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Abstract

Debates concerning philosophical grounds for the validity of classical and intu-
itionistic logics often have the very nature of proofs as a point of controversy. The
intuitionist advocates for a strictly constructive notion of proof, while the classical
logician advocates for a notion which allows the use of non-constructive principles
such as reductio ad absurdum. In this paper we show how to coherently combine
logical ecumenism and proof-theoretic semantics (PtS) by providing not only a
medium in which classical and intuitionistic logics coexist, but also one in which
their respective notions of proof coexist. Intuitionistic proofs receive the standard
treatment of PtS, whereas classical proofs are given a semantics based on ideas by
David Hilbert. Furthermore, we advance the state of the art in PtS by introducing
a key contribution: treating the absurdity constant L as an atomic proposition and
requiring all bases to be consistent. This treatment is essential for the obtainment of
some ecumenical results, and it can also be used in standard intuitionistic PtS. Ad-
ditionally, we employ normalization techniques to demonstrate the consistency of
simulation bases. These innovations provide fresh technical and conceptual insights
into the study of bases in PtS.
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1 Introduction

What is the meaning of a logical connective? This is a very difficult and controversial
question, for many reasons. First of all, it depends on the logical setting. For example,
asserting that

AV B is valid only if it is possible to give a proof of either 4 or B

clearly does not correctly determine the meaning of the classical disjunction. It turns
out, as shown in (Piecha et al., 2015) and further analyzed in (Pym et al., 2025; Gheo-
rghiu & Pym, 2022), that this also does not seem enough for determining meaning in
intuitionistic logic, due to the intrinsic non-determinism on choosing between 4 or B
for validating A V B.

In model-theoretic semantics, mathematical structures help in supporting the
notion of validity, which is based on a notion of #7uth. In the case of intuitionistic
logic, for example, one could use Kripke structures, where the validation of atomic
propositions using the classical notion of truth (e.g., via truth tables) is enough for
describing the meaning of the disjunction in a given world, where worlds are orga-
nized in a pre-order.

Although it became common to specify the meaning of formulas in terms of truth
conditions, we agree with Quine’s objection to that, quoting Prawitz (Prawitz, 2015):

Following Tarski, he [Quine] states truth conditions of compound sentences,
not as a way to explain the logical constants, but as a first step in a definition of
logical truth or logical consequence, which Quine takes to demarcate the logic
that he is interested in. He points out that the truth conditions do not explain
negation, conjunction, existential quantification and so on, because the condi-
tions are using the corresponding logical constants and are thus presupposing
an understanding of the very constants that they would explain. I think that he is
essentially right in saying so and that the situation is even worse: when stating
truth conditions, one is using an ambiguous natural language expression that is
to be taken in a certain specific way, namely in exactly the sense that the truth
condition is meant to specify.

Proof-theoretic semantics (Schroeder-Heister, 1991, 2006, 2024) (PtS) provides an
alternative perspective for the meaning of logical operators compared to the view-
point offered by model-theoretic semantics. In PtS, the concept of #ruth is substituted
with that of proof, emphasizing the fundamental nature of proofs as a means through
which we gain demonstrative knowledge, particularly in mathematical contexts. PtS
has as philosophical background inferentialism (Brandom, 2000), according to which
inferences establish the meaning of expressions. This makes PtS a superior approach
for comprehending reasoning since it ensures that the meaning of logical operators,
such as connectives in logics, is defined based on their usage in inferences.
Base-extension semantics (Sandqvist, 2015) (BeS) is a strand of PtS where proof-
theoretic validity is defined relative to a given collection S of inference rules defined
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over basic formulas of the language.! Hence, for example, while satisfiability of an
atomic formula p at a state w in a Kripke model M = (W, R, V) is often given by

wlFp iff w € V(p)

in BeS, validity w.r.t. a set S of atomic rules has the general shape

lFs p iff Fsp

where g p indicates that p is derivable in the proof system determined by S. After
defining validity for atoms one can also define validity for logical connectives via
semantic clauses that express proof conditions (e.g., A A B is provable from S if and
only if both 4 and B are provable from S), which results in a framework that evaluates
propositions exclusively in terms of proofs of its constituents.

The switch from truth-functional to proof-functional semantics carries both math-
ematical and philosophical significance. In Tarskian truth-conditional semantics, as
well as in Kripke models, the value of a proposition on a model relies solely on the
semantic value assigned to its components. In proof-theoretic semantics, on the other
hand, ow the values of the components of a proposition are assigned is also relevant.
For instance, given two atoms p and g, whether an implication p— ¢ holds or not in a
model M depends solely on the truth values assigned to p and ¢. But in BeS and most
variants of PtS this implication holds in a base B only if the base is capable of pro-
ducing some inferential structure (such as a natural deduction derivation) with prem-
ise p and conclusion g (as shown in, e.g. [(Sandqvist, 2015) Theorem 3.1.]). For other
variants of PtS it is even possible to show that Kripke models essentially correspond
to simplified proof-theoretic structures containing flattened inferential components
(Stafford & Nascimento, 2023; Barroso Nascimento, 2024). Those mathematical dif-
ferences are a direct reflection of the philosophy behind both frameworks: model
theory is justified by views giving semantic primacy to the concept of truth, such as
Davidson’s argument to the effect that by giving sufficient and necessary conditions
for the truth of a sentence we provide it with meaning (Davidson, 1967), whereas PtS
is justified by views giving primacy to the concept of justification, such as Dummett’s
arguments to the effect that the meaning of a proposition is given by its assertability
conditions (Dummett, 1991). As pointed out by Brandom (Brandom, 1976), such
discussions trace back to a longstanding divergence between philosophers concern-
ing whether languages are better understood in terms of the concept of truth or the
concept of linguistic use.

