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Abstract.  Interactive machine learning (ML) allows a music performer to digi-
tally represent musical actions (via gestural interfaces) and affect their musical 
output in real-time. Processing musical actions (termed performance gestures) 
with ML is useful because it predicts and maps often-complex biometric data. 
ML models can therefore be used to create novel interactions with musical sys-
tems, game-engines, and networked analogue devices. Wekinator is a free open-
source software for ML (based on the Waikato Environment for Knowledge 
Analysis – WEKA - framework) which has been widely used, since 2009, to 
build supervised predictive models when developing real-time interactive sys-
tems. This is because it is accessible in its format (i.e. a graphical user interface 
– GUI) and simplified approach to ML. Significantly, it allows model training 
via gestural interfaces through demonstration. However, Wekinator offers the 
user several models to build predictive systems with. This paper explores which 
ML models (in Wekinator) are the most useful for predicting an output in the 
context of interactive music composition. We use two performance gestures for 
piano, with opposing datasets, to train available ML models, investigate compo-
sitional outcomes and frame the investigation. Our results show ML model 
choice is important for mapping performance gestures because of disparate 
mapping accuracies and behaviours found between all Wekinator ML models.  

Keywords: Interactive Machine Learning, Wekinator, Myo, HCI, Performance 
Gestures, Interactive Music, Gestural Interfaces 

1 Motivation 

Interactive music is an artform that uses gestural interfaces to build new instruments 
[1] – or augment existing ones [2] – to generate a musical output. A gestural interface 
is a device which captures physical gestures to control digital systems. Typically, they 
detect biometric and inertial measurement unit (IMU) data. Through their use, novel 
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forms of human-computer interaction (HCI) can be explored in music composition 
and performance.  
 In the concise history of interactive music, technological developments made with 
gestural interfaces have always evoked a creative response. In 1917, the Theremin 
permitted people to create music with novel actions [3]. In the 1970s, the analogue 
synthesiser allowed users to affect parameters of sound through interacting with mod-
ules [4]. In 1987, Jon Rose [5] developed a violin bow (K-bow), which used the Mu-
sical Instrument Digital Interface (MIDI) protocol to digitise violin performance. In 
1993, Atau Tanaka et al. [6] created Sensorband; an ensemble investigating how 
wearable sensors could affect the digital signal processing (DSP) of real-time sound 
generation, showing music composition could be embodied. In recent years, electro-
encephalography has been used as a brain-computer interface to further investigate 
the embodiment of music and drive music composition [7]. However, as the interface 
uses several electrodes attached to the scalp, it is not ideal for interactive music com-
position. This is because of the limited mobility of the interface. However, in 2015, 
the Myo armband [8] offered a mobile interface for improved gestural control when 
investigating interactive music. This allowed researchers to access two forms of raw 
biometric data: IMUs and Electromyographic (EMG). Although access to IMU data 
offered by the Myo is not novel, EMG data is useful because it measures electrical 
activity of skeletal muscles, allowing the user to map muscular data to digital systems.  

Previous literature using the Myo interface has seldom explored the application of 
ML to process data, but rather conditional statements [9]. Although conditional state-
ments are a feasible way of using interface data for music composition, they are not 
efficient because performance gestures can be misclassified if an ML approach to 
gesture classification is not adopted [9]. An ML approach would therefore be more 
accurate when interacting with music systems and evoking a sonic output. It is possi-
ble to realise this via an interactive ML software called Wekinator [10].  

Wekinator is a ML environment built on WEKA. It is useful because it allows for 
real-time data input from gestural interfaces and has a simplified GUI for configuring 
ML models, providing a better accessible tool for HCI applications. Previous research 
has used Wekinator for the classification of instrument articulations [11], mapping 
sound from colour within virtual reality [12] and duetting with an LED gestural inter-
face [13]. However, there is a lack of study regarding the classification of perfor-
mance gestures in Wekinator with an informed-model approach; only a demonstrative 
(trial-and-error) model training method [11]. There is also a lack of literature on mod-
el evaluation when using EMG data to train ML models in Wekinator.  

