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Abstract12

In this work, we will explore modalities through dialogical game lenses. Games provide a powerful13

tool for bridging the gap between intended and formal semantics, often offering a more conceptually14

natural approach to logic than traditional model-theoretic semantics.15

We begin by exploring substructural calculi from a game semantic perspective, driven by intuitions16

about resource-consciousness and, more specifically, cost-sensitive reasoning. The game comes into17

full swing as we introduce cost labels to assumptions and a corresponding budget. Different proofs18

of the same end-sequent are interpreted as strategies for a player to defend a claim, which vary in19

cost. This leads to a labelled calculus, which can be viewed as a fragment of subexponential linear20

logic. We conclude this first part with a discussion of cut-admissibility for the proposed system.21

In the second part, we show that our games offer an interesting insight also into modal logics.22

More precisely, we will focus on the modal logic PNL, characterised by Kripke frames with two23

types of disjoint and symmetric reachability relations. This framework is motivated by the study of24

group polarisation, where the opinions or beliefs of individuals within a group become more extreme25

or polarised after interaction. Our approach to reasoning about group polarisation is based on PNL26

and highlights a different aspect of formal reasoning about the corresponding models – using games27

and proof systems. We conclude by outlining potential directions for future research.28
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4:2 Playing with modalities

1 Introduction41

Modalities, both as formal constructs and as tools for reasoning, have been central to the42

development of logic and proof theory. In this work, we explore modalities through the lens43

of dialogical games, emphasising their potential to bridge the gap between formal semantics44

and conceptual intuition. Games not only offer a dynamic perspective on logical systems45

but also serve as a unifying framework for analysing the structure of proofs and resource46

management in a variety of logical settings.47

We begin by examining substructural calculi, inspired by resource-sensitive reasoning. We48

introduce the concept of prices for resources (represented by formulas) into the game using49

the unary operator !a, a ∈ R+, which shares some characteristic features with subexponentials50

in linear logic LL (SELL [14, 32]). Intuitively, a formula !aA represents a permanent resource:51

from !aA, we can derive A as many times as needed, paying the price a each time.52

We extend our game to this enriched language by incorporating a budget into the game53

states, which decreases whenever a price is paid. Different strategies for proving the same54

end-sequent can then be evaluated based on the budget required to execute them safely,55

i.e., without incurring debt. This approach to resource-consciousness not only enhances the56

game but also translates naturally into a sequent system, where cost bounds for proofs are57

expressed as labels attached to sequents. By associating costs with proof steps, we provide a58

fine-grained analysis of proof strategies and their computational bounds.59

We note that, up to this point, the content summarises the work presented in [28], where60

resources were considered only in assumptions. In this setting, sequents are restricted by61

limiting the occurrences of the modality !a negatively, thereby eliminating the need for a62

promotion rule.63

In Section 2.2, we introduce new perspectives by allowing modalities in positive contexts.64

This includes the addition of “worse costs,” linearisation of the cut formula, and tracking the65

use of contraction during the cut-elimination process.66

In the second part of this paper, we present an overview of our work in [22], going beyond67

resource-awareness, and showing how games can illuminate modal logics. Specifically, we68

focus on the positive-negative modal logic (PNL [47]), characterised by Kripke frames with69

two disjoint and symmetric reachability relations. In PNL, individuals in a social network70

are identified with worlds of the frame, and the associated relations represent either “friends”71

(positive) or as “enemies” (negative). These relationships can be understood in different72

ways: Instead of genuine friendship or enduring enmity, they may simply mean agreement73

or disagreement on a particular issue. Our interest in PNL stems from its application in74

modelling phenomena such as group polarisation, where interactions amplify the extremity of75

opinions within a network. We show how the dialogical game lenses lead to both a semantic76

game and a provability game for (hybrid) extensions of PNL.77

In semantic games [25], each instance is played over a formula F and a model M by two78

players, traditionally called I (or Me) and You. At every point in the game, one player acts79

as the proponent (P), while the other acts as the opponent (O) of the current formula. The80

set of actions at each stage is determined by the main connective of the current formula.81

In contrast, provability games [29] do not concern truth in a specific model but rather82

logical validity. These games are also played by two participants, Me and You, and involve83

attacking assertions of formulas made by the other player and defending against these attacks.84

We conclude this summary by showing how to transform the semantic game over single85

models into a provability game that characterises logical validity. This transformation led86

to the first Gentzen-style systems for variants of PNL, which modularly adapt to different87
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frame properties by faithfully capturing the rules for elementary games.88

Each part concludes with a discussion of future research directions and methodologies for89

combining and adapting the frameworks presented here to other logics and systems.90

2 A game model for costs91

Our starting point is a calculus for affine intuitionistic linear logic (aILL) [24]. Formulas in
aILL are built from the grammar

A ::= p | 0 | 1 | A1 & A2 | A1 ⊕ A2 | A1 ⊗ A2 | A1 −◦ A2 | ! A.

with a denumerable infinite set of propositional variables {p, q, r, . . .}, the units {0, 1},92

the binary connectives for additive conjunction and disjunction {&, ⊕}, the multiplicative93

conjunction ⊗, the linear implication −◦, and the exponential !.94

Similar to modal connectives, the exponential ! in linear logic is not canonical, in the sense95

that, even having the same scheme for introduction rules, marking the exponentials with96

different labels does not preserve equivalence. That is, if i ̸= j then !iA ̸≡ !jA. Intuitively,97

this means that we can mark the exponential with labels taken from a set I organized in98

a pre-order ⪯ (i.e., a reflexive and transitive relation), obtaining (possibly infinitely-many)99

exponentials !i for i ∈ I. These are called subexponentials [14], and the respective proof100

system for linear logic with subexponentials is called SELL [33]. As in multi-modal systems,101

the pre-order determines the provability relation: for a general formula A, !bA implies !aA iff102

a ⪯ b. Pre-ordering the labels (together with an upward closeness requirement) guarantees103

cut-elimination in SELL [14].104

The algebraic structure of subexponentials, combined with their intrinsic structural105

properties (weakening and contraction) allow for the proposal of rich linear logic based106

frameworks. This opened a venue for proposing different multi-modal substructural logical107

systems [46], that encountered a number of different applications (see [37] for a survey).108

In this paper, we will use subexponentials to model the notion of costs. We will start by109

considering the particular case where labels will be elements of R+, the set of non-negative110

real numbers, with the usual pre-order ≤. Formally, we substitute in aILL the exponential !111

by the unary modal operators !a for each a ∈ R+.112

We shall use A, B, C (resp. Γ, ∆) to range over formulas (resp. multisets of formulas).113

