribution (Equa-
tion (S30), Supporting Information) using unweighted least squares. For

normal diffusion, both flight-time and step-length PDFs were fitted in
linear scale to an exponential model using unweighted least squares.
The normalized velocity autocorrelation function (VACF) was computed
from instantaneous velocities estimated over a five-frame (0.42 s) window
(Equation (11)). VACF decay was fitted to model-specific forms – expo-
nential for normal diffusion, power law for Lévy walks, and the asymptotic
form characteristic of fractional Brownian motion for fractional Brownian
walks.
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