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Abstract
High-fidelity numerical simulations such as Computational Fluid Dynamics (CFD) have
been proven effective in analysing haemodynamics, offering insight into many vascular
conditions. However, these methods often face challenges of high computational cost
and long processing times. Data-driven approaches such as Reduced Order Modeling
(ROM) and Machine Learning (ML) are increasingly being explored alongside CFD to
advance biomechanical research and application. This study presents an integration of
Proper Orthogonal Decomposition (POD)-based ROM with neural network-based ML
models to predict Wall Shear Stress (WSS) in patient-specific vascular pathologies. CFD
was used to generate WSS data, followed by POD to construct the ROM. The ML mod-
els were trained to predict the ROM coefficients from the inlet flowrate waveform, which
can be routinely collected in the clinic. Two ML models were explored: a simpler flowrate-
coefficients mapping model and a more advanced autoregressive model. Both models
were tested against two case studies: flow in Peripheral Arterial Disease (PAD) and flow
in Aortic Dissection (AD). Despite the limited training data sets (three flowrate waveforms
for the PAD case and two for the AD case), the models were able to predict the haemo-
dynamic indices, with the flowrate-coefficients mapping model outperforming the autore-
gressive model in both case studies. The accuracy is higher in the PAD case study, with
reduced accuracy in the more complex case study of AD. Additionally, the computational
cost analysis reveals a significant reduction in computational demands, with speed-up
ratios in the order of 104 for both case studies. This approach shows an effective inte-
gration of ROM and ML techniques for fast and reliable evaluations of haemodynamic
properties that contribute to vascular conditions, setting the stage for clinical translation.
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Introduction
Wall Shear Stress (WSS) is a haemodynamic metric that has been found to be closely linked
to many Cardiovascular Diseases (CVDs) [1–10]. Accurate evaluation of WSS is thus highly
important for understanding disease progression and aiding clinical decision-making. High-
fidelity simulations such as Computational Fluid Dynamics (CFD) offer powerful tools to
analyse 3D blood flow and obtain WSS in cardiovascular systems, providing valuable insights
into disease mechanisms and potential treatment strategies [11]. These tools have signifi-
cantly contributed to our understanding of vascular flow behaviour across various medical
conditions, such as aortic aneurysm [1,2], aortic dissection (AD) [3–5,12], peripheral arterial
disease (PAD) [6–10], and coronary artery disease [13–15].

Despite its benefits, CFD demands substantial expertise and is highly reliant on propri-
etary software. Moreover, it often involves a trade-off between accuracy and complexity [16].
Accurate simulations demand high computational costs and time, unsuitable in clinical set-
tings that require rapid decision-making [16,17]. To overcome this challenge, researchers have
increasingly adopted Machine Learning (ML) alongside traditional CFD to push the bound-
aries of biomechanical research and applications [18–34]. These methods have proven effec-
tive in various haemodynamics studies, ranging from predicting blood flow quantities and
haemodynamic indices [19–26,32–34] to enhancing flow data resolution and noise reduc-
tion [27–31]. A key advantage of ML models is their ability to leverage complex relationships
within large datasets using data-driven approaches [35,36].

The complexity in most models scales with the data dimensionality, thus reducing these
dimensions can decrease computational and memory demands. Moreover, simpler models
(with fewer inputs) tend to exhibit less variance against noise and outliers [36]. Dimensional-
ity Reduction (or Model Order Reduction) is a class of data-driven techniques used to trans-
form a high-dimensional Full Order Model (FOM) into a lower-dimensional form, known
as Reduced Order Model (ROM) [18,36,37]. Proper Orthogonal Decomposition (POD) is
among the most widely used methods for this purpose. [31,39]. POD works by decomposing
the FOM into a set of orthogonal modes, capturing the most significant features with mini-
mal loss of information. This can be achieved through Singular Value Decomposition (SVD)
[18,37,38,40]. POD has been employed in numerous cardiovascular flow investigations. For
instance, Chang et al. [41] used POD to construct computationally efficient ROMs to study
the flow and WSS in Abdominal Aortic Aneurysms (AAA) with varied inflow angle; Di Lab-
bio and Kadem [42] compared the use of POD and Dynamic Mode Decomposition (DMD)
in identifying coherent flow structures in a left ventricle with aortic regurgitation; Buoso et al.
[43] developed a computational approach utilizing a parameterised ROM based on POD to
accelerate the calculation of pressure drop along stenotic blood vessels. More recently, Chat-
pattanasiri et al. [31] explored the use of a variation of POD, called Robust POD (RPOD), to
construct computationally efficient ROMs of the velocity field inside an AD.

POD-based ROMs (or PCA-based ROM) can also be integrated with ML predictive mod-
els to help simplify the prediction of haemodynamic quantities. This entails two major steps:
offline and online. In the offline step, the FOM data is collected through traditional CFD
or in vitro experiments, and then processed to construct the ROM through POD.This step
also involves training the ML model to predict POD coefficients that represent haemody-
namic quantities of interest. In the online step, the trained model is employed to make fast
and accurate predictions of those quantities in unseen cases (test cases). Notable examples of
this approach include the work by Pajaziti et al. [23] who used PCA and Feed-forward Neu-
ral Networks (FFNNs) to predict velocity and pressure fields in different aorta geometries.
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Drakoulas et al. [25] developed a model referred to as FastSVD-ML-ROM which utilized an
SVD update methodology and a Convolutional Autoencoder for dimensionality reduction.
Their approach also involved FNNs and a Long short-term memory (LSTM) network for pre-
dicting the ROM coefficients (sometimes referred to in their study as latent variables or tem-
poral scales of the reduced representations). Siena et al. [24] combined a POD-based ROM
with FFNNs to predict time-dependent velocity, pressure, and WSS in coronary artery bypass
grafts with varying levels of stenosis. More recently, MacRaild et al. [32] used POD and differ-
ent designs of FFNNs to predict the time-dependent velocity magnitude in an internal carotid
artery with aneurysm, and Gerdroodbary and Salavatidezfouli [34] used POD along with
LSTM to predict time-dependent haemodynamic quantities in patient-specific carotid arteries
with and without stenosis. Beyond POD, other dimensionality reduction techniques have also
been integrated with ML predictive models. For instance, Liang et al. [20] predicted velocity
and pressure fields for different aortic shapes using Autoencoders and FNNs.