Sequents have the form Γ ⇒ C where subformulas !aA will have a restriction to occur only114

negatively in the sequent.1 We denote by !Γ a set of formulas prefixed with !a for some (not115

necessarily the same) a ∈ R+.116

The rules for the system C(R+) are depicted in Figure 1. Note that the cut rule is not117

included in our presentation of C and that weakening is present only implicitly, via the118

context Γ in the initial sequents. Furthermore, in rule init, p is a propositional variable and119

there is no right rule for ! in C(R+) since this connective only appears in negative polarity.120

We shall write ⊢C(R+) S if the sequent S is provable in C(R+).121

1 The notion of polarity is the standard one: A subformula occurrence in the antecedent of a sequent is
negative if it occurs in the scope of an even number (including 0) of contexts ([·] −◦ B), and otherwise
it is positive. For occurrences of a subformula in the consequent, one replaces “even” by “odd”. The
reason for this restriction will be made clear in Section 2.2.
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4:4 Playing with modalities

Γ, A, B ⇒ C

Γ, A ⊗ B ⇒ C
⊗L

!Γ, ∆1 ⇒ A !Γ, ∆2 ⇒ B

!Γ, ∆1, ∆2 ⇒ A ⊗ B
⊗R

!Γ, ∆1 ⇒ A !Γ, ∆2, B ⇒ C

!Γ, ∆1, ∆2, A −◦ B ⇒ C
−◦L

Γ, A ⇒ B

Γ ⇒ A −◦ B
−◦R

Γ, !aA, A ⇒ C

Γ, !aA ⇒ C
!L

Γ, Ai ⇒ B

Γ, A1 & A2 ⇒ B
&Li

Γ ⇒ A Γ ⇒ B
Γ ⇒ A & B

&R
Γ, A ⇒ C Γ, B ⇒ C

Γ, A ⊕ B ⇒ C
⊕L

Γ ⇒ Ai

Γ ⇒ A1 ⊕ A2
⊕Ri

Γ, p ⇒ p
init Γ ⇒ 1 1R Γ, 0 ⇒ C

0L

Figure 1 The sequent system C(R+).

2.1 Playing with subexponentials122

We shall characterize C(R+) proofs as winning strategies (w.s.) in a two-player game, the123

players denoted P and O. As usual, we will interpret bottom-up proof search in sequent124

systems as a game where, at any given state, player P first chooses a formula of a sequent125

and, in the next step:126

if the rule has only one premise: P moves to the premise sequent of the corresponding127

introduction rule;128

if the rule has two premises either129

(i) player O chooses a premise sequent in which the game continues; or130

(ii) the game splits into independent subgames, where P has to win all of them if she131

wants to win the game.132

The choice between (i) and (ii) depends on the nature of the rule: branching in additive133

rules is modelled as choices made by O, while branching in multiplicative rules involves P134

splitting the context into two disjoint parts, which then serve as the corresponding contexts135

for two subgames played in parallel. Consequently, the state of the game is represented by a136

multiset of sequents, with each sequent belonging to a distinct subgame.137

Now, to capture the notion of costs, game states include a budget (modelled as a real138

number) that decreases whenever the rule !L is applied. This implies a cost a is incurred139

during dereliction, i.e., when unpacking a formula stored within the modality !a. Formally140

we have the following.141

▶ Definition 1 (The game GC(R+)). GC(R+) is a game of two players, P and O. Game
states are tuples (H, b), where H is a finite multiset of sequents and b ∈ R is a “budget”.
GC(R+) proceeds in rounds, initiated by P’s selection of a sequent S from the current game
state. The successor state is determined according to rules that fit one of the two following
schemes:

(1) (G ∪ {S}, b) ⇝ (G ∪ {S′}, b′)
(2) (G ∪ {S}, b) ⇝ (G ∪ {S1} ∪ {S2}, b)

A round proceeds as follows: After P has chosen a sequent S ∈ H among the current game142

state, she chooses a rule instance r of C(R+) such that S is the conclusion of that rule.143

Depending on r, the round proceeds as follows:144

1. If r is a unary rule different from !L with premise S′, then the game proceeds in the game145

state (G ∪ {S′}, b).146

2. Budget decrease: If r = !L with premise S′ and principal formula !aA, then the game147

proceeds in the game state (G ∪ {S′}, b − a).148
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3. Parallelism: If r is a binary rule with premises S1, S2 pertaining to a multiplicative149

connective, then the game proceeds as (G ∪ {S1} ∪ {S2}, b).150

4. O-choice: If r is a binary rule with premises S1, S2 pertaining to an additive connective,151

then O chooses S′ ∈ {S1, S2} and the game proceeds in the game state (G ∪ {S′}, b).152

A winning state (for P) is a game state (H, b) such that all S ∈ H are initial sequents of153

C(R+) and b ≥ 0.154

▶ Definition 2 (Plays and strategies). A play of GC(R+) on a game state (H, b) is a sequence155

(H1, b1), (H2, b2), . . . , (Hn, bn) of game states, where (H1, b1) = (H, b) and each (Hi+1, bi+1)156

arises by playing one round on (Hi, bi). A strategy (for P) on a game state (H, b) is defined as157

a function telling P how to move in any given state. A strategy on (H, b) is a winning strategy158

(w.s.) if all plays following it eventually reach a winning state. We write |=GC(R+) (H, b) if P159

has a w.s. in the GC(R+)-game starting on (H, b).160

The intuitive reading of |=GC(R+) (H, b) is: The budget b suffices to win the game H.161

▶ Example 3. Consider the following well-known riddle:162

You have white and black socks in a drawer in a completely dark room. How many163

socks do you have to take out blindly to be sure of having a matching pair?164

We can model the matching pair by the disjunction (w ⊗ w) ⊕ (b ⊗ b), and the act of drawing165

a random sock by the labelled formula !1(w ⊕ b). The above question then becomes:166

What is the least budget n such that |=GC(R+) (!1(w ⊕ b) ⇒ (w ⊗ w) ⊕ (b ⊗ b), n)?167

The following play illustrates that n = 3 suffices, where F = (w⊗w)⊕(b⊗b) and G = !1(w⊕b):168

