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Following all the rules: Intuitionistic completeness 
for generalized proof-theoretic validity
Will Stafford   and Victor Nascimento

1.  Introduction

Prawitz developed proof-theoretic validity in the early 1970s as a method of 
demonstrating that intuitionistic elimination rules follow from intuitionistic 
introduction rules. Prawitz conjectured not only that intuitionistic elim-
ination rules follow according to proof-theoretic validity but also that no 
stronger elimination rules follow from then. This amounts to conjecturing 
that intuitionistic logic is sound and complete when proof-theoretic validity 
is treated as a semantics. 

This conjecture was firmly refuted by Piecha and Schroeder-Heister (2019), 
who demonstrated that most varieties of proof-theoretic validity are actually 
stronger than intuitionistic logic. This includes Prawitz’s 1970s notion and 
his later 2006 proposal. The goal of this paper is to show that propositional 
intuitionistic logic is sound and complete for generalized proof-theoretic val-
idity, which results from a small modification of the 1970s definition: 

(Theorem 1.1) For all ϕ in the language of propositional logic, ϕ is a gen-
eralized proof-theoretically valid formula ⇔ ϕ is an intuitionistic validity.

This result generalizes Goldfarb’s (2016) revision of proof-theoretic validity, 
leading to a notion which, unlike Goldfarb’s, is closed under uniform sub-
stitution. 

The insight here is as follows: Piecha and Schroeder-Heister (2019) pro-
pose that a set of inference rules for atomic propositions is the proof-theoretic 
equivalent of a model, which is why validity should be defined over a collec-
tion of such sets. We propose that a set of inference rules is equivalent to a 
world in a model, which is why validity should be defined over a collection 
of sets of sets. If this is done, the resulting logic is intuitionistic. 

This result in a sense vitiates Prawitz’s conjecture. The early treatment of 
atomic propositions failed to yield a system closed under substitution, which 
suggests that there is some technical issue with the implementation of the 
proposal. We take generalized proof-theoretic validity to be the natural ap-
proach to ensuring closure under substitution. And this leads to a notion for 
which intuitionistic logic is sound and complete. 

The first section of this paper introduces proof-theoretic validity, the sec-
ond recalls intuitionistic Kripke models and the proof is given in the third 
and final section. 
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2.  Generalized proof-theoretic validity

In this section, we lay down the definition of proof-theoretic validity that 
will be used. We will use the definition of the proof-theoretic consequence 
relation found in Piecha et al.  2015 rather than working directly with the 
definition on proof-like structures. Let us start with the treatment of atomic 
propositions. Note that we treat ⊥ as an atomic proposition, not as a 0-ary 
connective. 

(Definition 2.1) An atomic rule is either an axiom of the form p 
for any p ∈ ATOM ∪ {⊥} or an inference of the form p1...pnpn+1

 for any 
p1, ... , pn+1 ∈ ATOM ∪ {⊥}. The set of all atomic rules will be denoted 
as S. 

Let an atomic system S be a subset of S. A proof-theoretic system is then any 
S ⊆ P (S). The consequence relation between atomic systems and atomic 
propositions can then be defined as follows:

(Definition 2.2) Given an atomic system S and an atomic proposition p, 
we will write S � p if there is a proof of p using only rules in S. 

With all this in place, we can define proof-theoretic validity:

(Definition 2.3) The proof-theoretic validity consequence relation � is such 
that for every S and S ∈ S:

S, S � p ⇔ S � p, (2.1)

S, S � ⊥ ⇔ S � ⊥, (2.2)

S, S � ϕ ∧ ψ ⇔ S, S � ϕ and S, S � ψ, (2.3)

S, S � ϕ ∨ ψ ⇔ S, S � ϕ or S, S � ψ, (2.4)

S, S � ψ → ϕ ⇔ [∀S′ ∈ S(S′ ⊇ S and S, S′ � ψ ⇒ S, S′ � ϕ)]. (2.5)

