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Abstract. Interactive machine learning (ML) allows a music performer to digi-
tally represent musical actions (via gestural interfaces) and affect their musical
output in real-time. Processing musical actions (termed performance gestures)
with ML is useful because it predicts and maps often-complex biometric data.
ML models can therefore be used to create novel interactions with musical sys-
tems, game-engines, and networked analogue devices. Wekinator is a free open-
source software for ML (based on the Waikato Environment for Knowledge
Analysis — WEKA - framework) which has been widely used, since 2009, to
build supervised predictive models when developing real-time interactive sys-
tems. This is because it is accessible in its format (i.e. a graphical user interface
— GUI) and simplified approach to ML. Significantly, it allows model training
via gestural interfaces through demonstration. However, Wekinator offers the
user several models to build predictive systems with. This paper explores which
ML models (in Wekinator) are the most useful for predicting an output in the
context of interactive music composition. We use two performance gestures for
piano, with opposing datasets, to train available ML models, investigate compo-
sitional outcomes and frame the investigation. Our results show ML model
choice is important for mapping performance gestures because of disparate
mapping accuracies and behaviours found between all Wekinator ML models.
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1 Motivation

Interactive music is an artform that uses gestural interfaces to build new instruments
[1] — or augment existing ones [2] — to generate a musical output. A gestural interface
is a device which captures physical gestures to control digital systems. Typically, they
detect biometric and inertial measurement unit (IMU) data. Through their use, novel



forms of human-computer interaction (HCI) can be explored in music composition
and performance.

In the concise history of interactive music, technological developments made with
gestural interfaces have always evoked a creative response. In 1917, the Theremin
permitted people to create music with novel actions [3]. In the 1970s, the analogue
synthesiser allowed users to affect parameters of sound through interacting with mod-
ules [4]. In 1987, Jon Rose [5] developed a violin bow (K-bow), which used the Mu-
sical Instrument Digital Interface (MIDI) protocol to digitise violin performance. In
1993, Atau Tanaka et al. [6] created Sensorband; an ensemble investigating how
wearable sensors could affect the digital signal processing (DSP) of real-time sound
generation, showing music composition could be embodied. In recent years, electro-
encephalography has been used as a brain-computer interface to further investigate
the embodiment of music and drive music composition [7]. However, as the interface
uses several electrodes attached to the scalp, it is not ideal for interactive music com-
position. This is because of the limited mobility of the interface. However, in 2015,
the Myo armband [8] offered a mobile interface for improved gestural control when
investigating interactive music. This allowed researchers to access two forms of raw
biometric data: IMUs and Electromyographic (EMG). Although access to IMU data
offered by the Myo is not novel, EMG data is useful because it measures electrical
activity of skeletal muscles, allowing the user to map muscular data to digital systems.

Previous literature using the Myo interface has seldom explored the application of
ML to process data, but rather conditional statements [9]. Although conditional state-
ments are a feasible way of using interface data for music composition, they are not
efficient because performance gestures can be misclassified if an ML approach to
gesture classification is not adopted [9]. An ML approach would therefore be more
accurate when interacting with music systems and evoking a sonic output. It is possi-
ble to realise this via an interactive ML software called Wekinator [10].

Wekinator is a ML environment built on WEKA. It is useful because it allows for
real-time data input from gestural interfaces and has a simplified GUI for configuring
ML models, providing a better accessible tool for HCI applications. Previous research
has used Wekinator for the classification of instrument articulations [11], mapping
sound from colour within virtual reality [12] and duetting with an LED gestural inter-
face [13]. However, there is a lack of study regarding the classification of perfor-
mance gestures in Wekinator with an informed-model approach; only a demonstrative
(trial-and-error) model training method [11]. There is also a lack of literature on mod-
el evaluation when using EMG data to train ML models in Wekinator.

In this work we provide a solution to the problem that there are different ways to
process and create ML models from performance gestures using the Myo interface
within Wekinator. We also address that EMG data can be used to create bespoke
physical gestures to interact with music systems, instead of research limitations sur-
rounding the use of pre-defined gestures for music research via the Myo Software
Development Kit (SDK) [9, 14]. It seeks to investigate which models are the most
useful for predicting a sonic output for use in interactive music performance. If
solved, this will improve knowledge regarding the use the Myo interface (plus similar
interfaces) with Wekinator when choosing an ML model.