1. ({G ⇒ F}, 3)169

2. ({G, w ⊕ b, w ⊕ b, w ⊕ b ⇒ F}, 0) (P plays !1L 3×, budget decrease)170

3. ({G, w, w ⊕ b, w ⊕ b ⇒ F}, 0) (O chooses w)171

4. ({G, w, b, w ⊕ b ⇒ F}, 0) (O chooses b)172

5. ({G, w, b, b ⇒ F}, 0) (O chooses b)173

6. ({G, w, b, b ⇒ b ⊗ b}, 0) (P plays ⊕R2)174

7. ({G, w, b ⇒ b} ∪ {G, b ⇒ b}, 0) (P plays ⊗R, parallelism)175

The other possible choices for O are similar or simpler, and show that n = 2 is not enough176

for winning the game.177

We note that it is not necessary to consider all possible strategies in GC(R+): For example, P178

never needs to take the budget into account when deciding the next move. Also, it is easy to179

see that a C(R+)-proof Ξ of a sequent S translates to a w.s. in ({S}, b) for some sufficiently180

large budget b. Taking these observations together, one can prove the following.181

▶ Theorem 4 (Weak adequacy for GC(R+) [28]). Let S be a sequent. Then182

∃b
(

|=GC(R+) ({S}, b)
)

iff ⊢C(R+) S183

This is a weak adequacy since information about the budget b is lost in the proof theoretic184

representation. In other words, the game GC(R+) is more expressive than the calculus C(R+).185

To overcome this discrepancy, we introduce a labelled extension of C(R+) that we call186

Cℓ(R+). A Cℓ(R+)-proof is build from labelled sequents b : Γ ⇒ A where Γ ⇒ A is a sequent187

and b ∈ R+. The complete system is given in Figure 2. Now we can prove the desired188

correspondence.189

CSL 2025



4:6 Playing with modalities

labelled sequent system for Cℓ(R+)

b : Γ, A, B ⇒ C

b : Γ, A ⊗ B ⇒ C
⊗L

a : !Γ, ∆1 ⇒ A b : !Γ, ∆2 ⇒ B

a + b : !Γ, ∆1, ∆2 ⇒ A ⊗ B
⊗R

a : !Γ, ∆1 ⇒ A b : !Γ, ∆2, B ⇒ C

a + b : !Γ, ∆1, ∆2, A −◦ B ⇒ C
−◦L

b : Γ, A ⇒ B

b : Γ ⇒ A −◦ B
−◦R

b : Γ, Ai ⇒ B

b : Γ, A1 & A2 ⇒ B
&Li

a : Γ ⇒ A b : Γ ⇒ B
max{a, b} : Γ ⇒ A & B

&R

a : Γ, A ⇒ C b : Γ, B ⇒ C

max{a, b} : Γ, A ⊕ B ⇒ C
⊕L

b : Γ ⇒ Ai

b : Γ ⇒ A1 ⊕ A2
⊕Ri

c : Γ, !aA, A ⇒ C

c + a : Γ, !aA ⇒ C
!aL

0 : Γ, p ⇒ p
init 0 : Γ ⇒ 1 1R 0 : Γ, 0 ⇒ A

0L
a : Γ ⇒ A
b : Γ ⇒ A

wℓ(b ≥ a)

Figure 2 The labelled sequent system Cℓ(R+).

▶ Theorem 5 (Strong adequacy for GC(R+) [28]). |=GC(R+) ({Γ ⇒ A}, b) iff ⊢Cℓ(R+) b :190

Γ ⇒ A.191

This result can be further strengthened. In fact, proofs (and games) can be assigned a192

minimal budget, referred to as the cost: given a proof Ξ of a sequent, one can assign the193

label 0 to all initial sequents of Ξ and propagate the labels downward according to the rules194

of Cℓ(R+). However, the broader implications are even more interesting, as illustrated in the195

following example.196

▶ Example 6. Suppose that a printer costs $500 and it produces copies for $0.1. Which is197

the budget needed for making 2 copies?198

Since buying a printer and making a copy can be modelled as !500(!0.1C), the goal is to
find possible budgets for

b : !500(!0.1C) ⇒ C ⊗ C

Now, there are many ways of proving this sequent in Cℓ(R+). For example, the proof below
has a cost $500.20:

0 : C, C ⇒ C ⊗ C
⊗, init

0.20 : !0.1C ⇒ C ⊗ C
!0.10 × 2

500.20 : !500(!0.1C) ⇒ C ⊗ C
!500

This proof corresponds to purchasing one printer and producing two copies from it.199

Alternatively, one could overprice the scenario by purchasing two printers and making
one copy with each, incurring a cost of $1,000.20.

0 : C, C ⇒ C ⊗ C
⊗, init

0.20 : !0.1C, !0.1C ⇒ C ⊗ C
!0.10

1, 000.20 : !500(!0.1C) ⇒ C ⊗ C
!500 × 2
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Hence, different proofs of the same sequent can lead to different costs. Nevertheless, cost-200

optimal strategies exist for all provable sequents, as the following result shows.2201

▶ Theorem 7 (Cost-optimal proofs [28]). If ⊢C(R+) Γ ⇒ A, then there exists a smallest b202

such that ⊢Cℓ(R+) b : Γ ⇒ A.203

2.2 About cut-admissibility204

We begin by noting that establishing cut-admissibility in Cℓ(R+) critically relies on the ability205

to define a computable function f that relates the cost of the end-sequent to the labels of206

the premises in the cut rule. Given that exponentials only occur negatively in Cℓ(R+), no207

cut steps involve banged formulas. This allows us to demonstrate that f(a, b) = a + b is the208

minimal such function.209

▶ Theorem 8 (Negative-cut [28]). For f(a, b) = a + b, the following cut rule is admissible in
Cℓ(R+):

a : !Γ, ∆1 ⇒ A b : !Γ, ∆2, A ⇒ C

f(a, b) : !Γ, ∆1, ∆2 ⇒ C
cutℓ

Moreover, whenever cutℓ is admissible w.r.t. a given f ′, then a + b ≤ f ′(a, b).210

It turns out that extending cost-conscious reasoning to modalities occurring positively in211

sequents is far from trivial. While an intuitive game-theoretic interpretation of promotion212

could be provided in the style of [16], this does not align with a proof-theoretic notion of213

cut-admissibility. This is due to the inherent difficulty in defining a functional notion of the214

cut-label, as demonstrated below.215

Let CPℓ(R+) be the system resulting from Cℓ(R+) by adding the following labelled
promotion rule

b : Γ≤!a ⇒ A
b : Γ ⇒ !aA

!aR

where Γ≤!a denotes all formulas in Γ which are of the form !cB and a ≥ c.216

The question that arises is whether the cut-admissibility result can be extended to
CPℓ(R+). To address this, consider the following derivation:

b1 : ⇒ A

b1 : ⇒ !aA
!aR

b2 : ∆, !aA, A ⇒ C

b2 + a : ∆, !aA ⇒ C
!aL

b1 + b2 + a : ∆ ⇒ C
cut

This is usually reduced to

b1 : ⇒ A

b1 : ⇒ !aA b2 : ∆, !aA, A ⇒ C

b1 + b2 : ∆, A ⇒ C
cut

2b1 + b2 : ∆ ⇒ C
cut

where the upper cut has a smaller rank, and the lower cut has a smaller degree than the217

original cut. However, this approach fails in the labelled setting because, whenever a < b1,218

the label increases.219

Although alternative reduction methods could be explored, the following result shows that220

it is impossible to define a labelled cut rule for CPℓ(R+) where the label of the conclusion221

depends solely on the labels of the premises. We include the proof, as it is highly insightful.222