Further, let S � ϕ hold if and only if S, S � ϕ for all S ∈ S. 
Most presentations of proof-theoretic validity suppress any reference to 

the proof-theoretic system. The importance of explicitly stating the proof-
theoretic system S is recognized by Piecha et al. (2015), who highlight the 
differences between restrictions put on permitted sets of atomic rules in 
the literature and show how these differences affect what is valid. Piecha 
and Schroeder-Heister (2019) posit that proof-theoretic systems are analo-
gous to the collection of models relative to which model-theoretic conse-
quence relations are defined. Given this understanding, their result that every  
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proof-theoretic system is super-intuitionistic can be interpreted as showing 
that there are no treatments of the atomic propositions that are intuitionistic, 
and therefore proof-theoretic validity is not intuitionistic either.1 As men-
tioned above, we are guided by the idea that a proof-theoretic system is 
analogous to a model, not to a collection of models. This allows us to view 
Piecha and Schroeder-Heister’s (2019) result as demonstrating instead that 
no individual ‘model’ is intuitionistic, which is no odder than pointing out 
that every classical model either models p or ¬p, but neither is a classical 
validity. 

The largest proof-theoretic system is P(S). This proof-theoretic system 
is ‘minimal’ in the sense that ⊥ is not defined and intuitionistic logic 
is therefore not sound. If an atomic system contains a rule ⊥p  for every 
atomic proposition p, then ⊥ will behave as though defined by its elimin-
ation rule. We will call a proof-theoretic system S ⊆ P(S) intuitionistic if 
every S ∈ S contains ⊥p  for every p. It is known that intuitionistic logic is 
sound on the resulting systems. The largest intuitionistic proof-theoretic 
system is known to be complete for generalised inquisitive logic (Stafford 
2021).

We can now define generalized proof-theoretic validity as follows:

(Definition 2.4) ϕ is a generalized proof-theoretically valid (GPTV) formula 
if, for every intuitionistic proof-theoretic system S, it follows that S � ϕ. 
(That is, GPTV = {ϕ | ∀S ⊆ P(S)[S intuitionistic → S � ϕ]}.) 

This definition differs from those considered by Piecha and Schroeder-
Heister  (2019) because we have not chosen a particular proof-theoretic 
system to define proof-theoretic validity over. Our goal is to show that 
INT = GPTV, that is, the set of intuitionistic validates coincides with gener-
alized proof-theoretically valid formulas. 

3.  Kripke models

In this section, we lay out the definition of an intuitionistic Kripke model. It 
is already known that every intuitionistic proof-theoretic system is equiva-
lent to a Kripke model (Piecha and Schroeder-Heister 2016). 

Recall that, in this context, a partial order is a relation R that is transitive, 
antisymmetric and reflexive. Moreover, a function f  on a partial order is 
monotonic with respect to the subset relation if R (a, b) implies f (a) ⊆ f (b).  
This can be understood as a condition preventing one from ‘changing one’s 

	 1	 Piecha and Schroeder-Heister  (2019) are careful to point out that there are other 
ways to define the atomic formulas which avoid their result, such as those outlined by 
Goldfarb (2016). We discuss this connection at the end of §4.
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mind’ when transitioning from a world a to an accessible world b, since 
everything assigned by the function to a will also be assigned to b. 

(Definition 3.1) An intuitionistic Kripke model M = 〈〈W,R〉,V〉 is a 
Kripke frame 〈W,R〉 consisting of a set W  of worlds and an accessibility 
relation R ⊆ W ×W that is a partial order, plus a monotonic valuation 
function V : W → ATOM.

(Definition 3.2) Define � on pairs consisting of an intuitionistic Kripke 
model M = 〈〈W,R〉,V〉 and a world w ∈ W : 

M,w � p ⇔ p ∈ V(w), (3.1)

M,w � ⊥, (3.2)

M,w � ϕ ∧ ψ ⇔ M,w � ϕ and M,w � ψ, (3.3)

M,w � ϕ ∨ ψ ⇔ M,w � ϕ or M,w � ψ, (3.4)

(3.5)

4.  From finite Kripke models to proof-theoretic systems

We will demonstrate that every finite Kripke model is equivalent to an 
intuitionistic proof-theoretic system. 

