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Abstract

INTRODUCTION: The emergence, stability, and contributing factors of Alzheimer’s

disease (AD) graymatter subtypes remain unclear.

METHODS: We analyzed data from 1323 individuals without a diagnosis of demen-

tia (CDR < 1) with T1w-MRI and amyloid-PET, including 622 with longitudinal data

(3.66 ± 1.78 years). Cortical thickness subtypes were identified using a non-negative

matrix factorization (NMF) clustering algorithm. We examined clinical and demo-

graphic differences, subtype stability, and longitudinal thinning patterns using brain

network models and imaging-transcriptomic analysis. Replication was performed with

an alternative clustering approach and a validation cohort.

RESULTS: Two stable subtypes emerged: limbic-predominant and hippocampal-

sparing. Limbic-predominant participants were older, had higher amyloid burden, and

faster memory decline, while hippocampal-sparing individuals showed greater atten-

tion and executive function decline. Distinct thinning patterns were linked to specific

network properties and gene expression profiles.

DISCUSSION:TheseMRI-based subtypes reflect underlying pathophysiologicalmech-

anisms andmay aid in prognostication and clinical trial stratification.

KEYWORDS

biological pathways, magnetic resonance imaging, polygenic risk, preclinical Alzheimer’s

Highlights

∙ Two gray matter thickness subtypes can already be identified in preclinical stages,

exhibiting distinct clinical characteristics and progression patterns.

∙ Individual subtype assignment remains stable over time.

∙ Longitudinal cortical thinning patterns follow distinct network- and transcriptomic-

basedmechanismswithin each subtype.

1 INTRODUCTION

Although traditionally viewed as a uniform sequence of biological

events, Alzheimer’s disease (AD) has been shown to exhibit high het-

erogeneity across various scales, with large variations in genetic,

proteomic, and neuroanatomical individual profiles.1–4 The diversity

of neuropathological variants is already evident in aging individuals,

likely contributing to variability in individual disease progression, and

posing a major obstacle to achieving consistent clinical outcomes.5

As such, the effectiveness of tested disease-modifying drugs may be

compromised by the variability of pathological processes within the

enrolled population. Although the presence of atrophy subtypes in

the clinical stages of AD is now well established,6 the progression

of these heterogeneous patterns from preclinical disease stages and

the underlying mechanisms driving their development remain largely

unclear. Understanding these processes is especially critical given

recent efforts to advance early pharmacological interventions and

population screenings.7

Previous evidence has converged on the identification of differ-

ent putative AD atrophy subtypes.8,9 A “typical-AD” variant is often

observed, showing neurodegeneration in hippocampal and association

cortices. Partially overlapping with it, the “limbic-predominant-AD”

pattern primarily involves the hippocampus and medial temporal cor-

tices. Finally, the “hippocampal-sparing AD” (or “diffuse”) variant is

characterized by atrophy in associative cortices with sparing of the

hippocampus.6 With the shift toward earlier primary and secondary

prevention clinical trials, critical questions arise regarding the start of

such heterogeneity and its stability along disease progression. Emerg-

ing evidence suggests the existence of atrophy subtypes already at

prodromal stages,2 and other studies have shown the applicability

of subtyping models in individuals with preserved cognition.10 In a

recent work, the presence of two atrophy subtypes was observed

in individuals enrolled in memory clinics.11 Interestingly, in partici-

pants who were considered atrophy-negative (stage 0 of a certain

subtype), baseline subtype attribution was predictive of longitudinal

subtype conversion, suggesting that these individuals were already

aligned with a specific trajectory even in the absence of overt atro-

phy. It is possible that such anatomical variants emerge during the

lifespan and result in individual vulnerability for a specific disease or

subtype. However, there is limited knowledge regarding the incidence

mailto:l.lorenzini@amsterdamumc.nl
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RESEARCH INCONTEXT

1. Systematic review: Distinct patterns of brain atrophy

havebeenobserved inAlzheimer’s disease and its prodro-

mal stages, suggesting the utility of magnetic resonance

imaging (MRI) -based classification for identifying indi-

vidual vulnerability before dementia. However, it remains

unclear at what stage these signatures emerge, whether

they remain stable over time, and how genetic and envi-

ronmental factors contribute to their development and

evolution.

2. Interpretation: Using data from two large multicen-

ter cohort studies, our results propose a framework

where latent anatomical changes emerge in older age

and their patterns reflect underlying pathophysiological

mechanisms and individual responses to aging-related

processes.

3. Future directions: MRI-based thickness subtypes might

inform patient stratification for prognostic purposes and

patient selection in clinical trials.

and prevalence of atrophy subtypes in subjects without a dementia

diagnosis.

