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LORENZINI ET AL.

Abstract

INTRODUCTION: The emergence, stability, and contributing factors of Alzheimer’s
disease (AD) gray matter subtypes remain unclear.

METHODS: We analyzed data from 1323 individuals without a diagnosis of demen-
tia (CDR < 1) with TIw-MRI and amyloid-PET, including 622 with longitudinal data
(3.66 + 1.78 years). Cortical thickness subtypes were identified using a non-negative
matrix factorization (NMF) clustering algorithm. We examined clinical and demo-
graphic differences, subtype stability, and longitudinal thinning patterns using brain
network models and imaging-transcriptomic analysis. Replication was performed with
an alternative clustering approach and a validation cohort.

RESULTS: Two stable subtypes emerged: limbic-predominant and hippocampal-
sparing. Limbic-predominant participants were older, had higher amyloid burden, and
faster memory decline, while hippocampal-sparing individuals showed greater atten-
tion and executive function decline. Distinct thinning patterns were linked to specific
network properties and gene expression profiles.

DISCUSSION: These MRI-based subtypes reflect underlying pathophysiological mech-
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1 [ INTRODUCTION

Although traditionally viewed as a uniform sequence of biological
events, Alzheimer’s disease (AD) has been shown to exhibit high het-
erogeneity across various scales, with large variations in genetic,
proteomic, and neuroanatomical individual profiles.}* The diversity
of neuropathological variants is already evident in aging individuals,
likely contributing to variability in individual disease progression, and
posing a major obstacle to achieving consistent clinical outcomes.”
As such, the effectiveness of tested disease-modifying drugs may be
compromised by the variability of pathological processes within the
enrolled population. Although the presence of atrophy subtypes in
the clinical stages of AD is now well established,® the progression
of these heterogeneous patterns from preclinical disease stages and
the underlying mechanisms driving their development remain largely
unclear. Understanding these processes is especially critical given
recent efforts to advance early pharmacological interventions and
population screenings.”

Previous evidence has converged on the identification of differ-

ent putative AD atrophy subtypes.®? A “typical-AD” variant is often

anisms and may aid in prognostication and clinical trial stratification.

biological pathways, magnetic resonance imaging, polygenic risk, preclinical Alzheimer’s

» Two gray matter thickness subtypes can already be identified in preclinical stages,
exhibiting distinct clinical characteristics and progression patterns.

* Individual subtype assignment remains stable over time.

* Longitudinal cortical thinning patterns follow distinct network- and transcriptomic-

based mechanisms within each subtype.

observed, showing neurodegeneration in hippocampal and association
cortices. Partially overlapping with it, the “limbic-predominant-AD”
pattern primarily involves the hippocampus and medial temporal cor-
tices. Finally, the “hippocampal-sparing AD” (or “diffuse”) variant is
characterized by atrophy in associative cortices with sparing of the
hippocampus.® With the shift toward earlier primary and secondary
prevention clinical trials, critical questions arise regarding the start of
such heterogeneity and its stability along disease progression. Emerg-
ing evidence suggests the existence of atrophy subtypes already at
prodromal stages,? and other studies have shown the applicability
of subtyping models in individuals with preserved cognition.’° In a
recent work, the presence of two atrophy subtypes was observed
in individuals enrolled in memory clinics.!! Interestingly, in partici-
pants who were considered atrophy-negative (stage O of a certain
subtype), baseline subtype attribution was predictive of longitudinal
subtype conversion, suggesting that these individuals were already
aligned with a specific trajectory even in the absence of overt atro-
phy. It is possible that such anatomical variants emerge during the
lifespan and result in individual vulnerability for a specific disease or
subtype. However, there is limited knowledge regarding the incidence
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RESEARCH IN CONTEXT

1. Systematic review: Distinct patterns of brain atrophy
have been observed in Alzheimer’s disease and its prodro-
mal stages, suggesting the utility of magnetic resonance
imaging (MRI) -based classification for identifying indi-
vidual vulnerability before dementia. However, it remains
unclear at what stage these signatures emerge, whether
they remain stable over time, and how genetic and envi-
ronmental factors contribute to their development and
evolution.

2. Interpretation: Using data from two large multicen-
ter cohort studies, our results propose a framework
where latent anatomical changes emerge in older age
and their patterns reflect underlying pathophysiological
mechanisms and individual responses to aging-related
processes.

3. Future directions: MRI-based thickness subtypes might
inform patient stratification for prognostic purposes and
patient selection in clinical trials.

and prevalence of atrophy subtypes in subjects without a dementia
diagnosis.