This work focuses on developing ML models to predict WSS from input quantities that
are commonly measured in the clinic such as flowrate waveforms, with the model trained on
highly limited datasets typically available in such environments. The methodology involves
high-fidelity CFD simulations to generate WSS data, followed by the application of POD to
construct the ROM.The ML models are trained to predict the ROM coefficients from the inlet
mass flowrate waveforms. The predicted coefficients can then be converted to the 3DWSS
data and its related haemodynamic indices. This approach is demonstrated through two case
studies: Case study 1: PAD and Case study 2: AD. The former serves as a simple case study
with predominantly unidirectional and laminar flow, while the latter represents a more com-
plex case involving flow splitting into two channels: the true lumen (TL) and false lumen (FL).
This introduces more intricate flow patterns and turbulent flow regimes. Both case studies
involve very limited training datasets, using only three flowrate waveforms for the PAD case
and two for the AD case, considering that past studies of comparable complexity typically
used 10 or more conditions in the training dataset [25,44,45]. It is crucial to highight that
this is the reality of routinely acquired clinical datasets, which is often at odds with research
requirements. Motivated by this limitation, we aim to achieve high accuracy and robustness
with a simpler and more interpretable ML model that provides fast and reliable WSS predic-
tions, enhancing the potential for clinical applications in cardiovascular disease diagnosis and
treatment planning.

Methods
Fig 1 illustrates a diagrammatic overview of the study methodology, divided into four major
phases. The first phase involves the high-fidelity modelling of vascular haemodynamics.
CFD is employed to simulate the flow fields inside the blood vessel of interest with multiple
flowrate waveforms. The time-dependent WSS field is calculated and used as the FOM. More
details can be found in Computational fluid dynamics and FOM.The second phase focuses on
the construction of the ROM, where POD is applied to the WSS data to extract eigenmodes
and the corresponding temporal coefficients as detailed in ROM via POD.The third phase
involves the development of the ML model designed to predict the ROM coefficients from the
mass flowrate waveform explained in Machine learning predictive model. Lastly, the predicted
coefficients are used to reconstruct the predicted WSS using the ROM, and the haemody-
namic indices: Time-average WSS (TAWSS) and Oscillatory Shear Index (OSI), are calculated,
as detailed in ROM via POD.
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Fig 1. Diagrammatic overview of the study methodology. (a) Full Order Model: Patient-specific data is used for
CFD simulations to obtain WSS. (b) Reduced Order Model: SVD is applied to WSS data to generate POD mode
structures and temporal coefficients. (c) Machine learning: a model is trained to predict temporal coefficients from
inlet mass flowrate waveforms. The dashed line indicates the supervised training, i.e., the models see the true coeffi-
cients during the training phase. (d) Reconstruction: Predicted coefficients reconstruct WSS, enabling calculation of
TAWSS and OSI.

https://doi.org/10.1371/journal.pone.0325644.g001

Computational fluid dynamics and FOM
In our study, the FOM was derived from CFD simulations. Since blood is an incompressible
fluid, its motion can be described by the Navier-Stokes (NS) and continuity equations given
below:

𝜌 (𝜕u𝜕t + u ⋅ ∇u) = –∇p +∇ ⋅ 𝝉 + f (1a)

∇ ⋅ u = 0 (1b)

in the domainΩ × (0,T], where u = u(x, t;𝝁) and p = p(x, t;𝝁) are the unknown velocity and
pressure fields, with x representing the position vector in 3D coordinates, t representing time,
T is the period of the cardiac cycle, and 𝝁 is a set of controlled physical parameters (in this
study, it is the inlet mass flowrate waveform). 𝜌 is the fluid density, 𝝉 is the shear stress tensor,
and f is the body force per unit volume (e.g., gravity). Appropriate boundary conditions are
applied at the domain boundaries (𝜕Ω) to enforce the influence of 𝝁. CFD involves solving the
NS and continuity equations numerically on the flow domain that has been discretized into a
mesh, which can be done with CFD solver packages such as Ansys Fluent or CFX. After u and
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p are obtained, WSS can be calculated by:

𝝉w = 𝝉(u) ⋅ nw (2)

where nw is the unit vector normal to the vessel walls. This WSS data derived from the CFD
results is used as the FOM.

Specific assumptions and configurations (including the mesh, numerical schemes, turbu-
lence model, etc.) for PAD and AD cases are discussed separately in Case study1: PAD and
Case study 2: AD, respectively.

ROM via POD
POD decomposes the data into a set of modes where structures are arranged depending on
their energy content. The higher energy modes represent the coherent structures in the flow.
A detailed description of POD can be found in Berkooz et al. [40] and in the textbook by
Brunton and Kutz [37]. Only a brief overview is provided here.

POD is implemented using the method of snapshots. Consider a 3DWSS dataset (i.e.
FOM) 𝝉w under 𝝁, described onΩ by a position vector x. The dataset consists of N spatial
positions and Nt temporal snapshots (usually N >>Nt). The instantaneous WSS data is first
separated into a time-independent reference value, commonly taken as the mean value 𝝉w
[46], and the disturbance from the reference 𝝉′w. In this context, the mean value 𝝉w refers
to the overall mean across the population of 𝝁. Thus, 𝝉w is independent of 𝝁. In this study,
the mean of the training dataset is used as the proxy of 𝝉w. Then, the disturbance part is fur-
ther decomposed into a set of spatial structures Φi multiplied by temporal coefficients ai as
follows:

𝝉w(x, t;𝝁) = 𝝉w(x) + 𝝉′w(x, t;𝝁) (3a)

= 𝝉w(x) +
Nt

∑
i=1

ai(t;𝝁)Φi(x) (3b)

To compute Φi, 𝝉′w is arranged in a matrix format, stacking each point and each vector
component into a single column (3N× 1), and arranging all the columns together in a 3N×Nt

matrix X𝝁k
WSS called snapshot matrix of WSS under 𝝁k:

X𝝁k
WSS =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝜏′w,x(x1, t1;𝝁k) 𝜏′w,x(x1, t2;𝝁k) ⋯ 𝜏′w,x(x1, tNt ;𝝁k)
⋮ ⋮ ⋱ ⋮

𝜏′w,x(xN, t1;𝝁k) 𝜏′w,x(xN, t2;𝝁k) ⋯ 𝜏′w,x(xN, tNt ;𝝁k)
𝜏′w,y(x1, t1;𝝁k) 𝜏′w,y(x1, t2;𝝁k) ⋯ 𝜏′w,y(x1, tNt ;𝝁k)