A second crucial question relates to the mechanisms underlying

these gray matter patterns and whether they are specific to each sub-

type. Recent multimodal imaging studies and imaging-transcriptomic

approaches12,13 provide an efficient framework for bridging the mul-

tiscale organization of the brain and investigating biological deter-

minants of atrophy propagation.14 Increasing evidence suggests that

neurofibrillary tangles and subsequent AD-related atrophy spread

through connected brain regions in a prion-like manner.15 Other

studies suggest that regional transcriptomic vulnerability could be a

strong determinant of atrophy progression.14 However, these studies

have not considered disease heterogeneity. Possibly, different mecha-

nisms drive cortical thinning within each subtype and could represent

targets for specific treatments, providing a powerful tool for person-

alized medicine, and promoting individualized predictions of disease

progression.

In this work, we aimed to answer these two fundamental questions

by analyzing data from two large cohorts of older individuals with pre-

served cognition. First, we hypothesized that subtypes of gray matter

regional vulnerability can be detected in these participants. Second,we

examined the longitudinal evolution of the observed patterns of cor-

tical thinning and hypothesized their propagation would be driven by

distinct underlyingmechanisms.

2 METHODS

A schematic representation of themethods is shown in Figure 1.

2.1 Discovery cohort

We used data from the Amyloid Imaging to Prevent Alzheimer’s

Disease—prognostic and natural history study (AMYPAD–PNHS)

consortium.16,17 AMYPAD is a collaborative effort between multiple

European cohorts, including participants above 50 years of age and

with no diagnosis of dementia at baseline, based on aClinicalDementia

Rating (CDR) score < 1. Exclusion criteria were the presence of con-

ditions associated with neurodegeneration or affecting cognition, or

contraindication to MRI or positron emission tomography (PET). For

this work, we selected participants with T1-weighted (T1w) MRI and

amyloid-PET scans, resulting in a final sample of 1323 individuals. Of

these, 662 participants had longitudinal magnetic resonance imaging

(MRI) data available (follow-up time = 3.66 ± 1.78 years, 573 had 2

visits, 89 had 3 visits).

2.2 Amyloid-PET and other clinical data

Amyloid-PET acquisition, processing, and harmonization in AMYPAD

are described in previous works.18,19 Briefly, PET scans were acquired

90–110 min post injection of 185 MBq (± 10%) of [18F]Flutemetamol

or 350 MBq (± 20%) of [18F]Florbetaben, consisting of 4 frames of 5

min according to the standard protocol for each tracer.20,21 An auto-

matedcentralizedpipeline (implementedby the IXICOclinical research

organization) was used to process the PET scans. PET frames were

co-registered, averaged, and aligned to the corresponding MRI scan,

which was parcellated using a subject-specific multi-atlas approach,

that is, the learning embeddings for atlas propagation (LEAP) parcella-

tion procedure.22 Standardized uptake value ratio (SUVr) images were

obtained using LEAP parcellation masks using the whole cerebellum

as a reference region in native space. SUVr values were transformed

to Centiloids (CL) using the standard Global Alzheimer’s Association

Interactive Network (GAAIN) target region as a measure of global

amyloid burden.23

Apolipoprotein E (APOE) genotype was determined following cohort-

specific procedures for blood sample analysis. APOE-ε4 carriers were

defined as having at least one ε4 allele. Cognitive outcomes for rel-

evant cognitive domains were selected based on test availability or

harmonization across AMYPAD parent cohorts. Distinct measures of

immediate and delayed recall were used to assess performance in

the memory domain, based on test availability across different parent

cohorts. Digit Span Forward and Backward scores were used to assess

performance in the attention (both), workingmemory (both), and exec-

utive functions (backward) domains.More details about cognitive tests

and harmonization are given in the Supplementary Information.

2.3 MRI acquisition and processing

Details about MRI acquisition are given in previous publications.24

All included participants underwent three-dimensional 3T-T1w MRI

on either a Philips (n = 854), Siemens (n = 455), or GE HealthCare
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F IGURE 1 Schematic overview of methodology.

(n = 14) scanner. T1w processing was performed with FreeSurfer

v7.1.1 (https://surfer.nmr.mgh.harvard.edu/), including motion correc-

tion, skull stripping, intra-subject template estimation (for longitu-

dinal data only), brain parcellation, and estimation of regional gray

matter thickness. The details of these procedures are described

elsewhere.25,26 We derived cortical thickness in 100 regions of inter-

est (ROIs; Figure 1A) from the Schaefer atlas,27 from both baseline

and follow-up 3D T1w. Regions in the Schaefer atlas are annotated

according to7 canonical resting-statenetworks, allowing for functional

interpretation of the results. For replication purposes, cortical thick-

ness values were also extracted for 64 regions of the Desikan Killiany

(DK) atlas28.

https://surfer.nmr.mgh.harvard.edu/
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2.4 Non-negative matrix factorization

To identify clusters of participants based on MRI features, we used

non-negativematrix factorization (NMF) on baseline cortical thickness

measures from the 100 ROIs (Figure 1B). NMF is a robust dimen-

sionality reduction and clustering approach that has shown sensitivity

in detecting clusters of atrophy (and other biomarkers) in previous

studies.1,2,29 Given a number of features (regional cortical thickness)

for each individual, NMF decomposes data into positive matrices and

reduces the dimensionality of the features into fewer components that

can be considered feature profiles or subtypes. Individuals can then be

assigned to one subtype based on the similarity of their thickness val-

ues with the identified thickness subtypes. Following our hypothesis,

we assigned all individuals (and all regions) to a subtype based on the

highest NMF score. Raw thickness values (uncorrected for covariates)

were used. Regional thickness values were first inverted so that higher

values reflected decreased thickness, instead of preserved graymatter.

