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Abstract—While heart rate estimation with Frequency Modulated Continuous Wave (FMCW) radar on humans has
become a common research topic, the potential of this technology for vital sign monitoring of animals such as canines has
had little exploration. This paper serves as a study on the feasibility of applying mm-wave FMCW heart rate estimation
technology on conscious canines. A data capture system and remote heart rate estimation pipeline is implemented and
used on canine subjects. Several methods are compared which include peak counting, spectrogram analysis, Long-Short
Term Memory (LSTM) Neural Networks and a Hybrid Digital Signals Processing (DSP)-LSTM Approach. While the dogs
were not stationary enough for traditional DSP approaches to produce meaningful results, the Hyrbid DSP-LSTM approach
improved the overall accuracy (13.9 RMSE bpm and a 0.76 Correlation Coefficient). These improvements will greatly
increase the feasibility of mm-wave technology for future applications in livestock monitoring and wildlife conservation.

Index Terms—remote vital signs monitoring, heart rate estimation, canine vital signs, FMCW, ROS2

I. INTRODUCTION

Heart rate is an important physiological indicator of health which
has has resulted in FMCW radar being frequently explored as a tool
for remote health monitoring in humans [1]. Domestic canines share
close spaces with humans which leads to transference of zoonotic
diseases between humans and canines. Therefore, monitoring both
human and canine heart rates could provide key insights that could
keep both species healthy [2].

Heart rate monitoring with FMCW radar measures very small
movements of the skin caused by cardiac and respiratory activity to
estimate heart-rate. These fine displacements can be encoded into the
phase of successive radar chirps [1]. Displacements in the skin caused
by cardiac and respiratory activity are not limited to humans but can
be found in any animal, including dogs. Therefore, the same principle
applied to humans should be transferable to canines. However, heart
rate estimation with FMCW radar has one caveat which is that it
requires the participant to remain exceptionally still which may not
be possible when trying to measure the heart rate of awake canines
[9].

This paper presents a study of the feasibility of FMCW heart rate
estimation on canines. Impulse Radio - Ultra Wide Band (IR-UBW)
radar has been used by Wang et al. [2], [3] for measuring the heart
rate of sleeping canines, suggesting radar is suitable for canine heart
rate estimation. Additionally, this paper combines time-synchronised
data from several sources to automate the data collection process in
a flexible way such that data generated by our system can be used
for multiple applications beyond heart rate estimation.
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Fig. 1: Diagram of system overview moving from hardware through
recording with ROS2, tracking and finally vital sign measurement.

This paper begins with short description of the system used to
generate the data in Section II which includes overviews of both the
hardware and software. Section III explains the methods used for
radar range bin selection which include basic radar DSP techniques
and the usage of a zero shot neural network and a stereo depth camera
to visually determine the range bin. Section IV discusses how the
heart rate is calculated. In Section V we present our methodology
and corresponding results and discussion.

II. DATA CAPTURE SYSTEM

A. Hardware

Three key pieces of hardware were used to collect the data from
the dogs examined in this study as shown in Fig. 1. First, a Polar
H10 heart rate belt was used to capture ground truth data from
the dog to validate our pipeline. The feasibility of the Polar H10
belt for successful canine heart rate measurement was confirmed by
Worakan et al. [4]. Second, the radar used was a Texas Instruments
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(TI) AWR1843Boost system which was accompanied with a TI
DCA1000EVM for raw ADC data capture. The parameters of the
radar are shown in Table 1. Third, an Intel Real-Sense stereo camera
was added as an additional means of range-bin selection as the camera
is capable of producing depth measurements as well as colour images.

Table 1: Radar Chirp Parameters

Parameter Name Value
Number of Samples 96
Sample Rate [Ksps] 2200
Sweep Rate [MHz/𝜇s] 70
Starting Frequency [GHz] 77
Number of Chirps 32
Idle Time [𝜇s] 100
Ramp Time [𝜇s] 57.14
Frame Period [ms] 15.3

B. Software

This section explains how the three components in Fig.1 were
integrated using ROS2 to produce timestamped data. Each device
ran its own ROS2 nodal network. The Intel RealSense camera had
an existing ROS2 driver providing color/depth images and extrinsic
parameters. The TI radar lacked a ROS2 driver for raw ADC data,
so a back-end ROS2 server handled control while another node
captured ADC packets. CLI-accessible front-end nodes performed
radar configuration and provided start and stop recording functionality.
Finally, a custom ROS2 driver connected the Polar H10 via Bluetooth
for heart-rate data.

The enhanced Communication Abstraction Layer (eCAL), a DDS,
stored all ROS2 messages as serialized bytes, improving performance
but requiring subsequent deserialization. Radar data arrived as
interleaved bytes, so a sorting algorithm (based on TI documentation)
created a radar data cube. After deserialization and sorting, the data
entered the Tracking and Vital Signs Pipeline (Sections III–IV).