Although the BeS project has been successfully developed for intuitionistic
(Sandqvist, 2015) and classical logics (Sandqvist, 2009; Makinson, 2014), it has
not yet been systematically developed as a foundation for logical reasoning (Dicher
& Paoli, 2021; Kiirbis, 2015; Francez, 2016). In this paper, we intend to move on

't should be noted that, in (Sandqvist, 2015), base rules are restricted to formulas in the logic-free frag-
ment only, that is, to atomic propositions. Here we will follow (Piecha et al., 2015) and give the unit L an
“atomic status”, allowing it to appear in atomic rules.
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with this quest, by proposing a BeS view of ecumenical logics, inspired by Prawitz’s
(2015) proposal of a system combining classical and intuitionistic logics.

In Prawitz’s system, the classical logician and the intuitionistic logician would
share the universal quantifier, conjunction, negation and the constant for the absur-
dity, but they would each have their own existential quantifier, disjunction and impli-
cation, with different meanings. Prawitz’s main motivation was to provide a logical
framework that would make possible an inferentialist semantics for the classical
logical constants. In this way, inferentialism brought forth a very specific proposal
when it emerged in the ecumenical context: to provide acceptable assertability con-
ditions for the operators of a certain logical system in another logical system which
does not accept them, thus allowing the acceptance and reinterpretation of the previ-
ously rejected operators under the new inferential guise. In the context of conflicting
discussions between classical and intuitionistic logicians, this would be compara-
ble to defining assertability conditions for classical operators inside intuitionistic
logic, which Prawitz actually does in (Prawitz, 2015). Therefore, the inferentialist’s
main task is to create ecumenical connectives that, with the assertability conditions
exposed in its inferential rules, can represent connectives accepted by one of the logi-
cal systems and rejected by the others inside the ecumenical environment.

In this work we do not intend to provide a BeS for Prawitz’s original system, but
rather to proceed with a careful analysis of different aspects of BeS for logical sys-
tems where classical and intuitionistic notions of proof coexist in peace (i.e. without
collapsing). We define intuitionistic proofs through the usual semantic conditions of
BeS, which encapsulate the traditional idea of Brouwer, Heyting and Dummett that
mathematical existence of an object can only be guaranteed by means of its construc-
tion (Brouwer, 1981; Dummett, 1977; Heyting, 1956). On the other hand, classical
proofs are defined by taking into account an idea advanced by David Hilbert to justify
non-constructive proof methods: the concept of consistency is conceptually prior to
that of truth, and in order to prove the truth of a proposition in a given context it
suffices to prove its consistency. In his words (Doherty, 2017; Hilbert et al., 1979;
Hilbert, 1900):

You [Frege] write “From the truth of the axioms it follows that they do not
contradict one another”. It interested me greatly to read this sentence of yours,
because in fact for as long as I have been thinking, writing and lecturing about
such things, I have always said the very opposite: if arbitrarily chosen axi-
oms together with everything which follows from them do not contradict one
another, then they are true, and the things defined by the axioms exist. For me
that is the criterion of truth and existence.

In order to properly represent this idea of classical proof in BeS we must change the
semantic treatment given to the absurdity constant |, but it is shown that this can
be done without issues (see Sect. 2.2). As expected of an ecumenical framework,
the resulting environment allows both notions of proof to coexist peacefully, retain
their independence and fruitfully interact — so we are able, for instance, to analyze
the semantic content of a proposition which is in part proved classically and in part
proved intuitionistically in terms of interactions between the respective proof notions.
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We start by proposing a weak version of ecumenical BeS (in Sect. 3). This ver-
sion relies on the concepts of local and global validity (see e.g., (Cobreros, 2008)),
enabling us to examine various aspects of both classical and intuitionistic validities.
In particular we demonstrate that, while intuitionistic validity has the property of
monotonicity, meaning that it remains unchanged under extensions, this characteris-
tic does not hold true for classical formulas. This observation gives rise to the motto:

Classical proof plus monotonicity equals intuitionistic proof of double negation.

In Sect. 4 we will unwrap the full power of ecumenical BeS, by showing a strong
notion of validity. In Sect. 5 we define the ecumenical natural deduction system NEg,
and prove its soundness and completeness w.r.t. such (proof-theoretic) semantic. We
then conclude with some ideas to push forward the PtS agenda for ecumenical
systems.

2 Base extension semantics
2.1 Basic definitions

We will adopt Sandqvist’s (2015) terminology, adapted to the ecumenical setting.

The propositional base language is assumed to have a set At = {p1,p2,...} of
countably many atomic propositions, together with the unit L. The set At U { L} will
be denoted by At , and its elements will be called basic sentences.

We use, as does Sandqvist, systems containing natural deduction rules over basic
sentences for the semantical analysis, and we allow inference rules to discharge sets
of basic hypotheses. Sets used in the definition of the derivability relation and seman-
tic consequence are always assumed to be finite. Unlike Sandqvist, however, we
allow the logical constant | to be manipulated by the rules.