Our results establish that different ML models are more effective when chosen
based on performance gesture characteristics and data type for model training. Our
results also show model choice has an impact on controlling a musical output. The
next section of this paper will detail technical aspects of the gestural interface we are
using (the Myo armband), followed by ML models offered by Wekinator, the study
methodology, results and conclusions derived.

2 Gestural interfaces and machine learning

Gestural Interfaces allow us to access raw data, representing performance gestures,
and build ML models. The gestural interface we use for this investigation is the Myo
armband.

@ (b)

Fig. 1. (a) The Myo armband showing 8 channels of EMG electrodes. (b) A photo of the
standardized placement of the Myo armband when collecting raw IMU and EMG data.

2.1  Gestural interface: The Myo armband

Technical specification. The Myo armband is a gestural interface which allows us to
access raw IMUs and 8-channels of 8-bit EMG data. It communicates raw data via
Bluetooth and streams IMU data at 50Hz and EMG data at 200Hz [9]. It communi-
cates all data to a Bluetooth dongle with a distance of <15m [15]. Data is taken from
the Myo library within the SDK created by Thalmic Labs [14]. The EMG data pro-
vided by the Myo is unique to the interface. This is because a gestural interface offer-
ing access to raw EMG data is hard to acquire on the consumer market.

2.2 Raw transmitted data

The Myo allows access to two forms of biometric information: IMUs and EMG data.
IMU data from the Myo SDK has three main parameters for measuring orientation:
acceleration, gyroscope and quaternions. Acceleration and gyroscope data parameters
use 3 axes (X, Y, Z) to measure orientation. However, quaternions use 4 axes to do so



X, Y, Z, W). The Myo has 8 individual electrodes for measuring EMG activity
around the arm, as seen in Figure 1a.

2.3  Myo usage issues

Data retrieved from the Myo is subject to issues affecting data validity. These are:
The placement of the Myo armband and user calibration.

Calibration. Because muscle activity in a Myo user’s arm is as unique as a finger-
print [16], the Myo must be calibrated by the user so that data is reliable. If the Myo is
not calibrated before use, the data collected will not be accurate as measurement is
skewed. An example of inaccuracy is not providing a point of origin or data parameter
limits for IMU data.

Placement. Careful placement of the Myo must be observed and standardised. See
Figure 1b. This is because incorrect placement will skew all EMG results. A change
in rotation of the Myo, between future participants or users, will change the orienta-
tion of electrodes (measuring EMG data) and therefore affect data or system validity.

2.4  Machine learning: Wekinator

Wekinator was developed by Rebecca Fiebrink in 2009 [10]. It is a GUI built on the
WEKA framework and contains three ML model types for input data:

1. Continuous: (i) Linear/Polynomial Regression, (ii) Neural Network.

2. Classifiers: (i) K-Nearest Neighbor, (ii) AdaBoost.M1, (iii) Decision Tree
(J48), (iv) Support Vector Machine (SVM), (v) Naive Bayes, (vi) Decision
Stump.

3. Dynamic Time Warping (DTW)

3 Methodology

The methodology behind evaluating the efficacy of Wekinator for predicting sonic
output via actioning performance gestures is as follows.

3.1 Planning performance gestures for model testing

Performance gestures chosen for predicting a music output were selected based on
their ability to augment piano practice. Using an instrument would provide an initial
focus for the application of gesture prediction and interactive music composition.
Both gestures can be considered an extended technique; meaning a non-orthodox
method of playing the instrument. For ease of understanding the results, we use a
single Myo worn on the right arm. To train different ML models, we use two different
performance gestures with opposing datasets. This is because continuous models,



classifiers and DTW algorithms process gestural data in a very different way. For
example, a performance gesture that travels between two spatial positions on the y-
axis — states y;and y, — can be considered either a continuous or static gesture. This is
because we may wish to measure the metric of the two states in different ways. From
a data perspective, this would be represented as either a series of floating-point values
(continuous position) or a single integer value (classifier position).