III. TRACKING PIPELINE

The tracking part of the overall pipeline, shown in Fig. 1, is used to
determine the radar range bin of the target. The range bin is required
for the phase measurement process because the algorithm needs to
know which slice of range bins to select In-Phase and Quadrature
(IQ) samples from. In this paper we explore two possible pipelines
for target tracking that could be used together or separately.

A. Radar Tracking

The radar only pipeline uses traditional FMCW techniques to
determine the target position. The first step involved applying
successive Fast Fourier Transforms (FFTs) to the radar data cube to
generate an Amplitude Range-Doppler (ARD) map. This is followed
by the application of a Constant False Alarm Rate (CFAR) algorithm
to pull detections from the ARD map [7], thus allowing the dog and
handler to be detected separately.

Fig. 2: Intel Real-Sense Stereo Camera tracking canine tracking
outputs using YOLO v8 instance segmentation. (a): The original
colour image. (b): Colour image after segmentation with YOLO.

(c): Original depth image. (d): Depth image masked with
segmentation overlay.

B. Stereo Camera Tracking

The Intel RealSense uses two IR cameras for depth imaging
(Fig.2,(c)), enabling 3D dog tracking via known camera extrinsics.
It also includes an RGB camera (Fig.2,(a)). Continuous range
measurements automatically selected the correct chest range bin, even
as the dog moved. Corresponding phase changes in neighbouring
bins further eased the selection. A pre-trained YOLO network [5]
isolated the dog’s pixels via instance segmentation (Fig.2,(b)). After
aligning depth and colour images, these pixels masked the depth
image (Fig.2,(d)). The dog’s centroid was then computed to locate
the chest and its range bin.

IV. VITAL SIGN PIPELINE

A. Phase Measurement

Fig. 3: Diagram of the phase measurement process performed by
the system.

The phase measurement process is explained in Fig. 3 and involves
several steps. The first two steps shown in Fig. 3 are actually the first
two steps of the ARD process. The clutter removal is not necessary
but is kept for efficiency as the range FFT is required. Therefore the
steps required to compute the phase measurement include performing
the range FFT, range bin selection, chirp concatenation, IQ DC offset
compensation, coherent channel summation and phase arc-tangent
demodulation and unwrapping.

Once the phase-time signal was created it could be filtered to
isolate the heart rate signal.
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B. Filtering

An Infinite Impulse Response (IIR) Butterworth filter was used due
to its flat pass band which prevented any distortion of the heart rate
signal. The filter used in this paper was implemented with SciPy’s
sosFiltFilt function [8]. This function takes in the unfiltered signal
and a Second Order Sections (SOS) implementation of a desired
filter and runs the filter over the signal forwards and backwards. This
doubles the order of the filter and eliminates any phase shift caused
by the filter. Thus, even though the filter used was non-linear, the
application of the filter forwards and backwards ensures the signal
is undistorted at the cost of the filter becoming non-causal and only
suitable for block processing.

C. Heart Rate Estimation

After the heart rate band was isolated, four methods were used to
calculate the heart rate. These included Peak Counting, Spectrogram
Analysis, a LSTM Neural Network and a Hybrid LSTM Network
Approach.

1) Peak Counting: Peaks were found by finding the local maxima
within the filtered phase-time signal. The index of each peak was
used to locate the time value of where the peak occurred. Taking the
difference between each time value found yielded the time between
peaks which effectively is the Inter-Beat Interval (IBI), 𝑇𝑖𝑏𝑖 , used to
calculate heart rate. The heart rate is calculated by dividing 60 by
𝑇𝑖𝑏𝑖 which is then passed through a moving average filter.

2) Normalised PSD Spectrogram: Power Spectral Density (PSD)
Spectrograms on time series data are performed by repeatedly
selecting data using a sliding window and performing FFTs on
the overlapping selected data. Each FFT forms a single column on
the spectrogram image. Columns are concatenated together to form a
2D image with frequency on the Y axis and time on the X axis. The
magnitude of the coefficients of each FFT are squared and scaled to
get the PSD. This forms a visual representation of how the frequency
components change over time. The columns of the spectrogram are
then normalised to the frequency with the highest signal strength
which is assumed to be the heart rate.

3) LSTM Neural Network: LSTM networks are widely used for
time-series classification [1]. Zhao et al. [1] preferred a 1D CNN over
an LSTM due to real-time speed constraints, but our post-processed
data made LSTM feasible. We used an LSTM layer with 32 hidden
units, followed by fully connected layers of sizes 64, 32, 16, and
1. The input was a 10-second (310-sample) block of unwrapped,
filtered phase data, labeled with the mean Polar H10 heart rate for
that time window. We split the dog phase data into 80% training,
10% validation, and 10% testing, then used the model with the lowest
validation loss for final predictions. Due to limited data, the same
dogs appeared in training and testing, but with distinct sample sets.