In this work we provide a solution to the problem that there are different ways to 
process and create ML models from performance gestures using the Myo interface 
within Wekinator. We also address that EMG data can be used to create bespoke 
physical gestures to interact with music systems, instead of research limitations sur-
rounding the use of pre-defined gestures for music research via the Myo Software 
Development Kit (SDK) [9, 14]. It seeks to investigate which models are the most 
useful for predicting a sonic output for use in interactive music performance. If 
solved, this will improve knowledge regarding the use the Myo interface (plus similar 
interfaces) with Wekinator when choosing an ML model. 
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Our results establish that different ML models are more effective when chosen 
based on performance gesture characteristics and data type for model training. Our 
results also show model choice has an impact on controlling a musical output. The 
next section of this paper will detail technical aspects of the gestural interface we are 
using (the Myo armband), followed by ML models offered by Wekinator, the study 
methodology, results and conclusions derived.   

2 Gestural interfaces and machine learning 

Gestural Interfaces allow us to access raw data, representing performance gestures, 
and build ML models. The gestural interface we use for this investigation is the Myo 
armband.  
 
 

 

 
2.1 Gestural interface: The Myo armband  

Technical specification. The Myo armband is a gestural interface which allows us to 
access raw IMUs and 8-channels of 8-bit EMG data. It communicates raw data via 
Bluetooth and streams IMU data at 50Hz and EMG data at 200Hz [9]. It communi-
cates all data to a Bluetooth dongle with a distance of <15m [15]. Data is taken from 
the Myo library within the SDK created by Thalmic Labs [14]. The EMG data pro-
vided by the Myo is unique to the interface. This is because a gestural interface offer-
ing access to raw EMG data is hard to acquire on the consumer market.   

2.2 Raw transmitted data 

The Myo allows access to two forms of biometric information: IMUs and EMG data. 
IMU data from the Myo SDK has three main parameters for measuring orientation: 
acceleration, gyroscope and quaternions. Acceleration and gyroscope data parameters 
use 3 axes (X, Y, Z) to measure orientation. However, quaternions use 4 axes to do so 

(a) (b) 

Fig. 1. (a) The Myo armband showing 8 channels of EMG electrodes. (b) A photo of the 
standardized placement of the Myo armband when collecting raw IMU and EMG data. 
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(X, Y, Z, W). The Myo has 8 individual electrodes for measuring EMG activity 
around the arm, as seen in Figure 1a.  

2.3 Myo usage issues 

Data retrieved from the Myo is subject to issues affecting data validity. These are: 
The placement of the Myo armband and user calibration.  
 
Calibration. Because muscle activity in a Myo user’s arm is as unique as a finger-
print [16], the Myo must be calibrated by the user so that data is reliable. If the Myo is 
not calibrated before use, the data collected will not be accurate as measurement is 
skewed. An example of inaccuracy is not providing a point of origin or data parameter 
limits for IMU data.  
 
Placement. Careful placement of the Myo must be observed and standardised. See 
Figure 1b. This is because incorrect placement will skew all EMG results. A change 
in rotation of the Myo, between future participants or users, will change the orienta-
tion of electrodes (measuring EMG data) and therefore affect data or system validity. 

2.4 Machine learning: Wekinator 

Wekinator was developed by Rebecca Fiebrink in 2009 [10]. It is a GUI built on the 
WEKA framework and contains three ML model types for input data: 
 

1. Continuous: (i) Linear/Polynomial Regression, (ii) Neural Network.  
2. Classifiers: (i) K-Nearest Neighbor, (ii) AdaBoost.M1, (iii) Decision Tree 

(J48), (iv) Support Vector Machine (SVM), (v) Naive Bayes, (vi) Decision 
Stump.  

3. Dynamic Time Warping (DTW) 

3 Methodology 

The methodology behind evaluating the efficacy of Wekinator for predicting sonic 
output via actioning performance gestures is as follows.  

3.1 Planning performance gestures for model testing 

Performance gestures chosen for predicting a music output were selected based on 
their ability to augment piano practice. Using an instrument would provide an initial 
focus for the application of gesture prediction and interactive music composition. 
Both gestures can be considered an extended technique; meaning a non-orthodox 
method of playing the instrument. For ease of understanding the results, we use a 
single Myo worn on the right arm. To train different ML models, we use two different 
performance gestures with opposing datasets. This is because continuous models, 
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classifiers and DTW algorithms process gestural data in a very different way. For 
example, a performance gesture that travels between two spatial positions on the y-
axis – states 𝑦ଵand 𝑦ଶ – can be considered either a continuous or static gesture. This is 
because we may wish to measure the metric of the two states in different ways. From 
a data perspective, this would be represented as either a series of floating-point values 
(continuous position) or a single integer value (classifier position).  