However, both states combined (to a single unifying value) can be considered a
necessary input for a DTW model. This is because a DTW algorithm is a continuous
model that predicts a performance gesture - per iteration - and not as a stream of float-
ing-point values. Given the problem of deciding the metric, it is therefore clear that
the performance context (for the application of model output) would be the principal
factor when deciding a suitable model for training data. This culminated in the crea-
tion of two performance gestures for investigation:

1. Right arm positioned above head (gesture 1). This gesture involves extending
the right arm out straight above the head. This gesture is measured using single
parameter acceleration data (IMU) on the y-axis; it is also linear, meaning data
variation will be low. Low variation in the data will make model prediction more
accurate. As a result, model output (using this data) will closely align to model
input during mapping. Therefore, this gesture is thus most apt for a continu-
ous/DTW model. This is because continuous data analysis is integral to how each
model makes an accurate prediction.

2. Spread fingers and resting arm (gesture 2). This gesture involves: (a) Fully
extending fingers on the right-hand outwards (b) returning the arm to a limp rest-
ing position. Gesture position (b) was created as a tool to test the efficacy of the
model predicting position (a) when switching between both states. As this gesture
operates between two static (non-continuous) states it became clear a classifier
model was most apt for this gesture. This gesture uses two EMG data parameters
targeting electrodes 3 and 4 on the Myo interface (see Figure 1b).

3.2  Data acquisition and structuring

Raw data was structured from the Myo, worn on the right arm, via software built by
the first author in the Max 8 development environment.! The software built routed the
Myo C++ API information, from the Myo SDK, to Max 8. Two sets of software were
built in Max 8: A program to acquire raw data from the Myo and a program to send
filtered Myo data to Wekinator and then apply DSP. After receiving the raw data
within Max, data was pre-processed, structured and then exported as a csv file. The
first author performed all gestures for acquisition and testing.

! Max 8 is a GUI programming environment primarily used by artists and musicians. More information
regarding Max 8 can be found here: https://cycling74.com/.



Acquisition. Raw data was recorded from the Myo SDK at 10ms per data entry. This
was deemed accurate enough to see meaningful patterns in the data. Each gesture was
recorded with 4 iterations over 16 seconds. A digital metronome was synchronised
with the data acquisition software to keep timing when performing gestures.

Pre-processing and structuring. Data was pre-processed during acquisition by un-
packing and structuring (labelling) each data type (IMU and EMG) and respectful
parameters to an array (see Section 2.2 for a summary). After acquisition, the data
was exported from the array to a csv file.

3.3 Data post-processing, visualisation and filtering

Data post-processing. EMG data needed to be processed via taking an average of
each EMG parameter and then applying an absolute function. Using this function
would make EMG data much clearer to use and visualise [17]. As IMU relies on vec-
tor movement for each axis (to show orientation), IMU data was not post-processed.

Data visualisation and analysis. The data visualisation process involved plotting the
data within suitable graphs to spot any significant trends when performing gestures.
Applying a preliminary analysis would show key data and begin to manually filter the
data.

Data filtering. Data was manually filtered after collection to train ML models in
Wekinator. This is because each physical gesture is unique. Therefore, different data
parameters will best represent each gesture performance. For example, training a
model to predict a music output via data detailing the placement of the arm above the
head will not require EMG data but data regarding the orientation of the arm.

3.4  Training ML models in Wekinator

After filtering, training data was sent from a real-time Myo signal in Max 8 to each
model input in Wekinator via Open Sound Control (OSC) and User Datagram Proto-
col (UDP). UDP was then used to send the OSC data packet to a specific port that
Wekinator was listening to. All models were measured against performance gesture 1
and 2 (detailed in Section 3.1). Each gesture used ¢.8000 data entry examples to train
ML models at a frequency of 10ms per example. See Table 1 for a detailed list of
parameters used when training each ML model with both gestures. A model evalua-
tion was used (provided by the Wekinator GUI) for each model type over both ges-
tures. The evaluation method used was cross-validation, with 10 folds, and model
training accuracy was also measured.



Table 1. Model types and parameters used when training all available models in Wekinator.