Definition 1 (Atomic systems) An afomic system (a.k.a. a base) S is a (possibly
empty) set of atomic rules of the form

FAt [Pl] FAt [Pn]
P1 -oo Pn
p

where p;,p € At] and T'ay, P; are (possibly empty) finite sets of basic sentences.
The sequence (p1, . .., p,) of premises of the rule can be empty — in this case the rule
is called an atomic axiom.

Labels will sometimes be written as the superscript of [P;] and to the right of a rule
to denote that P; was discharged at that rule application.

Definition 2 (Extensions) An atomic system S is an extension of an atomic system S
(written S C S"), if §' results from adding a (possibly empty) set of atomic rules to S.
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Definition 3 (Deducibility) The deducibility relation g coincides with the usual
notion in the system of natural deduction consisting of just the rules in S, that is,
P1,---,Pn g piff there exists a deduction with the rules of S whose conclusion is p
and whose set of undischarged premises is a subset of {p1, ..., p» }.

Definition 4 (Consistency) An atomic system S is called consistent if ¥g L.

Notice that, due to how deducibility is defined, if p € {p1,...,pn } thenpy,...,p, Fs p
holds regardless of the S, as a single occurrence of the assumption p already counts as
a ruleless deduction of p from p.

Those basic definitions are usually combined with validity clauses to obtain seman-
tics for intuitionistic logic. For instance, Sandqvist (2015) defines atomic derivability
using At instead of At and employs the following clauses:

ks piff bg p, for p € At;

s (A A\ B) iffFs AandlFg B;

IFs (A— B)iff Alkg B;

ks AV B 1HVS/(S - S/) and all p € At, A kg pand B g p implies IFg/ p;
ks LiffIFg p forall p € At

For non-empty finite T, " IFg A iff for all S’ such that S C S’ it holds that, if
ks, Bforall B €T, then g/ A;

7. T'lFges AIffI' IFg A for all S;

SN AE W=

The idea being that BeS validity (IFges) is defined in terms of S-validity (IFs) and
S-validity is reducible to derivability in S and its extensions, so we obtain a semantics
defined exclusively in terms of proofs and proof conditions. In this sense, BeS not
only aims at elucidating the meaning of a logical proof, but also at providing means
for its use as a basic concept of semantic analysis.

2.2 On the semantics of L in BeS

The semantic conditions for | are usually defined in BeS in one of two ways. The
first one is to define atomic derivability by using At instead of At and to employ
the following semantic clause:

Fs L iff IFs p holds for all p € At

Absurdity is treated as a logical constant and cannot figure in atomic bases, hence the
switch from At to At. This clause, used most notably by Sandqvist (2015), borrows
from Dummett (1991) the idea of defining absurdity in terms of logical explosion, but
restricts it to just atoms in order to make the definition inductive.

The second one is to consider | an atom and require all bases to contain atomic
ex falso rules concluding p from L for every p € At (Piecha et al., 2015). If for
some S we have IFg L this now implies g L ; hence, for any p € At , the deduc-
tion of L from empty premises in S can be extended by the appropriate ex falso rule
to a deduction showing g p that also shows IFg p. Since IFg p for all p € At also
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implies IFg L this means that (IFg L iff kg p for all p € At ) holds in all such S, so
by restricting ourselves to these “atomically explosive” bases we end up giving the
same semantic treatment to L.

Although technically sound, such definitions are inadequate from a conceptual
standpoint because they do not express the intended meaning of L. The absurdity
constant is supposed to represent a statement that never holds. Logical explosion
should be a consequence of the definition of absurdity, not its definition. Ideally,
1 IFg A should hold for all S because no extension S’ of S validates L and the entail-
ment holds vacuously, not because there are extensions validating L that also vali-
date the arbitrary formula 4.

Unfortunately, we cannot define | through the natural semantic clause:

e L for all S.

If we define = A as (A — L) and adopt the clause above, we can demonstrate that
IFs ——p holds for every p € At in every S. This follows because IFs —p would hold
only if no extension of S validates p. However, for every S and every p € At, there is
always some extension S’ of S such that IFg/ p (for instance, the extension obtained
by adding the atomic axiom with conclusion p to S). Piecha et al. (2015) observe
that, aside from ruling out this definition of L, the fact that every atom is validated in
some extension of every system “might be considered a fault of validity-based proof-
theoretic semantics, since it speaks against the intuitionistic idea of negation = A as
expressing that A can never be verified”.

As will be shown in this paper, a technically sound and conceptually adequate
treatment of | has been thus far overlooked by the literature. Even though we cannot
define | in terms of unsatisfiability through a semantic clause, it is still possible to
do it by simply requiring all bases to be consistent:

Fs L for all S.

While at first glance it may seem that the definitions are equivalent, this switch actu-
ally allows us to solve the issues with the semantic clause. Moreover, the restriction
implements the desiderata of Piecha et al. and allows bases to contain no extensions
validating some specific atoms. To see why, consider that if S is a consistent base
in which p g L holds then there can be no extension S’ of S validating p, since if
IFs: p for some S C S’ we would have a deduction showing Fg/ p which could be
composed with the deduction showing p g L (which is also a deduction showing
p s L, since all rules of S are in §' by the definition of extension) to obtain one
showing g/ L, hence S’ would be inconsistent. It is easy to show that p -5 L now
implies both IFg —p and ¥ g =—p. As such, by considering | an atom but requiring
it to always be underivable we allow bases to indirectly restrict their own admissible
extensions by conveying information about which formulas will never be validated
in their extensions.