2 We note that the proof of this result is non-constructive!

CSL 2025



4:8 Playing with modalities

▶ Theorem 9 (Impossible-cut [28]). There is no function f : R+ × R+ → R+ such that the
rule

a : !Γ, ∆1 ⇒ A b : !Γ, ∆2, A ⇒ C

f(a, b)!Γ, ∆1, ∆2 ⇒ C
cut

is admissible in CPℓ(R+).223

Proof: Let p, q be different propositional variables, and let A⊗n denote the n-fold multi-
plicative conjunction of a formula A. The sequents

a : !1/kp ⇒ !1/kp⊗(k·a) and b : !1/kp⊗(k·a) ⇒ p⊗(k·k·a·b)

are provable in CPℓ(R+) for all natural numbers a, b, k. The smallest label f which makes224

their cut conclusion f : !1/kp ⇒ p⊗(k·k·a·b) provable in CPℓ(R+) is k · a · b, which is not a225

function on the premise labels a, b. ■226

The theorem above indicates that, to find an admissible labelled cut rule, we must either:227

1. restrict the form of the cut formula;228

2. allow the labelling function f to incorporate more information from the premises than229

just their labels;230

3. keep track of the use of contraction in the cut-elimination process.231

We shall explore next different fragments and (admissible) cut-like rules that can be232

proposed for CPℓ(R+).233

2.2.1 Infinite costs234

We start by observing that the inclusion of “worse costs” entails a trivial labelling that makes235

cut admissible. Let R+
∞ be the completion of R+ with ∞ and CPℓ(R+

∞) the corresponding236

labeled proof system with decreasing for b ≤ a being defined as follows:237

If a, b ̸= ∞, a − b is defined as usual;238

If a = ∞, then a − b = ∞.239

In the following theorem, the cut formula A is an arbitrary formula (containing, possibly,240

positive and/or negative occurrences of the modality !a).241

▶ Theorem 10 (Infinite-cut). The following rule is admissible in CPℓ(R+
∞)

a : !Γ, ∆1 ⇒ A b : !Γ, ∆2, A ⇒ C

∞ : !Γ, ∆1, ∆2 ⇒ C
cut∞

The proof follows the same steps of the cut-elimination proof for SELL [14, 33], using natural242

extensions of invertibility and permutability of rules to the labelled case.243

But this still does not define a computable function relating the labels of the premises244

and the conclusion of the cut rule.245

2.2.2 Linearity246

Now we show cases where the cut formula is restricted, starting with the case where the cut247

formula is !-free.248

▶ Theorem 11 (Linear-cut). Let A be a formula with no occurrences of !a. Then, the following
rule is admissible in CPℓ(R+)

a : !Γ, ∆1 ⇒ A b : !Γ, ∆2, A ⇒ C

a + b : !Γ, ∆1, ∆2 ⇒ C
cutL
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Moreover, if a : Γ ⇒ C is provable using cutL, then there is a cut-free proof of a′ : Γ ⇒ C249

with a ≥ a′.250

The proof uses a standard cut-reduction strategy for SELL, observing in each case that the251

reduction of the label is possible.252

Still, forcing cut formulas to be linear seems to be a very severe restriction to impose.253

We will now consider another, and less limiting, syntactic restriction on the cut formula.254

▶ Definition 12. A formula of the form !aA is simply exp-labelled if a ̸= 0 and A is bang-free.255

Since the formulas used in the proof of Theorem 9 can be simply exp-labelled, it is256

clear that we cannot expect to find an admissible cut rule for all simply exp-labelled cut257

formulas where the labelling depends solely on the labels of the premises. However, we can258

also incorporate the information from the label a in the simply exp-labelled formula !aA, as259

follows.260

▶ Theorem 13 (Exp-labelled-cut [27]). For any simply exp-labelled formula !aA, the following
cut rule is admissible in CPℓ(R+):

b1 : !Γ, ∆1 ⇒ !aA b2 : !Γ, ∆2, !aA ⇒ C

f(b1, b2, a) : !Γ, ∆1, ∆1 ⇒ C
cutel

where f(b1, b2, a) = b2 + ⌊b2/a⌋ · b1.261

The intuition behind this labelling is as follows: if the right subproof R of the cutel ends262

with the label b2, then the formula !aA can be unpacked at most ⌊b2/a⌋ times within a263

multiplicative subtree of R. Therefore, we can assume that the rule !aL is applied only ⌊b2/a⌋264

times on such a subtree.265

2.2.3 Accumulated costs266

We will end the part of substructural modalities with a new approach towards cut-admissibility,267

where we keep track of the use of contraction in the cut-elimination process. The idea is that,268

if proving A costs b, then any use of A must pay this “extra cost”. For that, we introduce269

the following notation.270

▶ Definition 14. Let E = {ab | a, b ∈ R+} be such that271

1. ab +E cd = a + b + c + d.272

2. ab ≥E ac (i.e., the ordering ≥E ignores the subindices).273

3. ab >E cd iff a > c.274

For any formula A ∈ CPℓ(R+), we define [A]c as the formula that substitutes any modality275

!ab with !ab+c .276

Hence CPℓ(R+) can be slightly modified so that sequent labels belong to R+, while modal277

labels belong to E . Due to the ordering above, the promotion of !a0 has the same effect/con-278

straints that the promotion of !ab . However, the dereliction of the latter requires a greater279

budget (a + b instead of a). Moreover, the equivalence !abA ≡ !acA can be proven, each280

direction requiring a different budget. Finally, note that E0 = {a0 | a ∈ R+} ≃ R+, that is,281

each element a ∈ R+ can be seen as the equivalence class of a0 in R+ × R+ modulo R+. We282

will abuse of the notation and continue representing the resulting system by CPℓ(R+), also283

unchanging the representation of sequents.284

The following lemma has a straightforward proof.285
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▶ Lemma 15. If b : Γ, [A]c ⇒ C then b′ : Γ, A ⇒ C with b ≥ b′. More generally, if286

b : Γ, [A]c ⇒ C and c ≥ c′ then b′ : Γ, [A]c′ ⇒ C with b ≥ b′.287

The next definition restricts the occurrence of unbounded modalities only under linear288

implication.289

▶ Definition 16. We say that A is −◦-linear if for all subformulas of the form B −◦ C in A,290

