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Abstract

The quest of smoothly combining logics so that connectives from different logics can co-exist in peace has been a fascinating
topic of research. In 2015, Dag Prawitz introduced a natural deduction system for an ecumenical first-order logic, unifying
classical and intuitionistic logics within a shared language. Building upon this foundation, we introduced, in a series of works,
sequent systems for ecumenical logics and modal extensions. In this work we propose a new pure sequent calculus version
for Prawitz’s original system, where each rule features precisely one logical operator. This is achieved by extending sequents
with an additional context, called stoup, and establishing the ecumenical concept of polarities. We smoothly extend these
ideas for handling modalities, presenting a new pure labelled system for ecumenical modal logics. Finally, we show how this
allows for naturally retrieving the ecumenical modal nested system proposed in a previous work.

Keywords: ecumenical systems, modalities, nested systems, labelled systems, cut-elimination, polarities.

1 Introduction

Ecumenism can be seen as a quest to unity, where diverse thoughts, ideas or points of view coexist
in harmony. In logic, ecumenical systems refer, in a broad sense, to proof systems for combining
logics.

Designing ecumenical systems that are not a simple disjoint union of their sub-systems can be
hard, specially if classical and intuitionistic logics are considered [8]. Indeed, how can one combine,
for example, the fact that the excluded middle (4 Vv —4) is valid in classical logic (CL) but not in
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2 Separability and harmony in ecumenical systems

intuitionistic logic and, at the same time, assume a common explosion principle ((4 A =4) — B) for
both fragments?

According to Prawitz, the key idea is to understand why (and where) classical and intuitionistic
logicians (dis)agree. In [38], he proposed an ecumenical natural deduction system codifying both
classical and intuitionistic reasoning based on a uniform pattern of meaning explanations. In that
system, the conjunction and negation are shared (hence the explosion principle is valid), while the
classical and the intuitionistic logicians would have their own disjunction, represented as V. and V;,
respectively. Quoting Prawitz:

‘The classical logician is not asserting what the intuitionistic logician denies. For instance, the
classical logician asserts 4 V. —4 to which the intuitionist does not object; he objects to the
universal validity of 4 Vv; =4, which is not asserted by the classical logician.’

For a deeper understanding of the proof-theoretic properties of Prawitz’s system a single-
conclusion ecumenical sequent calculus corresponding to Prawitz’s original system was proposed
in [35]. In that work, we showed that the ecumenical entailment is intrinsically intuitionistic, but it
turns classical in the presence of classical succedents. We then produced a nested sequent version
of the original sequent system and showed all of them sound and complete with respect to (first-
order extension of) the ecumenical Kripke semantics [33]. In [24], we lifted this discussion to modal
logics, presenting a labelled ecumenical modal system, amenable for modal extensions.

Since the systems presented in [24, 35] are based in Prawitz’s original system, they are not
pure [11] or separable [28], in the sense that the introduction rules for some connectives strongly
depend on the presence of negation. In [25], we presented a pure label free calculus for ecumenical
modalities, where every basic object of the calculus can be read as a formula in the language of the
logic.

In this work, we will take a complete different path and revisit all these aforementioned systems,
starting from a new pure ecumenical first-order system and naturally expand it to the modal case.
Such pure systems allow for a clearer notion of the meaning for connectives (including modalities),
faithfully matching Prawitz’s original intention, and the tradition of the proof-theoretic semantics’
school [19, 40, 41]. For that, we will use a differentiated context called stoup, together with an
ecumenical notion of polarities for formulas.

The notions of stoup and polarities first appeared in [15] on Girard’s LC sequent system for CL
that separates rules for positive and negative formulas. LC is a precursor of the notion of focusing
in sequent systems [1]. The idea is that right rules for positive formulas are applied in the stoup—
a differentiated context where formulas are focused on. Negative formulas, on the other hand, are
stored in a classical context, where they can be eagerly decomposed.

Sequents with stoup have the form I' = A;IT ,\ where I', A are sets and I7, the stoup, is a
multiset containing at most one formula. In LC, the meaning of these contexts is the following:

— I is the usual classical left context in well known sequent systems for classical and
intuitionistic first order logics, like LK and LJ [45].

— The stoup /7 is a differentiated context, where positive formulas are ‘worked on’. In a bottom-
up read, a positive formula can be chosen from the classical right context to populate the stoup

U1t should be mentioned that, in LC, sequents have a one-sided presentation—the left context is not present. Also, in
systems like Girard’s LU [16], sequents have two stoups and linear contexts. Here we adopted the simpler possible version
for sequents with stoup supporting the intuitionistic setting and avoiding structural rules in classical contexts.
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Separability and harmony in ecumenical systems 3

using the dereliction rule

I = A,P;P
I = A,P;-

— The (classical) right context A carries the information of subformulas of negative formulas
N, in the sense that N = —F for some formula F. This means that N € A can be interpreted
as F € I'. Negative formulas are added to the classical context via the store rule

I' = A,N;-
m store

It is interesting to note that, while the sequent I" = A; [T is intuitionistically interpreted as
I',—A = II, it only has a classical interpretation in LC if the stoup IT is empty. Moreover, the
stoup in LC is persistent, in the sense that, after applying dereliction D over a positive formula P in
the bottom-up reading, the stoup is emptied only when either P is totally consumed, or a negative
subformula is reached—in which case it is stored in the classical right context.

The ecumenical systems we will study in this paper have a quite different behaviour, since they
are intuitionistic in nature. Hence, the use of stoups will mix some of the characteristics of LC with
intuitionistic systems featuring a stoup such as, for example, Herbelin’s LJT and LJQ [12, 18]. The
base difference is that, in the ecumenical formulation, stoups cannot be persistent since, otherwise,
the logic would not be complete (see Example 2.6).

Several approaches have been proposed for combining intuitionistic logics and CLs (see e.g. [8,
10, 22, 31, 44]), some of them inspired by Girard’s polarised system LU ([16]). Prawitz chose a
completely different approach by proposing a natural deduction ecumenical system [38]. While it
also takes into account meaning-theoretical considerations, it is more focused on investigating the
philosophical significance of the fact that CL can be translated into intuitionistic logic.

The careful study of Prawitz’s ecumenical system under the view of Girard’s original idea of
stoup will allow for new pure ecumenical sequent systems that avoid the use of negations in the
formulation of rules. In fact, instead of building the modal system over the sequent presentation [35]
of Prawitz’s ecumenical system [38], we propose a new pure first-order ecumenical system. This
not only allows for a better proof theoretic view of Prawitz’s original proposal, but it also serves as
a solid ground for smoothly accommodating modalities. A new pure labelled system for modalities
comes naturally in this approach, and the nested system in [25] is easily proven correct and complete
w.rt. it.

Under this new perspective, we can start some lively discussions about the nature of formulas and
systems. For example, in [34] the notion of stoup was brought to the natural deduction setting, while
in [29] it is provided not only a medium in which classical and intuitionistic Jogics may coexist, but
also one in which classical and intuitionistic notions of proof may coexist.