The completeness proof presented in Sect. 5 can easily be adapted to standard
intuitionistic BeS by simply omitting all steps concerning classical formulas. Since
the remaining steps are precisely the constructive ones, this yields a fully construc-
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tive proof of completeness for BeS with the consistency constraint and without any
semantic clause for | w.r.t. intuitionistic propositional logic. It should also be noted
that many of the results we will demonstrate for ecumenical logics are essentially
dependent on the consistency constraint, so the definition is optional in intuitionistic
logic but essential in our ecumenical semantics.

2.3 Ecumenical language

Propositional formulas are built from basic sentences using the binary connectives
—, A, V. The ecumenical language is defined as follows.

Definition 5 The ecumenical language L is comprised of the following ecumenical
formulas:

1. Ifp € At , them p’,p¢ € L;
2. IfA,B e L, then(AAB)', (AV B), (A— B)' € L;
3. IfA,B€ L then (AA B, (AV B), (A — B) € L;

Notation 1 Parenthesis are omitted whenever no confusion ensues. For easing
the notation, ~A, A—B, AA B and AV B will be abbreviations of (4 — L)%,
(A — B)! (AN B)¢, (AV B)!, respectively. Finally, we stipulate that if a formula
A is used without specification of its superscript, then it may be either i or ¢. For
instance, A* A B¢ should be read as a placeholder for (A? A B€)?, but A A B should
be read as a placeholder for (A® A BY), (A¢ A BY)%, (A A B€)" and (A¢ A B¢)%.

Definition 6 The complexity of a formula with shape 4’ is the number of logical
operators distinct from L occurring on it. The complexity of a formula with shape 4
is the complexity of 4’ plus 1.

Intuitively, an intuitionistic formula A’ holds whenever there exists an intuitionistic
proofof 4, and a classical formula 4° holds whenever there exists a classical proof of
A. Since every formula of the usual language has both a classical and an intuitionistic
version, classical and intuitionistic support in bases is defined for every formula.

In this paper, we will focus on two definitions of semantic ecumenism, called
weakand strong ecumenical semantics, respectively. In both the semantics of classi-
cal proofs is given in terms of the consistency of formulas w.r.t. some atomic system,
but the notions induce classical behavior in very different ways.

It should be observed that the weak ecumenical semantics proposed next does not
have a simple syntactic characterization, and its study is meant for semantic purposes
only — the goal is to explore deeply the ecumenical proof-theoretic behavior. In Sect.
5 we present an interesting ecumenical natural deduction system which is sound and
complete w.r.t. the strong ecumenical semantics described in Sect. 4.
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3 Weak ecumenical semantics

We start by distinguishing between two notions of logical validity for every atomic
system S: local logical validity (represented by IF5) and global logical validity (rep-
resented by FS). The idea is that, in local validity, we only concern ourselves with
what holds in a base and its extensions, but in global validity we also take into account
what holds in extensions of a base’s extensions. In many contexts both notions col-
lapse, but in some there is reason to make a distinction. Some relationships between
both will be studied in more depth later.

A weak ecumenical version of BeS is given by the definition below. As usual, we
start by giving semantic conditions for basic sentences in atomic systems, expanding
them through semantic clauses.

Definition7 (Weak Validity) Weak S-validity and weak validity are defined as follows.

IFL pliff g p, forp € Aty ;

IFL peiff p s L, forp € Aty

IFL Aciff AP L 18 for A ¢ Aty

L (A A B) iff IFy A and IF: B;

L (A — B)'iff AIFS B,

IFL (Av B)"iff vS'(S C S") and all p € At , AIFE, p' and B IFL, p® implies

-5 p;

7. For non-empty finite I, we have that T' IF5 A iff for all ' such that S C S it
holds that, if IF%, B for all B € T, then H—g, A;

8. Forfinite I, I’ H—g A iff for all §’ such that S C S’ we have that, if for all S” such
that S’ C S” it holds that IFZ,, B for all B € T, then for all S” such that S” C S”
it also holds that IF%,, A;

9. TIFAIffT H—gf A forall S.

SN AEWD =

There are important bits of information to unpack in those clauses. First, notice that
there is one clause for classical proofs of atoms and one for classical proofs of non-
atomic formulas, but both are defined in terms of consistency proofs for the formula’s
immediate subformula. Second, while Clause 7 is the same as Sandqvist’s clause
“(Inf)”, Clause 8 is slightly more complex; the former is our definition of local valid-
ity, the later of global validity (Cobreros, 2008). This distinction is redundant in usual
intuitionistic semantics, but essential in the weak version of ecumenical BeS. Finally,
notice that when defining the semantic clause for disjunction we use local entailment
instead of global, which is done to show that some desirable semantic properties fol-
lows from this weak definition. By using the global notion instead we would obtain
an alternative presentation of what we later define as strong ecumenical semantics.

The following result easily follows from Definition 7 and the requirement of
atomic systems to be consistent.

