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Abstract

Major Depressive Disorder (MDD) is a prevalent mental
disorder. Combining speech features and machine learning has
promise for predicting MDD, but interpretability is crucial for
clinical applications. Reference intervals (RIs) represent a
typical range for a speech feature in a population. Rls could
increase interpretability and help clinicians identify deviations
from norms. They could also replace conventional speech
features in machine learning models. However, no work has yet
assessed the feasibility of speech Rls in MDD. We generated
and compared RIs from three reference datasets varying in size,
elicitation prompt, and health information. We then calculated
deviations from each RI set for people with MDD to compare
performance on a depression symptom severity prediction task.
Our RI-based models trained with demographic data performed
similarly to each other and equivalent models using
conventional features or demographics only, demonstrating the
value of RI-derived features.

Index Terms: reference intervals, interpretability, speech
biomarkers, depression.

1. Introduction

Major Depressive Disorder (MDD) is a common mental
disorder that impacts emotional regulation, cognitive
functioning and neurophysiological processes, which can lead
to alterations in speech and language [1, 2]. Early identification
and treatment of MDD is associated with better health outcomes
[3]. Remote relapse monitoring could enable early detection of
symptom change, allowing clinicians to more easily identify a
need for treatment adjustments, thereby improving care [4].

Speech is a complex process requiring cognitive functions
and coordination of the respiratory, laryngeal, and articulatory
muscles [5]. This complexity makes it sensitive to changes in
health [6]. Speech could contribute to the early identification of
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changes in depression symptom severity [1]. As the
presentation of MDD varies widely between individuals [7], we
cannot assume that depression affects every individual’s speech
similarly. This variability makes it difficult to distill salient
changes into an interpretable and standardised format for
research and clinical settings.

A novel approach to characterise health-related changes in
speech is using reference intervals (RIs) [8, 9]. Rls, inspired by
clinical laboratory science [10], define a typical ‘healthy’ range
for speech features, which could then be used to assess an
individual’s speech features against an equivalent population
[9]. Previous works have demonstrated that deviation from Rls
can be used to classify Alzheimer’s or Parkinson’s Disease [8].
However, the benefits of RI-derived speech features have yet to
be explored in a clinical MDD population.

The choice of reference data is a key consideration when
using RI-derived features; Rls should be calculated to match a
target population regarding sociodemographic characteristics
(e.g. age, sex) [11]. A potential limitation of using datasets from
a population sample is that the RIs could be influenced by the
presence of diseased subpopulations [12]. Datasets which
exclude diseased subpopulations may ensure ranges of features
that are more representative of the healthy population and, thus,
more reliable. Large data sources are preferred for RI
generation [10], with a recommended minimum of 400
individuals per reference group partition [12]. Speech is also
subject to channel effects and other sources of measurement
variability [13]. It is therefore essential to assess the suitability
of different reference datasets in speech RI generation.

This study aimed to explore the feasibility of using RI
deviations to predict depression symptom severity. Our specific
objectives were to (1) assess whether RI-derived features
achieve comparable performance to the conventional,
underlying speech features and (2) evaluate how the choice of
reference dataset impacts prediction performance.
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Figure 1: Key methodological steps in developing (1) reference intervals and (2) deviation scores; and (3) the use of these deviation scores as
features in a task predicting depression symptom severity as measured by PHQ-8.

2. Method

Forming RI-derived features involved (1) generating the RI
from a reference dataset and (2) calculating deviation scores for
the clinical depression dataset from the derived references
(Figure 1). This section describes our reference and clinical
datasets, overviews the key methodological steps in forming the
deviation features, and outlines our prediction experiments.

2.1 Reference datasets

As part of our feasibility assessment, we formed three sets of

2.2 Clinical Population

We used speech from people with MDD from an international
longitudinal observational cohort study, Remote Assessment of
Disease and Relapse in Major Depressive Disorder (RADAR-
MDD) [17, 2] (Table 2). Participants were invited to complete
two speech tasks: answering a question and reading one of three
parts of ‘The North Wind and the Sun’. We used only English
speech data from the reading task completed by UK-based
participants. Participants completed the 8-item Patient Health
Questionnaire (PHQ-8), a measure of depression symptom
severity [18] where higher scores indicate a more severe

RIs using three reference corpora (Table 1).