However, both states combined (to a single unifying value) can be considered a 
necessary input for a DTW model. This is because a DTW algorithm is a continuous 
model that predicts a performance gesture - per iteration - and not as a stream of float-
ing-point values. Given the problem of deciding the metric, it is therefore clear that 
the performance context (for the application of model output) would be the principal 
factor when deciding a suitable model for training data. This culminated in the crea-
tion of two performance gestures for investigation:  

 
1. Right arm positioned above head (gesture 1). This gesture involves extending 

the right arm out straight above the head. This gesture is measured using single 
parameter acceleration data (IMU) on the y-axis; it is also linear, meaning data 
variation will be low. Low variation in the data will make model prediction more 
accurate. As a result, model output (using this data) will closely align to model 
input during mapping. Therefore, this gesture is thus most apt for a continu-
ous/DTW model. This is because continuous data analysis is integral to how each 
model makes an accurate prediction. 
 

2. Spread fingers and resting arm (gesture 2). This gesture involves: (a) Fully 
extending fingers on the right-hand outwards (b) returning the arm to a limp rest-
ing position. Gesture position (b) was created as a tool to test the efficacy of the 
model predicting position (a) when switching between both states. As this gesture 
operates between two static (non-continuous) states it became clear a classifier 
model was most apt for this gesture. This gesture uses two EMG data parameters 
targeting electrodes 3 and 4 on the Myo interface (see Figure 1b).   

3.2 Data acquisition and structuring 

Raw data was structured from the Myo, worn on the right arm, via software built by 
the first author in the Max 8 development environment.1 The software built routed the 
Myo C++ API information, from the Myo SDK, to Max 8. Two sets of software were 
built in Max 8: A program to acquire raw data from the Myo and a program to send 
filtered Myo data to Wekinator and then apply DSP. After receiving the raw data 
within Max, data was pre-processed, structured and then exported as a csv file. The 
first author performed all gestures for acquisition and testing.   

 
1 Max 8 is a GUI programming environment primarily used by artists and musicians. More information 

regarding Max 8 can be found here: https://cycling74.com/.  
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Acquisition. Raw data was recorded from the Myo SDK at 10ms per data entry. This 
was deemed accurate enough to see meaningful patterns in the data. Each gesture was 
recorded with 4 iterations over 16 seconds. A digital metronome was synchronised 
with the data acquisition software to keep timing when performing gestures.   

Pre-processing and structuring. Data was pre-processed during acquisition by un-
packing and structuring (labelling) each data type (IMU and EMG) and respectful 
parameters to an array (see Section 2.2 for a summary). After acquisition, the data 
was exported from the array to a csv file.  

3.3 Data post-processing, visualisation and filtering 

Data post-processing. EMG data needed to be processed via taking an average of 
each EMG parameter and then applying an absolute function. Using this function 
would make EMG data much clearer to use and visualise [17]. As IMU relies on vec-
tor movement for each axis (to show orientation), IMU data was not post-processed.  

Data visualisation and analysis. The data visualisation process involved plotting the 
data within suitable graphs to spot any significant trends when performing gestures. 
Applying a preliminary analysis would show key data and begin to manually filter the 
data.  

Data filtering. Data was manually filtered after collection to train ML models in 
Wekinator. This is because each physical gesture is unique. Therefore, different data 
parameters will best represent each gesture performance. For example, training a 
model to predict a music output via data detailing the placement of the arm above the 
head will not require EMG data but data regarding the orientation of the arm.  

3.4 Training ML models in Wekinator 

After filtering, training data was sent from a real-time Myo signal in Max 8 to each 
model input in Wekinator via Open Sound Control (OSC) and User Datagram Proto-
col (UDP). UDP was then used to send the OSC data packet to a specific port that 
Wekinator was listening to. All models were measured against performance gesture 1 
and 2 (detailed in Section 3.1). Each gesture used c.8000 data entry examples to train 
ML models at a frequency of 10ms per example. See Table 1 for a detailed list of 
parameters used when training each ML model with both gestures. A model evalua-
tion was used (provided by the Wekinator GUI) for each model type over both ges-
tures. The evaluation method used was cross-validation, with 10 folds, and model 
training accuracy was also measured.  
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Table 1. Model types and parameters used when training all available models in Wekinator. 