A second crucial question relates to the mechanisms underlying
these gray matter patterns and whether they are specific to each sub-
type. Recent multimodal imaging studies and imaging-transcriptomic

approaches!213

provide an efficient framework for bridging the mul-
tiscale organization of the brain and investigating biological deter-
minants of atrophy propagation.}* Increasing evidence suggests that
neurofibrillary tangles and subsequent AD-related atrophy spread
through connected brain regions in a prion-like manner.'> Other
studies suggest that regional transcriptomic vulnerability could be a
strong determinant of atrophy progression.1* However, these studies
have not considered disease heterogeneity. Possibly, different mecha-
nisms drive cortical thinning within each subtype and could represent
targets for specific treatments, providing a powerful tool for person-
alized medicine, and promoting individualized predictions of disease
progression.

In this work, we aimed to answer these two fundamental questions
by analyzing data from two large cohorts of older individuals with pre-
served cognition. First, we hypothesized that subtypes of gray matter
regional vulnerability can be detected in these participants. Second, we
examined the longitudinal evolution of the observed patterns of cor-
tical thinning and hypothesized their propagation would be driven by
distinct underlying mechanisms.

2 | METHODS

A schematic representation of the methods is shown in Figure 1.
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2.1 | Discovery cohort

We used data from the Amyloid Imaging to Prevent Alzheimer’s
Disease—prognostic and natural history study (AMYPAD-PNHS)
consortium.’®” AMYPAD is a collaborative effort between multiple
European cohorts, including participants above 50 years of age and
with no diagnosis of dementia at baseline, based on a Clinical Dementia
Rating (CDR) score < 1. Exclusion criteria were the presence of con-
ditions associated with neurodegeneration or affecting cognition, or
contraindication to MRI or positron emission tomography (PET). For
this work, we selected participants with T1-weighted (T1w) MRI and
amyloid-PET scans, resulting in a final sample of 1323 individuals. Of
these, 662 participants had longitudinal magnetic resonance imaging
(MRI) data available (follow-up time = 3.66 + 1.78 years, 573 had 2
visits, 89 had 3 visits).

2.2 | Amyloid-PET and other clinical data
Amyloid-PET acquisition, processing, and harmonization in AMYPAD
are described in previous works.'81? Briefly, PET scans were acquired
90-110 min post injection of 185 MBq (+ 10%) of [18F]Flutemetamol
or 350 MBq (+ 20%) of [18F]Florbetaben, consisting of 4 frames of 5
min according to the standard protocol for each tracer.2>21 An auto-
mated centralized pipeline (implemented by the IXICO clinical research
organization) was used to process the PET scans. PET frames were
co-registered, averaged, and aligned to the corresponding MRI scan,
which was parcellated using a subject-specific multi-atlas approach,
that is, the learning embeddings for atlas propagation (LEAP) parcella-
tion procedure.?? Standardized uptake value ratio (SUVr) images were
obtained using LEAP parcellation masks using the whole cerebellum
as a reference region in native space. SUVr values were transformed
to Centiloids (CL) using the standard Global Alzheimer’s Association
Interactive Network (GAAIN) target region as a measure of global
amyloid burden.?3

Apolipoprotein E (APOE) genotype was determined following cohort-
specific procedures for blood sample analysis. APOE-¢4 carriers were
defined as having at least one ¢4 allele. Cognitive outcomes for rel-
evant cognitive domains were selected based on test availability or
harmonization across AMYPAD parent cohorts. Distinct measures of
immediate and delayed recall were used to assess performance in
the memory domain, based on test availability across different parent
cohorts. Digit Span Forward and Backward scores were used to assess
performance in the attention (both), working memory (both), and exec-
utive functions (backward) domains. More details about cognitive tests

and harmonization are given in the Supplementary Information.

2.3 | MRI acquisition and processing

Details about MRI acquisition are given in previous publications.2
All included participants underwent three-dimensional 3T-T1w MRI
on either a Philips (n = 854), Siemens (n = 455), or GE HealthCare
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(A) Surface Reconstruction and Regional Thickness

(B) Non-Negative Matrix Factorization (BL data)
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FIGURE 1 Schematic overview of methodology.

(n = 14) scanner. T1lw processing was performed with FreeSurfer
v7.1.1 (https://surfer.nmr.mgh.harvard.edu/), including motion correc-
tion, skull stripping, intra-subject template estimation (for longitu-
dinal data only), brain parcellation, and estimation of regional gray
matter thickness. The details of these procedures are described

elsewhere.2526 We derived cortical thickness in 100 regions of inter-
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est (ROIs; Figure 1A) from the Schaefer atlas,2’ from both baseline
and follow-up 3D T1w. Regions in the Schaefer atlas are annotated
according to 7 canonical resting-state networks, allowing for functional
interpretation of the results. For replication purposes, cortical thick-
ness values were also extracted for 64 regions of the Desikan Killiany
(DK) atlas?8.
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2.4 | Non-negative matrix factorization