Lemma1 WL L7 and WL L¢ forall S.
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Proof For any S, since S must be consistent we have g L, so H‘é L% Moreover,
since L g L holds by the definition of deducibility we have K5 L¢. o

Due to this result, from now on L will be used as an abbreviation of L (= L¢)in
semantic contexts.

Although expected, since intuitionistic provability implies classical provability,
the next two results are only possible due to the change from Sandqvist’s clause for
L to the consistency requirement.

Theorem 2 p’ IF% p¢ for any p € At .

Proof Assume IF%, p' for some S C S’. Then g/ p. Now suppose p s/ L. Then by
composing both deductions we have g L, contradicting the consistency require-
ment. So p¥g L, hence IF%, p°. Since S is an arbitrary extension of S, we have
p' IFL p° by Clause 7. o

Theorem3 A’ I-% A€ forany A & At .

Proof Assume I, A? for some S C S’ and suppose that A® -5, L. Then by Clause
7 of Definition 7 we have IF%, L, and then -5, L by Clause 1, which is a contradic-
tion. Thus, A” W%, 1, and so IF%, A°. Since §' is an arbitrary extension of S, we have
A" IFE A¢ by Clause 7. O

If Sandqvist’s definition was used, from IF%, A? and A’ IFL, | we could get
IFE, p® for arbitrary p € At , but it would not be the case that A* %, 1. The same
would happen with the proof for atoms if we allowed L to occur in atomic bases and
required all bases to contain all instances of the atomic ex falso.

3.1 Monotonicity

It is well known that BeS validity in intuitionistic logic is monotonic, in the sense that
it is stable under base extensions. As it turns out, this is not the case in the ecumenical
setting, as discussed next.

Definition 8 (Monotonicity) A formula 4 is called S-monotonic with respect to an
atomic system Sif, forall S C S, -5 A implies IF5, A. 4 is called monotonic if it is
S-monotonic for any atomic system S.

Some parts of Clause 8 come for free in the presence of monotonicity (as shown
next), but they must be explicitly stated on the lack of it. As such, the original notion
of logical consequence provides only a weak kind of validation for non-monotonic
formulas, and thus would indirectly treat classical and intuitionistic formulas very
differently.

Theorem 4 [f S-monotonicity holds for A and all formulas in I, then I' -5 A iff
r'i-§ A
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Proof The result is trivial if ' = (§, so we will assume I non-empty.

(=) Suppose I' IF% A. Then, by Clause 7, for every S’ such that S C S’ we have
that, if %, B for every B € T then IF%, A. Now take any such S’ in which, for all S”
such that 8" C S”, we have IFL,, B forall B € T. Since S’ C S/, we have IF%, B for
every B € T, so we conclude I, A. But by S-monotonicity we also have that IF%, A
implies IF%,, A for all S” such that S’ C S and, since S’ was an arbitrary extension of
S satisfying the antecedent of the second part of Clause 7, we have T IF§ A.

(<) Assume I [F$ A. Then, by Clause 7, for every S such that S C S’ we have
that, ifl}—g,, B for every B € T and for all S” such that S’ C S” then IF%,, A for all
such S” as well. Now let S’ be any extension of S such that I, B for all B € T'. By
monotonicity, for all formulas B € I' we have that, if -5, B, then IF%, B for every
S" such that S" C S”. Taken together with our assumption, this yields -5, A for all
such S”. In particular, since S C S’ we have IFL, A and, since S’ was an arbitrary
extension of § satisfying the antecedent of the second part of Clause 7, we have
I IFE A o

Even though intuitionistic atoms and connectives are monotonic, this is not the
case in the classical setting.

Theorem 5 Every formula containing only intuitionistic subformulas is monotonic.
Classical atoms are not monotonic.

Proof The result for formulas containing only intuitionistic subformulas is easily
proven by induction on the complexity of formulas in the same way as in [(Sandqvist,
2015) Lemma 3.2. (a)], where the induction hypothesis is only needed for conjunc-
tion (the case for implication holds directly from the definition of general validity).

Regarding classical atoms, for S = ) we have that p ¥g L for every p € At. But
if §" is the atomic system containing only the rule obtaining | from p, S’ is consistent
and p g L. Hence IF% p¢ and S C ', but KL, p¢. More generally, if p does not
occur in the rules of S then p s | and by adding a rule obtaining | from p to S we
have an extension S’ guaranteed to be consistent, so whenever p does not appear on
the rules of S we have IF5 p°but K%, p¢ for some S C S'. O

In short, for intuitionistic formulas it is irrelevant whether local or global notions
of validity is used. For ecumenical formulas containing classical subformulas, how-
ever, this choice makes an enormous difference, as illustrated in Sect. 3.3.

3.2 Basiclemmata

Before proceeding, we briefly present some lemmas that will be useful later. For the
sake of readability, some proofs are omitted from the main text, see Appendix A for
details.

We start by showing that local validity implies global validity only for non-empty
contexts, but global validity implies local validity only when the context is empty.
A counter-example for Lemma 7 with non-empty contexts is given in Theorem 18,
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whereas one for Lemma 6 with empty contexts can be obtained by putting A = p©
and remembering that classical atoms are not always monotonic.

Lemma6 For non-empty I I' V5 A implies I' I-§ A.
Lemma7 I-§ A implies IH5 A.