To find the best number of fitting clusters, we used multiple fit statis-

tics, 30,31 including the cophenetic coefficient, silhouette coefficient,

and change in residual sumof squares (see Supplementary Information

for details).

2.5 Statistical analysis

2.5.1 Subtypes characterization

We first examined differences between individuals assigned to differ-

ent subtypes in demographics and other clinical characteristics. We

useda logistic regressionmodel to studydifferences between subtypes

(dependent variable) in age, sex, global CL, and APOE-ε4 carriership

(independent variables), correcting for subtype assignment probability

fromNMF.

To explore subtypes’ longitudinal trajectories in clinical outcomes,

we employed linear mixed models using longitudinal global CL or

the scores in the selected cognitive tests as outcome variables. Pre-

dictors included participants’ subtype assignment and its interaction

with time. Models also included the correction for age, sex, global

baseline CL, baseline NMF probability, and a random intercept on

the participants. Within subtypes, we also studied the impact of hav-

ing higher NMF scores on longitudinal outcomes (NMF score-by-time

interaction). Higher NMF scores indicate observations that are more

strongly associated with the assigned subtype, thus having a stronger

contribution to the subtype profile.

2.5.2 Subtype longitudinal stability

We then examined whether participants with longitudinal time points

showed consistency in their cortical thickness subtype over time

(Figure 1C). To achieve this, we selected the latest follow-up T1w scan

from each participant and assigned it to one of the baseline subtypes

based on the correspondence (Pearson correlation) of cortical thick-

ness patterns to the NMF subtypes. Participants were classified as

“stable” or “unstable” basedonwhether the subtype remained the same

across timepoints. Krippendorff’s alpha coefficient was used to quan-

tify subtype assignment agreement between baseline and follow-up

timepoints. Logistic regression models were used to study the impact

of age, sex, follow-up time, and baseline NMF probability (indepen-

dent variables) on participants’ subtype stability (binary dependent

variable).

2.5.3 Subtype-specific longitudinal cortical
thinning

We then investigated longitudinal cortical thinning within each sub-

type (Figure 1D). We used linear mixed effects regression models,

including the effect of time (independent variable) on thickness

values from each ROI. To study subtype-specific mechanisms, we

included a time-by-subtype interaction term and computed estimated

marginal means within subtypes using the emmeans v1.11.2 pack-

age in R32. Models also included correction for age, sex, global

CL, baseline NMF probability, and a random intercept on the

participants.

2.5.4 Network contribution to progression of
cortical thinning

To assess whether longitudinal cortical thinning progresses preferen-

tially following brain connectivity, we employed coordinated deforma-

tion models (Figure 1F).14 In this framework, network-based changes

of thinning within a region are estimated by multiplying the effect of

time in connected regions (β from the linear model) by the strength

of their connections to the region itself, resulting in an ROI-wise map

of connectivity estimated thickness changes. For each subtype, we

built three coordinated deformation models using a functional, struc-

tural, and morphological similarity connectivity template, respectively.

Details on the construction of connectivity templates are given in

Supplementary Information. The resulting maps of estimated changes

were then spatially correlated to the observed changes (β from the lin-

ear model), to find the connectivity template that best predicted the

observed changes.

We used a two-fold approach to evaluate the significance of spatial

correlations. First, we ensured that the observed correlationswere not

driven by the topological characteristics of the connectivity templates

(network/rewired null model). We generated 1000 random networks

that preserved the degree sequence, connection weights distribution,

the Euclidean distance between nodes, and the distance-weight rela-

tionship, and recomputed the coordinated deformation model using

these networks, resulting in a distribution of null spatial correlations.

Rewired p-values were then computed as the fraction of permutation

values greater than the original spatial correlation value.

Second, we assessed whether the observed correlations were inde-

pendent on the statistical autocorrelations typical of brain features
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distribution.33 To do so, we used BrainSMASH (https://brainsmash.

readthedocs.io), a Python-based package for statistical testing of spa-

tially autocorrelated brain maps.34 Each subtype-specific map of the

effect of time on regional thicknesswas used as input to generate 1000

randomized brain maps while preserving the original spatial autocor-

relation. We performed coordinated deformation models using these

maps, resulting in a null distribution of spatial correlations. Autocorre-

lations p-values were computed as the fraction of permutation values

greater than the original spatial correlation value.