This is an extended journal version of [24, 25]. The rest of the paper is organized as follows:
Section 2 introduces the notion of ecumenical systems with stoup (system LCE), and in Section 3 we
prove it complete and correct w.r.t. Prawitz’s ecumenical system (LE). This involves a non-trivial use
of polarities, as well as a non-standard proof of cut-elimination. We show that, is one is not careful,
the quest for purity ends up in collapsing; Section 4 extends the propositional fragment of LCE with
modalities, resulting in a new pure labelled ecumenical modal system (labEK); Section 5 brings the
nested ecumenical system nEK from [25], which is naturally seen as the label-free counterpart of
labEK; Section 6 briefly discusses fragments, axioms and extensions and Section 7 discusses related
and future work, and concludes the paper.
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4 Separability and harmony in ecumenical systems

INTUITIONISTIC AND NEUTRAL RULES

A,B.I'=C I I'=>A I'=>B R ATl'=>C B,FinL
AABI=C T=arB " AV,B.I = C i

I'=A; A—-;BT=A BI=C IA=B
ViR; —; L
I'=> A VA INA—-;B=cC
-AT=A A= 1L

Ars. L tooa R Ir=at

Aly/x],Vx A, = C I'= Aly/x] Aly/x],T = C I'= Aly/x] IR
VxA T =C = VxA AxAT=>C r=3xA '

=i B R

L

CLASSICAL RULES

ATl'=> L B,l"=>Lv r,ﬁA,ﬁB:Lv A—-.BI=>A BT =1
AV.BT = L ¢ I'=> AVv.B ¢ A—.BT =1

> L

I’,A,ﬁBzJ__) pi, =L I-pi=1
r=A-.B ¢ pel =1 ¢ I'=p.

¢

Aly/x),T = L [Vx-A= L
JxAT=> L < T=3dxA

A.R

INITIAL, CUT AND STRUCTURAL RULES

init I'=A AI'sC ; r:J_W
pl=p ™ I=cC cut o4

FIGURE 1. Ecumenical sequent system LE. In rules VR, 3;L,3.L, y is fresh; p is atomic.

2 The system LCE

In [38], Dag Prawitz proposed a natural deduction system where classical and intuitionistic logics
could coexist in peace. The language £ used for ecumenical systems is described as follows. We will
use a subscript ¢ for the classical meaning and i for the intuitionistic one, dropping such subscripts
when formulae/connectives can have either meaning.

Classical and intuitionistic n-ary predicate symbols (p.,pi,...) co-exist in £ but have dif-
ferent meanings. The neutral logical connectives {L,—, A,V} are common for classical and
intuitionistic fragments, while {—;, v;,3;} and {—, V,, 3.} are restricted to intuitionistic and
classicalinterpretations, respectively.

The sequent system LE (depicted in Figure 1) was presented in [35]° as the sequent counterpart
of Prawitz’s natural deduction system.

LE has very interesting proof theoretical properties including cut-elimination, together with a
Kripke semantical interpretation, that allowed the proposal of a variety of ecumenical proof systems,
such as multi-conclusion and nested sequent systems, as well as several fragments of such systems
[35].

2.1 Ecumenical consequence and stoup

Denoting by g A the fact that the formula 4 is a theorem in the proof system S, the following
theorems are easily provable in LE:

1. FLE (4 Ve B) <51 =(=4 A —B)

2. FLg (A —¢ B) <>; =(4 A —B)
3. FLg 3ex.A) < =(Vx.—=A)

2The system was called LEci in [35].
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Separability and harmony in ecumenical systems 5

There equivalences are of interest since they relate the classical and the neutral operators: the
classical connectives can be defined using negation, conjunction and the universal quantifier. On the
other hand,

4. FLg (m—4) =, A but i/ g (——4) —; A in general
5. FlE A A (A4 —; B)) —>; Bbut /1 g (A A (4 —. B)) —; Bin general
6. FLg Yx.A —; —3.x.—A4 but A g —3.x.—A4 —; Vx.4 in general

Observe that (3) and (6) reveal the asymmetry between definability of quantifiers: while the
classical existential can be defined from universal quantification, the other way around is not true,
in general. This is closely related with the fact that, proving Vx.4 from —3.x.—4 depends on 4 being
a classical formula. We will come back to this in Section 4.

Finally, observe that

T HEA—=c L) <id—il) o (=4);

That is, albeit being a neutral connective, the negation has a classical flavour. This fact will be
heavily explored throughout this text.
The following result states that logical consequence in LE is intrinsically intuitionistic.

PROPOSITION 2.1 ([35]).
I' - Bisprovable in LE iff - g A" —; B.

However, formulas built over neutral and classical operators together with restricted intuitionistic
implications have a classical behaviour.

DEFINITION 2.2.
Eventually externally classical (eec for short) formulas are given by the following grammar:

Aeec — AC’ |Aeec /\Aeec I Verec |A _),Aeec
e - 1
where 4 is any formula and A€ is an externally classical formula given by

A i=pe | L —A|AVeA| A —e 4| TxA

For eec formulas, we can prove the following theorems?:
l. FLe (A A (A = B¢)) —; B¢

2. FLg 7—B%¢ —; B¢

3. FLE —3x.—B%¢ —; Vx.B*¢

More generally, notice that all classical right rules as well as the right rules for the neutral
connectives in LE are invertible. Since invertible rules can be applied eagerly when proving a
sequent, this entails that eec formulas can be eagerly decomposed. As a consequence, the ecu-
menical entailment, when restricted to eec succedents (antecedents having an unrestricted form), is
classical.

31t should be noted that, in [35], these results were proved for externally classical formulas only. However, they are valid
over a broader class of formulas, with external neutral operators and a restricted form of the intuitionistic implication.
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6 Separability and harmony in ecumenical systems

THEOREM 2.3 ([35], extended to eec).
Let 4°°° be an eventually externally classical formula and I" be a multiset of ecumenical formulas.
Then

FLE /\F — A iff /\F —; A%C.

Proof theoretically, this aligns well with the ecumenism of Prawitz’s original proposal: conse-
quence relations are intrinsically intuitionistic, but have a classical behaviour when proving a formula
that eventually will behave classically.

Moreover, observe that, from a proof 7 of I' = 4 in LE, we can derive I',—4 = 1:

7TW
I'—4=4
I,—4= 1 —L

where 7" is the weakened version of 7. The other direction does not hold since t/ g =4 = 4, in
general. However, for eec formulas, the converse also holds.

PROPOSITION 2.4.
If I', =A% = 1 is provable in LE so itis I" = 4.

PROOF. Since k| g =—4°¢ = 4% (see 9), then

I, =A% = |
T = ——A%€ g M = geec
I = A€ cut

O

This corroborates the idea that, in an ecumenical system with stoup, formulas in the classical
context should hold classical subformulas of eec formulas. The stoup, on the other hand, would
carry the intuitionistic or neutral information.

We are now ready to describe the ecumenical system with stoup, where the connections between
the ‘primitive’ sequent calculus in LE and the ‘pure’ sequent calculus in LCE is established as
follows:

— A sequent of the form I",—A = IT in LE will be translated as I = A; IT in LCE for some
set A of negated formulas.

— A sequent of the form I = A; IT in LCE will be translated as I"',—A = IT in LE.

— The empty stoup will be translated as L.

As already mentioned, formulas will move over contexts depending on their polarity.

DEFINITION 2.5.
An ecumenical formula is called negative if its main connective is either classical or the negation,
and positive, otherwise (we will use N for negative and P for positive formulas).

Figure 2 gives the rules for the ecumenical pure systems with stoup (LCE). Observe that rules
in LCE determine positive/negative phases in derivations, and the dynamic of the rules for classical
connectives in LCE is as follows: negative formulas in the classical contexts are eagerly decomposed;
if a positive formula in the right context is chosen to be worked on, it is placed in the stoup /7, and
treated intuitionistically.
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INTUITIONISTIC AND NEUTRAL RULES

I A, B= A1

I'=sAA T=AB

Separability and harmony in ecumenical systems 7

INA= ATl TB= AT

TLANB= AT

I'=>AAAB

ViL
IAV; B= A1l !