Model type Model Available model parameters in Wekinator Data
and their settings type/range

Continuous  Neural Network 1 Hidden layer. 1 node per hidden layer.

(soft limits)*>  Linear Regression Linear inputs. No feature selection used. [0,1] (float)

Colinear inputs removed.
Polynomial Regression Polynomial exponent = 2. No feature
selection used. Colinear inputs not removed.

Classifier K-Nearest Neighbor Number of neighbors (k) = 1. {1,2} (integer)
AdaBoost.M1 Training rounds = 100. Base classifier =
Decision tree.

Decision Tree (J48) Model not customisable.

SVM Kernel: Linear. Complexity constant: 1.

Naive Bayes Model not customisable.

Decision Stump Model not customisable.

DTW DTW Threshold for prediction set in GUI to be  Single-fire

sensitive enough to predict output once per
gesture iteration.

4 Results

4.1 Model evaluations

Continuous models. Results from training the NN, linear regression and polynomial
regression models in Wekinator elucidated interesting results across both gestures.

The NN showed to be the most accurate model when mapping model prediction to
input data for both gestures (see Table 2 for full list of model accuracies). An example
of mapping accuracy with the NN can be seen in Figure 2. Results for continuous
models also showed that NN and polynomial regression models apply curvature to the
mapping of gesture input data, whereas the linear regression model applies a linear
mapping. When looking at Figure 3, it is clear that the linear regression model maps
best the movement of gesture 1. Observing this difference between the
NN/polynomial model and regression model is significant for interactive music prac-
tice. This is because the rate at which data increases will create a disparate musical
output when affecting the DSP of an audio signal.

A further observation also shows that data type used to train continuous models is
more accurate than other data types. Table 2 clearly shows that IMU data (gesture 1)
is more effective than using EMG data (gesture 2) to train continuous models. This is
further elucidated when comparing model mapping in Figures 2 and 3. All continuous
models averaged 8029 examples of input training data for both performance gestures.

2 Meaning the maximum value set for the model range [0,1] can be exceeded.



Table 2. Accuracy of continuous models after training, measured in root mean square
(where 0 is optimal).

Gesture Model type Training accuracy Cross-validation (10 folds)

no.

1 NN 0.00 0.00
Linear Regression 0.04 0.04
Polynomial Regression 0.04 0.04

2 NN 0.12 0.12
Linear Regression 0.32 0.32
Polynomial Regression 0.32 0.32

Classifier models. Results for the classifier models showed a varying level of accura-
cy when predicting gesture because of the data type used to train models. When look-
ing at Table 3, we can see that gesture 1 is more accurate in model prediction than
gesture 2. However, we can also observe that models trained with EMG data (gesture
2) show disparate levels of accuracy. In particular, the SVM and decision stump mod-
els perform the poorest, in comparison to all available classifier models. This is clear
when looking at their erratic misclassification of gesture 2 in Figure 4. Results taken
from performing gesture 1 reported a striking accuracy with all classifier models.
They also showed that individual models display an earlier prediction than others. The
decision tree and adaboost.M1 models reported (in unison) a prediction of 70ms (first
instance) and 60ms (second instance) ahead of all other classifier models. All classifi-
er models averaged 8022 examples of input training data across both performance
gestures.

Table 3. Accuracy of classifier models after training, measured in percentage
(where 100% is optimal).

Gesture Model type Training accuracy Cross-validation (10 folds)

no.

1 K-Nearest Neighbor 100% 100%
AdaBoost.M1 100% 100%
Decision Tree (J48) 100% 100%
Naive Bayes 100% 100%
SVM 100% 100%
Decision Stump 100% 100%

2 K-Nearest Neighbor 99.36% 99.36%
AdaBoost.M1 99.36% 99.36%
Decision Tree (J48) 99.36% 99.36%
Naive Bayes 98.86% 98.86%
SVM 97.75% 97.57%

Decision Stump 94.78% 94.78%
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Fig. 2. A graph showing all continuous model outputs and their output activity when
performing gesture 2 over a period of 16 seconds.