Thymia Cross-Sectional Dataset (TCS): Comprises audio
recordings collected remotely through a web browser API [14].
We used TCS as it has rich health and sociodemographic
metadata. Eligibility criteria to partake were to: be aged 18-100;
speak English as a first language; and be resident in the UK or
US. Participants recorded themselves completing a variety of
elicitation tasks and provided sociodemographic data and
information on various health outcomes. Participants who self-
reported mental, physical, or neurological conditions, allergies
or illnesses, who indicated a birth sex other than male or female,
or who were missing sex or health data, were excluded. We
used speech from recordings of Aesop’s fable ‘The North Wind
and the Sun’.

Crowdsourced Language Assessment Corpus (CLAC):
Contains remotely collected data from various speech tasks
[15]. We used CLAC as it is a standard open-source reference
dataset for health analysis [8, 9]. Participants provided
information on gender (used in place of birth sex) and whether
they were experiencing current illness or allergies at the time of
recording. We excluded participants who reported experiencing
a current illness or who did not indicate male or female gender.
We used recordings of readings of ‘The Rainbow Passage’.

Mozilla Common Voice (CV): A project crowdsourcing open-
source speech datasets [16]. Participants are prompted to read a
set of short sentences. Each recording goes through a validation
process to which anyone can contribute by listening to the clips
to accept or reject them based on quality (e.g. based on
background noise or misreading). Participants can choose to
provide age, accent, and gender (used in place of birth sex). We
used CV 1.0 (henceforth, CV). We randomly selected one
recording for each voice in the corpus; those who did not
indicate gender were excluded.

symptom presentation.

A patient advisory board (PAB) co-developed the study
protocol with input on several study aspects, such as survey
frequency, usability of the app used for data collection,
documents, incentives, wearable devices, and data analysis. The
speech tasks were discussed with the project’s PAB.

2.3 Ethical approvals and licenses

Ethical approval for TCS was provided via the Association of
Research Managers and Administrators service. CLAC and CV
are distributed under Creative Commons licenses (CC BY-SA
and CCO, respectively). Ethical approval for RADAR-MDD
UK was provided by London, Camberwell St. Giles Research
Ethics Committee (17/L0O/1154). Access to the data can be
made through reasonable requests to the senior author and will
be subject to local ethics clearances.

Table 1: Reference descriptives after exclusions and outlier
removal. *CV age is organised by categorical age group.

Mean (SD)
Total N
[% female] Age Recording length (s)

2,591 37.2 40.2
TCS [49.5] (12.7) (11.8)
892 35.7 12.8

CLAC [49.1] (12.0) 2.2)

4,713 - 2.9

cv [19.3] N/A (2.5)

Table 2: RADAR-MDD descriptives based on 4,242
observations from n=272 (female=213) participants.

N Recording
observations Age length (s) PHQ-8
Mean 15.6 48.4 14.0 9.2
(SD) (10.4) (15.4) 3.7 (6.0)
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Table 3: Speech reference intervals (standardised) derived from reference datasets. The remaining 20 features included in our prediction model
analysis are listed below. Mean (SD) indicates the unstandardised values for each dataset.

Study
TCS CLAC CVv RADAR-MDD
Feature Mean Mean Mean
(SD) Interval (SD) Interval (SD) Interval Mean (SD)
Speaking rate (g"% -24,15 (g:g) -2.2,1.8 (?):gla) -2.0,2.0 (g:g)
186.9 195.7 204.3 182.3
Mean FO (29.3) -2.0,1.7 (27.9) -2.1,1.9 (36.6) -1.9,20 (27.8)
[<5)
E 9.1 9.4 8.7 7.9
E CPP (16) -2.0,19 (16) -1.8,2.2 (15) -19,21 (1.0)
496.3 529.0 519.7 499.4
Mean F1 (56.1) -1.6,2.0 (64.0) -1.6,1.7 (74.2) -1.6,2.2 (52.8)
. 478.3 566.1 515.0 440.4
Spectral gravity (122.8) -1.4,2.6 (200.9) -1.2,2.0 (176.5) -1.2,2.2 (99.0)
Speaking rate (3'.5) 24,17 (g:;) 19,19 (g'.g) 2.0,2.0 (g'_g)
117.2 117.8 128.5 1121
Mean FO (28.8) -1.1,2.7 (29.4) -1.1,25 (32.1) -1.2,2.8 (20.2)
2 8.2 8.7 8.2 6.8
] - - -
s CPP (L6) 18,21 L7 17,22 (L6) 18,21 (0.9)
452.8 481.1 472.3 462.5
Mean F1 (68.7) -1.2,1.9 (71.6) -1.3,2.2 (79.6) -1.5,2.3 (71.1)
Spectral gravity é‘giz) -1.1,1.9 égég) -1.1,2.3 (igig) -1.3,25 835(?:)