⋮ ⋮ ⋱ ⋮
𝜏′w,y(xN, t1;𝝁k) 𝜏′w,y(xN, t2;𝝁k) ⋯ 𝜏′w,y(xN, tNt ;𝝁k)
𝜏′w,z(x1, t1;𝝁k) 𝜏′w,z(x1, t2;𝝁k) ⋯ 𝜏′w,z(x1, tNt ;𝝁k)

⋮ ⋮ ⋱ ⋮
𝜏′w,z(xN, t1;𝝁k) 𝜏′w,z(xN, t2;𝝁k) ⋯ 𝜏′w,z(xN, tNt ;𝝁k)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(4)

A large snapshot matrix representing WSS data under multiple conditions of 𝝁 can then be
constructed by concatenating multiple X𝝁k

WSS together :
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X
𝝁1,2,..,Nk
WSS = {X𝜇1

WSS,X
𝜇2
WSS, ...,X

𝜇Nk
WSS} (5)

Singular Value Decomposition (SVD) is then applied directly to the large snapshot matrix
X
𝝁1,2,..,Nk
WSS :

X
𝝁1,2,..,Nk
WSS =UΣVT (6)

where U and V are the left and the right singular vectors of X
𝝁1,2,..,Nk
WSS respectively. Each col-

umn of U contains the POD mode structure Φi(x). The POD temporal coefficients can then
be computed by projecting X𝝁k

WSS onto Φi: ai(t;𝝁k) =ΦT
i X

𝝁k
WSS.

The singular matrix (Σ) is a diagonal matrix containing the singular values (𝜎i) of X
𝝁1,2,..,Nk
WSS .

The singular values rank in descending order, and they indicate the level of contribution of
each corresponding POD mode to the overall dynamics. Many complex dynamical systems
show a rapid decline in singular values [18,47], allowing the use of low-dimensional ROMs
to approximate the high-fidelity FOM with high accuracy. Additionally, 𝜎i can be used to
compute the Relative Importance Content (RIC) which is another metric used to quantify the
contribution of the retained modes to the overall system dynamics. It is calculated as RIC(r) =
∑r

i=1 𝜎2
i /∑

Nt
i=1 𝜎2

i .
The ROM based on POD can be obtained by slightly modifying Eq 3b:

𝝉w,r(x, t;𝝁k) = 𝝉w(x) +
r
∑
i=1

ai(t;𝝁k)Φi(x) (7)

where r denotes the number of modes included in the ROM. When setting r =N, Eq 7 yields
the FOM. 𝝉w,r can be arranged into a reconstructed snapshot matrix X𝝁k

WSS,r or X
𝝁1,2,...,Nk
WSS,r , and

the reconstruction error is then defined as:

𝜀𝝁k =
∑Nt

j=1∑
3N
i=1 ∣ X

𝝁k
WSS(i, j) –X

𝝁k
WSS,r(i, j) ∣

∑Nt
j=1∑

3N
i=1 ∣ X

𝝁k
WSS(i, j) ∣

× 100% (8a)

𝜀𝝁1,2,..,Nk =
∑Nt

j=1∑
3N
i=1 ∣ X

𝝁1,2,...,Nk
WSS (i, j) –X𝝁1,2,...,Nk

WSS,r (i, j) ∣

∑Nt
j=1∑

3N
i=1 ∣ X

𝝁1,2,...,Nk
WSS (i, j) ∣

× 100% (8b)

Eq 8a and Eq 8b are for a single case and multiple cases, respectively.
In the subsequent phase, the temporal coefficients ai were used to develop the ML pre-

diction model. By training the ML model with these coefficients, we enabled it to predict the
POD coefficients for unseen conditions in the parameter space. These predicted coefficients ãi
can then be substituted into Eq 7 to obtain the estimated WSS and its related indices.

Machine learning predictive model
Two ML models were explored in this study: a Flowrate-coefficients mapping model and an
Autoregressive model. The flowrate-coefficients mapping model is a straightforward predic-
tion model that maps flowrate data to output coefficients. The Autoregressive model is a more
advanced model that predicts future values based on past data, building on techniques used in
multiple previous studies [25,44,48].

Flowrate-coefficients mapping model The flowrate-coefficients mapping model (Fig 2a)
takes ṁ(t;𝝁) that has been arranged into a window of w time steps tn–w+1, ..., tn–1, tn as the

PLOS One https://doi.org/10.1371/journal.pone.0325644 June 12, 2025 6/ 25

https://doi.org/10.1371/journal.pone.0325644


ID: pone.0325644 — 2025/6/4 — page 7 — #7

PLOS One ML-ROM WSS prediction in patient-specific vascular pathologies under a limited clinical training data regime

input. The input is then processed through 2 LSTM layers with 200 neurons per layer, and
another 2 dense layers with 100 neurons per layer. It then predicts the output of a1(t;𝝁) –
ar(t;𝝁) at the same set of time steps (tn–w+1, ..., tn–1, tn). The window size w is set to be 8 in this
study.

The flowrate-coefficients model was trained in a supervised manner using the Mean
Squared Error (MSE) loss function and the Adam optimizer with a learning rate of 10–3. A
randomly selected 10% of the training dataset was reserved as a validation dataset. An early
stopping technique was implemented to automatically end the training when the validation
MSE stopped improving for 20 consecutive epochs.

Autoregressive model The autoregressive model (Fig 2b) was designed to advance the
prediction of ROM coefficients into future time steps based on multiple past steps. The net-
work autoregressively predicts a1(tn;𝝁)– ar(tn;𝝁)) using the previous w = 8 steps of coef-
ficients (at tn–w, ..., tn–2, tn–1). ṁ(t;𝝁), that has been arranged into a window of w time steps
tn–w+1, ..., tn–1, tn, is concatenated to the input to improve the generalizability of the model.
This approach was also used in Drakoulas et al. [25].

The autoregressive model consists of 2 LSTM layers (200 neurons per layer) and 2 dense
layers (100 neurons per layer). The model was trained in a supervised manner with the
Adam optimizer, MSE loss function, and early stopping criteria in the same configura-
tions as the flowrate-coefficients model. Since this model relies on the previous time steps of

Fig 2. ML models. (a) Flowrate-coefficients mapping model and (b) Autoregressive model.

https://doi.org/10.1371/journal.pone.0325644.g002
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ai(tn;𝝁) to start the prediction, the flowrate-coefficients mapping model was used as the ini-
tialiser to predict the first set of ai(tn;𝝁), providing the starting point for the autoregressive
model.