I'= AA; IMA—;B=>AA T,B= A1l

T R,
T= AlA; Vi A,

I'A=A;B ILAly/x] = A 1T
ILdx A= AT
VXA Aly/x] = A 11

Tora— B R

A=, B= Al ik

3L 1"=>A;A[y/x]3R
! I'=A3xA

I'= AAly/x]

ILVx A= ATl

CLASSICAL RULES AND NEGATION

A= A;- ILB=A;- I'= A, BA;-
VL

I'= A;Vx.A YR

TNA—-.B=AA T,B=A;-

ILAV.B= A;- T T'=AV.BA;, €

I'A= BA;-

VR FA—, B A —e L

Lpi= A;- I'= piA;-

T=>Ao. BA- R
T, Aly/x] = A;-

I,3.xA=A;- AL

Lpe= A ¢ I'= p.,A;-

c

I'= Aly/x],3:x.A, A; -

= A.xAA;- AR

L-A=AA - TA=A
[-A=A;- = A-4;

INITIAL, DECISION AND STRUCTURAL RULES

i [EPAP L ToNA- r-a-
Tpsap ™ T=SPA- I=sAN ¢ T=5Aa

CuUT RULES
I'= AP PT= AT = ANIT* NT = AT
——=—+v = P-cut N —cut

I'= AIT I'= AT

FIGURE 2. Ecumenical pure system LCE. In rules VR, 3.L and 3;L, y is fresh; N is negative and P
is positive; p is atomic; IT* is either empty or some P € A.

The analogy with focusing [1] stops there, though: explicit weakening in the stoup is needed for
completeness, as the next example shows.

EXAMPLE 2.6.
The sequent

—B,A—.B,AFC

is provable in LE, where the succedent C is weakened. This means that, in LCE, the following

sequents are provable
—-B,A—.B, A= -;C -= B,AAN—-B,—4;C

But the stoup is necessarily erased in the process, e.g.

A,B= B,AA—B,—4;- R
A= B,AN—B,—A,—B;-
store
A= B,AN—-B,—A;A A= B,AAN-B,—A4;-B
A= B,AN—-B,—A4;A N —-B

A= B,AN—-B,—4;-

- = B,AAN—-B,—4;-

-= B,AN—-B,—4;C

—R
W
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8 Separability and harmony in ecumenical systems

The double bars correspond to instances of the derivation of I, ' = A; F, which is a provable
sequent in LCE, for any contexts I", A and formula F' (see Lemma 3.2 in the next section).

Observe that, in Girard’s LC [15], sequents with non-empty stoup do not have a classical
interpretation. In fact, none of the sequents above are provable in LC, if C is a positive formula.

3 Correctness of the systems

We start by stating standard definitions and proof theoretic results.

DEFINITION 3.1.
Let S be a sequent system. An inference rule

S; o S
S
is called:
i. admissible in S if S is derivable in S whenever Sy, . .., Sy are derivable in S;
ii. invertible in S if the rules 3, .. ., §- are admissible in S.

iii. totally invertible in S if it is invertible and do not have restrictions over contexts.

For example, the rule —; R is totally invertible, but —,. R is only invertible since its bottom-up
application is restricted to sequents with empty stoup. In general:

LEMMA 3.2
In LCE:
i. Therules V.L,V.R,—.L,—.R,—L,—R,L.,R.,3.L,3.R and D are invertible.
ii. The rules AL, AR, V;L,—; R,3,L,VL,VR and store are totally invertible.
iii. Classical weakening and contraction are admissible
r=an . O, r = A A, AT
rr’'=AA:0 ¢ = A A

C.

iv. The general form of initial axioms are admissible

init; initc

I''4A= A;4 I' A= A,A4;11

PROOF. The proofs are by standard induction on the height of derivations [30, 45]. The proof of
admissibility of W, does not depend on any other result, while the admissibility of C. depends on
the invertibility results and the admissibility of weakening.

The proof of admissibility of the general initial axioms is by mutual induction. Below we show the
cases for quantifiers where, by induction hypothesis, instances of the axioms hold for the premises.

A/ T = 3 A AL A e G AR T = AdD/x] T
Aly/x], T = 3.xA4, A;- . ¢ Vx.A, I = A;Aly/x]
AxA, T = IxA,A;- ~° VxA,I' = A;V¥x.A

The following shows that LCE is correct and complete w.r.t. LE.
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Separability and harmony in ecumenical systems 9

THEOREM 3.3.
The sequent I" = A; IT is provable in LCE iff I', = A = [T is provable in LE.

PROOF. The only interesting cases are the ones involving classical connectives and negation since
for the intuitionistic and the other neutral ones the rules in LCE operate in formulas in the stoup,
hence faithfully corresponding to the application of rules in the single conclusion system LE.

— Case V.R. Suppose that I' = A, A4 V. B; - is provable in LCE with proof

T
=484 o
F'=A4Av.B A;- €

By the inductive hypothesis, I", =4, =B, —=A = 1 has a proof 7’ in LE. Hence
]T/
I',—A4,—-B,—A = L
I'-A=Av.B
I, —~(AV.B),~A= 1 —L

VR

On the other hand, suppose that I" = A V. B is provable in LE with proof

T
I',—4,-B= 1

v
I''=>A4AV.B R

By the inductive hypothesis, I" = 4, B; - has a proof 7’ in LCE. Thus,

7_[/

I' = A,B;- V.R
F:Awm~:
= Av.B S©r®

— Case —. R. Suppose that I’ = A, 4 —. B; - is provable in LCE with proof

b4
I' A= B, A;-
I' =>A—.B,A;-

—:R

By the inductive hypothesis, I, 4, =B, —A = 1 has a proof 7’ in LE. Hence
7_[/
[A,-B,—-A= |
I'-A=A4>.B
I',—(A4—.B),~A= L

—:R
L

On the other hand, suppose that I" = 4 —. B is provable in LE with proof

T
IA,-B= L

roAo.8 <k

By the inductive hypothesis, I",4 = B; - has a proof =’ in LCE. Hence
n/
I'' A= B;- R
'=4—.B,- ¢
F=d—cB SO
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10 Separability and harmony in ecumenical systems
— Case —R. Suppose that I' = —4, A; - is provable in LCE with proof

T
', A= A;- R
= A,—d;

By the inductive hypothesis, I", 4, ~A = L has a proof 7’ in LE. Hence,

7_[/

w
[,——A4,—~A A= |
I, ——A4,—A = —A

I,——A4,-A= L

-

where 7], represents the translation of the weakened version of ’.
On the other hand, suppose that I" = —4 is provable in LE with proof

T
A= 1
I' = —4

By the inductive hypothesis, I",4 = -; - has a proof 7" in LCE. Hence,
7_[/
I'A= -
I' = —4;

m store

-

— Case 3.R. Suppose that I' = J.x.4, A; - is provable in LCE with proof

T
I' = Aly/x],3:x.A, A; -
I' = 3xA4,A;-

—:R

— By the inductive hypothesis, I', =A[y/x], —~3.x.A,—A = 1 has a proof 7’ in LE. Hence
]T/
I',—3.x.A,—Aly/x],Vx.—A4,—-A = L
I',—3.x.A4,¥x.—4,—~A = L
I, —3xA,—A = 3.x.A4
I, —3xA4,—A = L