B is bang-free.291

The following result presents the admissibility of an extended form of the cut rule, where the292

budget information from the left premise is passed to the cut-formula in the right premise.293

Observe that the label of the conclusion is now a function of the labels of the premises.294

Moreover, the cut-reduction is label preserving, meaning that the budget monotonically295

decreases in the cut-elimination process.296

▶ Theorem 17 (−◦-linear-cut). The following rule is admissible

a : !Γ, ∆1 ⇒ A b : !Γ, ∆2, [A]a ⇒ C

a + b : !Γ, ∆1, ∆2 ⇒ C
cutLL A is a −◦-linear formula

Moreover, if b : Γ ⇒ C is provable using cutLL, then there is a cut-free proof of b′ : Γ ⇒ C297

with b ≥ b′.298

Proof: We will illustrate some cases.299

Note that: [!abA]c = !ab+c [A]c; the promotion of !abA, bottom-up, results in a context of
! formulas (that can be contracted at will); and the dereliction of !ab [A]c decreases the
budget in a + b. Hence,

c : (!Γ)≤!ab ⇒ A

c : !Γ, ∆1 ⇒ !abA

d : !Γ, ∆2, [A]c, !ab+c [A]c ⇒ C

a + b + c + d : !Γ, ∆2, !ab+c [A]c ⇒ C

a + b + 2c + d : !Γ, ∆1, ∆2 ⇒ C

reduces to

c : (!Γ)≤!ab ⇒ A

c : !Γ ⇒ !abA d : !Γ, !ab+c [A]c, ∆2, [A]c ⇒ C

c + d : !Γ, ∆2, [A]c ⇒ C

2c + d : !Γ, ∆1, ∆2 ⇒ C

where the “extra cost” ab disappears after the reduction.300

Note that [A ⊗ B]c = [A]c ⊗ [B]c. Here, let c = c1 + c2:301

c1 : !Γ, ∆′
1 ⇒ A c2 : !Γ, ∆′′

1 ⇒ B

c : !Γ, ∆1 ⇒ A ⊗ B

b : !Γ, ∆2, [A]c, [B]c ⇒ C

b : !Γ, ∆2, [A ⊗ B]c ⇒ C

b + c : !Γ, ∆1, ∆2 ⇒ C302

reduces to303

c1 : !Γ, ∆′
1 ⇒ A

c2 : !Γ, ∆′′
1 ⇒ B b : !Γ, ∆2, [A]c1 , [B]c2 ⇒ C

b + c2 : !Γ, ∆′′
1 , ∆2, [A]c1 ⇒ C

b + c : !Γ, ∆1, ∆2 ⇒ C304

It is worth noticing that in the first derivation, the cost c = c1 + c2 is “charged” to A ⊗ B305

(in the formula [A ⊗ B]c) while in the second one, in a finer way, the cost c1 is charged to306

A and c2 to B.307
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The case of implication explains the restriction we impose. Here b = b1 + b2:

c : !Γ, ∆1, A ⇒ B

c : !Γ, ∆1 ⇒ A −◦ B

b1 : !Γ, ∆′
2 ⇒ [A]c b2 : !Γ, ∆′′

2 , [B]c ⇒ C

b : !Γ, ∆2, [A −◦ B]c ⇒ C

c + b : !Γ, ∆1, ∆2 ⇒ C

reduces to308

b1 : !Γ, ∆′
2 ⇒ A

c : !Γ, ∆1, [A]b1 ⇒ B b2 : !Γ, ∆′′
2 , [B]c ⇒ C

c + b2 : !Γ, ∆1, ∆′′
2 , [A]b1 ⇒ C

c + b : !Γ, ∆1, ∆2 ⇒ C309

Note that the reduction above is correct since A does not have occurrences of !a and then310

[A]c = [A]b1 = A.311

■312

2.3 Discussion – part I313

This research line offers at least three promising directions for future exploration.314

First, the work initiated in [28] highlights that our games and systems provide more315

precise control over resources appearing negatively in sequents, unlocking new opportunities316

for analysing the problem of comparing proofs. For instance, studying proof costs in317

labelled calculi could reveal deeper links between labels and computational bounds [2].318

Similarly, examining the interplay between resource budgets and the complexity of the319

cut-elimination process, particularly within the multiplicative-(sub)exponential fragment,320

presents considerable opportunities [40, 41].321

Second, there is substantial value in investigating how the dialogue games we have322

developed align with the framework of concurrent games [1, 15, 13]. Understanding these323

connections could enrich our framework and provide new perspectives on resource management324

in proof theory.325

Lastly, an essential direction involves addressing compositionality in dialogue games326

governed by the cut rule. Regardless of the specific approach taken to achieve cut-admissibility,327

ensuring compositionality remains a critical and promising challenge [34].328

3 A game model for polarisation329

We now turn to the study of modalities in the classical setting, focusing on the positive-330

negative modal logic PNL with nominals [47, 35]. This logic is based on Kripke frames with331

two disjoint and symmetric reachability relations. Here we will outline the construction of332

an adequate semantic game for PNL, its transformation into a provability game, and the333

derivation of a corresponding sequent system. This opens a discussion on how to generalise334

this method to other modal systems.335

We begin with a brief discussion of games for modal logics and the motivation for hybrid336

extensions. As studied in [9] and further developed in [19], extending Hintikka games [25]337

dialogue game to modal logic is conceptually straightforward: in addition to the current roles338

of the players and the current formula F , one only has to keep track of the current world339

w in the model. However, this extension introduces an unfortunate drawback: the game340

trees, i.e., labelled trees whose nodes are game states, are no longer determined solely by the341

syntax of the formula, but instead depend on the relational structure of the model. This342

is in stark contrast to semantic games for propositional logic, where semantic information343
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M, a ⊩ p iff a ∈ V(p) M, a ⊩ ¬F iff M, a ̸⊩ F

M, a ⊩ F ∧ G iff M, a ⊩ F and M, a ⊩ G M, a ⊩ F ∨ G iff M, a ⊩ F or M, a ⊩ G

M, a ⊩ R±(i, j) iff (g(i), g(j)) ∈ R±

M, a ⊩◇± F iff there is j ∈ N such that M, g(j) ⊩ R±(i, j) and M, g(j) ⊩ F

M, a ⊩ [A]F iff M, g(j) ⊩ F, for all j ∈ N.