Proof Assume S A. Then forevery S C S, it holds thatIF5,, A, forevery S’ C S”.
By putting S” = S’ = S we conclude IF5 A. a)

Lemma8 If L Aforall S C S then % —A forall S C S

Proof Assume K%, A for all S C S’. Take any such extension . For any S’ C S”
by_ transitivity of the extension relation we have S C S, so W%, A. But then clearly
A" IFS, L is satisfied vacuously for any ', so IF5, —A forall S C §'. |

The following is a form of global modus ponens.
Lemma9 I+§ Aand AIFS B implies IS B.

Proof Assume IF§ A. Thus for all S C S’ we have that S’ C S” implies I, A.
Assume A [F§ B. Then, for any S C 5, if for all S C S” we have IF%,, A, then for
all S’ C S” we have IF5,, B. By putting S = S’ the antecedent gets satisfied and we
immediately get I+5,, B for all S C S”, hence IF§ B. m

Finally, the following results show interactions between monotonicity, global
validity and negation.

Lemma 10 IfI-% A, S-monotonicity holds for A and A \v§ B, then both W5 B and
¢ B.

Proof Since -5 A holds and monotonicity holds for 4, for all §" such that S C .S’
we have that I-%, A. Since A IF§ B holds and S is an extension of itself, we immedi-
ately conclude that IF%, B for all §' extending S and all S” extending any ', and thus
IS B. In particular, since S is an extension of itself, we also have IF5 B. o

Lemma 11 (pts L) iff (p" Ibg L) iff (p" IF§ L) iff (IF§ —p).

Corollary 12 IFL pe iff p? KL L.

Lemma13 4 H‘g L iff there is some S C S’ such that H—g, A.

Proof Assume A WL 1. Supposethereisno S C S’ withI-5, A.Then A IFX L holds
vacuously, which is a contradiction. Hence, for some S C S™ we have -5, A. On the

other hand, assume that there is some S C S’ such that I-%, A. Suppose A IF5 L.
Then we have IF%, L, yielding a contradiction. Thus, A W% 1. o
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The following is a variation of Makinson’s proofs to the effect that every consis-
tent base has a maxiconsistent extension (Makinson, 2014).

Lemma 14 Every consistent system S has a L-complete consistent extension S+
such that, for every p € At eithertgic porptgic L

Proof Since At is countable, assign to each of its elements a unique natural number
greater than 0 as a superscript. Define S = S°, and consider the following construc-
tion procedure (for m > 1):

1. Ifp™ Fgm-1 L, then §™ is obtained by adding an atomic axiom with conclusion
pm to Sm—l .
2. prm }_Snl—l J_, then S”L = S’"I‘_l.

We briefly show by a simple induction that every S” produced this way is con-
sistent. Since S° = S, S° is consistent. Now suppose that S™~! is consistent. If
p™ Fgm—1 L then S™~1 = §™ so S™ is consistent. If p™ ¥ gm—-1 L, assume for the
sake of contradiction that Fg= L. Then either the proof of 1 in §” does not use the
atomic axiom with conclusion p™ included in S™~!, in which case it is also a deduc-
tion showing Fgm-1 L, or it does use the atomic axiom, in which case by removing
all instances of it from the deduction we obtain a deduction showing p™ Fgm-1 L.
In the first case we contradict the assumption that S™~! was consistent, and in the
second we contradict the assumption that p™ ¥ gm-1 L, so in any case we obtain a
contradiction. Hence, if S”*~! is consistent then S” is consistent, and since S° is con-
sistent we have that each S” is consistent.

Now let S+¢ = {R € S™|m > 0}. Clearly, S C S+ To show that S+ is also
consistent, assume for the sake of contradiction that there is a deduction showing
Fgic L. By the definition of deducibility, this deduction can only use finitely many
rules. If the deduction does not use any atomic axioms, it is already a deduction in S,
thus contradicting the fact that S is consistent. If it does use atomic axioms, let m be
the greatest superscript occurring in atomic axioms of the deduction. This deduction
only uses axioms with superscript equal to or less than m, thus all rules used in it must
already occur in S (as they could not have been added later in the construction). But
then this means that Fgm L, contradicting our result that each S” is consistent. In
both cases we reach a contradiction, so we conclude that S+ is indeed consistent.

Finally, take any p™ € At . Ifp™ Fgm-1 L thenp™ Fgic L, as by the definition
of S1€ we have S™ 1 C S+C. If p™ Fgm-1 L then S” contains an atomic axiom
concluding p™, and since S™ C S+¢ we conclude Fgic p™. Since this holds for
every m > 1 and every atom was assigned such a superscript, we conclude that for
every p € At eitherpbkgic L orkgic p, as desired. o

Notice that, unlike Makinson’s maxiconsistent extensions, | -complete extension
are not required to be maximal with respect to set inclusion. The two lemmas that
follow are also analogues of Makinson’s [(2014) Lemma 3.5.], in the sense that they
show that | -complete extensions are classically well-behaved.
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Lemma15 Let A and B be two formulas and S a system such that, forall S C S', IF5 A
iff\vL, A and \FL B iff -5, B. Then for all S C S" we have A W%, Biff A WS, Biff
either W5, Aorl-%, B.