IR

-

On the other hand, suppose that I" = 3.x.4 is provable in LE with proof

T
', Vx—4 = 1

I' = 3.x.4 R

By the inductive hypothesis, I",Vx.—4 = -; - has a proof 7" in LCE. Hence,

77:/

I',Vx.—A4 g Jex.A;-
I = 3.x.4, =Vx.—A4; - —R I, —Vx.—A4 = 3.x.4; -
I' = 3.x.4;-
I' = ;3.x.4

N — cut

store

where 1), represents the translation of the weakened version of 77" and the double bars in the
right branch indicates an adapted proof of 3.
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Separability and harmony in ecumenical systems 11

— Case —. L. Suppose that I',4 —. B = A, - is provable in LCE with proof

T T
I''A—.B= A;A I',B= A;-

I''A—.B= A;-

—. L

By the inductive hypothesis, I',4 -, B,—A = A and I",B,—~A = 1 have proofs n{, rré in
LE, respectively. Hence,
7y )
IA—>.B~A=A4 I[,B,—=A= |
' A—_.B,—A= 1L

—¢L

and vice-versa. The other left-rule cases are similar.
Case D. Suppose that I' = A, P; - is provable in LCE with proof

7
' = A,P,P
I' = AP;-
By the inductive hypothesis, I", =P, = A = P has a proof 7’ in LE. Hence,
]T/
I',—P,—-A=P
r-p-A—=1 *t

Case store. Suppose that I" = A; N is provable in LCE with proof

b4
I' = A,N;-

I = AN store

By the inductive hypothesis, I, =A, =N, => L has a proof 7’ in LE. Hence,
7_[/
I',—A,—-N= 1
r-A=—N ® ==NSN
I,—A=N

cut

where the double bar indicates the multiple-steps proof of the fact that, for negative formulas,
N <> —=N.

Cases cut. The P — cut rule in LCE trivially corresponds to cut in LE. Suppose that I =
A; IT is provable in LCE with proof

T T
I' = AN;IT* N, I’ = A;I1

I = ATl N —cut

By the inductive hypothesis, I',—A, =N = IT* and N, I", = A = IT are provable in LE with
proofs 7| and 7}, respectively.

If IT* = -, then
JT{ néw
I,=A-N= L ~~N.[.~A=>N —-N.N.[.=A=1 .
I —A—=——N ~N.T-A=1T cu
cu

I,—A=1I
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12 Separability and harmony in ecumenical systems

where 7/ is the weakened version of 2, and the double bar corresponds to the proof of 9.
If [T* = P € A, then the left premise derivation is substituted by
t
r,—A,~N=P P,[,-A-N= L
I,=A,—N= L

-

F’—|A$—1—1N

PeA
cut

Observe that, if P € A then =P € —A and, hence, P,I",—A,—~N = 1 is trivially
provable. O

Observe that, other than the cut rules, store introduces cut in the translation between proofs
from LCE to LE, while 3.R introduces cuts the other way around. Since LE has the cut-elimination
property [35], the translation from LCE to LE is not problematic. However, for proving cut-free
completeness from LE to LCE, we need to prove that the later has the cut-elimination property.

3.1 Cut-elimination

A logical connective is called harmonious in a certain proof system if there exists a certain balance
between the rules defining it. For example, in natural deduction based systems, harmony is ensured
when introduction/elimination rules do not contain insufficient/excessive amounts of information
[9]. In sequent calculi, this property is often guaranteed by the admissibility of a general initial
axiom (identity-expansion) and of the cut rule (cut-elimination) [27)].

In Lemma 3.2, we proved identity-expansion for LCE. In the following, we will complete the proof
of harmony for LCE, proving that it enjoys the cut-elimination property. This will also guarantee cut-
completeness from LE to LCE, as mentioned above.

Proving admissibility of cut rules in sequent based systems with multiple contexts is often tricky,
since the cut formulas can change contexts during cut reductions. This is the case for LCE. The
proof is by mutual induction, with inductive measure (n, m) where m is the cut-height, the cumulative
height of derivations above the cut, and » is the ecumenical weight of the cut-formula, defined as

ew(p;) =ew(l)=0 ew(d x B) = ew(4) + ew(B) + 1 if x € {A, —;, V;}
ew(p.) =4 ew(Q4) = ew(d) + 1ifQ € {—,J;x., Vx.}
ew(d.x.4A) =ew(d) + 4 ew(doB) =ew(d) +ew(B) +4ifo € {—,, V.}

Intuitively, the ecumenical weight measures the amount of extra information needed (the negations
added) to define classical connectives from intuitionistic and neutral ones.

THEOREM 3.4.
The rules N — cut and P — cut are admissible in LCE.

PROOF. The dynamic of the proof is the following: cut applications either move up in the proof,
i.e. the cut-height is reduced or are substituted by simpler cuts of the same kind, i.e. the ecumenical
weight is reduced, as in usual cut-elimination reductions. The cut instances alternate between positive
and negative (and vice-versa) in the principal cases, where the polarities of the subformulas flip. We
will detail the main cut-reductions.

— Base cases. Consider the derivation
init

T -
I' = A;p; I',pi= A 11
Pi pi P — cut

I' = A 11
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Separability and harmony in ecumenical systems 13

If p; is principal, then IT = p; and the derivation reduces to 7.

If p; is not principal, then there is an atom g; € " N IT and the reduction is a trivial one.
Similar analyses hold for N — cut, when the left premise is an instance of init, as well as for
the other axioms.

Non-principal cases. In all the cases where the cut-formula is not principal in one of the
premises, the cut moves upwards, for example,

T %)
rA=AN;- I''B=AN;- 3
' Av.B= A,N;- ¢ N,F,AVCB=>A;-N ¢
[ Av.B= A;- —cu
reduces to
T 7[?} %) 7'[32
I''A= A,N;- N,F,A:>A;-N cut I''B= A,N;- N,I",B=>A;-N t
A= A; IB=4 —c
I'Av.B= A;- ¢

where rr; are the proofs constructed from 73 using the invertibility of VL.
The only exceptions are when
dereliction is applied in the left premise

T

[ = APN:P -

IS APN:- ° NIL=APMI
= AP —c

In this case, we substitute the version of N — cut for absorbing the dereliction

1 )
I'= APNP NI=API .
I = AP 11 —c
weakening is applied in the left premise
Y2l
I' = A,P,N;- W P
I' = A,P,N; P N, I' = A, P; 11 N ;
I = AP 11 —c

In this case, we substitute the version of N — cut for absorbing the weakening

T 2
I' = A,P,N;- N,I'=> A,P;I1

I = AP I N —cut

Principal cases. If the cut formula is principal in both premises, then we need to be extra-
careful with the polarities. We show the two most representative cases.

GZ0Z 1890100 0E U0 Jasn (aAnoeul) uopuoT abs|j0) Alsiaalun Aq 69191 28/8509BX8/9/SE/00N1B/W0o60)/Wwod dNo"olWwapese)/:sdyy WoJ) papeojumoq



14 Separability and harmony in ecumenical systems

- N =P —.Q,with P, Q positive.