To identify clusters of participants based on MRI features, we used
non-negative matrix factorization (NMF) on baseline cortical thickness
measures from the 100 ROIs (Figure 1B). NMF is a robust dimen-
sionality reduction and clustering approach that has shown sensitivity
in detecting clusters of atrophy (and other biomarkers) in previous
studies.»22? Given a number of features (regional cortical thickness)
for each individual, NMF decomposes data into positive matrices and
reduces the dimensionality of the features into fewer components that
can be considered feature profiles or subtypes. Individuals can then be
assigned to one subtype based on the similarity of their thickness val-
ues with the identified thickness subtypes. Following our hypothesis,
we assigned all individuals (and all regions) to a subtype based on the
highest NMF score. Raw thickness values (uncorrected for covariates)
were used. Regional thickness values were first inverted so that higher
values reflected decreased thickness, instead of preserved gray matter.
To find the best number of fitting clusters, we used multiple fit statis-

tics, 30.31

including the cophenetic coefficient, silhouette coefficient,
and change in residual sum of squares (see Supplementary Information

for details).

2.5 | Statistical analysis

2.5.1 | Subtypes characterization

We first examined differences between individuals assigned to differ-
ent subtypes in demographics and other clinical characteristics. We
used a logistic regression model to study differences between subtypes
(dependent variable) in age, sex, global CL, and APOE-¢4 carriership
(independent variables), correcting for subtype assignment probability
from NMF.

To explore subtypes’ longitudinal trajectories in clinical outcomes,
we employed linear mixed models using longitudinal global CL or
the scores in the selected cognitive tests as outcome variables. Pre-
dictors included participants’ subtype assignment and its interaction
with time. Models also included the correction for age, sex, global
baseline CL, baseline NMF probability, and a random intercept on
the participants. Within subtypes, we also studied the impact of hav-
ing higher NMF scores on longitudinal outcomes (NMF score-by-time
interaction). Higher NMF scores indicate observations that are more
strongly associated with the assigned subtype, thus having a stronger

contribution to the subtype profile.

2.5.2 | Subtype longitudinal stability

We then examined whether participants with longitudinal time points
showed consistency in their cortical thickness subtype over time
(Figure 1C). To achieve this, we selected the latest follow-up T1w scan
from each participant and assigned it to one of the baseline subtypes

based on the correspondence (Pearson correlation) of cortical thick-

THE JOURNAL OF THE ALZHEIMER’'S ASSOCIATION

ness patterns to the NMF subtypes. Participants were classified as
“stable” or “unstable” based on whether the subtype remained the same
across timepoints. Krippendorff’s alpha coefficient was used to quan-
tify subtype assignment agreement between baseline and follow-up
timepoints. Logistic regression models were used to study the impact
of age, sex, follow-up time, and baseline NMF probability (indepen-
dent variables) on participants’ subtype stability (binary dependent
variable).

253 |
thinning

Subtype-specific longitudinal cortical

We then investigated longitudinal cortical thinning within each sub-
type (Figure 1D). We used linear mixed effects regression models,
including the effect of time (independent variable) on thickness
values from each ROI. To study subtype-specific mechanisms, we
included a time-by-subtype interaction term and computed estimated
marginal means within subtypes using the emmeans v1.11.2 pack-
age in R%2. Models also included correction for age, sex, global
CL, baseline NMF probability, and a random intercept on the

participants.

2.5.4 | Network contribution to progression of
cortical thinning

To assess whether longitudinal cortical thinning progresses preferen-
tially following brain connectivity, we employed coordinated deforma-
tion models (Figure 1F).1 In this framework, network-based changes
of thinning within a region are estimated by multiplying the effect of
time in connected regions (B8 from the linear model) by the strength
of their connections to the region itself, resulting in an ROI-wise map
of connectivity estimated thickness changes. For each subtype, we
built three coordinated deformation models using a functional, struc-
tural, and morphological similarity connectivity template, respectively.
Details on the construction of connectivity templates are given in
Supplementary Information. The resulting maps of estimated changes
were then spatially correlated to the observed changes (3 from the lin-
ear model), to find the connectivity template that best predicted the
observed changes.

We used a two-fold approach to evaluate the significance of spatial
correlations. First, we ensured that the observed correlations were not
driven by the topological characteristics of the connectivity templates
(network/rewired null model). We generated 1000 random networks
that preserved the degree sequence, connection weights distribution,
the Euclidean distance between nodes, and the distance-weight rela-
tionship, and recomputed the coordinated deformation model using
these networks, resulting in a distribution of null spatial correlations.
Rewired p-values were then computed as the fraction of permutation
values greater than the original spatial correlation value.

Second, we assessed whether the observed correlations were inde-

pendent on the statistical autocorrelations typical of brain features
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distribution.?® To do so, we used BrainSMASH (https://brainsmash.
readthedocs.io), a Python-based package for statistical testing of spa-
tially autocorrelated brain maps.3* Each subtype-specific map of the
effect of time on regional thickness was used as input to generate 1000
randomized brain maps while preserving the original spatial autocor-
relation. We performed coordinated deformation models using these
maps, resulting in a null distribution of spatial correlations. Autocorre-
lations p-values were computed as the fraction of permutation values
greater than the original spatial correlation value.