Proof Let S be any system 4 and B be two formulas as specified. Let S’ be an arbi-
trary extension of S. If W5, A then WL A and for all S C S” we have K%, A. Since
S’ C 8" implies S C S’ we have that W%, A also holds for all extensions S” of
S, s0o AIFL, B and A IFS, B hold vacuously. Likewise, if IF%, B then IF5 B and
so also IF%, B for all S C S”, so again for all S’ C S” we have IF5,, B, hence
by similar reasoning we conclude that both A IF%, B and A IFS, B hold. Finally, if
IF%, A and ¥, B hold then since S’ C S’ clearly A WL, Band A WS, B, and since
this covers all cases we conclude the desired result.

O

Lemma 16 Let S+C be a L-complete extension of some system. Then, for every
5+C C S and every A, IF5. o AiffI-5, A.

3.3 Weak ecumenical behavior

This section will be devoted to show some interesting behaviors when monotonicity
does not hold for ecumenical formulas. Notice that, due to Corollary 12, classical
atoms p° and classical non-atomic formulas 4° may be treated uniformly in some
cases.

Theorem 17 A€ IF =— A% and ——A* I- A€,

Proof Let’s first prove that A° [F§ —— A" holds for arbitrary S.

Let S be an arbitrary atomic system. Let S’ be any extension of S such that, for
all ' C S”, we have I-%,, A°. Then for every S’ C S” we have A* K%, L. Sup-
pose, for the sake of contradiction, that there is a S” C S” such that I-%,, = A?. Then
Al H—g,/ 1. Now let S1€ be a L-complete extension of S”. Since S’ C SLC we
have A’ L, . L, hence by Lemma 13 there must be a S+ C S with IF§,, A.

So by Lemma 16 we conclude -5, A and also I-§,,, A for arbitrary extensions
S of S+¢. But since S” C S+¢, AIFS, L and IF%,, A for every S1¢ C S" we
conclude IF%,, L and g L for all S+ C S”, which violates the consistency
requirement. Therefore, for all S’ C S” we have K%, = A" and so by Lemma 8 also
IFL,, == A, hence by arbitrariness of §' we have A¢ IF§ ——A".

Now, let’s prove =—A® IF A, which amounts to proving ——A* I[F§ A° for arbi-
trary S. Let S be an arbitrary atomic system. Let S’ be any extension of S such that, for
all " for which S’ C S”, we have that I-%,, == A holds. In particular, =A® IF§, L
holds. Now assume for the sake of contradiction that, for some S’ C S”, we have
At IFE, L. Assume thereisa S” C S” such thatI-%,, A?. Then since A® IF%,, | and
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S C S" we conclude Il—é,,, 1 and obtain a contradiction, so for all S C S"" we
have K%, A'. Since K%, A’ for all S” C S" we have IF5,, =A? for all S” C S
by Lemma 8. But since —A® IF§, 1, S’ C S” and I+5,, = A® holds for all S” C S
we conclude IF5,,, L for all such S””, leading to a contradiction. Hence we conclude
that there can be no extension S” of S’ with A? IF£,, L, so for all S’ C S we have
A" L, 1 andthus I, A° hence since S’ was arbitrary we conclude =—A® IF§ A°.
o
The next two results are interesting, showing that global validity can be preserved
locally but that this is not always the case.

Theorem 18 A€ IF% == A% does not hold for arbitrary S.

Proof We prove the result for atoms. Consider the atomic system (), which contains
no rules. Clearly, since p ¥y L, we have Ibj p°. Suppose that |-} ——p’. Consider
now an extension S of () containing a rule which concludes L from the premise p.
Hence p g L and, due to Lemma 11, Il—é —p* holds. Since =—p’ is intuitionistic, it is
monotonic, and thus IFQ’;‘ ——p" implies I ——p’. By the semantic clause for implica-
tion we then have —p’ H—g 1 and, since Il—é —p’, by Lemma 10 we have II—I§ 1, and
thus g L. Contradiction. Thus H‘é‘ ——p' and, since the empty set is an extension of

itself, p°© H‘é’ -,

Theorem 19 ——A° I-5 A€ holds for arbitrary S.

Proof Let S be any system. Consider any S C S’ such that IF%, ——A?. By the clause
for implication, = A" IF§, L. Assume A’ IF%, L for the sake of contradiction. Then
clearly W5, A’ for all S’ C S”, so IF5, —A? for all S’ C S” by Lemma 8. Since
—A"IFG, L and IFL, —A® for all S C S” we conclude IF%, L for all S' C S,
which is a contradiction. Hence A* K%, 1, so IFL, A, therefore by arbitrariness of
S’ we have ~— A IFL Ac,

O

Remark 1 Put together, these results show that classical proof of 4 is strictly weaker
than an intuitionistic proof of =— A, and justify the motto presented in the introduction.

The following results present ecumenical versions of the excluded middle and
Peirce’s law.

Theorem 20 I+ AV —A® holds for arbitrary S.
Proof Let S be any system. Let S’ be any extension of S in which A¢ IF%, p® and

= A" IFE, pifor some p € At . If A® IFL, L then by Lemma 6 we have A® IFG, | and
so IFE, =A%, hence since ~A® IF, p® we conclude IF5, pt. If A WL, L then IF, Ac,
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so since A I-§, p’ we conclude I-§, p’. Since either A I-§, 1 or A ¥, L holds this
cover all possible cases, hence for all S C S’ we have that A° H—_é, p®and ~A° IFL, pl
implies [F5, p’ for any p € At , so we conclude IF5 A¢ v — A"

O

This proof is particularly interesting because it combines our notion of classical
proof with the weak definition of disjunction (in terms of local validity) to provide
a simple proof of the excluded middle in the language through an application of the
excluded middle in the metalanguage. This suggests that the weak disjunction here
proposed becomes predominantly classical if combined with our notion of classi-
cal proof, and this makes it so that other classical results could also be proved via
metalinguistical applications of the excluded middle. This would not be the case if
we were to define disjunction through global validity; as will be seen in the strong
ecumenical semantics, this strengthened disjunction has much more of an intuition-
istic flavor.

