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Abstract 

Major Depressive Disorder (MDD) is a prevalent mental 

disorder. Combining speech features and machine learning has 

promise for predicting MDD, but interpretability is crucial for 

clinical applications. Reference intervals (RIs) represent a 

typical range for a speech feature in a population. RIs could 

increase interpretability and help clinicians identify deviations 

from norms. They could also replace conventional speech 

features in machine learning models. However, no work has yet 

assessed the feasibility of speech RIs in MDD. We generated 

and compared RIs from three reference datasets varying in size, 

elicitation prompt, and health information. We then calculated 

deviations from each RI set for people with MDD to compare 

performance on a depression symptom severity prediction task. 

Our RI-based models trained with demographic data performed 

similarly to each other and equivalent models using 

conventional features or demographics only, demonstrating the 

value of RI-derived features. 

Index Terms: reference intervals, interpretability, speech 

biomarkers, depression. 

1. Introduction 

Major Depressive Disorder (MDD) is a common mental 

disorder that impacts emotional regulation, cognitive 

functioning and neurophysiological processes, which can lead 

to alterations in speech and language [1, 2]. Early identification 

and treatment of MDD is associated with better health outcomes 

[3]. Remote relapse monitoring could enable early detection of 

symptom change, allowing clinicians to more easily identify a 

need for treatment adjustments, thereby improving care [4].  

Speech is a complex process requiring cognitive functions 

and coordination of the respiratory, laryngeal, and articulatory 

muscles [5]. This complexity makes it sensitive to changes in 

health [6]. Speech could contribute to the early identification of 

changes in depression symptom severity [1]. As the 

presentation of MDD varies widely between individuals [7], we 

cannot assume that depression affects every individual’s speech 

similarly. This variability makes it difficult to distill salient 

changes into an interpretable and standardised format for 

research and clinical settings. 

A novel approach to characterise health-related changes in 

speech is using reference intervals (RIs) [8, 9]. RIs, inspired by 

clinical laboratory science [10], define a typical ‘healthy’ range 

for speech features, which could then be used to assess an 

individual’s speech features against an equivalent population 

[9]. Previous works have demonstrated that deviation from RIs 

can be used to classify Alzheimer’s or Parkinson’s Disease [8]. 

However, the benefits of RI-derived speech features have yet to 

be explored in a clinical MDD population.  

The choice of reference data is a key consideration when 

using RI-derived features; RIs should be calculated to match a 

target population regarding sociodemographic characteristics 

(e.g. age, sex) [11]. A potential limitation of using datasets from 

a population sample is that the RIs could be influenced by the 

presence of diseased subpopulations [12]. Datasets which 

exclude diseased subpopulations may ensure ranges of features 

that are more representative of the healthy population and, thus, 

more reliable. Large data sources are preferred for RI 

generation [10], with a recommended minimum of 400 

individuals per reference group partition [12]. Speech is also 

subject to channel effects and other sources of measurement 

variability [13]. It is therefore essential to assess the suitability 

of different reference datasets in speech RI generation. 

This study aimed to explore the feasibility of using RI 

deviations to predict depression symptom severity. Our specific 

objectives were to (1) assess whether RI-derived features 

achieve comparable performance to the conventional, 

underlying speech features and (2) evaluate how the choice of 

reference dataset impacts prediction performance. 
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2. Method 

Forming RI-derived features involved (1) generating the RI 

from a reference dataset and (2) calculating deviation scores for 

the clinical depression dataset from the derived references 

(Figure 1). This section describes our reference and clinical 

datasets, overviews the key methodological steps in forming the 

deviation features, and outlines our prediction experiments.  

2.1 Reference datasets 

As part of our feasibility assessment, we formed three sets of 

RIs using three reference corpora (Table 1). 

Thymia Cross-Sectional Dataset (TCS): Comprises audio 

recordings collected remotely through a web browser API [14]. 