(Definition 4.1) An intuitionistic Kripke model is finite if W  is finite. 

We must restrict the size of Kripke models because, while a Kripke model 
can be arbitrarily large, a proof-theoretic system is bounded by |P(S)| which 
– given that we will, in general, have a countable infinity of atomic proposi-
tions – will be the cardinality of the reals. This problem cannot be solved 
by adding more atomic propositions because we would need a proper class 
of atomic propositions to ensure that there is a model of every cardinality, 
which is something we take to be unreasonable. 

Showing that every finite Kripke model is equivalent to an intuitionistic 
proof-theoretic system will suffice for demonstrating that intuitionistic logic 
is complete for generalized proof-theoretic validity because of the following 
result:

(Theorem 4.2) (Troelstra and van Dalen 1988: Theorem 6.12). Intuitionistic 
logic is complete for the class of all finite intuitionistic Kripke models. 

Now that we are considering only finite intuitionistic Kripke models, it 
might seem natural to simply try to reverse the obvious method of generating 

M,w � ψ → ϕ ⇔ [∀w′ ∈ W(Rww′ and M,w′ � ψ ⇒ M,w′ � ϕ)].
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intuitionistic Kripke models from Kripke-like proof-theoretic systems by let-
ting Sw = {p̄ | p ∈ V(w)}. In fact, this actually works in some cases: 

However, in many cases this will collapse distinct worlds into the same 
atomic rules set: 

There is a trick we can carry out to resolve this issue. It involves noting that 
atomic rules that are not axioms play two distinct roles. The first is to allow 
derivations from axioms. The second is to provide structure to the atomic rule 
sets. A proof-theoretic system might have two sets that prove the same atomic 
formulas, say {p̄} and 

{
p̄, rs

}
, but are distinct (and in fact stand in the particular 

relations they do with regards to the subset relation) because of the atomic in-
ference rules. This gives us a quick but unsystematic fix to the problem above: 

We can make this systematic by using atomic rules to label worlds. This 
may be done by taking a labelling of atomic formulas by worlds pw for each 
w ∈ W  and then using pwpw  to ensure the atomic rules set does not collapse into 
any other world. Because pwpw  is tautologous, it will not allow anything new 
to be derived, and so we do not need to worry about it fulfilling the first role 
of atomic rules. 

Let p(·) : W → ATOM be an injective function from a set of worlds W  to the 
set of atomic propositions. Because W  will be finite, we can assume such a func-
tion exists. For ease, let us write p(w) as pw. We can now define an intuitionistic 
proof-theoretic system for every finite intuitionistic Kripke model. 

(Definition 4.3) Given a finite intuitionistic Kripke model 
M = 〈〈W,R〉,V〉, we define SM = {Sw | w ∈ W} as follows: 
Sw = {p̄ | p ∈ V(w)} ∪

¶
ps
ps

| Rsw
©
∪
¶

⊥
p | p atomic

©
. As with all proof-

theoretic systems, ⊆ is the analogue of accessibility relations. 
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Consider a particular atomic system on this interpretation. It will be made 
up of three parts. The first, {p̄ | p ∈ V(w)}, ensures that it proves every 
atomic formula that the world forces. The second, 

¶
⊥
p | p atomic

©
, ensures 

that the system is not minimal. The third, 
¶
ps
ps

| Rsw
©
, encodes the accessibil-

ity relation of the Kripke model. 
The following illustrates this method: 

First of all, note that the world associated with each atomic system is uniquely 
identified by the propositional letter pw that encodes it. However, this alone 
would not ensure that the proof-theoretic system matched the Kripke model. 
In order to do that, each atomic system must also encode every world that 
accesses it: if Rw1w2, then Sw2 contains the propositional letter pw1 encoding 
w1. This ensures that the subset relation on atomic systems matches the ac-
cessibility relation R on worlds. 