All the mentioned hyperparameters including the number of layers and the number of
neurons per layer in both ML models were chosen empirically during the training process.
Further optimization using techniques such as Bayesian optimization is possible [49,50],
although this is beyond the scope of this research.

Results
The performance of the proposed ML models was evaluated via two clinical case studies:
Case study 1: PAD representing a simpler flow scenario, and Case study 2: AD which involves
more intricate flow patterns. In both case studies, the primary aim was to predict 𝝉w(x, t;𝝁)
from ṁ(t;𝝁). Two key haemodynamic indices, TAWSS and OSI, were calculated to assess the
accuracy of the predicted WSS using the following equations [5,10]:

TAWSS = 1
T ∫

T

0
|𝝉w|dt (9a)

OSI = 0.5
⎛
⎝
1 –

| ∫
T
0 𝝉w dt|
∫

T
0 |𝝉w|dt

⎞
⎠

(9b)

The model accuracy is assessed using two metrics: Normalized Mean Absolute Error
(NMAE) and Normalized Root Mean Square Error (NRMSE):

MAE𝜃 =
1
N

N
∑
i=1

|𝜃(xi) – ̂𝜃(xi)|, NMAE𝜃 =
MAE𝜃

1
N ∑

N
i=1 |𝜃(xi)|

(10a)

RMSE𝜃 =

¿
ÁÁÀ 1

N

N
∑
i=1

|𝜃(xi) – ̂𝜃(xi)|2, NRMSE𝜃 =
RMSE𝜃√

1
N ∑

N
i=1 |𝜃(xi)|2

(10b)

where 𝜃 can be TAWSS or OSI. These error metrics are similar to those used in Liang et al.
[20], but here, they are normalized differently to reflect the true magnitude of the error in our
study.

3D reconstructions of TAWSS and OSI, and Bland-Altman plots for both quantities were
used to evaluate the results. In addition, the 3D reconstructions of WSS at four phases of the
cardiac cycle (acceleration, peak systole, deceleration, and diastole) and a plot of the mean
absolute error over a cardiac cycle are provided in the Supplementary Material.

Case study 1: PAD
Problem description PAD is a circulatory condition primarily caused by atherosclero-

sis where the buildup of fats, cholesterol, and other substances in the arterial walls results in
a narrowing of the arterial lumen, reducing blood flow to the limbs. This leads to symptoms
ranging from leg pain and numbness to gangrene and ulceration, the latter of which is prone
to infection. In severe instances, these symptoms can progress to the point where amputation
becomes necessary, significantly affecting quality of life and raising healthcare costs [51,52].
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It often requires interventions such as angioplasty or bypass surgery to restore blood circula-
tion. However, restenosis in PAD may develop over time as the body’s response to the treat-
ment leads to a gradual re-narrowing of the arteries, causing reduced blood circulation and
the recurrence of the complications described previously. While the exact cause of restenosis
in PAD is still unclear, researchers have identified that WSS-related indices are linked with the
risk and progression of the restenosis [7,9,10]. Therefore, developing predictive tools for WSS
may significantly improve monitoring and treatment strategies for restenosis in PAD.

This case study utilised data from a recent study by Ninno et al. [10] exploring how dis-
crepancies in the timing between Computed Tomography (CT) scans (which facilitate the
reconstruction of vessel geometry) and Doppler Ultrasound (DUS) images (which defines
inlet flow boundary conditions) affect the assessment of haemodynamic indices in predict-
ing restenosis (Fig 3). This work received ethical approval fromWest Haven VA Connecticut
Healthcare Systems (approval number AD0009). The CFD package Ansys Fluent (Ansys Inc.,
PA, USA) was used to solve NS and continuity equations describing blood flow in patient-
specific femoropopliteal bypasses. The fluid domain was discretised using tetrahedral ele-
ments with refined layers near the wall. Blood was modelled as a non-Newtonian fluid with
Carreau viscosity and constant density. The flow was assumed as laminar. Transient simu-
lations were conducted for each bypass using inlet velocity waveforms extracted from DUS
images. A parabolic profile was imposed at the inlet, and a flow split of 33% to profunda
femoral and 67% to bypass was prescribed at the outlets. The vessel wall was assumed rigid
with no-slip conditions. Two cardiac cycles were simulated, and the first cycle was excluded
to eliminate the influence of initialisation parameters. TheWSS data was obtained using Eq 2.

One patient (patient 3 or PT3) from the patient cohort studied in Nino et al. [10] was
selected for this study. There were four waveforms for this patient (acquired by DUS at differ-
ent dates) presented in Ninno et al. [10]. To enrich the dataset for a more comprehensive anal-
ysis, an additional simulation was performed using another waveform from the same patient,
thus expanding the total number to five waveforms. The first three waveforms (𝝁1, 𝝁2, and 𝝁3)
formed the training dataset, while the remaining two (𝝁4 and 𝝁5) were used as the test dataset.
With a time step size of 0.005 seconds, the temporal snapshots for each waveform are: 201 for
𝝁1, 135 for 𝝁2, 156 for 𝝁3, 151 for 𝝁4, and 201 for 𝝁5.

ROM construction POD was applied to the snapshot matrix of the training dataset X𝝁1,2,3
WSS

to extract Φi. Multiple ROMs were then created by truncating different numbers of modes (Eq
7). The reconstruction errors and RIC associated with these ROMs were calculated (Eq 8b),
and shown in Fig 4.

To achieve a reconstruction error below 5%, a ROM with r = 10 modes was selected for
further ML model development. Note that this 5% reconstruction error was calculated from
X𝝁1,2,3
WSS using Eq 8b. For the test cases (X𝝁4

WSS and X𝝁5
WSS), the reconstruction errors were com-

puted using Eq 8a and found to be 5.76% and 6.39%, respectively. These small reconstruc-
tion errors in the test cases indicated that the flow fields inside the training dataset effectively
captured the important flow characteristics of the test cases.

ML performance Fig 5 shows a comparison of the performance of the autoregressive
model and the flowrate-coefficients mapping model in predicting TAWSS and OSI. Each
model was trained 10 times, and the errors displayed are the average values of NMAE and
NRMSE for TAWSS and OSI with 95% confidence intervals.