We used TCS as it has rich health and sociodemographic 

metadata. Eligibility criteria to partake were to: be aged 18-100; 

speak English as a first language; and be resident in the UK or 

US. Participants recorded themselves completing a variety of 

elicitation tasks and provided sociodemographic data and 

information on various health outcomes. Participants who self-

reported mental, physical, or neurological conditions, allergies 

or illnesses, who indicated a birth sex other than male or female, 

or who were missing sex or health data, were excluded. We 

used speech from recordings of Aesop’s fable ‘The North Wind 

and the Sun’. 

Crowdsourced Language Assessment Corpus (CLAC): 

Contains remotely collected data from various speech tasks 

[15]. We used CLAC as it is a standard open-source reference 

dataset for health analysis [8, 9]. Participants provided 

information on gender (used in place of birth sex) and whether 

they were experiencing current illness or allergies at the time of 

recording. We excluded participants who reported experiencing 

a current illness or who did not indicate male or female gender. 

We used recordings of readings of ‘The Rainbow Passage’. 

Mozilla Common Voice (CV): A project crowdsourcing open-

source speech datasets [16]. Participants are prompted to read a 

set of short sentences. Each recording goes through a validation 

process to which anyone can contribute by listening to the clips 

to accept or reject them based on quality (e.g. based on 

background noise or misreading). Participants can choose to 

provide age, accent, and gender (used in place of birth sex). We 

used CV 1.0 (henceforth, CV). We randomly selected one 

recording for each voice in the corpus; those who did not 

indicate gender were excluded. 

2.2 Clinical Population 

We used speech from people with MDD from an international 

longitudinal observational cohort study, Remote Assessment of 

Disease and Relapse in Major Depressive Disorder (RADAR-

MDD) [17, 2] (Table 2). Participants were invited to complete 

two speech tasks: answering a question and reading one of three 

parts of ‘The North Wind and the Sun’. We used only English 

speech data from the reading task completed by UK-based 

participants. Participants completed the 8-item Patient Health 

Questionnaire (PHQ-8), a measure of depression symptom 

severity [18] where higher scores indicate a more severe 

symptom presentation. 

A patient advisory board (PAB) co-developed the study 

protocol with input on several study aspects, such as survey 

frequency, usability of the app used for data collection, 

documents, incentives, wearable devices, and data analysis. The 

speech tasks were discussed with the project’s PAB. 

2.3 Ethical approvals and licenses  

Ethical approval for TCS was provided via the Association of 

Research Managers and Administrators service. CLAC and CV 

are distributed under Creative Commons licenses (CC BY-SA 

and CC0, respectively). Ethical approval for RADAR-MDD 

UK was provided by London, Camberwell St. Giles Research 

Ethics Committee (17/LO/1154). Access to the data can be 

made through reasonable requests to the senior author and will 

be subject to local ethics clearances.  

Table 1: Reference descriptives after exclusions and outlier 

removal. *CV age is organised by categorical age group. 

 
Total N 

[% female] 

Mean (SD) 

Age Recording length (s) 

TCS 
2,591 

[49.5] 

37.2 

(12.7) 

40.2 

(11.8) 

CLAC 
892 

[49.1] 

35.7 

(12.0) 

12.8  

(2.2)    

CV 
4,713  

[19.3] 
N/A* 2.9 

(2.5) 

Table 2: RADAR-MDD descriptives based on 4,242 

observations from n=272 (female=213) participants. 

 N 

observations 
Age 

Recording 

length (s) 
PHQ-8 

Mean 

(SD) 

15.6 

(10.4) 

48.4 

(15.4) 

14.0 

(3.7) 

9.2 

(6.0) 

 

 
Figure 1: Key methodological steps in developing (1) reference intervals and (2) deviation scores; and (3) the use of these deviation scores as 

features in a task predicting depression symptom severity as measured by PHQ-8. 
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2.4 Pre-processing and feature extraction 

All speech data were converted into mono Waveform Audio 

File Format (wav) files, with 16kHz sampling frequency and 

16-bit resolution. All speech features were extracted using 

Parselmouth, which runs Praat in Python [19].  