Figure 3 Kripke semantics for PNL.

is required only at the final stage to determine the winner. The loss of uniformity in game344

trees across all models is a significant limitation of this approach.345

As in [9, 18], we address this problem by turning to hybrid logic [10, 12, 11], allowing346

explicit references to worlds and the accessibility relation within the object language.347

Let A = {a, b, . . .} be a non-empty set of agents, At = {p, q, . . .} be a countable set of
propositional variables, and N = {i, j, . . .} be a countable set of nominals. The language of
PNL is generated by the following grammar

F ::= p | ¬F | F1 ∧ F2 | F1 ∨ F2 | R+(i, j) | R−(i, j) || F |x F | [A]F

where p ∈ At, and i, j ∈ N . Formulas of the form p, R+(i, j), or R−(i, j) are called elementary.348

We shall use F, G, H to range over formulas. The propositional connectives ⊤, ⊥, →, and349

the (dual) modalities ⊞ and ⊟ can be obtained in the usual way.350

Intuitively, nominals are used as names for worlds of the model, while the propositions351

R±(i, j) state that agent i is a friend/enemy (or, more generally, agrees/disagrees) with j.352

The formula | F (resp. x F ) states that F holds for a friend (resp. an enemy). The global353

modality [A]F states that F holds for all the agents. We use R± to denote either R+ or R−,354

and ◇± to denote either | or x.355

A model M is a tuple ⟨A, R+, R−, V, g⟩ where A is a set (of agents), g : N → A is called356

denotation function, R+, R− ⊆ A × A, and V : At → P(A). A model is a PNL-model if:357

g is surjective, i.e., every agent has a name;358

R+ is reflexive; and359

R+ and R− are both symmetric and non-overlapping, i.e., for all a, b ∈ A, (a, b) /∈ R+ or360

(a, b) /∈ R−.361

The Kripke semantics of PNL is in Figure 3. A formula F is true over M, written M ⊩ F iff362

M, a ⊩ F , for all agent a ∈ A. For a set of formulas ∆, we write M |= ∆ iff M ⊩ ∆ for all363

F ∈ ∆. A formula F is valid iff M ⊩ F for every PNL-model M. For a class of models M,364

we write ∆ |=M F iff M ⊩ F for every model M ∈ M with M |= ∆.365

▶ Example 18. Consider the following models (omitting self loops for R+):366

I

+

M1

I

−

M2

−

I

+

M3

−

I

+

M4

+

{p}

367

The following holds:368

M1: I have a friend where ¬p: M1, I ⊩| ¬p;369

M2: All my enemies do not believe in p: M2, I ⊩ ⊟¬p;370

M3: I have an enemy: M3, I ⊩x ⊤;371

M4: Everybody has a friend where p: M4, a ⊩ [A] | p for any agent a.372
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(P∧) At P, i : F1 ∧ F2, You choose between P, i : F1 and P, i : F2 to continue the game.

(O∧) At O, i : F1 ∧ F2, I choose between O, i : F1 and O, i : F2 to continue the game.

(P∨) At P, i : F1 ∨ F2, I choose between P, i : F1 and P, i : F2 to continue the game.

(O∨) At O, i : F1 ∨ F2, You choose between O, i : F1 and O, i : F2 to continue the game.

(P¬) At P, i : ¬F , the game continues with O, i : F .

(O¬) At O, i : ¬F , the game continues with P, i : F .

(P
◇±) At P, i :◇± F , I choose a nominal j, and You decide whether the game ends in the
state P, _ : R±(i, j) or continues with P, j : F .

(O
◇±) At O, i :◇± F , You choose j, and I choose between O, _ : R±(i, j) and O, j : F .

(P[A]) At P, i : [A]F , You choose a nominal j and the game continues with P, j : F .

(O[A]) At O, i : [A]F , I choose a nominal j, and the game continues with O, j : F .

(Pel) Let Fe be an elementary formula. I win and You lose at P, i : Fe iff M, i |= Fe.
Otherwise, You win and I lose.

(Oel) At O, i : Fe, I win and You lose iff M, i ̸|= Fe. Otherwise, You win and I lose.

Figure 4 Semantic game given a PNL-model M.

3.1 Playing with models373

Before starting playing, remember that in a PNL-model M, every agent a has a name i,374

i.e., there exists i ∈ N s.t. g(i) = a. Hence, from now on, we will internalise the nominals,375

identifying an agent a with its respective nominal i.376

The semantic game is played over a PNL-model M = (A, R+, R−, V, g) by two players,377

Me (or I ) and You, who argue about the truth of a formula F at an agent i. At each stage378

of the game, one player acts as proponent, while the other acts as opponent of the claim that379

F is true at i.380

We represent the situation where I am the proponent (and You are the opponent) by the381

game state P, i : F , and the situation where I am the opponent (and You are the proponent)382

by O, i : F .383

We call a game state elementary if its involved formula is elementary. For a game state g,384

we denote the game starting at g over the model M by GM(g).385

The game over a PNL-model M proceeds by reducing the involved formula F to an386

elementary formula by following the rules described in Figure 4.3387

In general, every two-person, zero-sum, win-lose game is usually represented by a game388

tree. In our case, the root of the game tree representing the game GM(g) is g. The children389

of each node in the game tree are exactly the possible choices of the corresponding player.390

For instance, if h = P, i : F1 ∧ F2 appears in the game tree, then its children are P, i : F1 and391

3 The outcome of the game state Q, k : R±(i, j) is independent of k (it only depends on the underlying
model M). Hence, we write Q, _ : R±(i, j) instead of Q, k : R±(i, j).
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P, i : F2. Each node in the tree is labelled either “I”, or “Y”, depending on which player is to392

move in the corresponding game state, and we label the nodes P, i : ¬F and O, i : ¬F with393

“I” (even though there is no choice involved in these game states). For instance, the node394

corresponding to the game state h above is “Y”, since it is Your choice in P : F1 ∧ F2. The395

leaves of the tree receive the label of the winning player. A run of the game is a maximal396

path through the game tree.397

Now we are ready to define winning strategies and state the main result of this section:398

the adequacy of the proposed game semantics with respect to the Kripke semantics for PNL.399

▶ Definition 19. A strategy for Me in the game GM(g) is a subtree σ of the associated400

game tree such that: (1) g ∈ σ, (2) if h ∈ σ is a node labelled “Y”, then all children of h401

are in σ, (3) if h ∈ σ is a node labelled “I”, then exactly one child of h is in σ. The strategy402