255 |
thinning

Gene-expression contribution to cortical

To investigate whether gene expression plays a role in shaping the
different patterns of cortical thinning progression (Figure 1E), we
retrieved data from the open-access Allen Human Brain Atlas (AHBA;
http://human.brain-map.org/), providing regional microarray expres-
sion data from six post-mortem brains (one female, ages 24-57 years,
42.5 + 13.38 years). Genes of interest were selected as being related to
AD and other neurodegenerative processes from recent genome-wide
association studies (GWAS) for AD,%> white matter hyperintensities
(WMH),%¢ cerebrovascular disease,?’ limbic-predominant age-related
TDP-43 encephalopathy (LATE),3® posterior cortical atrophy (PCA)3?
(see Supplementary Information and Table S1 for rationale and a full
list of selected genes). For the selected 249 genes, we generated vec-
tors storing gene expression for the 100 ROIs of the Schaefer atlas.
AHBA data processing and extraction were performed with the open-
access abagen toolbox (https://github.com/rmarkello/abagen), using
default parameters.’®> We then performed spatial correlation analy-
sis of the subtype-specific effect of time (8 of the linear mixed effects
models) and each ROI-wise gene expression map. Similarly, to the net-
work analysis, we assessed the significance of the spatial correlations
by controlling for statistical autocorrelations typical of brain features
distribution.33 For each gene map, we computed 1000 null correlations
with permuted 8 maps of the effect of time, and evaluated its signifi-
cance as the fraction of permutation values greater than the original
spatial correlation value.

Lastly, we performed gene over-representation analysis (ORA) on
the genes that showed significant correlation to longitudinal gray
matter thinning within each subtype to evaluate enriched biological
processes.*0-42 We used the function enrichGO from the R package
“clusterProfiler” 43 to perform ORA, with Gene Ontology“° as a refer-
ence gene source for functional profiling. ORA results were compared
between subtypes using the compareCluster function from the same

package and visualized through emapplot.

2.5.6 | Sensitivity analyses
To test the stability of our results, we replicated the main analyses
across a variety of conditions. Specifically, the NMF algorithm and

coordinated deformation models were repeated using a different par-

cellation, namely the DK atlas, to test for possible biases due to the
functional properties intrinsic to the Schaeffer atlas. Moreover, the
NMF algorithm was repeated only on a subset of participants who were
amyloid positive, to test for subtype stability across disease stages,
and on statistically harmonized thickness values, to assess robustness
of the results regarding multi-site data. NMF was also performed on
age- and sex-corrected thickness data to assess possible confounding
effects. Moreover, the longitudinal models investigating immediate and
recall memory scores differences between subtypes were repeated by
iteratively taking out one cognitive test, to evaluate possible dispropor-
tional effects. All sensitivity analyses are described and reported in the

Supplementary Information.

2.6 | Replication
First, we aimed at replicating our clustering results on the same cohort
using the Subtype and Stage Inference (SuStaln) algorithm (Figure 1H).
Contrary to NMF, SuStaln simultaneously characterizes the hetero-
geneity and progression of the studied cross-sectional biomarkers. A
complete mathematical description of the SuStaln algorithm is avail-
able elsewhere.** More details about the SuStaln application in this
work are given in the Supplementary Information. Briefly, SuStaln
model fitting consists of an iterative procedure that simultaneously
estimates subtype event sequences and subtype classification for a
preselected number of subtypes. Average cortical thickness was z-
standardized against a reference group of cognitively unimpaired
(CDR = 0) and amyloid-negative participants on amyloid-PET visual
inspection (N = 653). A threshold of —1 z-scores was chosen as
the event threshold, consistent with earlier work.** Independently
from the NMF analysis, the optimal number of subtypes was selected
using ten-fold cross-validation, with the out-of-sample likelihood used
to compute the cross-validation information criterion (CVIC). The
model with the lowest CVIC was deemed optimal. Additionally, to
assess the consistency of subtype assignment, SuStaln modeling was
repeated using a threshold of —1.96 z-scores, which represents the
most commonly used threshold for statistical abnormality.
Subsequently, we aimed at replicating our clustering results by using
NMF on a different cohort (Figure 1G). To this end, we retrieved data
from the European Prevention of Alzheimer’s Dementia (EPAD) mul-
ticenter study.*> For our replication, we only used EPAD participants
who were not subsequently included in AMYPAD, resulting in areplica-
tion sample of 927 subjects. Demographics and clinical characteristics
are reported in Table S2. NMF cluster number optimization and fitting

were performed in the same way as for the discovery cohort.