T ) 3
I',P= A,Q;- I'P—.0= AP I'O0= A;-
—>. —. L
I'= AP—.0;- F,P—)CQ:A;N cut
I'= A;- 0
reduces to
3
0= A,- R .
F:> A’—| ;. F’—| = A;.
0 0 N — cut;
I = A;-
where 7 is
"
I,—0,P= A,0;- Y
—c R _
I',—0= AP—.0;- I',—Q,P —.0= A;P N — cut e
I',—=0= AP 2 I,-0,P= A; b out
I,—0= A;- -

Here, 7~ is the same as 71| where every application of the rule D over Q in the above derivation
is substituted by an application of — over —Q. Observe that the cut-formula of N — cut; has
lower ecumenical weight than N — cutg, while the cut-height of N — cut; is smaller than
N — cuty. Finally, observe that this is a non-trivial cut-reduction: usually, the cut over the
implication is replaced by a cut over Q first. Due to polarities, if Q is positive, then —Q is
negative and cutting over it will add to the left context the classical information Q, hence
mimicking the behaviour of formulas in the right input context.
— N = 3.x.P, with P positive.

T )
I' = A,3.x.P,Ply/x]; - 2R I',Ply/x] = A;- 1L
I = A,3.x.P;- ¢ r,3xP = A;- Nc— cut
I = A;- 0
reduces to
m2[z/y]
o = L =P/ PEM = 45
I, Ply/x] = A;- I,=Ply/x] = A,3x.P;,- I,=P[y/x],3x.P= A;- Nc cut
= A,=Ply/x];- r,=Ply/x] = 4;- ?
N — cut;
I' = A;-

where the same observations for the above case hold, and 7,[z/y] indicates the renaming of
fresh variables in the derivation 5. 0

We finish this section noting that polarities play an important role in the cut-elimination process.
In fact, without them, adding a general cut rule would collapse the system to CL.
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Separability and harmony in ecumenical systems 15
EXAMPLE 3.5.
If the cut rule

I = A AT AT = AT
I = A Il

cut

was admissible in LCE for an arbitrary formula 4, then - = -; 4 VV; =4 would have the proof

Ao Advi—44 ™M
A= AVvi—Ad;Avi—A4 '
A= AV;—A4;- " R
T AN A A ° Ovr?’ﬁ
S AVi—A;AVi—A ] it
= AV;4;- AVi—A, I = ;AV;—A :
cut
= AV, -4

4 Ecumenical modalities

We will now extend the propositional fragment of Prawitz ecumenical logic with modalities.

The language of (propositional, normal) modal formulas consists of a denumerable set P of
propositional symbols and a set of propositional connectives enhanced with the unary modal
operators [ and ¢ concerning necessity and possibility, respectively [2].

The semantics of modal logics is often determined by means of Kripke models. Here, we will
follow the approach in [42], where a modal logic is characterized by the respective interpretation of
the modal model in the meta-theory (called meta-logical characterization).

Formally, given a variable x, we recall the standard translation [-]y from modal formulas into
first-order formulas with at most one free variable, x, as follows: if p is atomic, then [p], = p(x);
[L]x = L; for any binary connective %, [4 x B], = [4]y *x [Bly; for the modal connectives

[C4]x = Vy(R(x,y) = [d]y)  [0Alx = R, y) A [Aly)

where R(x, y) is a binary predicate.
Such a translation has, as an underlying justification, the interpretation of alethic modalities in a
Kripke model M = (W,R,V):

M,wpE=04 iff forally such that wRv, M,v = 4.
M,wl= QA iff  there existsy such that wRv and M, v = A.

R(x,y) then represents the accessibility relation R in a Kripke frame. This intuition can be made
formal based on the one-to-one correspondence between classical/intuitionistic translations and
Kripke modal models [42].

The object-modal logic OL is then characterized in the first-order meta-logic ML as

|_0L A iff |_ML Vx.[A]x

Hence, if ML is CL, the former definition characterizes the classical modal logic K [2], while if it is
intuitionistic logic (IL), then it characterizes the intuitionistic modal logic IK [42].

In this work, we will adopt ecumenical logic as the meta-theory (given by the system LCE), hence
characterizing what we will define as the ecumenical modal logic EK.
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16  Separability and harmony in ecumenical systems

4.1 An ecumenical view of modalities

The language of ecumenical modal formulas consists of a denumerable set P of (ecumenical)
propositional symbols and the set of ecumenical connectives enhanced with unary ecumenical
modal operators. Unlike for the classical case, there is not a canonical definition of constructive
or intuitionistic modal logics. Here we will mostly follow the approach in [42] for justifying our
choices for the ecumenical interpretation for possibility and necessity.

The ecumenical translation [-]§ from propositional ecumenical formulas into LCE is defined in the
same way as the modal translation [-], in the last section. For the case of modal connectives, observe
that, due to Proposition 2.1, the interpretation of ecumenical consequence should be essentially
intuitionistic. This implies that the box modality is a neutral connective. The diamond, on the other
hand, has two possible interpretations: classical and intuitionistic, since its leading connective is an
existential quantifier. Hence, we should have the ecumenical modalities: [, ¢;, O, determined by
the translations

(4 = V(RG.)) —; [4])
[0:4) = FpRED AL [0cA = FoR(xp) ALAL)

We will denote by EK the ecumenical modal logic meta-logically characterized by LCE via [-], that
is,

Fex 4 iff  bFce Vx.[4]x

Setting £ A4 as the ecumenical modal language (that is, built from £ with ecumenical modalities),
the translation above naturally induces the labelled language L, of labeled modal formulas,
determined by labeled formulas of the form x : A with A € L and relational atoms of the form
xRy, where x, y range over a set of variables. Labeled sequents have the form I" = x : A, where I is
a multiset containing labelled modal formulas and relational atoms.

In [24], we proposed a non-pure labelled calculus for ecumenical modal logic. We illustrate the
system with the rules for the classical diamond

XRy,y: A, I’ = x: L
x: QAT =x: 1

x:O-4, I’ =x: L
I'=x:0:4

OcL OcR

Observe that the O R rule is not pure, since the premise depends on — and [J. In the present work,
we achieve purity by using polarities and sequents with stoup.

Labeled sequents with stoup have the form I = A;x : A, where I is as before and A is a multiset
containing labelled modal formulas.

Polarities will be extended to the modal case smoothly, that is, formulas with an outermost
classical connective or a negation are negative and all the others are positive. Relational atoms are
not polarizable.

In Figure 3, we present the pure, labelled ecumenical system labEK. Observe that

|_IabEK X . <>CA <> =[-4

On the other hand, [J and ¢); are not inter-definable. Finally, if 4° is eventually externally
classical, then
Flabek X : LA < =0—A4%

This means that, when restricted to the classical fragment, [] and <. are duals. This reflects well the
ecumenical nature of the defined modalities.
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Separability and harmony in ecumenical systems 17

INTUITIONISTIC AND NEUTRAL RULES

Ix:A,x:B= A1 I I'=s>Ax:A T'=>A;x:B R
TLx:ArB= A " I=Ax:AAB A
Fa:A= Al Ta:BsAI T=8x:4; e

[Lx:AV;B= Al T T Ax:A VA T

Ix:A—-;B=>A;x:A TI,x:B= A1l I'x:A=A;x:B
—; L —; R

Ix:A—; B= A;I1 I'=s>A;x:A—; B

CLASSICAL RULES AND NEGATION

Ix:A->.B=>A;x:A T x:B=A;- I'x:A= x:BA;-
= —. R

I''x:A—>.B=A;- I'=>x:A—>.B,A;-

Ix:A=>A;- TLx:B=A;- I'=>x:Ax:BA;-
V.L V.R

I'x:AV.B=A;- I'=>x:AV.BA;-
Ix:pi=A;- L I'=>x:pi,A;-

. R,

Lox:pe=>A;- 7 T=x:pa,A- ¢
Ix: A= A;x: A Ix:A=A;- R
[x:mA=A;- 7 T=x:-AA-

MODAL RULES

xRy, y 1 A, x: DA, T = A; 11 " xRy, T = A;y: A N ny,y:A,l":>A;l'I<>L
XRy,x DAL= A0 7 ToAxoa ™ xioAl=AT

xRy, T = A;y: A xRy, y : A, = A;- xRy, T = y: A, x:0AA;- O.R
xRy, T = A;x: ;A 7' X:0AT=A;- 7€ XRy, T = x: 0.A,A;- ¢
INITIAL, DECISION AND STRUCTURAL RULES
ILx:A=>A;x: A init; Ix:A=x: A AT inite