2.5 Reference interval generation and deviation scores 

Twenty-five features were used for RI development and 

depression symptom severity prediction (Table 3). We selected 

five for presentation: speaking rate, mean fundamental 

frequency (F0), cepstral peak prominence (CPP), mean first 

formant (F1), and spectral gravity. These five were selected for 

their relevance for depression applications [1], representing 

fluency characteristics of speech and the speech production 

subsystems of respiration, phonation, and articulation [5].  

RIs were developed using the methodology outlined in [8, 

9] (Figure 1). First, outliers were removed based on 

Mahalanobis distance [20] to the population mean with a cutoff 

of three times the standard deviation from the mean. Data were 

then partitioned by sex, including only male and female 

participants to maintain a minimum sample size of n>400 per 

partition. Each feature within each partition was normalised 

using Z-score standardisation, and RIs were determined with 

the non-parametric approach.  

To calculate deviation scores, we used the deviation score 

DSQ123 [8] based on the median (Q2), first (Q1) and third (Q3) 

quartiles for each feature (Figure 1). The score is 0 when a 

feature is within a reference range, negative when below the 

range, and positive when above the range. RIs and deviation 

scores were calculated separately for partitions, but partitions 

were recombined before prediction. To compare the stability of 

the RIs we calculated the percentage of overlap between the 

ranges for each of our five presentation features. 

For feature extraction, reference interval generation, 

deviation score calculations and overlap analysis code, see 

https://github.com/LaurenLWhite/IS25. 

2.6 Prediction models 

Nine elastic net models were developed to predict depression 

symptom severity, as measured by PHQ-8, using four feature 

combinations: (1) A baseline model including age, sex, and 

years of education only; (2) conventional speech features; (3) 

deviation from TCS RIs (D-TCS), (4) deviation from CLAC 

RIs (D-CLAC); and (5) deviation from CV RIs (D-CV). Each 

model (2-5) was considered with and without age, sex/gender, 

and education, variables that are known biases in the RADAR-

MDD dataset [17, 2] and affect speech [21, 22].  

Elastic net is widely used in speech-depression based 

literature [23] and provides an initial basis to evaluate the utility 

of RIs for depression prediction. Models were developed using 

scikit-learn [24]. Hyperparameters were tuned within inner 

loops using a grid search. The hyperparameters tuned were 

alpha [0.1, 1.0, 10.0, 100] and L1 ratio [0.1, 0.2, 0.3, 0.4, 0.5, 

0.6, 0.7, 0.8, 0.9]. Models were evaluated using speaker-

stratified nested cross-validation (10 inner, 10 outer folds) to 

enhance generalisability [25]. Models were assessed in terms of 

root mean square error (RMSE), mean absolute error (MAE) 

and the coefficient of determination (R2).  

 

Table 3: Speech reference intervals (standardised) derived from reference datasets. The remaining 20 features included in our prediction model 

analysis are listed below. Mean (SD) indicates the unstandardised values for each dataset.  

   Study 

 

Feature 

TCS CLAC CV RADAR-MDD  

Mean 

(SD) 
Interval 

Mean 

(SD) 
Interval 

Mean 

(SD) 
Interval Mean (SD) 

F
em

a
le

 

Speaking rate 
3.5 

(0.7) 
-2.4, 1.5 

3.8 

(0.5) 
-2.2, 1.8 

4.1 

(0.9) 
-2.0, 2.0 

3.9 

(0.6) 

Mean F0 
186.9 
(29.3) 

-2.0, 1.7 
195.7 
(27.9) 

-2.1, 1.9 
204.3 
(36.6) 

-1.9, 2.0 
182.3 
(27.8) 

CPP 
9.1 

(1.6) 
-2.0, 1.9 

9.4 

(1.6) 
-1.8, 2.2 

8.7 

(1.5) 
-1.9, 2.1 

7.9 

(1.0) 