σ is called winning if all leaves in the tree σ are labelled “I”. (Winning) strategies for You403

are defined dually.404

▶ Theorem 20 (Adequacy - semantic games [22]). Let M be a PNL-model, a an agent with405

nominal i, and F a formula.406

(1) I have a winning strategy for GM(P, i : F ) iff M, a |= F .407

(2) You have a winning strategy for GM(P, i : F ) iff M, a ̸|= F .408

▶ Example 21 ([22]). Let (4B) = ((|| p∨ xx p) →| p) ∧ ((|x p∨ x| p) →x p). This409

formulas specifies local balance [35] and captures the idea that “the enemy of my enemy is my410

friend”, “the friend of my enemy is my enemy”, and “the friend of my friend is my friend”. I411

have a winning strategy for the game P, a : 4B on M1 while You have a winning strategy for412

the same game on M2 where (omitting self-loops for R+):413

M1 =
a

b

c

+
−
−

{p}

M2 =
a

b

c

+
+

−
{p}

414

For M1, in the first conjunct, I pick (P∨) | p and then b in (P|); for the second conjunct,415

I pick the first disjunction in F = (|x p∨ x| p) →x p) where, in any of Your choices416

(P¬ followed by O∨ and O◇±), I win all the elementary states. For M2, I do not have a417

winning strategy for the second conjunct: I can neither win x p (no R− successor), nor the418

first disjunct in F above since, after P¬, You choose (O∨) |x p and select c and then b419

(O◇±) where p holds and You win. See the complete game in our tool [23].420

3.2 Playing all models421

We now leverage semantic games to PNL-provability games. The key observation is that422

the rules of the semantic game remain independent of the underlying model, except at the423

level of elementary game states.424

The provability game DG(P, i : F ) can be thought of as Me and You playing all semantic425

games G(P, i : F ) over all PNL-models M simultaneously. We point out that the rules of426

the semantic game do not depend on the structure of M but merely on F . Truth degrees are427

only needed at the atomic level to determine who wins the particular run of the game. This428

allows us to require players to play “blindly”, i.e., without explicitly referencing a model M.429

Clearly, if I have a winning strategy in such a game, then I can win in GM(P, i : F ), for430

every M, making this strategy an adequate witness of logical validity.431

Provability game states are finite multisets of the game states defined in Section 3.1.432

We denote by g1
∨

...
∨

gn the provability game state {g1, ..., gn}. We write D1
∨

D2 for the433
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(Dupl) If no state in D is underlined, I can choose a non-elementary g ∈ D and the game
continues with D

∨
g.

(Sched) If no state in D = D′ ∨
g is underlined, and g is non-elementary, I can choose to

continue the game with D′ ∨
g.

(Move) If D = D′ ∨
g then the player who is to move in the semantic game G(g) at g makes

a legal move to the game state g′ and the game continues with D′ ∨
g′.

(End) The game ends if there are no non-elementary game states left in D, or if no game state
is underlined and I win according to Definition 22. Otherwise, I must move according to
(Dupl) or (Sched).

Figure 5 Rules for the provability game.

multiset sum D1 + D2 and D
∨

g for D + {g}. A provability state is called elementary if all434

its game states are elementary. We use DG(D) to denote the provability game starting at D.435

▶ Definition 22. Let Del denote the provability state consisting of the elementary game436

states of D. I win and You lose at D if for every PNL-model there is a game state in Del
437

where I win the corresponding semantic game.438

In the provability game, I additionally take the role of a scheduler, deciding which game439

is to be played next. We signal the chosen game state by underlining it as in g.440

▶ Definition 23. The rules of the provability game are in Figure 5. Infinite runs, and runs441

that end in elementary provability states where I do not win according to Definition 22,442

are winning for You and losing for Me. (Dupl) is referred to as the duplication rule and443

(Sched) as the scheduling, or underlining rule.444

▶ Theorem 24 (Adequacy - provability games [22]). I have a winning strategy in DG(D) iff445

for every PNL-model M, there is some g ∈ D such that I have a winning strategy in GM(g).446

▶ Corollary 25. The formula F is PNL-valid iff I have a winning strategy in DG(P, i :447

[A]F ).448

▶ Example 26. Consider the game P, i : p ∨ ¬p. I duplicate the game state in the first449

round and the game continues with the provability state P, i : p ∨ ¬p
∨

P, i : p ∨ ¬p.450

Now I move to P, i : p in the first subgame and to P, i : ¬p in the second. After a role451

switch in the second subgame, the final state is P, i : p
∨

O, i : p, where I win regardless of452

the underlying model.453

3.3 From games to proofs454

Theorems 20 and 24 establish that winning strategies for Me in the provability game455

correspond to the validity of formulas. In this section, we extend this result to proof systems456

by introducing a sequent calculus, DS, where proofs correspond to My’s winning strategies457

in the provability game.458

Labelled nominal formulas are either labelled formulas of the form i : F or relational atoms459

of the form R(i, j), where i and j are nominals and F is a PNL formula.4 Labelled sequents460

have the form Γ ⇒ ∆, where Γ, ∆ are multisets containing labelled nominal formulas.461

Starting with sequents, every provability state of the form462

4 Observe that here we are abusing the notation, identifying k : R(i, j) with R(i, j) – see Footnote 3.
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O, i1 : F1
∨

. . .
∨

O, in : Fn

∨
P, j1 : G1

∨
. . .

∨
P, jm : Gm463

can be rewritten as the labelled sequent Γ ⇒ ∆ where Γ = {i1 : F1, . . . , in : Fn} and ∆ =464

{j1 : Gi, . . . , jm : Gm}. In what follows, we will not distinguish between provability states465

and their corresponding labelled sequent. For example, the provability game state O, i : (||466

p∨ xx p)
∨

P, i :| p will be identified with the sequent i : (|| p∨ xx p) ⇒ i :| p.467

The inference rules must be tailored in such a way that proofs in the sequent system468

match exactly My winning strategies in the provability game. This means that the user of the469

proof system takes the role of Me, scheduling game states and choosing moves in P-states.470