3 | RESULTS
3.1 | Discovery cohort characteristics

Cohort characteristics, stratified by CDR score, are presented in

Table 1. The mean age was 68 (+ 8.7) years, 571 (43.2%) were men, and
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CDR=0 CDR=0.5

(N =1044) (N =236)
67.23(8.78) 71.44(7.53)
433 (41.5) 126 (53.4)
29.15(1.03) 27.55(2.31)
14.60(3.99) 14.53(3.80)
14.28(26.14) 37.60(42.18)
182 (17.5) 103 (44.2)
398(38.1) 117 (49.6)
812.16(823.28) 148.83(501.38)

417 (39.9%)

204 (86.4%)

Overall

Parameter (N =1323)
Age, years. mean (SD) 68.00 (8.65)
Sex, male. N (%) 571(43.2)
MMSE, score, mean (SD) 28.84(1.49)
Education, years, mean (SD) 14.59 (3.93)
Amyloid PET, Centiloid, 18.84 (31.50)
mean (SD)
Amyloid PET, visual 299(22.7)
classification positive, N(%)
APOE ¢4, carrier, N (%) 530(40.1)
Follow-up time (N = 662), 668.49 (810.90)
days, mean (SD)
No. of visits, N (%)

1 661 (50%)

2 573(43.3%)

3 89 (6.7%)

538(51.5) 32(13.6%)
89 (8.5%) 0(0%)

Abbreviations: APOE, apolipoprotein E; CDR, Clinical Dementia Rating; MMSE, Mini-Mental State Examination; PET, positron emission tomography; SD,

standard deviation.

236 (17.8%) had a global CDR score of 0.5. The average Mini-Mental
State Examination (MMSE) score was 28.8 (+ 1.49), with lower scores
in subjects with CDR = 0.5. At least one APOE ¢4 allele was present in
40% of participants. In the subset with longitudinal data available, the
average follow-up time was 3.66 years (+ 1.78), 573 participants had 2
MR visits, and 89 had 3 MR visits.

3.2 | Subtype definition

Two subtypes showed the optimal NMF fit according to goodness-of-
fit metrics (Table S3). Sensitivity analysis with different numbers of
subtypes is reported in the Supplementary Information and Figure S1.

Regional thickness subtypes are shown in Figure 2A. 35 ROIs were
assigned to the first subtype based on NMF probability. These were
mostly located in medial areas (e.g., cingulate, precuneus), medial-
temporal, and lateral-temporal areas. Functional annotations (from the
correspondence of Schaefer 100 atlas regions to canonical resting
state networks)?’ showed a large involvement of regions implicated
in the default mode network, and also of the limbic, control, and ven-
tral attention networks. In total, 601 participants were assigned to this
subtype (mean NMF probability = 0.62 + 0.08). Of these, 442 (73.5%)
were amyloid negative on visual read, while 159 (26.5%) were amyloid
positive. 65 ROIs were assigned to the second subtype based on NMF
probability, mostly located in the occipital, lateral parietal, and lateral
frontal regions. Compared to the first subtype, functional annotations
showed larger involvement of the dorsal attention, control, and visual
networks in this subtype. In total, 722 participants were assigned to
the second subtype (mean NMF probability = 0.60 + 0.06). Of these,

579 (80.2%) were amyloid negative on visual read, while 143 (19.8%)
were amyloid positive. Regional effects of subtype assignment on gray
matter thickness (p < 0.05) are shown in Figure 2B. Highly compara-
ble subtypes and results were found across all performed sensitivity

analyses (Figure S2-S5).

3.3 | Subtypes characterization

All coefficients of models investigating differences between subtypes
are reported in Tables S4, S5, and Sé. Participants classified as sub-
type 1 were older, had higher amyloid CL values, and were more often
APOE ¢4 carriers (Figure 2B). When looking at longitudinal outcomes,
both subtypes had significant amyloid accumulation over time (sub-
typel: B = 1.80, p < 0.001; subtype2: 8 = 1.33, p < 0.001), with the
first subtype showing faster accumulation rates (p-interaction = 0.007;
Figure 2B). Higher NMF scores were related to faster amyloid accu-
mulation in both subtypes (subtype1: p-interaction = 0.012; subtype2:
p-interaction = 0.006). Subtype differences in cognitive scores pro-
gression are shown in Figure 3. Performance in memory cognitive tests
(both delayed and immediate recall) was not found to deteriorate dif-
ferently between subtypes. However, within subtype 1 participants,
higher NMF scores were related to faster decline in delayed mem-
ory performance (p-interaction = 0.008). In the Digit Span Forward
test, subtype 2 had better scores at baseline, but declined faster
compared to subtype 1 (p-interaction = 0.04). In the Digit Span Back-
ward, subtype 2 had worse scores at baseline and declined faster
(p-interaction < 0.001). Sensitivity analyses demonstrated consistent

effects across distinct memory tests (Table S7).
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FIGURE 2 Thickness Subtypes, demographics, and clinical differences. (A) The regional NMF scores (H) for regions assigned to each identified
gray matter thickness subtype. Regional assignment to subtypes was based on NMF probability. (B) Significant (p < 0.05) regional differences
between the two subtypes. Differences are reported as standardized beta values of linear models predicting regional thickness values using
subtype assignment. (C) Differences in age, APOE ¢4 carriership, baseline, and longitudinal amyloid (model estimates). APOE, apolipoprotein E; NMF,

non-negative matrix factorization.