I'=>x:PAx:P I'=x:NA;- i I'=A;- W

= x:PA;- I=sAx:N °°9® TSAx:A
CUT RULES
I'=A;x:P x:RF:>A;HP t I'=Ax:N;II" x:N,F:>A;HN t

= Al -o T = Al -od

FIGURE 3. Ecumenical pure modal system labEK. In rules (IR, {;L, O.L, y does not occur free in
any formula of the conclusion; N is negative and P is positive; p is atomic; IT* is either empty or
somez: P e A

4.2 Ecumenical birelational models

The ecumenical birelational Kripke semantics, which is an extension of the proposal in [33] to
modalities, was presented in [24].

DEFINITION 4.1.

A birelational Kripke model is a quadruple M = (W, <,R, V) where (W,R, V) is a Kripke model
such that W is partially ordered with order <, R C W x W is a binary relation, the satisfaction
function V : (W, <) — (27, C) is monotone and
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18  Separability and harmony in ecumenical systems

F1. For all worlds w,v,V/, if wRv and v < V/, there is a w’ such that w < w' and W RV,

F2. For all worlds w',w, v, if w < w' and wRv, there is a v/ such that w'RV and v < V.

An ecumenical modal Kripke model is a birelational Kripke model such that truth of an ecumenical
formula at a point w is the smallest relation =g satisfying

M, w =g pi iff  p; e V(w);

M,wEgAAB iff M,w =g 4and M,w = B;

M,W':EA\/I'B iff M,W':EAOI‘M,WIZEB;

M,wlEgd—; B iff forallv suchthat w < v, M,v =g 4 implies M,v =g B;

M, w =g —4 iff forall v suchthat w < v, M,v 4 4;

M,w =g 04 iff forall v,w suchthat w <w and wRv, M,v = 4.
M,w =g 0i4 iff  there exists v such that wRv and M, v =g 4.

M, w e pe iff M, w =g —(=p));

M,wiEgAvVv,:B iff M,w kg —(—4 A —B);
MwEgd—.B iff M,wkEkg —(A4A-B).
M,w =g OcA iff  M,w g —0O-4.

We say that a formula 4 is valid in a model M = (W, <,R, V) if for all w € W we have w =g 4.
A formula 4 is valid in a frame (W, <, R) if, for all valuations V, 4 is valid in the model (W, <,R, V).
Finally, we say a formula is valid, if it is valid in all frames.

Since, restricted to intuitionistic and neutral connectives, =g is the usual birelational interpreta-
tion = for IK [36, 42], and since the classical connectives are interpreted via the neutral ones using
the double-negation translation, an ecumenical modal Kripke model coincides with the standard
birelational Kripke model for intuitionistic modal logic IK. Hence, the following result easily holds
from the similar result for IK.

THEOREM 4.2 ([24]).
The system labEK is sound and complete w.r.t. the ecumenical modal Kripke semantics, that is,
"IabEK x : A iff I:E A.

We end this section with a small note on the relationship between the semantics and the dynamics
of proofs. On a bottom-up reading of proofs, the store rule is a delay on applying rules over classical
connectives. It corresponds to moving the formula up w.r.t. < in the birelational semantics. The rule
UIR, on the other hand, slides the formula to a fresh new world, related to the former one through the
relation R. Finally, rule =R moves up the formula w.r.t. <.

5 A nested system for ecumenical modal logic

The criticism regarding system labEK is that it includes labels in the technical machinery, hence
allowing one to write sequents that cannot always be interpreted within the ecumenical modal
language.

This section is devoted to presentin the pure label free calculus for ecumenical modalities, where
every basic object of the calculus can be translated as a formula in the language of the logic.

The inspiration comes from Strafburger’s nested system for IK [43]. The main idea is to add
nested layers to sequents, which intuitively corresponds to worlds in a relational structure [4, 5, 14,
20, 37].

The structure of a nested sequent for ecumenical modal logics is a tree whose nodes are multisets
of formulas, just like in [43], with the relationship between parent and child in the tree represented
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Separability and harmony in ecumenical systems 19

by bracketing [-]. The difference however is that the ecumenical formulas can be left inputs (in the
left contexts—marked with a full circle *), right inputs (in the classical right contexts—marked with
a triangle V) or a single right output (the stoup—marked with a white circle ©).

DEFINITION 5.1.
Ecumenical nested sequents are defined in terms of a grammar of input sequents (written A) and full
sequents (written I") where the left/right input formulas are denoted by 4°® and 4V, respectively, and
A° denotes the output formula. When the distinction between input and full sequents is not essential
or cannot be made explicit, we will use A to stand for either case.

As usual, we allow sequents to be empty, and we consider sequents to be equal modulo
associativity and commutativity of the comma.

We write T for the result of replacing an output formula from I' by L°, while A" represents
the result of adding the output formula 1 ° anywhere in the input context A. Finally, A* is the result
of erasing an output formula (if any) from A.

Observe that full sequents I necessarily contain exactly one output-like formula, having the form
Al» [A29 [ v [AVDAO]] .. ]

EXAMPLE 5.2.
The nested sequent (.47, [—=B°],[C A D*] represents the following tree of sequents:

- QA;-

7N\

=5-B CAD=-;-

The next definition (of contexts) allows for identifying subtrees within nested sequents, which is
necessary for introducing inference rules in this setting.

DEFINITION 5.3.
An n-ary context A ! } e {n } is like a sequent but contains # pairwise distinct numbered koles { },

where a formula would otherwise occur. It is a full or a input context when A = I' or A, respectively.
Given n sequents Ay,...,A,, we write A{A1}---{A,} for the sequent where the i-th hole in

A {1 } -+-{"} has been replaced by A; (for 1 < i < n), assuming that the result is well-formed, i.e.,
there is at most one output formula. If A; = &, the hole is removed.

Given two nested contexts T''{} = A, [AL [...,[ALL {}]]...]. i € {1,2}, their merge® is
r'eri) = Al A2 [A;, Al [ ., [A},,Ai,{}]] ]

Figure 4 presents the nested sequent system nEK for ecumenical modal logic EK.

4As observed in [21, 37], the merge is a ‘zipping’ of the two nested sequents along the path from the root to the hole.
Contexts merging is smoothly extended to nestings without holes, by simply erasing those.
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20  Separability and harmony in ecumenical systems

M.
YTyt

r{A*,B*} . A{A°} A{B°} | T{A°} T{B°} S D
TaArs) N AAarB) N AV, B AlAr v A3)

IMA =i B°,A°) T{B*} , A{A%B}
—. —
T{A —; B} "AMA-i B}

CLASSICAL RULES AND NEGATION

A >, B, A°} T+{B*} , TY{A°,B"} _ T{A"} V(B
— - .
I'“{A >. B} ¢ {A->. B} ¢ I'“’{A Vv, B}

Ve

I''{A", B")
I'“{A v. B"}

[*{-A°, A°) r+{A®)

v o v

T I T ] I e BV O B S B

MODAL RULES
A{DA*, [A%, As]} o* A{[A°]} o AL o AdIA% Aol
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FIGURE 4. Nested ecumenical modal system nEK. P is a positive formula, N is a negative formula.
p is atomic. I'? denotes either 't or I'*{PY, P°} for some PV € I'.