We will now demonstrate that SM exists, that it is an intuitionistic proof-
theoretic system and that it models the same formulas as M. 

(Lemma 4.4) For every finite intuitionistic Kripke model M, the set SM 
exists and is an intuitionistic proof-theoretic system. 

Proof. Because M is finite, we know that there exists a labelling pw for 
w ∈ W . It follows that Sw ⊆

¶
p̄, pp ,

⊥
p | p atomic

©
⊆ S, and therefore SM 

is a subset of P (S). Because 
¶

⊥
p | p atomic

©
⊆ Sw , it follows that the 

system is intuitionistic.� □

The following lemmas demonstrate that SM models the same formulas as M. 

(Lemma 4.5) For every finite intuitionistic Kripke model M, if w �= w′ 
then Sw �= Sw′. 

Proof. Assume w �= w′ and Sw = Sw′. It follows that ¶
pw∗
pw∗ | Rw∗w

©
=
¶
pw∗
pw∗ | Rw∗w′

©
 and because Rww and Rw′w′, it follows 
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that Rww′ and Rw′w. By antisymmetry, we have w = w′, which is a 
contradiction.� □ 

(Lemma 4.6) For every finite M and w,w′ ∈ W  such that Rww′, it follows 
that Sw ⊆ Sw′. 

Proof. Let τ ∈ Sw be a rule, then either τ = p̄ for some p ∈ V (w), τ = ⊥
p  

for some atomic p, or τ = pw∗
pw∗  for some w∗ ∈ W  such that Rw∗w. In the 

first case, since V is monotonic and Rww′, it follows that p ∈ V (w′) and 
therefore τ = p̄ ∈ Sw′. In the second case, τ = ⊥

p ∈ Sw′ because the system 
is intuitionistic. In the third case, since R is transitive, Rw∗w′, and there-
fore τ = pw∗

pw∗ ∈ Sw′. So τ ∈ Sw′.� □

(Lemma 4.7) For every finite M and Sw, S ∈ SM such that Sw ⊆ S, there is 
a w′ ∈ W  such that S = Sw′ and Rww′.

Proof. If S = Sw, we are done so let us assume not. By the definition of SM,  
we know that S = Sw′ for some w′ ∈ W  and because pwpw ∈ Sw ⊆ Sw′, it fol-
lows that pwpw ∈

¶
pw∗
pw∗ | Rw∗w′

©
 and therefore Rww′.� □

(Theorem 4.8) Given finite M = 〈〈W,R〉,V〉, it follows that for every 
w ∈ W : 

M,w � ϕ ⇔ SM, Sw � ϕ.

Proof. Intuitionistic proof-theoretic systems can be treated as Kripke 
models (Piecha and Schroeder-Heister 2016). This means we can use the 
Bisimulation Theorem. The result thus follows via Lemmas 4.7 and 4.6 if 
it can be shown that M,w � p ⇔ SM, Sw � p. Note that

M,w � p ⇔
def .�

p ∈ V(w) ⇔
def .SM

p̄ ∈ Sw ⇒ Sw � p ⇔
def .�

SM, Sw � p.

What is left to show is that Sw � p ⇒ p̄ ∈ Sw. Assume Sw � p but p /∈ Sw . It 
follows that there must be a closed proof of p, say D, such that the axioms 
of D are not p but the conclusion is p. This requires an inference rule q1···qnp  
where p does not occur among the q1, ...,qn. The only candidate for this 
is ⊥p . The use of this rule would require a proof of ⊥. Because M does not 
model ⊥, the only rule that can contain ⊥ in the conclusion is therefore ⊥⊥.  
But no proof of ⊥ can be constructed from this rule. Therefore D cannot 
be a proof of p not containing p̄.� □ 
We can now prove our key result. 