Mean F1 
496.3 

(56.1) 
-1.6, 2.0 

529.0 

(64.0) 
-1.6, 1.7 

519.7 

(74.2) 
-1.6, 2.2 

499.4 

(52.8) 

Spectral gravity 
478.3 

(122.8) 
-1.4, 2.6 

566.1 

(200.9) 
-1.2, 2.0 

515.0 

(176.5) 
-1.2, 2.2 

440.4 

(99.0) 

M
a
le

 

Speaking rate 
3.2 

(0.7) 
-2.4, 1.7 

3.7 

(0.5) 
-1.9, 1.9 

4.0 

(0.9) 
-2.0, 2.0 

3.7 

(0.6) 

Mean F0 
117.2 
(28.8) 

-1.1, 2.7 
117.8 
(29.4) 

-1.1, 2.5 
128.5 
(32.1) 

-1.2, 2.8 
112.1 
(20.2) 

CPP 
8.2 

(1.6) 
-1.8, 2.1 

8.7 

(1.7) 
-1.7, 2.2 

8.2 

(1.6) 
-1.8, 2.1 

6.8 

(0.9) 

Mean F1  
452.8 
(68.7) -1.2, 1.9 

481.1 

(71.6) 
-1.3, 2.2 

472.3 

(79.6) 
-1.5, 2.3 

462.5  
(71.1) 

Spectral gravity 
438.7 

(151.4) 
-1.1, 1.9 

531.5 

(233.8) 
-1.1, 2.3 

461.0 

(174.6) 
-1.3, 2.5 

358.8 

(86.9) 

Note. Other features included in the prediction modelling: (i) Fluency Measures: articulation rate, phonation ratio, pause rate, mean pause duration, (ii) 

Respiration Measures: mean intensity, intensity range; (iii) Phonation Measures: F0 SD, harmonic to noise ratio, spectral slope, spectral tilt; (iv) 
Articulatory Measures: F1 SD, mean F1 Bandwidth,  F1 Bandwidth SD,  mean F2, F2 SD, mean F2 Bandwidth,  F2 Bandwidth SD; and (v) Acoustic 

Measures: mean spectral deviation; mean spectral skewness; mean spectral kurtosis. 
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3. Results and Discussion 

3.1 Reference interval generation and deviation scores 

Table 3 describes RIs of five example features for the reference 

datasets, alongside the mean and standard deviation of the 

unstandardised data for all corpora. Overlaps in RIs varied 

across datasets, features, and sex/gender (Table 4). The average 

overlap across datasets also differed between males and 

females: the overlap between TCS and CV was greatest for 

females, but lowest for males. Conversely, the CLAC and CV 

RI overlap was greatest for males yet was the lowest for 

females.  

Regarding individual features, RI overlap for F1 and 

spectral gravity was similar for males and females. However, 

RIs for F0 and CPP were less variable (i.e. displayed more 

overlap) for males than females, whereas speaking rate RIs 

were less variable for females than males. These results 

emphasise the importance of partitioning the data [9], and 

suggest that, despite all RIs being formed from n>400 samples, 

potentially larger data sources are needed to provide more 

stable intervals for speech applications.  

A key feasibility issue related to the consistency of 

elicitation tasks in the different reference datasets. Due to short 

readings in CV, many samples did not contain pauses, meaning 

we could not calculate valid deviation scores for pause rate, 

pause duration, or phonation ratio. This presents a limitation of 

CV as a reference dataset for MDD as pause differences are 

often observed in depression [1]. 

3.2 Prediction models 

As in [8], comparing the RI-derived features with conventional 

features did not result in information loss (Table 5).  We also 

observed similar performance across D-TCS, D-CLAC, and D-

CV. Thus, there does not seem to be any added benefit of using 

data from a strictly healthy population (TCS). These results 

highlight the usefulness of RI representations. 