4) Hybrid Approach: In a paper by Bauersfeld et al. [11], the
authors combine traditional and deep learning (DL) approaches to
improve the model of a quad-copter. They train their network to
output the errors between the model-based method and the measured
values they try to estimate. This incorporates more information into
their measurements which produces a better result. This is similar to
the Kalman filter philosophy which proposes that one should never
throw away any information [12].

A similar approach as shown in Fig. 4 was attempted by training
the same LSTM used in the LSTM only approach to output the error

Fig. 4: Diagram of data processing algorithm for the Hybrid LSTM
Approach

of the peak counting algorithm. The predicted error is then added
onto the value of the peak counting algorithm in an attempt to correct
the final value created by the algorithm.

V. EXPERIMENTS AND RESULTS

A. Methodology

Each dog was placed in front of the radar-camera assembly with
the Polar H10 strapped around the chest1. The handler was told to
stay behind the dog so that the handler could be filtered out during the
range bin selection process. Recordings were done in 30 s sessions
with the dog remaining as still as possible during the recording. Four
different dogs were separately recorded at several ranges and angles.

B. Results

This section presents the statistical results of different methods
shown in Table 2 as well as an example output of the best performing
approach (the Hybrid LSTM) as shown in Fig. 5.

Table 2: Table of statistical results for canine heart rate estimation.

Metrics Peak
Counting

Spectrogram LTSM
Network

Hybrid
Approach

Accuracy
[%]

78.2 ± 11.0 73.2 ± 12.4 84.7± 13.1 88.2± 7.55

RMSE
[bpm]

23.4 30.7 19.6 13.9

Pearson
Coefficient

0.010 0.020 0.45 0.76

C. Discussion

Conventional methods such as peak counting and spectrogram
frequency analysis boast a fairly high accuracy, above 70 %. However,
the Root Mean Square Error (RMSE) shows a different perspective.
The pipeline produces very high errors, well over 20 bpm. This
is confirmed by the Pearson Coefficient for these methods which
show no correlation with the data. This highlights the importance of
choosing suitable performance metrics.

The pipeline and system used in this paper were previously validated
on exceptionally still humans with excellent results that had very low
RMS errors. However, it is important to note that the papers by Wang

1This study was approved by the University of Cape Town, Science Faculty
Animal Ethics Committee (ref: 2023/V4/AP/A)
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Fig. 5: A box and whisker plot of the results for the Hybrid LSTM
Aproach for training, validation and test data

et al. [2], [3] dealt with sleeping animals. Signal degradation due to
movement by awake canines was reported in a paper by Amano et
al. [13]. These movements, termed random body motion (RBM) in
a review paper by Gouveia et al. [10], are a known issue with radar
based heart rate estimation and are the clear cause of the errors seen
in this paper for the traditional DSP approaches as seen in the paper
by Amano et al. [13].

While the traditional DSP approaches did not seem to produce
meaningful results, some promise was shown using the LSTM
Network with slight improvements in RMSE and the Correlation
Coefficient. Adapting the work of Bauersfeld et al. [11], the Hybrid
approach shows a much higher correlation and accuracy and much
lower RMSE. With more data and further research, it could be possible
to optimise this approach to produce very accurate and precise results.

VI. CONCLUSION

A system and pipeline were designed from scratch to measure the
heart rate of canines remotely after being validated on humans. Awake
and active canines caused too much RMB for traditional DSP methods
to measure heart rate accurately. While the results seem to point
to a high accuracy, the Pearson Coefficient shows no correlation
between the ground truth and calculated results, highlighting the
importance of good performance metric choice. Using an LSTM
network yielded better results but were still not entirely satisfactory.
Building on the work in the paper by Bauersfeld et al. [11], a Hybrid
LSTM Approach was attempted that greatly improved results. Table
3 draws comparisons with previous works to highlight the novelties
in our approach.

Table 3: Comparison to Previous Work

Paper Comparison and Key Differences
[1] Uses ML (fully connected NN) to extract heart rate from the ankle

of stationary humans with an FMCW radar. In contrast, we apply
a hybrid DSP+ML approach to handle the RMB issue in awake
canines, incorporating ML to refine DSP outputs.

[3] Focuses on sleeping canines and cats using ultra-wideband radar
and pure DSP (filters, VMD, FFT). Our work extends to awake
animals and compares DSP- vs ML-based methods to show per-
formance benefits of ML.

[13] Studies sleeping and awake canines at up to 1 m, noting signal
degradation in awake subjects but not resolving it. We directly
address this limitation via a novel hybrid DSP+ML method to
tackle awake canines’ RMB problem.

Future research concerning remote canine vital signs should focus
on the use of machine learning and hybrid machine learning models to
get better results. Furthermore, additional improvements can be made
to the ML training process by significantly increasing the sample size
of the data collected and ensuring that completely separate sets of
canines are used for training and testing. Additionally, in future work
it would be beneficial to properly combine both camera and radar
tracking measurements to provide additional RBM compensation
before the input to the Hybrid Approach.
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