(Theorem 4.9) ϕ is a generalized proof theoretically valid formula ⇔ ϕ is 
an intuitionistic validity. 

Proof. First, assume ϕ is an intuitionistic validity. Then every intuitionistic 
Kripke model forces ϕ and every intuitionistic proof-theoretic system is 
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equivalent to an intuitionistic Kripke model (Piecha and Schroeder-Heister 
2016). For every intuitionistic proof-theoretic system S, it thus follows 
that S � ϕ. 

Next, assume that for every intuitionistic proof-theoretic system S it 
follows that S � ϕ, while, for a contradiction, assume that ϕ is not an 
intuitionistic validity. Then there is a finite intuitionistic Kripke model M 
(by Theorem 4.2) that does not model ϕ. But, by Theorem 4.8, it follows 
that SM � ϕ, which contradicts the initial assumption. □ 

Piecha and Schroeder-Heister came up with very plausible restrictions on 
any proof-theoretic validity notion. One condition they place is called export, 
which states that an atomic system can be coded as a set of formulas. What 
changes here is that validity is now defined relative to all proof-theoretic sys-
tems, no longer being relative to all atomic systems. This would require the 
following generalization of export: 

(Export) For every proof-theoretic system and atomic system S, S
there is a set of formulas Γ such that S, S � ϕ ⇔ (� Γ ⇒� ϕ).

But, unlike atomic systems, proof-theoretic systems are too complex to be 
coded by a single set of formulas. 

As Piecha and Schroeder-Heister  (2019: 244–45) note, this condition is 
also violated by Goldfarb’s (2016) proof-theoretic validity notion. Goldfarb 
provides a system that becomes intuitionistic when closed under substitu-
tion. His approach is very similar to the one adopted in this paper, although 
he uses a different collection of proof-theoretic systems. In particular, he can 
be understood as taking every system of the form {S ⊆ S | G ⊆ S}, where G 
is some atomic system. His set of proof-theoretic systems is too restrictive 
for an analogue of Theorem 4.8, which allows an interpretation of all finite 
intuitionistic Kripke models. 

5.  Conclusion

While Piecha and Schroeder-Heister (2019) demonstrated that Prawitz’s con-
jecture is false for the definition of proof-theoretic validity given by Prawitz 
in the 1970s, we have demonstrated how a small modification can produce a 
generalized notion of proof-theoretic validity for which Prawitz’s conjecture 
is true. Moreover, some straightforward adaptations of our definitions may 
be used to prove similar results for minimal logic, since our proof generates 
intuitionistic proof-theoretic systems from intuitionistic Kripke models and 
could also be used to obtain minimal proof-theoretic systems from minimal 
Kripke models. (See de  Jongh and Zhao 2015 and Colacito 2016 for the 
definition of minimal Kripke models, the finite model property for minimal 
logic and other modification that would be needed.) 
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Our generalization may seem motivated by the desired technical result ra-
ther than by the underlying philosophy, but we can provide solid motivation 
for the modification. The following two points are to be given in its favour: 

First, it is natural to think of an atomic system S as a possible inferentialist 
definition for atomic propositions. Once we think of them this way, it is 
natural to think of proof-theoretic systems as providing us with different 
ways of defining atomic propositions. But the proof-theoretic system gives 
more information: it tells us, for instance, whether two ways of defining the 
atomic propositions are compatible or whether a particular definition can be 
extended by additional rules. Given that proof-theoretic validity is supposed 
to capture what is logically valid, we should consider not only every way the 
atomic propositions might be defined, but also all the different ways defin-
itions might be extendable or incompatible. To do this, we need generalized 
proof-theoretic validity. 

Second, an examination of why it is that all proof-theoretic systems are 
superintuitionistic makes it clear that information is encoded by the atomic 
rules. Still, proof-theoretic validity is about logical connectives, not about 
atomic propositions. The natural response to the treatment of the atomic 
propositions that encode information is to generalize the treatment, as we 
have done.2
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