4 Results 

4.1  Model evaluations 

 
Continuous models. Results from training the NN, linear regression and polynomial 
regression models in Wekinator elucidated interesting results across both gestures.  
 The NN showed to be the most accurate model when mapping model prediction to 
input data for both gestures (see Table 2 for full list of model accuracies). An example 
of mapping accuracy with the NN can be seen in Figure 2. Results for continuous 
models also showed that NN and polynomial regression models apply curvature to the 
mapping of gesture input data, whereas the linear regression model applies a linear 
mapping. When looking at Figure 3, it is clear that the linear regression model maps 
best the movement of gesture 1. Observing this difference between the 
NN/polynomial model and regression model is significant for interactive music prac-
tice. This is because the rate at which data increases will create a disparate musical 
output when affecting the DSP of an audio signal.  
 A further observation also shows that data type used to train continuous models is 
more accurate than other data types. Table 2 clearly shows that IMU data (gesture 1) 
is more effective than using EMG data (gesture 2) to train continuous models. This is 
further elucidated when comparing model mapping in Figures 2 and 3. All continuous 
models averaged 8029 examples of input training data for both performance gestures. 
 
 

 
2 Meaning the maximum value set for the model range [0,1] can be exceeded.  

Model type Model Available model parameters in Wekinator 
and their settings  

Data 
type/range 

Continuous Neural Network 1 Hidden layer. 1 node per hidden layer.   
(soft limits)2 Linear Regression Linear inputs. No feature selection used. 

Colinear inputs removed. 
[0,1] (float) 

 Polynomial Regression Polynomial exponent = 2. No feature  
selection used. Colinear inputs not removed.  

 

Classifier K-Nearest Neighbor Number of neighbors (k) = 1.  {1,2} (integer) 
 AdaBoost.M1 Training rounds = 100. Base classifier = 

Decision tree.  
 

 Decision Tree (J48) Model not customisable.  
 SVM Kernel: Linear. Complexity constant: 1.   
 Naïve Bayes Model not customisable.  
 Decision Stump Model not customisable.  

DTW DTW                                    Threshold for prediction set in GUI to be 
sensitive enough to predict output once per 
gesture iteration.   

Single-fire  
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Table 2. Accuracy of continuous models after training, measured in root mean square  
(where 0 is optimal). 

 
Classifier models. Results for the classifier models showed a varying level of accura-
cy when predicting gesture because of the data type used to train models. When look-
ing at Table 3, we can see that gesture 1 is more accurate in model prediction than 
gesture 2. However, we can also observe that models trained with EMG data (gesture 
2) show disparate levels of accuracy. In particular, the SVM and decision stump mod-
els perform the poorest, in comparison to all available classifier models. This is clear 
when looking at their erratic misclassification of gesture 2 in Figure 4. Results taken 
from performing gesture 1 reported a striking accuracy with all classifier models. 
They also showed that individual models display an earlier prediction than others. The 
decision tree and adaboost.M1 models reported (in unison) a prediction of 70ms (first 
instance) and 60ms (second instance) ahead of all other classifier models. All classifi-
er models averaged 8022 examples of input training data across both performance 
gestures. 
 
 

Table 3. Accuracy of classifier models after training, measured in percentage 
(where 100% is optimal).  

 

 
 
 
 
 

Gesture 
no. 

Model type Training accuracy Cross-validation (10 folds) 

1 NN 0.00 0.00 

 Linear Regression 0.04 0.04 
 Polynomial Regression 0.04 0.04 
2 NN 0.12 0.12 

 Linear Regression 0.32 0.32 

 Polynomial Regression 0.32 0.32 

Gesture 
no. 

Model type Training accuracy Cross-validation (10 folds) 

1 K-Nearest Neighbor 100% 100% 
 AdaBoost.M1 100% 100% 
 Decision Tree (J48) 100% 100% 
 Naive Bayes 100% 100% 
 SVM 100% 100% 
 Decision Stump 100% 100% 
2 K-Nearest Neighbor 99.36% 99.36% 
 AdaBoost.M1 99.36% 99.36% 
 Decision Tree (J48) 99.36% 99.36% 
 Naive Bayes 98.86% 98.86% 
 SVM 97.75% 97.57% 
 Decision Stump 94.78% 94.78% 
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Fig. 2. A graph showing all continuous model outputs and their output activity when 
performing gesture 2 over a period of 16 seconds. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Dynamic Time Warping (DTW). Observations from using the DTW model indicate 
different measures of accuracy through different datasets. Observation of Figure 5 
shows inaccuracy in predicting the onset of a performance gesture. It also shows inac-
curacy when making several predictions of the same gesture iteration. This is because 
EMG data is a more complex dataset than IMU data. However, data taken suggests 
the DTW model is very effective in predicting gesture onsets with IMU data.  