Dynamic Time Warping (DTW). Observations from using the DTW model indicate
different measures of accuracy through different datasets. Observation of Figure 5
shows inaccuracy in predicting the onset of a performance gesture. It also shows inac-
curacy when making several predictions of the same gesture iteration. This is because
EMG data is a more complex dataset than IMU data. However, data taken suggests
the DTW model is very effective in predicting gesture onsets with IMU data.

Weaknesses of using the DTW model are concerned with the GUI. When record-
ing examples for training each model, the user is unable to know how long each train-
ing sample is. This is because the metric is not shown (unlike classifier and continu-
ous models). The ‘threshold’ available in this mode, via the GUI, is also arbitrary. It is
designed for the user to adjust model prediction sensitivity. However, the metric is
inaccessible. The DTW model trained to predict gesture 1 used 67 examples of input
data, whereas the model trained to predict gesture 2 used 336 examples.

Model Qutput

Time (ms)

—Neural Network —Linear Regression Polynomial Regression Model Input (Accel. Y Axis)

Fig. 3. A graph showing a comparison between all continuous models and their outputs
vs model input over a period of 16 seconds when performing gesture 1.
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Model Output
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Fig. 4. A graph showing model output of all classifier models when performing gesture 2
over a period of 16 seconds.

4.2  Model output: Interactive music composition

Model results applied to interactive music composition can show: (a) Continuous
models alter the data scaling (mapping) of gestures during model output (compare all
model outputs in Figure 2), (b) classifier models run specific DSP algorithms by cre-
ating layers within gestures (where each layer is defined via an arbitrary number of
integers), and (c) DTW models run a single DSP algorithm when predicting a gesture
performed over time.

Continuous models are useful for the real-time control of music parameters. Albeit,
each model is shown in this study to have differences in model output mapping.? This
is important because interactive music is composed via applying multi-parametric
control of DSP to music material [19]. The mapping (contour) from each model out-
put will therefore affect sonic output. This is because data contour has shown to affect
parametric control in two ways, smoothly and erratically. For example, creating a 1:1
mapping between a continuous model output (NN, LR, PR) and the generation of a
sine wave will affect sonic output, disparately. A NN would smoothen the cycle be-
tween frequencies and the LR/PR would make the cycle behaviour erratic. However,
other DSP events thrive off erratic movement in data (i.e. granular synthesis) and
others a smoother movement (i.e. delay lines), due to their individual sonic aesthetic.
This can be evidenced when investigating the timbral difference between a fixed mu-
sic event (i.e. piano chord) and individual continuous model output.

2 Mapping is an integral part of interactive music composition and computer music. It means to
use a transformed parameter to control or affect another parameter [18]. Here, a model out-
put to affect a DSP process (e.g. delay time, reverb, etc) of an audio signal.
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Classifier models can be used to distinguish between stages of gesture perfor-
mance. This is useful because a gesture can be used to trigger several pre-defined
algorithms, at different stages of performing a gesture. This is useful for interactive
music composition because it triggers a pre-defined music output, allowing the com-
poser greater control over the music output. However, the output can be processed by
using other datasets in real-time, once the algorithm (for each integer class) has been
triggered. This can therefore augment music parameters of the running algorithm.

Alike classifier models, DTW models make use of a pre-defined DSP algorithm,
albeit without being able to control parameters within the algorithm after triggering
the event. As a single-fire event, with no parametric control over the DSP process,
this model is only ideal for music composition within a system containing a rigid DSP
architecture. Interactive music composition therefore benefits marginally from DTW.

Model Output
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—DTW Model Output —EMG3 EMG4

Fig. 5. Graph showing the accuracy of the DTW model when performing gesture
2 (4 times) in regular intervals over a period of 16 seconds.

5 Conclusions

It is apparent that model performance is unique to the data used to train each model.
This is because data variation dictates prediction accuracy for ML models. This is
evident when observing IMU data (low variation) and all model performances in this
study. However, it is also clear that there are noticeable differences within ML model
type; Variances in data mapping (continuous models) and model prediction strengths
(classifier models). Music practitioners investigating interactive ML should therefore
observe data variation when training ML models, model prediction strengths (see
Tables 2 and 3) and pair model choice to desired music outcome (see Section 4.2).
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