The results indicate that the flowrate-coefficients mapping model outperforms the
autoregressive model in all error metrics. For the autoregressive model, the NMAETAWSS

and NRMSETAWSS are 15.27± 2.93% and 15.68± 2.84%, respectively, while for OSI, the
NMAEOSI and NRMSEOSI are significantly higher at 34.47± 10.71% and 30.86± 8.41%,
respectively. In contrast, the flowrate-coefficients mapping model shows much lower errors,
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Fig 3. Patient-specific geometry of the femoral artery with boundary conditions, showing a flow split of 33% and
67% at the outlets. The graph below presents mass flowrate waveforms for training (𝝁1, 𝝁2, 𝝁3) and testing (𝝁4, 𝝁5)
datasets over a cardiac cycle. (Figure modified from Ninno et al. [10] with permission.)

https://doi.org/10.1371/journal.pone.0325644.g003

Fig 4. POD-based ROM performance in case study 1: PAD. (Left) Reconstruction error of ROMs retaining the first imodes and (right) their RIC. The selected
ROM retains r = 10 modes to achieve a reconstruction error less than 5.00%.

https://doi.org/10.1371/journal.pone.0325644.g004

with NMAETAWSS and NRMSETAWSS of 6.20± 0.80% and 6.37± 0.82%, respectively, and for
OSI, the NMAEOSI and NRMSEOSI are at 21.48± 4.37% and 22.41± 3.04%, respectively.

Among the 10 flowrate-coefficients mapping models trained, the best was used for further
qualitative analysis in Figs 6–8 with 𝝁5 case.

Fig 6 presents a 3D comparison of TAWSS derived from the ML model against the origi-
nal CFD data. Both the ML prediction and original CFD data exhibit similar TAWSS distri-
bution along the artery, with high values appearing in similar regions. This indicates that the
ML model is generally effective in capturing essential flow dynamics, without any consistent
trend of under- or over-prediction across the artery. The differences are primarily confined
to very small areas around the valves (present in the vein that was used to create this bypass).
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Fig 5. Performance comparison of the flowrate-coefficients mapping and autoregressive models on the test
dataset, case study 1: PAD. Each bar shows average NMAE and NRMSE for TAWSS and OSI, with 95% confidence
intervals

https://doi.org/10.1371/journal.pone.0325644.g005

Fig 6. Comparison of TAWSS in the PAD under 𝝁5: ML prediction (top), original CFD (middle), and their
differences (bottom). The detailed view shows a region with a relatively high magnitude of absolute differences.

https://doi.org/10.1371/journal.pone.0325644.g006
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Fig 7. Comparison of OSI in the PAD under 𝝁5: ML prediction (top), original CFD (middle), and their differences
(bottom). The detailed view shows a region with a relatively high magnitude of absolute differences.

https://doi.org/10.1371/journal.pone.0325644.g007

Fig 8. Bland-Altman plots for TAWSS (left) and OSI (right) comparing ML predictions and CFD results in the PAD case under 𝝁5.Themean difference and
limits of agreement (±1.96 SD) are indicated. To enhance readability, the graph displays a subset of only 2,000 randomly chosen data points.

https://doi.org/10.1371/journal.pone.0325644.g008

They increase the artery’s cross-sectional area, likely introducing more flow disturbances,
and consequently reducing prediction accuracy. Similarly, the OSI derived fromML predic-
tions closely matches the spatial distribution patterns observed in the original CFD results, as
shown in Fig 7. However, the plot reveals more noticeable areas of under- and over-prediction
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by the ML model. These discrepancies can be attributed to the fact that OSI calculations con-
sider the directional changes and magnitude of WSS over a cycle, and are inherently more
complex than TAWSS computations. This complexity can challenge the ML model’s predictive
accuracy, as OSI is sensitive to subtle flow dynamics and temporal variations that are more
nuanced than the average shear stress measurements. Nevertheless, the regions exhibiting
high discrepancy are small compared to the overall artery surface area where the prediction
is accurate.

Fig 8 shows the Bland-Altman plots for TAWSS and OSI in the 𝝁5 case, assessing the agree-
ment between the ML predicted and original CFD-derived values on each node on the ves-
sel wall. Similar to Fig 6, the TAWSS plot shows excellent performance, with an extremely
small under-prediction and a mean bias of –0.03% and limits of agreement from –19.68% to
–16.92%. For OSI, the mean bias is –17.85%, with wider limits of agreement from –74.80% to
39.11%, highlighting greater variability in OSI values. The model tends to under-predict when
OSI values are low, whereas the errors are closer to 0% for higher OSI values. This trend sug-
gests that regions with lowWSS fluctuation are estimated to exhibit even less fluctuation. This
may be attributed to the construction of the ROM from truncated POD modes. While this
approach can effectively capture dominant flow features, it neglects smaller variations in the
higher (truncated) modes. This causes inaccuracies in the regions where the flow dynamics
are complex but have lower magnitudes of WSS, such as low OSI regions.

Case study 2: AD
Problem description Type-B AD is a serious vascular condition that can lead to dis-

ability or death. It occurs when an intimal tear develops in the wall of the aorta distal to the
left subclavian artery. This tear separates the aorta into two distinct blood flow channels: TL
and FL. This causes severe pain and frequently leads to organ ischemia such as renal, limb or
mesenteric ischemia, and can also progress to aneurysmal degeneration [53,54]. The com-
plexity of AD is heightened by its patient-specific nature, with significant variability in tear
size, location, and progression of TL and FL. This variability affects the blood flow dynam-
ics, making AD modelling significantly more complicated and challenging compared to the
PAD case study, which involves more uniform arterial narrowing patterns and streamlined
flow.

The data used in this case study was based on the work of Stokes et al. [5] studying the
impact of different inlet conditions on key haemodynamic indices involving aneurysmal
growth in type-B AD (Fig 9). The dataset was from a 56-year-old male patient diagnosed
with chronic Type B AD acquired following an approved ethics protocol (ID 2019-00556,
Inselspital, Bern, Switzerland).