EXAMPLE 5.4.

Below, left is the proof that (.4 is a consequence of —[1—4 for any formula 4. Below, right the
proof that, if N is negative, then OJN is a consequence of —(;—N. In fact, this holds for and only for
eventually externally classical formulas (see Definition 2.2).

I
N IR

A% ] VTN ore
[47,—4°] ﬁov =N NT] 00

<>CAV’ [—4°] %co Oi—N°, [NV] c_|.

D_'AO,OCAV . _'<>i_'N., [NV’J_O] D
—0-4°2,0.47,1° =0i=N®,[N°]

“Ode, ouae Store 0N, 0N T

—_—— > — Y ——= 7
—[]—-4 —>i <>c °© ! _'<>iﬂN —>i CIN® !
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5.1 Proof theoretic properties

As for labEK, the properties of nEK are inherited by the ones in LCE (see Lemma 3.2). We will list
them explicitly since the notation is quite different.

THEOREM 5.5.
In nEK:
v

1. Therules Vo, VY, =% —7, =% =°p% p.V,02, OF and D are invertible.
2. The rules A®, A°,Vv?,—7, 07, 00°,1° and store are totally invertible.
3. The following structural rules are admissible:

r ARART
A®T We AQT Ce
4. The rules cut® and cut are admissible. The ecumenical weight is the following extension of
the measure presented in Section 3.1 for propositional connectives.

ew(Q4) =ew(d) + 1if O € {O;,00} ew(Ocd) =ew(d) +4

The invertible but not totally invertible rules in nEK concern negative formulas; hence, they can
only be applied in the presence of empty stoups (L°). Note also that the rules W, V¢, and 7 are not
invertible, while — 7 is invertible only w.r.t. the right premise.

5.2 Soundness and completeness

In this section, we will show that all rules presented in Figure 4 are sound and complete w.r.t. the
ecumenical birelational models. The idea is to prove that the rules of the system nEK preserve
validity, in the sense that if the interpretation of the premises is valid, so is the interpretation of the
conclusion.

The first step is to determine the interpretation of ecumenical nested sequents. In this section, we
will present the translation of nestings to labelled sequents, hence establishing, at the same time,
soundness and completeness of NEK and the relation between this system with labEK.

DEFINITION 5.6.

Let I'®*, AV, TI° represent that all formulas in the each set/multiset are respectively input left, right
or output formulas. The underlying set/multiset will represent in all cases the corresponding multiset
of unmarked formulas. The translation [-], from nested into labelled sequents is defined recursively
by’

[C*AY, T [Z1]),.. L [Zally = ((fRx}ix T = x: Asx 1D @ {[Tila ),

where | < i < n, x; are fresh, L is translated to the empty set and the merge operation on labelled
sequents is defined as

N=A)Q U= Ay lh) = 1,15 = A, Ay ILL I

Since full nested sequents have exactly one output formula (which can be 1), the stoup in the labelled
setting will have at most one formula, and the merge above is well defined. Given R a set of relational

SWe observe that this translation is closely related to those given for classical modal logics in [2] and for intuitionistic
modal logics in [4].
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formulas, we will denote by xR*z the fact that there is a path from x to z in R, i.e. there are y; € R
for 0 < j < k such that x = yg,y;—1Ry; and y; = z.

THEOREM 5.7.
Let I" be a nested sequent and x be any label. The following are equivalent:

1. I is provable in nEK;
2. [I']y is provable in labEK.

PROOF. Let xR*z € R. Observe that
[ {0cA® N = R, 2,21 Ocd = A;-iff
[FLO{[A']}]X =TR,zRy, X,y : A = A;-, with y fresh.
— [AF{0cAY,[AL ]}y = R,zRy, © = A,z : Qcd; - with y the variable related to the nesting
of Ay iff
[AF{0cAY,[47, A7 [Ny = R.zRy, £ = A,z: Qed,y < 4; .
The other cases are similar. The translation [-] is then trivially lifted to rule applications. We will
illustrate the ¢, cases.

— Case Q.
), Ok RvpiA T A
0.4 ¢ [T+ {0ed®) ] z:0cd, X = Ay C
— Case Q0¢.
AT {04, [47,077]} - [A7{0cA”,[47, A5 ]}
A0, [A57]) ° (A7 {0cd”, [ [}
_ ZRy, X =y A,z : Qcd, A; - 0.R

ZRy, X = z: QcA, A; -

Given this transformation, (1) < (2) is easily proved by induction on a proof of I'/[I'], in
nEK/labEK. O

Theorems 4.2 and 5.7 immediately imply the following:

COROLLARY 5.8.
Nested system nEK is sound w.r.t. ecumenical birelational semantics.

We observe that, often, passing from labelled to nested sequents is not a simple task, sometimes
even impossible. In fact, although the relational atoms of a sequent appearing in labEK proofs can be
arranged so as to correspond to nestings, as shown here, if the relational context is not tree-like [17],
the existence of such a translation is not clear. For instance, how should the sequent xRy, yRx,x :
A = y : B be interpreted in modal systems with symmetrical relations?

However, thanks to their tree shape, it is possible to interpret nested sequents as ecumenical modal
formulas, and hence prove soundness in the same way as in [43].

We end this section by briefly showing an alternative way of proving of soundness of NEK w.r.t.
the ecumenical birelational semantics. Please refer to [25] for a more detailed presentation.
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DEFINITION 5.9.
The formula translation et(-) for ecumenical nested sequents is given by

et@) = T et(A®,A) = AAet(A)
et(d",A) = —Aret(A)  et([A1],A2) = Owet(Ar) A et(As)
et(A,4°) = et(A) —; A4 et(A,[T]) = et(A) —; Det(T)

where all occurrences of 4 A T and T —; A are simplified to 4. We say a sequent is valid if its
corresponding formula is valid.

The next theorem shows that the rules of nEK preserve validity in ecumenical modal frames w.r.t.
the formula interpretation et(-).

THEOREM 5.10.
Let
i = Ly neqo1,2)
be an instance of the rule r in the system NnEK. Then et(I)) A ... A et(I}) —; et(I") is valid in the
birelational ecumenical semantics.

6 Fragments, axioms and extensions

In this section, we discuss fragments, axioms and extensions of NnEK.

6.1 Extracting fragments

For the sake of simplicity, in this sub-section, negation will not be considered a primitive connective,
it will rather take its respective intuitionistic or classical form.

DEFINITION 6.1.

An ecumenical modal formula C is classical (resp. intuitionistic) if it is built from classical (resp.
intuitionistic) atomic propositions using only neutral and classical (resp. intuitionistic) connectives
but negation, which will be replaced by 4 —, L (resp. 4 —; L).

The first thing to observe is that, when only pure fragments are concerned, weakening is
admissible (remember that this is not the case for the whole system nEK—see Example 2.6). Also,
only positive (resp. eventually externally classical) formulas are present in the intuitionistic (resp.
classical) fragment.

Let nEK; (resp. nEK,) be the system obtained from nEK — W by restricting the rules to the
intuitionistic (resp. classical) case—see Figures 5 and 6.

The intuitionistic fragment does not have classical input formulas and it coincides with the system
NIK in [43].