2.5.5 Gene-expression contribution to cortical
thinning

To investigate whether gene expression plays a role in shaping the

different patterns of cortical thinning progression (Figure 1E), we

retrieved data from the open-access Allen Human Brain Atlas (AHBA;

http://human.brain-map.org/), providing regional microarray expres-

sion data from six post-mortem brains (one female, ages 24–57 years,

42.5±13.38 years). Genes of interestwere selected as being related to

AD and other neurodegenerative processes from recent genome-wide

association studies (GWAS) for AD,35 white matter hyperintensities

(WMH),36 cerebrovascular disease,37 limbic-predominant age-related

TDP-43 encephalopathy (LATE),38 posterior cortical atrophy (PCA)39

(see Supplementary Information and Table S1 for rationale and a full

list of selected genes). For the selected 249 genes, we generated vec-

tors storing gene expression for the 100 ROIs of the Schaefer atlas.

AHBA data processing and extraction were performed with the open-

access abagen toolbox (https://github.com/rmarkello/abagen), using

default parameters.13 We then performed spatial correlation analy-

sis of the subtype-specific effect of time (β of the linear mixed effects

models) and each ROI-wise gene expression map. Similarly, to the net-

work analysis, we assessed the significance of the spatial correlations

by controlling for statistical autocorrelations typical of brain features

distribution.33 For each genemap,we computed1000null correlations

with permuted β maps of the effect of time, and evaluated its signifi-

cance as the fraction of permutation values greater than the original

spatial correlation value.

Lastly, we performed gene over-representation analysis (ORA) on

the genes that showed significant correlation to longitudinal gray

matter thinning within each subtype to evaluate enriched biological

processes.40–42 We used the function enrichGO from the R package

“clusterProfiler” 43 to perform ORA, with Gene Ontology40 as a refer-

ence gene source for functional profiling. ORA results were compared

between subtypes using the compareCluster function from the same

package and visualized through emapplot.

2.5.6 Sensitivity analyses

To test the stability of our results, we replicated the main analyses

across a variety of conditions. Specifically, the NMF algorithm and

coordinated deformation models were repeated using a different par-

cellation, namely the DK atlas, to test for possible biases due to the

functional properties intrinsic to the Schaeffer atlas. Moreover, the

NMFalgorithmwas repeatedonly ona subset of participantswhowere

amyloid positive, to test for subtype stability across disease stages,

and on statistically harmonized thickness values, to assess robustness

of the results regarding multi-site data. NMF was also performed on

age- and sex-corrected thickness data to assess possible confounding

effects.Moreover, the longitudinalmodels investigating immediate and

recall memory scores differences between subtypes were repeated by

iteratively takingout one cognitive test, to evaluatepossible dispropor-

tional effects. All sensitivity analyses are described and reported in the

Supplementary Information.

2.6 Replication

First, we aimed at replicating our clustering results on the same cohort

using the Subtype and Stage Inference (SuStaIn) algorithm (Figure 1H).

Contrary to NMF, SuStaIn simultaneously characterizes the hetero-

geneity and progression of the studied cross-sectional biomarkers. A

complete mathematical description of the SuStaIn algorithm is avail-

able elsewhere.44 More details about the SuStaIn application in this

work are given in the Supplementary Information. Briefly, SuStaIn

model fitting consists of an iterative procedure that simultaneously

estimates subtype event sequences and subtype classification for a

preselected number of subtypes. Average cortical thickness was z-

standardized against a reference group of cognitively unimpaired

(CDR = 0) and amyloid-negative participants on amyloid-PET visual

inspection (N = 653). A threshold of −1 z-scores was chosen as

the event threshold, consistent with earlier work.44 Independently

from the NMF analysis, the optimal number of subtypes was selected

using ten-fold cross-validation, with the out-of-sample likelihood used

to compute the cross-validation information criterion (CVIC). The

model with the lowest CVIC was deemed optimal. Additionally, to

assess the consistency of subtype assignment, SuStaIn modeling was

repeated using a threshold of −1.96 z-scores, which represents the

most commonly used threshold for statistical abnormality.

Subsequently,we aimedat replicating our clustering results byusing

NMF on a different cohort (Figure 1G). To this end, we retrieved data

from the European Prevention of Alzheimer’s Dementia (EPAD) mul-

ticenter study.45 For our replication, we only used EPAD participants

whowere not subsequently included inAMYPAD, resulting in a replica-

tion sample of 927 subjects. Demographics and clinical characteristics

are reported in Table S2. NMF cluster number optimization and fitting

were performed in the sameway as for the discovery cohort.

3 RESULTS

3.1 Discovery cohort characteristics

Cohort characteristics, stratified by CDR score, are presented in

Table 1. Themean agewas 68 (± 8.7) years, 571 (43.2%)weremen, and

https://brainsmash.readthedocs.io
https://brainsmash.readthedocs.io
http://human.brain-map.org/
https://github.com/rmarkello/abagen
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TABLE 1 Cohort characteristics.