The geometry and boundary conditions were obtained from Computed tomography
angiography (CTA) and 4D-magnetic resonance imaging (4D-MRI). CFD simulations were
conducted using Ansys CFX 2020 (Ansys Inc., PA, USA) to solve the 3D incompressible
Unsteady Reynolds-averaged Navier-Stokes (URANS) and continuity equations. Blood was
represented as a non-Newtonian fluid following the Carreau–Yasuda model, with simula-
tions assuming rigid wall boundaries. (In a chronic Type B AD the dissected intima is over-
layed with a neo-intima resulting in a rather thick flap with little or no motion in comparison
to a freshly dissected aortic wall.) The k–𝜔 SST turbulence model was employed and three-
element Windkessels were incorporated at the outlets to simulate peripheral resistance and
compliance. The simulation offers a dataset of 128 temporal snapshots, with a time step size
of 0.005 s. TheWSS data was then obtained using Eq 2.
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Fig 9. Patient-specific geometry of the AD with boundary conditions, showing the inlet velocity profile and
three-element Windkessel model at each outlet. The graph on the top left corner shows mass flowrate waveforms
for training (𝝁–25%, 𝝁+25%) and testing (𝝁+0%) datasets over a cardiac cycle. TL and FL are colored blue and grey,
respectively. (Figure modified from Stokes et al. [5] with permission).

https://doi.org/10.1371/journal.pone.0325644.g009

Stokes et al. [5] presented four simulations with different inlet profiles including a 3D inlet
velocity profile (3DIVP, or referred to as +0% case in this study), a flat profile, a through-
plane profile, and a condition with a 25% increased flowrate. To broaden the training dataset
for this current study, we introduced an additional simulation case, reducing the flowrate by
25%. The flat and through-plane cases were excluded from this study as they share the same
inlet mass flowrate waveform as the +0% case. The -25% and +25% cases were used as the
training dataset, while the +0% case was selected as the test dataset. These flowrate waveforms
are depicted in Fig 9. 𝝁–25%, 𝝁+0%, and 𝝁+25% represents the –25%, +0%, and +25% cases,
respectively.

ROM construction The snapshot matrix for the training dataset X𝝁–25%,+25%
WSS was con-

structed and then POD was applied to extract Φi. ROMs were then generated by truncat-
ing different numbers of modes, and the corresponding reconstruction errors are calculated
and displayed in Fig 10. Unlike the PAD case study where only 10 modes were necessary to
achieve a reconstruction error below 5%, 26 modes were needed for this case. Subsequently,
the ROM with r = 26 modes was tested against the +0% case, resulting in a reconstruction
error of 14.56%, significantly higher than that observed in the training dataset. This larger
error suggests notable differences in WSS patterns between the training and test datasets,
highlighting the complexity of this case study.

ML performance The performance of the ML models was evaluated using the same
approach as in the PAD case study. Two models were tested: the flowrate-coefficients mapping
model and the autoregressive model. Fig 11 shows the performance comparison between the
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Fig 10. POD-based ROM performance in case study 2: AD. (Left) Reconstruction error of ROMs retaining the first imodes and (right) their RIC. The selected
ROM retains r = 26 modes to achieve a reconstruction error less than 5.00%.

https://doi.org/10.1371/journal.pone.0325644.g010

Fig 11. Performance comparison of the flowrate-coefficients mapping and autoregressive models on the test
dataset, case study 2: AD. Each bar shows average NMAE and NRMSE for TAWSS and OSI, with 95% confidence
intervals.

https://doi.org/10.1371/journal.pone.0325644.g011

two models in predicting TAWSS and OSI for the 𝝁+0% (test case). Similar to the PAD case,
each model was trained 10 times, and the errors displayed are the average values of NMAE
and NRMSE for TAWSS and OSI with 95% confidence intervals.
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The flowrate-coefficients mapping model substantially outperforms the autoregres-
sive model in this case study. The NMAETAWSS and NRMSETAWSS for the autoregressive
model are 26.34± 0.55% and 39.13± 0.81%, respectively, while for OSI, the NMAEOSI and
NRMSEOSI are higher at 27.23± 0.82% and 30.95± 0.34%, respectively. In contrast, the
flowrate-coefficients mapping model shows lower errors, with NMAETAWSS and NRMSETAWSS

at 8.88± 0.51% and 14.24± 0.66%, respectively, and for OSI, the NMAEOSI and NRMSEOSI

are 26.45± 1.81% and 29.15± 1.33%, respectively.
Interestingly, while the TAWSS errors from the flowrate-coefficients mapping model are

significantly lower than those from the autoregressive model, the OSI errors for both models
are relatively close. Overall, the results highlight that the flowrate-coefficients mapping model
is more effective and reliable than the autoregressive model in predicting the haemodynamic
quantities in AD.This advantage is consistent with findings in the PAD case study, further
underscoring the importance of choosing an appropriate model complexity, especially when
dealing with limited training data.

Figs 12 and 13 show the comparison between ML predictions from the flowrate-
coefficients mapping model and original CFD results for the 𝝁+0% case in terms of TAWSS
and OSI, respectively. While both TAWSS and OSI derived from the ML predictions match
the CFD-derived values in general, there are notable areas of discrepancy. Specifically, the dif-
ferences in TAWSS primarily localize near regions of high curvature such as the aortic arch
and branch entries. For OSI, variations are more pronounced along the wall of the FL after
the tear and distally downstream, where the OSI values are relatively high. Similar to the PAD
case study, the discrepancy in OSI is more noticeable than that of TAWSS due to the reasons
stated in Case study 1: PAD.

Fig 14 displays the Bland-Altman plots for TAWSS and OSI in the 𝝁+0% case. The TAWSS
plot shows a mean bias of –2.80% with limits of agreement from –27.41% to 21.82%. The OSI
plot shows a mean bias of -26.70% with wider limits of agreement from –120.10% to 66.69%.

Fig 12. Comparison of TAWSS in the AD under 𝝁+0%: ML prediction (left), original CFD (middle), and their
differences (right).

https://doi.org/10.1371/journal.pone.0325644.g012
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Fig 13. Comparison of OSI in the AD under 𝝁+0%: ML prediction (left), original CFD (middle), and their
differences (right).

https://doi.org/10.1371/journal.pone.0325644.g013

Fig 14. Bland-Altman plots (left) and OSI (right) comparing ML predictions and CFD results in the TL and FL of AD under 𝝁+0%. The mean differ-
ence and limits of agreement (±1.96 SD) are indicated. To enhance readability, the graph displays a subset of 1,000 randomly chosen data points each
from the TL and FL (a total of 2,000 data points displayed).

https://doi.org/10.1371/journal.pone.0325644.g014

Both plots indicate that the ML model tends to slightly under-predict TAWSS and OSI. The
variability is higher for OSI, reflecting the model’s greater challenge in accurately capturing
the oscillation of WSS. Unlike the PAD case, the OSI plot here shows no noticeable tendency
to under-predict when the OSI is low. The absence of this trend may be due to the presence

PLOS One https://doi.org/10.1371/journal.pone.0325644 June 12, 2025 17/ 25

https://doi.org/10.1371/journal.pone.0325644.g013
https://doi.org/10.1371/journal.pone.0325644.g014
https://doi.org/10.1371/journal.pone.0325644


ID: pone.0325644 — 2025/6/4 — page 18 — #18

PLOS One ML-ROM WSS prediction in patient-specific vascular pathologies under a limited clinical training data regime

of larger sources of errors, which obscure the effect of POD truncation mentioned earlier in
Case study 1: PAD.There is no noticeable difference between errors in TL and FL.