Interestingly, all models performed similarly, but the 

baseline model outperformed speech-only models, highlighting 

the importance of the demographic predictors in the clinical 

dataset. These results support concerns in the literature that 

while speech-based methods are promising, model performance 

in the speech-health literature may present over-optimistic 

results due, in part, to the presence of confounds [26, 27].  

3.3 Limitations and future work 

Our work had several limitations. We could not form valid RIs 

for all features using CV due to the short readings. Additionally, 

for some speech features, deviation from RIs may only be 

clinically meaningful when the deviation is in a specific 

direction [8]. Future work should consider a literature-informed 

approach to the upper and lower bounds of RIs [8] and develop 

RIs partitioned by age and sex [8, 9]. This may improve the 

validity of RI-derived features and give insights into the 

suitability of different datasets for RI development. We also 

focused on knowledge-derived features; future work could 

combine RIs with features derived from foundational models. 

The RADAR-MDD dataset contains repeated, longitudinal 

measures. Work from [28] highlighted that repeated 

observation of individuals can improve precision when 

predicting mental health symptom severity with a reference-

based approach; future work could incorporate repeated 

observations to develop person-specific RIs [10]. This work 

focused on analysis of a reading task. Future work could 

explore RI-derived features from other speech tasks that may 

also contain suitable MDD related biomarkers [1]. 

Finally, our analysis took a complete case approach in 

removing all missing data and used basic prediction models; 

missing data imputation and more sophisticated prediction 

algorithms may present more insightful results.  

4. Conclusion 

This work explored the feasibility of using RIs to predict 

depression symptom severity. We observed comparable 

performance using RI-derived features versus conventional 

speech features (Objective 1). Given the greater interpretability 

provided by RI-derived features, RIs may provide a valuable 

tool for advancing speech as a depression biomarker. Moreover, 

RIs represent a more convenient means of data sharing, as data 

are processed and aggregated in a way that removes any 

potentially sensitive participant information. 

We observed comparable predictive performance for RI-

derived features from different reference datasets (Objective 2).  

Datasets with very short speech recordings (such as CV) may 

be difficult to use for valid RI generation due to the inability to 

determine some features. Further developments to RIs in speech 

should evaluate the characteristics of potential reference 

datasets before proceeding with RI generation. 

Table 5: RMSE, R2, and MAE from nine elastic net models 

predicting PHQ-8 using 25 speech features with or without 

demographic data (sex/gender, age, and education). 

  Model RMSE R2 MAE 

W
it

h
 d

em
o
g
ra

p
h

ic
s?

 

Y
es

 

(1) Baseline 5.97 0.01 4.93 

(2) Conventional 5.83 0.05 4.77 

(3) D-TCS 5.87 0.04 4.82 

(4) D-CLAC 5.86 0.05 4.81 

(5) D-CV 5.85 0.05 4.81 

N
o

 

(2) Conventional 5.98 0.01 4.98 

(3) D-TCS 5.98 0.01 4.97 

(4) D-CLAC 5.97 0.01 4.96 

(5) D-CV 5.98 0.01 4.98 

 

Table 4: Percentage overlap of reference interval (RI) ranges 

between reference datasets. 

 
Feature 

TCS-

CLAC 

TCS-

CV 

CLAC-

CV 
Mean 

F
em

a
le

 

Speaking rate 89.3 85.3 95.7 90.1 

Mean F0 93.6 89.0 91.8 91.5 

CPP 87.3 92.9 94.2 91.5 

Mean F1 90.9 91.3 84.5 88.9 

Spectral gravity 78.9 95.8 82.4 85.7 

Mean % overlap 88.0 90.9 89.7 89.5 

M
a
le

 

Speaking rate 83.0 81.4 94.2 86.2 

Mean F0 97.0 96.8 93.9 95.9 

CPP 97.3 98.2 98.6 98.0 

Mean F1  91.1 82.5 90.6 88.1 

Spectral gravity 88.6 80.4 88.7 85.9 

Mean % overlap 91.4 87.9 93.2 90.8 
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