Parameter

Overall

(N= 1323)

CDR= 0

(N= 1044)

CDR= 0.5

(N= 236)

Age, years. mean (SD) 68.00 (8.65) 67.23 (8.78) 71.44 (7.53)

Sex, male.N (%) 571 (43.2) 433 (41.5) 126 (53.4)

MMSE, score, mean (SD) 28.84 (1.49) 29.15 (1.03) 27.55 (2.31)

Education, years, mean (SD) 14.59 (3.93) 14.60 (3.99) 14.53 (3.80)

Amyloid PET, Centiloid,

mean (SD)

18.84 (31.50) 14.28 (26.14) 37.60 (42.18)

Amyloid PET, visual

classification positive,N(%)
299 (22.7) 182 (17.5) 103 (44.2)

APOE ε4, carrier,N (%) 530 (40.1) 398 (38.1) 117 (49.6)

Follow-up time (N= 662),

days, mean (SD)

668.49 (810.90) 812.16 (823.28) 148.83 (501.38)

No. of visits,N (%)

1 661 (50%) 417 (39.9%) 204 (86.4%)

2 573 (43.3%) 538 (51.5) 32 (13.6%)

3 89 (6.7%) 89 (8.5%) 0 (0%)

Abbreviations: APOE, apolipoprotein E; CDR, Clinical Dementia Rating; MMSE, Mini-Mental State Examination; PET, positron emission tomography; SD,

standard deviation.

236 (17.8%) had a global CDR score of 0.5. The average Mini-Mental

State Examination (MMSE) score was 28.8 (± 1.49), with lower scores

in subjects with CDR = 0.5. At least one APOE ε4 allele was present in

40% of participants. In the subset with longitudinal data available, the

average follow-up time was 3.66 years (± 1.78), 573 participants had 2

MRI visits, and 89 had 3MRI visits.

3.2 Subtype definition

Two subtypes showed the optimal NMF fit according to goodness-of-

fit metrics (Table S3). Sensitivity analysis with different numbers of

subtypes is reported in the Supplementary Information and Figure S1.

Regional thickness subtypes are shown in Figure 2A. 35 ROIs were

assigned to the first subtype based on NMF probability. These were

mostly located in medial areas (e.g., cingulate, precuneus), medial-

temporal, and lateral-temporal areas. Functional annotations (from the

correspondence of Schaefer 100 atlas regions to canonical resting

state networks)27 showed a large involvement of regions implicated

in the default mode network, and also of the limbic, control, and ven-

tral attention networks. In total, 601 participants were assigned to this

subtype (mean NMF probability = 0.62 ± 0.08). Of these, 442 (73.5%)

were amyloid negative on visual read, while 159 (26.5%) were amyloid

positive. 65 ROIs were assigned to the second subtype based on NMF

probability, mostly located in the occipital, lateral parietal, and lateral

frontal regions. Compared to the first subtype, functional annotations

showed larger involvement of the dorsal attention, control, and visual

networks in this subtype. In total, 722 participants were assigned to

the second subtype (mean NMF probability = 0.60 ± 0.06). Of these,

579 (80.2%) were amyloid negative on visual read, while 143 (19.8%)

were amyloid positive. Regional effects of subtype assignment on gray

matter thickness (p < 0.05) are shown in Figure 2B. Highly compara-

ble subtypes and results were found across all performed sensitivity

analyses (Figure S2–S5).

3.3 Subtypes characterization

All coefficients of models investigating differences between subtypes

are reported in Tables S4, S5, and S6. Participants classified as sub-

type 1 were older, had higher amyloid CL values, and were more often

APOE ε4 carriers (Figure 2B). When looking at longitudinal outcomes,

both subtypes had significant amyloid accumulation over time (sub-

type1: β = 1.80, p < 0.001; subtype2: β = 1.33, p < 0.001), with the

first subtype showing faster accumulation rates (p-interaction= 0.007;

Figure 2B). Higher NMF scores were related to faster amyloid accu-

mulation in both subtypes (subtype1: p-interaction = 0.012; subtype2:

p-interaction = 0.006). Subtype differences in cognitive scores pro-

gression are shown in Figure 3. Performance inmemory cognitive tests

(both delayed and immediate recall) was not found to deteriorate dif-

ferently between subtypes. However, within subtype 1 participants,

higher NMF scores were related to faster decline in delayed mem-

ory performance (p-interaction = 0.008). In the Digit Span Forward

test, subtype 2 had better scores at baseline, but declined faster

compared to subtype 1 (p-interaction = 0.04). In the Digit Span Back-

ward, subtype 2 had worse scores at baseline and declined faster

(p-interaction < 0.001). Sensitivity analyses demonstrated consistent

effects across distinct memory tests (Table S7).
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F IGURE 2 Thickness Subtypes, demographics, and clinical differences. (A) The regional NMF scores (H) for regions assigned to each identified
graymatter thickness subtype. Regional assignment to subtypes was based onNMF probability. (B) Significant (p< 0.05) regional differences
between the two subtypes. Differences are reported as standardized beta values of linear models predicting regional thickness values using
subtype assignment. (C) Differences in age, APOE ε4 carriership, baseline, and longitudinal amyloid (model estimates). APOE, apolipoprotein E;NMF,
non-negative matrix factorization.