3.4 | Subtype stability over time

Out of 662 participants with longitudinal data, high agreement
between baseline and longitudinal subtype assignment was observed
(Krippendorff’s alpha = 0.79). Only 68 (9.7%)—34 from each subtype—
showed inconsistent subtype assignment and thus were classified as
“unstable”. Logistic regression showed that lower NMF probability
was related to subtype instability (OR = 1.027, confidence interval
[CI] = 1.020-1.036; p < 0.001), while age, sex, and follow-up time
did not show significant associations. All coefficients are reported in
Table S8.

3.5 | Determinants of cortical thinning progression
3.5.1 | Subtype-specific longitudinal thinning
patterns

Linear mixed-effect models revealed widespread significant effects of
the time-by-subtype interaction term. Figure 4A shows the effect of
time on thickness within each subtype (estimated marginal means of
linear trends). p-Values are reported in Table S9. Subtype 1 showed
significant reductions of thickness over time in lateral superior tem-
poral regions and posterior medial regions, while Subtype 2 had
significant reductions of thickness over time mostly in dorsal regions,

including dorsal parietal and frontal regions, and also in lateral tem-

poral regions. Similar longitudinal thinning patterns were observed
when repeating the analysis using a different cortical parcellation
(Figure S2).

3.5.2 | Network contribution to cortical thinning
Figure 4B shows the results of the coordinated deformation models.
Longitudinal cortical thinning progression within subtype 1 was pre-
dicted by all connectivity templates, and most strongly by functional
connectivity. Within subtype 2, instead, morphological similarity was
the only significant predictor of longitudinal thinning. Results were
consistent with both null models used (rewired and autocorrelation
p-values). Similar results were observed when repeating the analysis
with a different cortical parcellation (Figure S2). Interestingly, struc-
tural connectivity yielded stronger predictive power than functional
connectivity when an anatomically defined atlas was used, suggesting
that intrinsic properties of the chosen parcellation may partly account
for these findings.

353 |
thinning

Gene-expression contribution to cortical

The results of the imaging transcriptomic analysis are shown in

Figure 4C. Subtype 1 longitudinal patterns of cortical thinning were
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factorization.

found to correlate with 37 of the investigated genes, of which 25
stemmed from the AD and related dementias GWAS, two from the
WMH GWAS, eight from the cerebrovascular GWAS, one from the
LATE GWAS, and two from the PCA GWAS. When performing ORA,
these genes were enriched for several biological processes, includ-

ing regulation of amyloid formation and clearance, neuroinflammatory

responses, and lipid metabolism. Longitudinal patterns of cortical thin-
ning of subtype 2 were correlated with 11 of the investigated genes, 7
of which were from the AD GWAS, 2 from the WMH, 1 from the cere-
brovascular, and 1 from the PCA GWAS. When performing the ORA,
these genes were enriched for biological pathways related to immune

activation, immune system processes, and T-cell regulation.
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(B)  NMF Subtypes on Replication Cohort
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FIGURE 5 Replication. (A) The subtypes identified using the SuStaln algorithm on the discovery cohort. Rows represent regions of interest
and columns represent stages. A visualization of the brain of the observed subtypes and stages is reported. Panel B shows the results of the NMF
algorithm on the replication cohort. NMF, non-negative matrix factorization.

3.6 | Replication
Fit coefficients of NMF sensitivity analyses are reported in Tables
S10-S12.

When using SuStaln, the optimal number of clusters was two, in line
with our main results (Figure Sé). Different from NMF, SuStaln also
provides a temporal ordering of the cross-sectional biomarkers. The
two identified subtypes showed large overlap with our NMF subtypes
(Figure 5A). The first one had initial thinning in occipital areas, fol-
lowed by dorso-parietal, and eventually frontal areas, similar to what
is observed in our NMF subtype 2. When only looking at participants
with stage > O, of the 344 participants assigned to this subtype, 93.6%
(322) had been assigned to our NMF subtype 2 in the discovery analy-
sis. In the second SuStaln subtype, cortical thinning progressed from
medial temporal to medial frontal and lateral temporal regions, with
a pattern similar to the NMF subtype 1. When only looking at partici-
pants with stage > 0O, of the 307 participants assigned to this subtype,
96.4% (296) had been assigned to our NMF subtype 1 in the discov-
ery analysis. When replicating SuStaln modeling with a threshold of
1.96 z-scores, the optimal number of subtypes and thinning patterns
were confirmed (see Supplementary Information and Figure S7 for
details).