Note. Other features included in the prediction modelling: (i) Fluency Measures:

articulation rate, phonation ratio, pause rate, mean pause duration, (ii)

Respiration Measures: mean intensity, intensity range; (iii) Phonation Measures: FO SD, harmonic to noise ratio, spectral slope, spectral tilt; (iv)
Articulatory Measures: F1 SD, mean F1 Bandwidth, F1 Bandwidth SD, mean F2, F2 SD, mean F2 Bandwidth, F2 Bandwidth SD; and (v) Acoustic
Measures: mean spectral deviation; mean spectral skewness; mean spectral kurtosis.

2.4 Pre-processing and feature extraction

All speech data were converted into mono Waveform Audio
File Format (wav) files, with 16kHz sampling frequency and
16-bit resolution. All speech features were extracted using
Parselmouth, which runs Praat in Python [19].

2.5 Reference interval generation and deviation scores

Twenty-five features were used for Rl development and
depression symptom severity prediction (Table 3). We selected
five for presentation: speaking rate, mean fundamental
frequency (F0), cepstral peak prominence (CPP), mean first
formant (F1), and spectral gravity. These five were selected for
their relevance for depression applications [1], representing
fluency characteristics of speech and the speech production
subsystems of respiration, phonation, and articulation [5].

RIs were developed using the methodology outlined in [8,
9] (Figure 1). First, outliers were removed based on
Mahalanobis distance [20] to the population mean with a cutoff
of three times the standard deviation from the mean. Data were
then partitioned by sex, including only male and female
participants to maintain a minimum sample size of n>400 per
partition. Each feature within each partition was normalised
using Z-score standardisation, and RIs were determined with
the non-parametric approach.

To calculate deviation scores, we used the deviation score
DSq123 [8] based on the median (Q2), first (Q1) and third (Q3)
quartiles for each feature (Figure 1). The score is 0 when a
feature is within a reference range, negative when below the
range, and positive when above the range. Rls and deviation
scores were calculated separately for partitions, but partitions

461

were recombined before prediction. To compare the stability of
the RIs we calculated the percentage of overlap between the
ranges for each of our five presentation features.

For feature extraction, reference interval generation,
deviation score calculations and overlap analysis code, see
https://github.com/LaurenLWhite/IS25.

2.6 Prediction models

Nine elastic net models were developed to predict depression
symptom severity, as measured by PHQ-8, using four feature
combinations: (1) A baseline model including age, sex, and
years of education only; (2) conventional speech features; (3)
deviation from TCS RIs (D-TCS), (4) deviation from CLAC
Rls (D-CLAC); and (5) deviation from CV RIs (D-CV). Each
model (2-5) was considered with and without age, sex/gender,
and education, variables that are known biases in the RADAR-
MDD dataset [17, 2] and affect speech [21, 22].

Elastic net is widely used in speech-depression based
literature [23] and provides an initial basis to evaluate the utility
of RIs for depression prediction. Models were developed using
scikit-learn [24]. Hyperparameters were tuned within inner
loops using a grid search. The hyperparameters tuned were
alpha [0.1, 1.0, 10.0, 100] and L1 ratio [0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9]. Models were evaluated using speaker-
stratified nested cross-validation (10 inner, 10 outer folds) to
enhance generalisability [25]. Models were assessed in terms of
root mean square error (RMSE), mean absolute error (MAE)
and the coefficient of determination (R?).



Table 4: Percentage overlap of reference interval (RI) ranges
between reference datasets.

Table 5: RMSE, R?, and MAE from nine elastic net models
predicting PHQ-8 using 25 speech features with or without
demographic data (sex/gender, age, and education).