3.4 Subtype stability over time

Out of 662 participants with longitudinal data, high agreement

between baseline and longitudinal subtype assignment was observed

(Krippendorff’s alpha= 0.79). Only 68 (9.7%)—34 from each subtype—

showed inconsistent subtype assignment and thus were classified as

“unstable”. Logistic regression showed that lower NMF probability

was related to subtype instability (OR = 1.027, confidence interval

[CI] = 1.020–1.036; p < 0.001), while age, sex, and follow-up time

did not show significant associations. All coefficients are reported in

Table S8.

3.5 Determinants of cortical thinning progression

3.5.1 Subtype-specific longitudinal thinning
patterns

Linear mixed-effect models revealed widespread significant effects of

the time-by-subtype interaction term. Figure 4A shows the effect of

time on thickness within each subtype (estimated marginal means of

linear trends). p-Values are reported in Table S9. Subtype 1 showed

significant reductions of thickness over time in lateral superior tem-

poral regions and posterior medial regions, while Subtype 2 had

significant reductions of thickness over time mostly in dorsal regions,

including dorsal parietal and frontal regions, and also in lateral tem-

poral regions. Similar longitudinal thinning patterns were observed

when repeating the analysis using a different cortical parcellation

(Figure S2).

3.5.2 Network contribution to cortical thinning

Figure 4B shows the results of the coordinated deformation models.

Longitudinal cortical thinning progression within subtype 1 was pre-

dicted by all connectivity templates, and most strongly by functional

connectivity. Within subtype 2, instead, morphological similarity was

the only significant predictor of longitudinal thinning. Results were

consistent with both null models used (rewired and autocorrelation

p-values). Similar results were observed when repeating the analysis

with a different cortical parcellation (Figure S2). Interestingly, struc-

tural connectivity yielded stronger predictive power than functional

connectivity when an anatomically defined atlas was used, suggesting

that intrinsic properties of the chosen parcellation may partly account

for these findings.

3.5.3 Gene-expression contribution to cortical
thinning

The results of the imaging transcriptomic analysis are shown in

Figure 4C. Subtype 1 longitudinal patterns of cortical thinning were
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F IGURE 3 Cognitive performance and decline in thickness subtypes. The left column shows time-by-subtype estimates in the four assessed
cognitive domains. p-Values of the interactions are reported in black. Beta values report the association with cognitive performance within each
subtype. Themiddle and right columns show the association of NMF probability with longitudinal (interaction with time) cognitive outcomes.
Models used continuous NMF probability; median split was used to create groups for visualization purposes. NMF, non-negative matrix
factorization.

found to correlate with 37 of the investigated genes, of which 25

stemmed from the AD and related dementias GWAS, two from the

WMH GWAS, eight from the cerebrovascular GWAS, one from the

LATE GWAS, and two from the PCA GWAS. When performing ORA,

these genes were enriched for several biological processes, includ-

ing regulation of amyloid formation and clearance, neuroinflammatory

responses, and lipid metabolism. Longitudinal patterns of cortical thin-

ning of subtype 2 were correlated with 11 of the investigated genes, 7

of which were from the AD GWAS, 2 from theWMH, 1 from the cere-

brovascular, and 1 from the PCA GWAS. When performing the ORA,

these genes were enriched for biological pathways related to immune

activation, immune system processes, and T-cell regulation.
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F IGURE 4 Longitudinal cortical thinning and drivingmechanismwithin thickness subtypes. (A) The effect of time on regional graymatter
thickness values within the two subtypes. (B) The results of the coordinated deformationmodels, reporting significance based on the two
computed p-values for each connectivity template, within each subtype. (C) The results of the imaging transcriptomic analysis. On the left, the
genes that showed a significant correlation of their expressionmaps with longitudinal cortical thinning within each subtype. On the right, a
visualization of the enriched pathways within the significant genes. FC, functional connectivity; MS, morphological similarity; SC, structural
connectivity.
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F IGURE 5 Replication. (A) The subtypes identified using the SuStaIn algorithm on the discovery cohort. Rows represent regions of interest
and columns represent stages. A visualization of the brain of the observed subtypes and stages is reported. Panel B shows the results of the NMF
algorithm on the replication cohort. NMF, non-negative matrix factorization.

3.6 Replication

Fit coefficients of NMF sensitivity analyses are reported in Tables

S10–S12.

When using SuStaIn, the optimal number of clusters was two, in line

with our main results (Figure S6). Different from NMF, SuStaIn also

provides a temporal ordering of the cross-sectional biomarkers. The

two identified subtypes showed large overlap with our NMF subtypes

(Figure 5A). The first one had initial thinning in occipital areas, fol-

lowed by dorso-parietal, and eventually frontal areas, similar to what

is observed in our NMF subtype 2. When only looking at participants

with stage > 0, of the 344 participants assigned to this subtype, 93.6%

(322) had been assigned to our NMF subtype 2 in the discovery analy-

sis. In the second SuStaIn subtype, cortical thinning progressed from

medial temporal to medial frontal and lateral temporal regions, with

a pattern similar to the NMF subtype 1. When only looking at partici-

pants with stage > 0, of the 307 participants assigned to this subtype,

96.4% (296) had been assigned to our NMF subtype 1 in the discov-

ery analysis. When replicating SuStaIn modeling with a threshold of

1.96 z-scores, the optimal number of subtypes and thinning patterns

were confirmed (see Supplementary Information and Figure S7 for

details).