We then replicated our clustering results on a different cohort
using the same algorithm. EPAD (replication) cohort characteristics are
shown in Table S2. When NMF was run on EPAD, the optimal num-

ber of clusters was again 2 (Table S13). The two identified subtypes
largely overlapping with the ones from our discovery cohort and are
shown in Figure 5B. Twenty-nine regions were assigned to the first sub-
type, mostly in limbic, frontal, and temporal areas. Of these, 28 (96.6%)
had been assigned to subtype 1 in our discovery cohort. Sixty-four
regions were assigned to the second subtype, mostly in occipital, lat-
eral parietal, and frontal areas. Of these, 64 (97.0%) had been assigned
to subtype 2 in our discovery cohort.

4 | DISCUSSION

Using data from two large cohorts of individuals without a diagnosis
of dementia, we identified two consistent cortical thickness subtypes
using different classification algorithms and investigated their clinical
differences, longitudinal trajectories, and the mechanisms underlying
their differential progression. Our findings reinforce existing literature
on the presence of regional gray matter vulnerability signatures and
reveal their emergence already in participants without overt patho-
logical changes. We demonstrate that these subtypes were related
to distinct clinical characteristics and that the participants’ subtype
assignments remain stable over time. We found subtype-specific lon-
gitudinal cortical thinning patterns and showed that unique network-
based and transcriptomic factors drive thinning propagation in each

subtype.
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Although our cohort did not include individuals with a clinical
diagnosis of dementia, the two subtypes identified in this large asymp-
tomatic population align with previous investigations of atrophy pat-
terns in prodromal and clinical AD.® A limbic-predominant subtype,
corresponding to our NMF subtype 1, and a hippocampal-sparing sub-
type, corresponding to our NMF subtype 2, have consistently been
identified across MCI,*! prodromal AD,2 and clinical AD stages using
various imaging modalities. Less evidence exists on the presence of
these subtypes in the normal aging population. In one study of cog-
nitively unimpaired individuals, subtypes were identified as cortical-
and hippocampal-predominant atrophy, with the latter being more
prone to cognitive decline and at higher risk of developing AD in the
future.*® The clinical relevance of atrophy subtype characterization
in individuals without dementia was further confirmed over a 4-year
follow-up in a different cohort.*” In another recent work using two
independent memory clinic-based cohorts,!! two atrophy subtypes,
strongly similar to the one we found, showed distinct clinical charac-
teristics and high stability over longitudinal time points. In all those
studies, individuals with atrophy in limbic and medial-temporal regions
(limbic-predominant) had more evidence of AD pathology and faster
decline in several cognitive domains, mostly including memory capabili-
ties. However, hippocampal-sparing variants also showed abnormal AD
biomarkers and cognitive decline in different domains.*®

Consistent with the dimensional conceptualization of brain atro-
phy patterns® and neuroimaging phenotypes as a tool to capture
heterogeneity,*? our findings reveal that even participants without any
disease can have AD-like signatures of cortical thinning, suggesting
selective vulnerability, which may predispose toward individual risk of
progression to a disease type. In this view, population studies of aging
individuals offer valuable insights into the heterogeneity of the brain
aging process in the absence of specific diseases.”%°! Together with
recent literature,®? our findings propose a framework where anatomi-
cal changes can already be measured in the general population as latent
manifestations linked to underlying vulnerability. This heterogeneity
may stem from a combination of multiple sources encompassing genet-
ics, environmental, and other modifiable risk factors, such as vascular
health, lifestyle, and comorbidities. Given the need for earlier inter-
ventions, these MRI-based general dimensions of variability might
provide critical insights in the context of memory clinics and brain
health services,” supporting population screening and individual risk
stratification, as well as providing data-informed guidelines for patient
selection in clinical trials. Specifically, understanding patient-specific
regional patterns of gray matter vulnerability and assigning individuals
to distinct subtypes could facilitate the creation of more homogeneous
therapeutic target groups. This, in turn, would enable the development
of individualized interventions tailored to the predominant underly-
ing pathological mechanisms—such as amyloid deposition, vascular
dysfunction, or neuroinflammation.