Regarding nEK_, since all the classical/neutral rules are invertible, the following proof strategy is
complete:

i. Apply the rules A®, A°,[J°, [1° and store eagerly, obtaining leaves of the form A {_L°}.

ii. Apply any other rule of nEK, eagerly, until either finishing the proof with an axiom
application or obtaining leaves of the form A {P°}, where P is a positive formula in nEK,,
that is, having as main connective A or L. Start again from step (i).
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FIGURE 5 Intuitionistic fragment nEK;.
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FIGURE 6. Classical fragment nEK_.

This discipline corresponds to the focused strategy for a fragment of the two-sided version of the
polarized system defined in [7], exchanging the polarities of diamond and box (which, as observed
in the op.cit., is a matter of choice since all rules are invertible).

6.2 About axioms and extensions

The classical modal logic K is defined as propositional CL, extended with the necessitation rule
(presented in Hilbert style) A/(14 and the distributivity axiom k : (J(4 — B) — (04 — OB).

There are, however, many variants of the axiom k that induce logics that are classically, but not
intuitionistically, equivalent (see [36, 42]). In fact, the following axioms follow from k via the De
Morgan laws, but are intuitionistically independent:

ki : 04— B) — (04 — OB) ky: 04V B) — (0AV OB)
ky: (04 — 0OB) — A — B) ky: OL — L

Combining axiom k with axioms k; — k4 defines intuitionistic modal logic IK [36].

In the ecumenical setting, this discussion is even more interesting, since there are many more
variants of k, depending on the classical or intuitionistic interpretation of implications and diamonds.

It is an easy exercise to show that the intuitionistic versions of k; — k4 are provable in nEK.
One could then ask: what happens if we exchange the intuitionistic versions of the connectives with
classical ones?

Consider k%7 - UAd —« B) —p (04 —, 0B) with o, B,y € {i,c}. First of all, note that
kPY is not provable, for any B, y. This is a consequence of the fact that 4 —. B,4 # B in EKin
general (see Equation 5). Moreover, since C —; D = C —. D in EK, k%" = k® for any value of
B,y . The same reasoning can be extended to all the other axioms, for example, k‘;ﬁ - (Oad —
UB) —, (4 —5 B) is not provable for § = c and kém implies all the other possible configurations
fora, B,y,86.
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TABLE 1.  Axioms and corresponding first-order conditions on R.

Axiom Condition First-order formula
t:04—>A4AnA4A— QA Reflexivity Vx.R(x, x)
b:4—-004A004— 4 Symmetry Vx,y.R(x,y) — R(y,x)

4: 04— 004 A OOA — QA Transitivity Vx,v,z.(R(x,y) AR(y,2)) — R(x,z)
5: 04— 004 AQOOA — OA Euclideaness Vx,y,z.(R(x,y) AR(x,2z)) = R(y,z)

I'{oA®,A*) " A{[Ay,0A%], A%} be A{[Ay,0A%], DA%} 4 I'{[oA®][OA®]} 5
oA} A{[Az, DA]} Ai{[A;], DA} M{[oA*][2]}

AAY o AALATY  AA0AT] o ADIATD
Af0:A%) AlTAs, 0:A%T) A{TA],0,4%) AlloA[2])
reaTy A{lasat) o ar{[ay o)) o Tlieloan)
oA} AF{[AL 0cA]) A+ {[a37] 0.A7) ' {[o.A"][@]}

FIGURE 7. Ecumenical modal extensions for axioms t, b, 4 and 5.

Hence, the intuitionistic version of the k family of axioms forms their minimal version valid in
EK. In [25], we proved that nEK was cut-complete w.r.t to EK’s Hilbert system based on this set of
axioms.

Regarding modal extensions of EK, we can obtain them by restricting the class of frames we
consider or, equivalently, by adding axioms over modalities. Many of the restrictions one can be
interested in are definable as formulas of first-order logic, where the binary predicate R(x, y) refers
to the corresponding accessibility relation. Table 1 summarizes some of the most common logics,
the corresponding frame property, together with the modal axiom capturing it [39].

Since the intuitionistic fragment of NnEK coincides with NIK, intuitionistic versions for the rules
for the axioms t, b, 4 and 5 match the rules (*) and (°) presented in [43], and are depicted in Figure 7.

For completing the ecumenical view, the classical (V) rules for extensions are justified via
translations from labelled systems to nEK: We first translate the labelled rules for extensions
appearing in [42] to labEK then use the translation on derivations defined in Section 5.2 to justify
the rule scheme.

For example, starting with the rule T below left, which is the labelled rule corresponding to the
axiom t in [42], the labelled derivation on the middle justifies the classical nested rule in the right.

XRx, R, Y = A,x:A,x:Q.A;z: L

1° \vJ
XRRTFziC o xRx,R,E:A,x:QcA;z:J_TOCR refany
rez:C R,Z = Ax:Qcd;z: L r+{0c4v}

The rules b¥,4Y and 5V, shown in Figure 7, are obtained in the same manner.
Restricted to the fragments described in the last section, by mixing and matching these rules, we
obtain ecumenical modal systems for the logics in the S5 modal cube [2] not defined with axiom d.

7 Related and future work

The main idea behind Prawitz’s ecumenical system [38] is to build a proof framework in which
classical and intuitionistic logics may co-exist in peace. Although one could argue that this is easily
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done using the well known double-negation translations by Kolmogorov, Gddel, Gentzen and others
[13], Prawitz’s view matches the idea presented by Liang and Miller in their PIL system presented
in [22]: not seeing CL as a fragment of intuitionistic logic but rather to determine parts of reasoning
which are classical or intuitionistic in nature. While double negation acts on formulas, the approach
in [22] and also followed here concerns proofs. For example, we do not want to interpret A V —4 as

‘it is not the case that 4 does not hold and it is not the case that it is not the case that 4 holds’.

Rather, we aim at identifying the points in proofs where the excluded middle is valid and/or
necessary.

The similarities between our work and the system presented in [22] ends there, though. Indeed,
in the op.cit. there are two versions of the constant for absurdum and universal quantifier, and
all connectives have a dual version. For example, the intuitionistic implication O comes with the
intuitionistic dual oc, a form of (non-commutative) conjunction, which has no correspondent in
usual classical or intuitionistic systems. Also, these dualized versions have opposite polarities (red
and green), that do not match Girard’s original idea of polarities: They are, instead, defined model-
theoretically. In this work, we opt for smoothly extending well known systems and features (like
stoup or polarities), which makes LCE and PIL incomparable. It would be interesting to investigate,
for example, if PIL could be smoothly extended to the modal case, as done in this work.

There are other proposals for ecumenical systems in the literature. For example, in [3] the authors
present a (type) theory in AIT-calculus modulo theory, where proofs of several logical systems can
be expressed. We are planning to propose type systems related to the systems/fragments described
in this paper, and it would be interesting to see the intersection that may appear from the two
approaches. It would be also interesting to implement ecumenical provers, as well as to automate
the cut-elimination proof in the L-Framework [32].

A completely different approach comes from the school of combining logics [6, 8, 23], where
Hilbert-like systems are built from a combination of axiomatic systems. As we trail the exact
opposite path, it would be interesting to see if (the propositional fragment of) Prawitz’s natural
deduction system is axiomatizable.

Finally, the presence of polarization and stoup paves the way for proposing focused ecumenical
systems. For getting a complete focused discipline, though, it would be necessary to add polarized
versions of conjunction and disjunction, as done e.g. in [22] and [7]. This would give a unified
focused framework, which could be used, among other things, to automatically extract rules from
axioms, as done in [26].
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