Computational cost
The computational time for the two case studies is presented in Table 1. For case study 1
(PAD), the CFD simulations used the cluster provided by the Department of Computer Sci-
ence at UCL (Intel Xeon Gold 5118 at 2.3 GHz using 10 processors), taking approximately 36
hours for each simulation. In case study 2 (AD), the simulations ran on an Intel(R) Core(TM)
i9-10900X at 3.7 GHz using 10 processors, requiring roughly 3 days per simulation. However,
each AD simulation case also required additional manual fine-tuning of Windkessel param-
eters, thus multiple rounds of simulations were needed before achieving the suitable set of
Windkessel parameters, averaging about 3 weeks per simulation case. For this reason, it took
as much as about 1,000 hours to generate the training dataset for the AD case study.

The ROM and ML tasks were performed on an Intel(R) Core(TM) i9-12900K at 3.2 GHz
and Nvidia RTX A2000, respectively. While the ML evaluation time differed in the two case
studies because of the difference in the number of time steps in a cycle, these values were very
close at 0.030± 0.001 s and 0.034± 0.004 s per time step. This is because the same ML model
architecture with an equal number of layers and neurons was used for both case studies. The
only difference is the number of modes in each ROM: more modes are included in Case study
2: AD, thus it took slightly more evaluation time. This showcases the ML model’s capability to
handle tasks with varying complexity while maintaining consistent computational demands.
The speed-up ratios are approximately 22,000 for Case study 1: PAD and 60,000 for Case
study 2: AD. It is crucial to note that these reported speed-up ratios are conservative estimates
because different computational devices were used for the training/testing of the ML model
and the CFD simulations.

Discussion
The application of POD-based ROM combined with neural network-based ML models show-
cased different levels of success in the two case studies. As anticipated, the accuracy was high
in the simpler PAD case study and decreased in the more complex AD case study. The higher
difficulty of the AD case can be attributed to the intricate flow dynamics caused by the com-
plex geometry that separates into TL and FL, along with the presence of a turbulent flow
regime. This trend was evident not only in the ML predictive accuracy but also earlier during
the ROM construction phase. The ROM for PAD required only 10 modes to reach the recon-
struction error of 5% and it generalized well to unseen test cases (𝝁4 and 𝝁5). In contrast, the

Table 1. Computational time.
Case 1: PAD Case 2: AD

Training dataset generation
time (CFD)

∼108 hours ∼1,000 hours

Offline POD ROM construction time 3.21± 0.08 s 1.49± 0.04 s
Training time 102.43± 30.33 s 40.57± 5.02 s
CFD simulation time ∼36 hours ∼72 hours s

Online ML evaluation time 6.00± 0.24 s 4.30± 4.26 s
Speed-up ratio ∼22,000 ∼60,000

Computational time analysis for the two case studies. The speed-up ratios for both studies are in the order of
104. These speed-up ratios are conservative estimates because different computational devices were used for the
training/testing of the ML model and the CFD simulations.

https://doi.org/10.1371/journal.pone.0325644.t001
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ROM for AD required 26 modes to achieve similar reconstruction accuracy and showed sig-
nificantly larger errors when applied to the unseen case (𝝁+0%). Notably, the need for more
than twice the number of modes in AD signifies a far more complex WSS landscape. This
higher-dimensional ROM basis implies that the ML model was tasked with learning a more
intricate coefficient space, which also contributed to the larger prediction errors observed in
the AD case. In contrast, PAD’s WSS dynamics were effectively captured with fewer modes,
simplifying the learning task and yielding better generalization.

While ML has been widely applied to model haemodynamics in many cardiovascular con-
ditions [19–24,26], very few past studies have tackled AD haemodynamics modelling using
ML. A very recent study by Deneker et al. [55] introduced warm-start physics-informed neu-
ral networks (WS-PINNs) to analyze the velocity field inside the FL of Type B AD, show-
ing effectiveness in handling MRI noise. Similar to our findings, their study acknowledged
the challenge of accurately predicting complex flow patterns in AD.Their meshfree (point
cloud-based) approach offered greater flexibility in dealing with geometrical variations. How-
ever, their approach did not utilize dimensionality reduction techniques, leading to consid-
erably longer training times, and each new case required separate retraining (although par-
tially expedited by their transfer learning technique). In contrast, our ROM-based ML models
operate using low dimensional representations of the haemodynamic quantity, which signif-
icantly decreases computation time while still providing reasonable accuracy and valuable
qualitative insights (as evidenced by the good overall agreement of TAWSS and OSI spatial
distribution patterns in Fig 12 and Fig 13, respectively).

This makes our approach more practical for clinical applications where fast and reliable
predictions are crucial. Such WSS predictions can be valuable in a clinical setting. For a PAD
patient, the ability to quickly estimate TAWSS across a reconstructed artery or bypass graft
could help identify regions of persistently lowWSS – areas prone to restenosis or intimal
hyperplasia – and thus support treatment planning or graft design adjustments [6–10]. In
the context of AD, being able to predict WSS (with TAWSS and OSI) in near-real-time may
aid clinicians’ decisions on monitoring versus intervention, as regions with abnormal shear
(e.g., high OSI or low TAWSS zones often linked to aneurysmal growth) can be non-invasively
identified [3–5,12].

In both case studies presented in our work, the simple flowrate-coefficients mapping model
outperformed the more advanced autoregressive model in all error metrics. This result may
seem unexpected, given the success of autoregressive models in similar prediction tasks in the
literature [25,44,48]. The key reason for the superior performance of the simpler model in our
study was likely due to the highly limited training dataset available in both case studies: 3 and
2 conditions for PAD and AD, respectively. It is important to highlight that this is extremely
limited compared to works in the literature that used autoregressive-type models. For exam-
ple, Drakoulas et al. [25] trained their FastSVD-ML-ROM on a dataset comprising 10 inlet
conditions. Maulik et al. [44] used a training dataset consisting of 5 conditions to model the
1D viscous Burgers’ equation, and another dataset with 90 conditions for the 2D inviscid shal-
low water equations. In the work by Ahmed et al. [48], flow fields with 5 conditions were used
to train the model to learn the dynamics of the Marsigli flows, in which a fluid is divided into
two sections with different temperatures. When the separating barrier is suddenly removed,
the fluids flow over each other, driven by convection and buoyancy forces. These prior studies
suggest that autoregressive networks generally require more extensive training data to per-
form effectively. By nature, more complex neural network models have a higher tendency to
overfit, especially with small datasets, whereas simpler models are known to be more robust
and generalizable to unseen cases [36]. In particular, the smaller training sets in both PAD
and AD gave the autoregressive model insufficient examples to learn time-dependent patterns
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without overfitting. Meanwhile, the simpler mapping approach effectively leveraged the avail-
able data to capture principal relationships between flowrate and WSS, resulting in consis-
tently better error metrics in our study. This type of approach is also far more compatible with
the reality of clinical applications where limited datasets are often the norm.