We then replicated our clustering results on a different cohort

using the same algorithm. EPAD (replication) cohort characteristics are

shown in Table S2. When NMF was run on EPAD, the optimal num-

ber of clusters was again 2 (Table S13). The two identified subtypes

largely overlapping with the ones from our discovery cohort and are

shown inFigure5B. Twenty-nine regionswere assigned to the first sub-

type, mostly in limbic, frontal, and temporal areas. Of these, 28 (96.6%)

had been assigned to subtype 1 in our discovery cohort. Sixty-four

regions were assigned to the second subtype, mostly in occipital, lat-

eral parietal, and frontal areas. Of these, 64 (97.0%) had been assigned

to subtype 2 in our discovery cohort.

4 DISCUSSION

Using data from two large cohorts of individuals without a diagnosis

of dementia, we identified two consistent cortical thickness subtypes

using different classification algorithms and investigated their clinical

differences, longitudinal trajectories, and the mechanisms underlying

their differential progression. Our findings reinforce existing literature

on the presence of regional gray matter vulnerability signatures and

reveal their emergence already in participants without overt patho-

logical changes. We demonstrate that these subtypes were related

to distinct clinical characteristics and that the participants’ subtype

assignments remain stable over time. We found subtype-specific lon-

gitudinal cortical thinning patterns and showed that unique network-

based and transcriptomic factors drive thinning propagation in each

subtype.
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Although our cohort did not include individuals with a clinical

diagnosis of dementia, the two subtypes identified in this large asymp-

tomatic population align with previous investigations of atrophy pat-

terns in prodromal and clinical AD.6 A limbic-predominant subtype,

corresponding to our NMF subtype 1, and a hippocampal-sparing sub-

type, corresponding to our NMF subtype 2, have consistently been

identified across MCI,11 prodromal AD,2 and clinical AD stages using

various imaging modalities. Less evidence exists on the presence of

these subtypes in the normal aging population. In one study of cog-

nitively unimpaired individuals, subtypes were identified as cortical-

and hippocampal-predominant atrophy, with the latter being more

prone to cognitive decline and at higher risk of developing AD in the

future.46 The clinical relevance of atrophy subtype characterization

in individuals without dementia was further confirmed over a 4-year

follow-up in a different cohort.47 In another recent work using two

independent memory clinic-based cohorts,11 two atrophy subtypes,

strongly similar to the one we found, showed distinct clinical charac-

teristics and high stability over longitudinal time points. In all those

studies, individuals with atrophy in limbic andmedial-temporal regions

(limbic-predominant) had more evidence of AD pathology and faster

decline in several cognitivedomains,mostly includingmemory capabili-

ties.However, hippocampal-sparing variants also showedabnormalAD

biomarkers and cognitive decline in different domains.48

Consistent with the dimensional conceptualization of brain atro-

phy patterns6 and neuroimaging phenotypes as a tool to capture

heterogeneity,49 our findings reveal that even participantswithout any

disease can have AD-like signatures of cortical thinning, suggesting

selective vulnerability, which may predispose toward individual risk of

progression to a disease type. In this view, population studies of aging

individuals offer valuable insights into the heterogeneity of the brain

aging process in the absence of specific diseases.50,51 Together with

recent literature,52 our findings propose a framework where anatomi-

cal changes canalreadybemeasured in the general population as latent

manifestations linked to underlying vulnerability. This heterogeneity

may stem froma combination ofmultiple sources encompassing genet-

ics, environmental, and other modifiable risk factors, such as vascular

health, lifestyle, and comorbidities. Given the need for earlier inter-

ventions, these MRI-based general dimensions of variability might

provide critical insights in the context of memory clinics and brain

health services,7 supporting population screening and individual risk

stratification, as well as providing data-informed guidelines for patient

selection in clinical trials. Specifically, understanding patient-specific

regional patterns of graymatter vulnerability and assigning individuals

to distinct subtypes could facilitate the creation ofmore homogeneous

therapeutic target groups. This, in turn, would enable the development

of individualized interventions tailored to the predominant underly-

ing pathological mechanisms—such as amyloid deposition, vascular

dysfunction, or neuroinflammation.