The existence of such anatomical patterns and their atrophy pro-
gression might, in fact, be driven by differential molecular mechanisms,
genetic predispositions, or network vulnerabilities, posing important
challenges for accurate intervention. Few studies have investigated

mechanisms underlying subtype-specific progression. Using connectiv-

ity and transcriptomic group-level information, we characterized the
mechanisms driving cortical thinning progression that differentiate the
two subtypes. The first identified subtype (limbic-predominant) had
longitudinal thinning patterns that were predicted by several types
of connectivity matrices. The notion that AD pathology and atrophy
progress predominantly along neural networks is well-established in
the field and suggests prion-like mechanisms underlying AD pathol-
ogy spreading.’>>3 Several studies have shown that tau and atrophy
propagation can be modeled using functional connectivity, also at an
individual level.>* Similar results have been observed when using struc-
tural connectivity measures.’>>¢ Less evidence exists about the role
of regional morphological similarity networks. The typical AD pattern
of neurodegeneration may therefore be explained by the vulnerabil-
ity of highly interconnected hub regions, which are disproportionately
impacted due to their central role in network connectivity and their
high metabolic activity, rendering them more susceptible to activity-
dependent pathological processes.’” Interestingly, the finding that
the choice of parcellation biases the results toward one connectivity
type or the other supports a model in which atrophy in this subtype
progresses along general brain connectivity principles, which can be
partially captured by different MRl modalities. Contrary to thefirst, the
second subtype —characterized by diffuse atrophy—had longitudinal
degeneration only predicted by morphological similarity patterns.>®
Macroscale similarity networks encompass information about cytoar-
chitectonic and myeloarchitectonic similarity between regions at the
microscale, for example, related by their lamination and myelination.>?
Individuals in this subtype might therefore show atrophy related to
the intrinsic structural properties shared across regions with similar
cytoarchitectonic and myeloarchitectonic features, potentially reflect-
ing vulnerability driven by developmental or evolutionary constraints
rather than activity-dependent processes or network hub dynamics.6°

This distinct regional vulnerability to cortical thinning progression
may further be explained by differences in transcriptomic and cellu-
lar vulnerability. The first subtype’s longitudinal patterns of atrophy
correlated with spatial patterns of gene expression linked to amyloid
formation, clearance, and microglial cell activation, which have been
widely described in AD literature. This observation further under-
scores the possibility of identifying meaningful MRI-based subtypes
in the context of brain health clinics, which could be relevant for
assessing individual risk of disease progression, and guiding person-
alized pharmacological interventions. pharmacological interventions.
Together with the network analysis, this finding suggests the exis-
tence of a regional vulnerability gradient to AD-specific processes
based on regional gene expression levels and connectivity profiles.
The second subtype had longitudinal degeneration spatially corre-
lated with genes involved in immune and T-cell activation pathways.
These mechanisms have increasingly been considered central regula-

tors of neurodegenerative diseases,®1¢2

as a maladaptive response to
brain damage due to aging. The specific involvement of neuroinflam-
matory processes and immune responses in driving the progression
of this atrophy subtype may be due to regional differences in brain-
resident (for example, microglia) or infiltrating immune cells (for exam-

ple, T cells) distribution.63%* These factors can, for example, impair
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blood-brain barrier permeability and induce neuroinflammation as
a response to cerebrovascular damage.®>%® These findings offer
insights into the heterogeneity of biological pathways underlying neu-
rodegeneration and suggest that multimodal interventions and risk
modification may be necessary for individuals presenting non-typical
patterns.

Collectively, our results extend previous literature and depict a
framework where MRI-based measures can capture very early indi-
vidual regional vulnerability patterns that remain stable in time.
These signatures encompass crucial insights into pathophysiological
mechanisms and individual responses to aging-related processes and
could represent important outcomes for early and personalized inter-
vention in memory clinics. The observed patterns and underlying
pathophysiological profiles could thus be considered brain traits, or
ageotypes,®’ representing individual vulnerability to certain risk fac-
tors, providing important tools for accurate disease stratification and
forecasting.

Some limitations should be considered. Unlike in previous works,
we did not use any control group to compare atrophy in our sub-
types. NMF algorithms assign everyone to a subtype based on the
similarity of the pattern of observed values. However, this is within the
scope of this manuscript, as we aimed to demonstrate that regional
vulnerability would already be measurable and informative in the
absence of overt atrophy. The so-called atrophy subtypes could thus
be considered regional susceptibility patterns that differentiate across
individuals throughout the aging process. Another limitation concerns
the investigation of mechanisms driving atrophy. In this context, the
performed analyses were used to describe population-level trends and
group effects. These approaches do not allow for modeling pathological
progression at the individual level. At the same time, our findings pro-
vide important insights into the pathophysiological nature of disease
heterogeneity and might be of interest for clinical applications, such
as the identification of at-risk individuals and optimization of inter-
vention strategies, as well as stratification for enrollment in clinical
trials. Future studies could employ more advanced statistical meth-
ods to characterize population-level longitudinal patterns, such as
incorporating individualized slopes or modeling non-linear trajecto-
ries. Future studies should also evaluate differences between subtypes
in markers of cerebrovascular damage, such as WMH, microbleeds,
and enlarged perivascular spaces, in order to better elucidate the con-
tribution of vascular and inflammatory processes to subtype-specific
patterns of atrophy. Finally, the cognitive domains used to compare
performance between the two subtypes, and specifically episodic
memory scores, were based on heterogeneous tests performed in each

sub-cohort.
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