Weaknesses of using the DTW model are concerned with the GUI. When record-
ing examples for training each model, the user is unable to know how long each train-
ing sample is. This is because the metric is not shown (unlike classifier and continu-
ous models). The ‘threshold’ available in this mode, via the GUI, is also arbitrary. It is 
designed for the user to adjust model prediction sensitivity. However, the metric is 
inaccessible. The DTW model trained to predict gesture 1 used 67 examples of input 
data, whereas the model trained to predict gesture 2 used 336 examples.  

 
 
 
 
 
 
 
 
 

Fig. 3. A graph showing a comparison between all continuous models and their outputs 
vs model input over a period of 16 seconds when performing gesture 1. 
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4.2 Model output: Interactive music composition  

Model results applied to interactive music composition can show: (a) Continuous 
models alter the data scaling (mapping) of gestures during model output (compare all 
model outputs in Figure 2), (b) classifier models run specific DSP algorithms by cre-
ating layers within gestures (where each layer is defined via an arbitrary number of 
integers), and (c) DTW models run a single DSP algorithm when predicting a gesture 
performed over time.  

Continuous models are useful for the real-time control of music parameters. Albeit, 
each model is shown in this study to have differences in model output mapping.2 This 
is important because interactive music is composed via applying multi-parametric 
control of DSP to music material [19]. The mapping (contour) from each model out-
put will therefore affect sonic output. This is because data contour has shown to affect 
parametric control in two ways, smoothly and erratically. For example, creating a 1:1 
mapping between a continuous model output (NN, LR, PR) and the generation of a 
sine wave will affect sonic output, disparately. A NN would smoothen the cycle be-
tween frequencies and the LR/PR would make the cycle behaviour erratic. However, 
other DSP events thrive off erratic movement in data (i.e. granular synthesis) and 
others a smoother movement (i.e. delay lines), due to their individual sonic aesthetic. 
This can be evidenced when investigating the timbral difference between a fixed mu-
sic event (i.e. piano chord) and individual continuous model output. 

 
2 Mapping is an integral part of interactive music composition and computer music. It means to 

use a transformed parameter to control or affect another parameter [18]. Here, a model out-
put to affect a DSP process (e.g. delay time, reverb, etc) of an audio signal.  

Fig. 4. A graph showing model output of all classifier models when performing gesture 2  
over a period of 16 seconds. 



11 

Classifier models can be used to distinguish between stages of gesture perfor-
mance. This is useful because a gesture can be used to trigger several pre-defined 
algorithms, at different stages of performing a gesture. This is useful for interactive 
music composition because it triggers a pre-defined music output, allowing the com-
poser greater control over the music output. However, the output can be processed by 
using other datasets in real-time, once the algorithm (for each integer class) has been 
triggered. This can therefore augment music parameters of the running algorithm.  

Alike classifier models, DTW models make use of a pre-defined DSP algorithm, 
albeit without being able to control parameters within the algorithm after triggering 
the event. As a single-fire event, with no parametric control over the DSP process, 
this model is only ideal for music composition within a system containing a rigid DSP 
architecture. Interactive music composition therefore benefits marginally from DTW. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5 Conclusions  

It is apparent that model performance is unique to the data used to train each model. 
This is because data variation dictates prediction accuracy for ML models. This is 
evident when observing IMU data (low variation) and all model performances in this 
study. However, it is also clear that there are noticeable differences within ML model 
type; Variances in data mapping (continuous models) and model prediction strengths 
(classifier models). Music practitioners investigating interactive ML should therefore 
observe data variation when training ML models, model prediction strengths (see 
Tables 2 and 3) and pair model choice to desired music outcome (see Section 4.2).  

Acknowledgements. This work was supported by the Engineering and Physical Sci-
ences Research Council [2063473].   

Fig. 5. Graph showing the accuracy of the DTW model when performing gesture 
2 (4 times) in regular intervals over a period of 16 seconds. 
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