The existence of such anatomical patterns and their atrophy pro-

gressionmight, in fact, be driven by differential molecularmechanisms,

genetic predispositions, or network vulnerabilities, posing important

challenges for accurate intervention. Few studies have investigated

mechanismsunderlying subtype-specific progression.Using connectiv-

ity and transcriptomic group-level information, we characterized the

mechanisms driving cortical thinning progression that differentiate the

two subtypes. The first identified subtype (limbic-predominant) had

longitudinal thinning patterns that were predicted by several types

of connectivity matrices. The notion that AD pathology and atrophy

progress predominantly along neural networks is well-established in

the field and suggests prion-like mechanisms underlying AD pathol-

ogy spreading.15,53 Several studies have shown that tau and atrophy

propagation can be modeled using functional connectivity, also at an

individual level.54 Similar results havebeenobservedwhenusing struc-

tural connectivity measures.55,56 Less evidence exists about the role

of regional morphological similarity networks. The typical AD pattern

of neurodegeneration may therefore be explained by the vulnerabil-

ity of highly interconnected hub regions, which are disproportionately

impacted due to their central role in network connectivity and their

high metabolic activity, rendering them more susceptible to activity-

dependent pathological processes.57 Interestingly, the finding that

the choice of parcellation biases the results toward one connectivity

type or the other supports a model in which atrophy in this subtype

progresses along general brain connectivity principles, which can be

partially capturedbydifferentMRImodalities. Contrary to the first, the

second subtype —characterized by diffuse atrophy—had longitudinal

degeneration only predicted by morphological similarity patterns.58

Macroscale similarity networks encompass information about cytoar-

chitectonic and myeloarchitectonic similarity between regions at the

microscale, for example, related by their lamination andmyelination.59

Individuals in this subtype might therefore show atrophy related to

the intrinsic structural properties shared across regions with similar

cytoarchitectonic andmyeloarchitectonic features, potentially reflect-

ing vulnerability driven by developmental or evolutionary constraints

rather than activity-dependent processes or network hub dynamics.60

This distinct regional vulnerability to cortical thinning progression

may further be explained by differences in transcriptomic and cellu-

lar vulnerability. The first subtype’s longitudinal patterns of atrophy

correlated with spatial patterns of gene expression linked to amyloid

formation, clearance, and microglial cell activation, which have been

widely described in AD literature. This observation further under-

scores the possibility of identifying meaningful MRI-based subtypes

in the context of brain health clinics, which could be relevant for

assessing individual risk of disease progression, and guiding person-

alized pharmacological interventions. pharmacological interventions.

Together with the network analysis, this finding suggests the exis-

tence of a regional vulnerability gradient to AD-specific processes

based on regional gene expression levels and connectivity profiles.

The second subtype had longitudinal degeneration spatially corre-

lated with genes involved in immune and T-cell activation pathways.

These mechanisms have increasingly been considered central regula-

tors of neurodegenerative diseases,61,62 as a maladaptive response to

brain damage due to aging. The specific involvement of neuroinflam-

matory processes and immune responses in driving the progression

of this atrophy subtype may be due to regional differences in brain-

resident (for example, microglia) or infiltrating immune cells (for exam-

ple, T cells) distribution.63,64 These factors can, for example, impair
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blood–brain barrier permeability and induce neuroinflammation as

a response to cerebrovascular damage.65,66 These findings offer

insights into the heterogeneity of biological pathways underlying neu-

rodegeneration and suggest that multimodal interventions and risk

modification may be necessary for individuals presenting non-typical

patterns.

Collectively, our results extend previous literature and depict a

framework where MRI-based measures can capture very early indi-

vidual regional vulnerability patterns that remain stable in time.

These signatures encompass crucial insights into pathophysiological

mechanisms and individual responses to aging-related processes and

could represent important outcomes for early and personalized inter-

vention in memory clinics. The observed patterns and underlying

pathophysiological profiles could thus be considered brain traits, or

ageotypes,67 representing individual vulnerability to certain risk fac-

tors, providing important tools for accurate disease stratification and

forecasting.

Some limitations should be considered. Unlike in previous works,

we did not use any control group to compare atrophy in our sub-

types. NMF algorithms assign everyone to a subtype based on the

similarity of the pattern of observed values. However, this is within the

scope of this manuscript, as we aimed to demonstrate that regional

vulnerability would already be measurable and informative in the

absence of overt atrophy. The so-called atrophy subtypes could thus

be considered regional susceptibility patterns that differentiate across

individuals throughout the aging process. Another limitation concerns

the investigation of mechanisms driving atrophy. In this context, the

performed analyses were used to describe population-level trends and

groupeffects. These approachesdonot allow formodelingpathological

progression at the individual level. At the same time, our findings pro-

vide important insights into the pathophysiological nature of disease

heterogeneity and might be of interest for clinical applications, such

as the identification of at-risk individuals and optimization of inter-

vention strategies, as well as stratification for enrollment in clinical

trials. Future studies could employ more advanced statistical meth-

ods to characterize population-level longitudinal patterns, such as

incorporating individualized slopes or modeling non-linear trajecto-

ries. Future studies should also evaluate differences between subtypes

in markers of cerebrovascular damage, such as WMH, microbleeds,

and enlarged perivascular spaces, in order to better elucidate the con-

tribution of vascular and inflammatory processes to subtype-specific

patterns of atrophy. Finally, the cognitive domains used to compare

performance between the two subtypes, and specifically episodic

memory scores, were based on heterogeneous tests performed in each

sub-cohort.
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