Feature TeS o TCS CLAC ean
CLAC Ccv Ccv Model RMSE R? MAE
Speaking rate 89.3 85.3 95.7 90.1 (1) Baseline 5.97 0.01 4.93
Mean FO 93.6 89.0 91.8 915 N (2) Conventional 5.83 0.05 4.77
E cPP 873 929 94.2 915 2 & @Db-Tcs 5.87 004 482
$ MeanF1 90.9 91.3 84.5 88.9 % (4) D-CLAC 5.86 0.05 4.81
Spectral gravity 78.9 95.8 82.4 85.7 é’ (5) D-CV 5.85 0.05 4.81
Mean % overlap 88.0 90.9 89.7 89.5 s (2) Conventional 5.98 0.01 4.98
ki . 14 4.2 2 =
Speaking rate 83.0 8 9 86 g ° (3) D-TCS 5.98 0.01 4.97
Mean FO 97.0 968 93.9 95.9 “ (@b-CcLAC 5.97 001 496
3 CPP 973 982 98.6 9.0 (5) D-CV 5.98 001 498
= Mean F1 91.1 82.5 90.6 88.1
Spectral gravity 886 804 887 859 3.3 Limitations and future work
Mean % overlap 914 87.9 93.2 90.8 Our work had several limitations. We could not form valid Rls

3. Results and Discussion

3.1 Reference interval generation and deviation scores

Table 3 describes Rls of five example features for the reference
datasets, alongside the mean and standard deviation of the
unstandardised data for all corpora. Overlaps in RIs varied
across datasets, features, and sex/gender (Table 4). The average
overlap across datasets also differed between males and
females: the overlap between TCS and CV was greatest for
females, but lowest for males. Conversely, the CLAC and CV
RI overlap was greatest for males yet was the lowest for
females.

Regarding individual features, Rl overlap for F1 and
spectral gravity was similar for males and females. However,
Rls for FO and CPP were less variable (i.e. displayed more
overlap) for males than females, whereas speaking rate Rls
were less variable for females than males. These results
emphasise the importance of partitioning the data [9], and
suggest that, despite all RIs being formed from n>400 samples,
potentially larger data sources are needed to provide more
stable intervals for speech applications.

A key feasibility issue related to the consistency of
elicitation tasks in the different reference datasets. Due to short
readings in CV, many samples did not contain pauses, meaning
we could not calculate valid deviation scores for pause rate,
pause duration, or phonation ratio. This presents a limitation of
CV as a reference dataset for MDD as pause differences are
often observed in depression [1].

3.2 Prediction models

As in [8], comparing the RI-derived features with conventional
features did not result in information loss (Table 5). We also
observed similar performance across D-TCS, D-CLAC, and D-
CV. Thus, there does not seem to be any added benefit of using
data from a strictly healthy population (TCS). These results
highlight the usefulness of RI representations.

Interestingly, all models performed similarly, but the
baseline model outperformed speech-only models, highlighting
the importance of the demographic predictors in the clinical
dataset. These results support concerns in the literature that
while speech-based methods are promising, model performance
in the speech-health literature may present over-optimistic
results due, in part, to the presence of confounds [26, 27].
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for all features using CV due to the short readings. Additionally,
for some speech features, deviation from RIs may only be
clinically meaningful when the deviation is in a specific
direction [8]. Future work should consider a literature-informed
approach to the upper and lower bounds of RIs [8] and develop
Rls partitioned by age and sex [8, 9]. This may improve the
validity of RI-derived features and give insights into the
suitability of different datasets for Rl development. We also
focused on knowledge-derived features; future work could
combine RIs with features derived from foundational models.

The RADAR-MDD dataset contains repeated, longitudinal
measures. Work from [28] highlighted that repeated
observation of individuals can improve precision when
predicting mental health symptom severity with a reference-
based approach; future work could incorporate repeated
observations to develop person-specific RIs [10]. This work
focused on analysis of a reading task. Future work could
explore RI-derived features from other speech tasks that may
also contain suitable MDD related biomarkers [1].

Finally, our analysis took a complete case approach in
removing all missing data and used basic prediction models;
missing data imputation and more sophisticated prediction
algorithms may present more insightful results.

4. Conclusion

This work explored the feasibility of using RIs to predict
depression symptom severity. We observed comparable
performance using RI-derived features versus conventional
speech features (Objective 1). Given the greater interpretability
provided by RI-derived features, RIs may provide a valuable
tool for advancing speech as a depression biomarker. Moreover,
RIs represent a more convenient means of data sharing, as data
are processed and aggregated in a way that removes any
potentially sensitive participant information.

We observed comparable predictive performance for RI-
derived features from different reference datasets (Objective 2).
Datasets with very short speech recordings (such as CV) may
be difficult to use for valid RI generation due to the inability to
determine some features. Further developments to RIs in speech
should evaluate the characteristics of potential reference
datasets before proceeding with RI generation.
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