Moreover, provability in the proof system should correspond to validity in the game. For471

that, it is crucial to establish the formal relationship between elementary game states and472

logical axioms.473

▶ Lemma 27 ([22]). Let Γ ⇒ ∆ be composed of elementary game states only. I win the474

provability game in Γ ⇒ ∆ iff one of the following holds5
475

i. R−(i, i) ∈ Γ or R+(i, i) ∈ ∆ for some i;476

ii. {R+(i, j), R−(i, j)} ⊆ Γ for some i ̸= j;477

iii. Γ ∩ ∆ ̸= ∅.478

Figure 6 presents the labelled sequent systems DS with the standard initial axiom and479

structural/propositional rules. The modal rules and the relational rules sym and ref±480

coincides with the modal rules originally presented by Viganò in [45], adapted to multi-481

relational modal logics. It is routine to show that the rule no in Figure 6 correspond to the482

non-overlapping axiom ∀i, j.¬(R+(i, j) ∧ R−(i, j)).483

The following result immediately implies that the provability game DG is adequate with484

respect to the calculus DS.485

▶ Theorem 28 (Adequacy - sequent system [22]). I have a winning strategy in the provability486

game DG(Γ ⇒ ∆) iff Γ ⇒ ∆ is provable in DS.487

Let us write |=PNL Γ ⇒ ∆ iff for every PNL-model there is some i : F ∈ Γ such that488

M, g(i) ̸|= F , or there is some i : G ∈ ∆ such that M, g(i) |= G. We have the following489

consequence of Theorems 20, 24, and 28:490

▶ Corollary 29. Let Γ, ∆ be multisets of labelled formulas. Then |=PNL Γ ⇒ ∆ iff there is a491

proof of Γ ⇒ ∆ in DS. In particular, F is PNL-valid iff there is a proof of ⇒ F in DS.492

Proving cut-admissibility of labelled systems can be cumbersome due to the presence493

of relational rules. In [30], a systematic procedure for transforming axioms into rules494

was presented, based on focusing and polarities [5]. This procedure not only allows for495

generalizing different approaches for transforming axioms into sequent rules present in the496

literature [39, 45, 31], but it also provides a uniform way of proving cut-admissibility for the497

resulting systems.498

The cut-admissibility result for DS is a particular instance of the general result in [30].499

▶ Theorem 30 (PNL-cut). The following cut rule is admissible in DS500

Γ ⇒ ∆, i : F i : F, Γ ⇒ ∆
Γ ⇒ ∆ cut

501

As a consequence, DS is consistent, since the only rule that can be applied in an empty502

sequent is no, and it is routine to show that it does not trivialise derivations.503

5 Since relations are symmetric, we will identify R±(i, j) with R±(j, i).
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Axiom and Structural Rules
init

Γ, i : Fel ⇒ ∆, i : Fel

Γ, i : F, i : F ⇒ ∆
(Lc)

Γ, i : F ⇒ ∆
Γ ⇒ i : F, i : F, ∆

(Rc)
Γ ⇒ i : F, ∆

Propositional Rules

Γ ⇒ i : F, ∆
(L¬)

Γ, i : ¬F ⇒ ∆
Γ, i : F ⇒ ∆

(R¬)
Γ ⇒ i : ¬F, ∆

Γ, i : F ⇒ ∆ Γ, i : G ⇒ ∆
(L∨)

Γ, i : F ∨ G ⇒ ∆
Γ ⇒ i : F, ∆

(R1
∨)

Γ ⇒ i : F ∨ G, ∆
Γ ⇒ i : G, ∆

(R2
∨)

Γ ⇒ i : F ∨ G, ∆

Γ, i : F ⇒ ∆
(L1

∧)
Γ, i : F ∧ G ⇒ ∆

Γ, i : G ⇒ ∆
(L2

∧)
Γ, i : F ∧ G ⇒ ∆

Γ ⇒ i : F, ∆ Γ ⇒ i : G, ∆
(R∧)

Γ ⇒ i : F ∧ G, ∆

Modal Rules

Γ, R±(i, j) ⇒ ∆
(L◇±)1

Γ, i :◇± F ⇒ ∆
Γ, j : F ⇒ ∆

(L◇±)2
Γ, i :◇± F ⇒ ∆

Γ ⇒ R±(i, j), ∆ Γ ⇒ j : F, ∆
(R◇±)

Γ ⇒ i :◇± F, ∆
Γ, j : F ⇒ ∆

(L[A])Γ, i : [A]F ⇒ ∆
Γ ⇒ j : F, ∆

(R[A])Γ ⇒ i : [A]F, ∆

Relational Rules

Γ ⇒ ∆, R±(j, i)
sym

Γ ⇒ ∆, R±(i, j)
ref+

Γ ⇒ ∆, R+(i, i)

ref−
Γ, R−(i, i) ⇒ ∆

Γ ⇒ ∆, R+(i, j) Γ ⇒ ∆, R−(i, j)
no

Γ ⇒ ∆

Figure 6 The proof system DS. In the rule init, Fel denotes an elementary formula. In the rules
(L
◇± )1, (L

◇± )2, and (R[A]), the nominal j is fresh. The rule Rx has the proviso that i ̸= j.

3.4 Discussion – part II504

This work opens up several promising directions for future exploration.505

It would be interesting to explore extensions of PNL that relax symmetry assumptions,506

enabling the representation of scenarios where an agent a can influence the opinion of agent507

b, but not vice versa. Another potential direction involves incorporating the concept of508

a “budget,” as introduced in the game discussed in the first part of this paper, to model509

situations where proponents and opponents operate under a limited amount of political510

capital. In such scenarios, adding or modifying relations (i.e., making new friends, making511

enemies to reconcile, etc) could reduce this capital. Preferences on how to “expend” the512

political capital could be expressed through a combination of PNL with a suitable choice513

logic – a framework where preferences are explicitly definable at the object level. Semantic514

games for choice logics have been explored in [20], and the extension of game-induced choice515

logic (GCL) to a provability game and proof system was proposed in [21]. Exploring these516

dynamics within our framework offers a compelling direction for future research.517

Another particularly interesting avenue is extending the semantic-provability-proof system518

approach to other logics characterised by Kripke semantics. For instance, it would be519

worthwhile to investigate games for logics that involve model-change modalities [44, 36] or520

dynamic modalities [42]. Initial progress in this direction was made in [22], where we showed521

how the global link-adding and local link-changing modalities from [35] (inspired by sabotage522

modal logic [6, 7, 43]) can be incorporated into our framework.523

We are also interested in exploring the application of this framework to develop games for524

CSL 2025
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constructive and intuitionistic modal logics [17, 38, 39, 8]. The constructive logic CK stands525

out as a promising candidate due to its intuitive semantics and straightforward sequent526

system. The main challenge lies in adapting the classical approach presented here to an527

intuitionistic setting.528

Finally, building on ideas from [4, 3], we aim to establish a correspondence between529

winning innocent strategies in games played on Hyland-Ong arenas [26] and proofs in530

these constructive logics. This correspondence would deepen the connection between game531

semantics and constructive modal reasoning, opening new avenues for further study.532
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