This finding underscores the importance of balancing ML model complexity with the size
and quality of the training dataset. In clinical applications, where data acquisition can be chal-
lenging and datasets are often limited, simpler models may lead to more reliable predictions.
Moreover, simpler models offer greater flexibility for future improvements and expansions.
For instance, if additional input features, e.g. geometric parameters of the vessels, are to be
incorporated, a simpler model will be easier to modify to accommodate these needs.

Limitations and future work
A key limitation of our current study is the extremely limited training dataset, which restricts
the ML model’s effectiveness in capturing the full variability of the time-dependent WSS
through its POD coefficients. To address this, future work could involve implementing sta-
tistical generative techniques to enlarge the training dataset by creating additional synthetic
data. This has been demonstrated in the study of Pajaziti et al. [23] who used Statistical Shape
Modelling (SSM) to create 3,000 synthetic aortic geometries from 67 real geometries before
using them as the training dataset for ML prediction of steady-state velocity and pressure
fields. Similar techniques have also been used in Liang et al. [20] and Du et al. [22]. While
SSM is used primarily for analyzing geometries, the core concept of capturing variability in
a dataset can be applied to other data types. Tools like PCA can generate synthetic data by
perturbing principal component coefficients to create new sets of 𝝁, expanding our training
dataset.

Lower performance in complex pathologies (e.g. AD case) is another key limitation of
this work. The complex flow dynamics, caused by turbulent effects and severe flow split-
ting between the true and false lumens, appear to be more difficult to capture by the current
workflow. This shortcoming may arise from several factors: the inherent complexity of the
haemodynamics in such geometries, the very limited training data available for these com-
plex conditions, and the reliance on traditional linear dimensionality reduction techniques (in
this case, POD) that may not adequately represent the finer-scale, non-linear features of the
WSS data. To address this limitation, future research could focus on enriching the training
datasets specifically for complex pathologies using statistical generative techniques as men-
tioned above. Additionally, incorporating more advanced non-linear dimensionality reduc-
tion methods such as autoencoders may better capture the intricate flow features [20,25,26].
It may also be beneficial to enhance the ML model architecture by incorporating physics-
informed constraints to help the model learn the flow dynamics from the governing equation
[29,30,46,55].

Another important limitation is that the ML models presented in this work are restricted
to only a single patient-specific vessel geometry. Incorporating geometric parameters into the
prediction process to improve model applicability to real-world scenarios is another avenue of
future work. It should be noted that most published studies have focused on:

1. The prediction of steady-state flow fields in different blood vessel geometries [20,22,23,
33];

2. The prediction of the time-dependent flow field in a fixed geometry under different flow
conditions [25,32,45,48].
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To the best of the authors’ knowledge, Siena et al. [24] is the only study to develop an ML
model to predict time-dependent flow fields in blood vessels with geometric variations, albeit
considering the degree of stenosis as the only geometric parameter. Therefore, developing an
ML model for time-dependent flow field prediction in blood vessels with practical geometric
variation remains a novel and challenging task.

Conclusions
This study demonstrates the effectiveness of integrating POD-based ROM and neural
network-based ML to predict WSS in blood vessels affected by vascular diseases. High-fidelity
CFD simulations generated WSS data, which was then processed through POD to con-
struct the ROM.The ML models were trained to predict the ROM coefficients from the inlet
flowrate waveform which is a quantity that can be measured in the clinics. Two ML mod-
els were explored: the relatively simple flowrate-coefficients mapping model and the more
advanced autoregressive model. Both ML models were then tested against two case studies:
flow in PAD and flow in AD.The former served as a simpler case study, and the latter repre-
sented a more complex one. The key findings and implications of this study are summarized
below:

• The combined POD-ROM and ML framework successfully predicted WSS in patient-
specific diseased vessels, demonstrating robust performance even with extremely limited
training data.

• Between the two ML models tested, the simple flowrate-to-coefficient mapping model
consistently outperformed the advanced autoregressive model across all error metrics in
both case studies, suggesting that less complex models generalize better under data-scarce
conditions.

• Prediction accuracy was high for the simpler PAD case and somewhat reduced for the
complex AD case, indicating that flow complexity and data availability influence model
performance.

• Despite the sparse training dataset, the ML-ROM approach reproduced the overall patterns
of TAWSS and OSI in both vascular conditions, underscoring its reliability in capturing
clinically relevant haemodynamic metrics.

• The proposed approach achieved speed-ups in the order of 104 compared to full CFD sim-
ulations, dramatically reducing computation time and enabling near-real-time WSS predic-
tions, which is highly relevant for clinical applications.

Future work could focus on expanding the training dataset using statistical generative
techniques and incorporating geometric parameters to enhance model generalizability. Over-
all, this study highlights the promise of using ML models for fast, accurate predictions of
haemodynamic quantities, potentially aiding in the diagnosis and treatment planning of
cardiovascular diseases.

Supporting information
S1 Fig. Reconstruction of time-dependent WSS for Case 1. (a) 3D reconstructions of WSS
in the PAD under 𝝁5 (test case) at four states of the cardiac cycle: Acceleration, peak systole,
deceleration, and diastole shown in (b). (c) Mean absolute error from the prediction of WSS
over a cardiac cycle. Gray area shows the range between 75th and 25th percentile of error.).
(TIFF)
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S2 Fig. Reconstruction of time-dependent WSS for Case 2. (a) 3D reconstructions of WSS
in the AD under 𝝁+0% (test case) at four states of the cardiac cycle: Acceleration, peak systole,
deceleration, and diastole shown in (b). (c) Mean absolute error from the prediction of WSS
over a cardiac cycle. Gray area shows the range between 75th and 25th percentile of error.
(TIFF)
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