Theorem 21 IF% ((A* — B) — A%) — A€ holds for arbitrary S.

Proof Let S be a system. Let S’ be an extension of S with IF%, (A" — B) — A?
for all S’ C S”. Then, by definition, for all those S" we have (A® — B) IF§, A°.
Assume, for the sake of contradiction, that for some of those S” we have W%, A°.
Then we have A’ H—g,, 1 by Clause 3 of Definition 7, and since in any S” C S"” with
IFL,,, A we could obtain IF%,, L and thus a contradiction we clearly have K%, A’
for all S” C S”. But notice that, for any such §"/, 8" C S"" implies S” C S”" and
so KL, Al hence we have that A IS, B is vacuously satisfied in all such S/, so
we conclude that for all S” C S”" we have IF%,, A® — B. Since (A" — B) IF§, A
and for all S” C 5" it holds that IF%,, A* — B we conclude that for all S” C S’
we have IF%,, A" and, in particular, I-5, A%, But we had previously concluded
from our assumption for contradiction that A® IF%, L, so since IF%, A? we have
I-L,, L, which is indeed a contradiction. Hence we conclude that forno S’ C S” we
have WL, A¢, so IFL, A¢ holds for all S’ C S”. Since S is an arbitrary extension
of S with IF%, (A" — B) — A" holding for all S’ C S and we have shown that
IFL,, A¢ also holds for all such S” we conclude (A" — B) — A® [ A°, and thus
IFL ((A* — B) — A%) — Ac.
o
There are, however, some drawbacks to our definitions, which are mainly due to
the interaction between the clause for disjunction and the definition of local validity.

For instance, we lose validities such as the following (proof in Appendix A).

Proposition22 (AV B), (A — C),(B — C) I+ C does not hold in general.
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This issue seems to be caused by some interactions between the definition of impli-
cation (which uses global validity) and disjunction (which uses local validity). We
could, of course, provide a weaker definition of implication that uses local validity,
but since logical validity is defined by recourse to global validity by doing we would
be giving away the deduction theorem (e.g., p° IHj ——p’ does not hold by Theorem
18 but p¢ IF§ ——p’ holds for all § by Theorem 17, so we would have WE p¢ — ——pt
and so ¥ p¢® — ——p* even though p°© I ——p*).

As seen in the proof of Theorem 20, for all S and A either we have A’ IF5 L
and so A’ IF¢ L by Lemma 6 thus also IF5 —A® or A" K% L and so IF5 —A4°. In
other words, the metalinguistic excluded middle is “locally valid” in every S due
to our definition of classical proofs. On the other hand, even though from A? IF§ L
we can conclude IF5 —A? it is not the case that from A’ ¥§ L we can conclude
A" ¥E 1, which would be necessary for us to conclude I —A° (remember that
Lemma 7 fails for non-empty contexts), so the metalinguistic excluded middle is not
“globally valid”. This creates a certain tension between local and global definitions,
as local definitions are able to draw on the local excluded middle to validate classical
behavior but global definitions are not.

Although the semantic tension and the independent coexistence of classical and
intuitionistic features are certainly desirable in the context of ecumenical semantics,
the main issue with the definitions we have presented is that, since the usual rule for
disjunction elimination is no longer sound, the weak ecumenical semantics is not
easily captured in simple syntactic systems. This makes it so that the main motive for
studying it lies in the clarification of the ways in which the global and local notions of
validity relate to intuitionistic and classical concepts of proof. There might, of course,
also be other combinations of local and global definitions which lead to interesting
new ecumenical versions of BeS, but we leave the study of any such combinations
to future works.

The clarifications provided by the weak semantics on how the notion of classical
proof behaves in BeS allow us to formulate a new kind of ecumenical semantics
which fixes some of its issues. As such, we propose next an ecumenical BeS with
some stronger definitions and very different semantic properties.

4 Strong ecumenical semantics

In the weak semantics we define that a formula has a classical proof in S if and only
if it is consistent in S. As a result, classical proofs are not monotonic, so we need to
differentiate between local and global validity notions. But there is another possibil-
ity: we can define that a formula has a classical proof'in S if and only if it is consistent
in S and all its extensions. This is still faithful to Hilbert’s ideas concerning classical
proofs and truth, and since we only consider extensions of S it is also faithful to the
proposal of the original BeS.
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Definition 9 (Strong Validity) Strong S-validity and strong validity are defined as
follows.

= pi iff kg p, forp € At

Eg p° IHVS/(S - S/) cpFg L, forpe At

':S Ac IEVS/(S - S/) : (A)Z }fs/ J_, for A §é Atl;

= (A A B)Z iff Eg Aand Fg B;

':S (A — B)l iff A ':S B;

Fs (AV B) iff vS'(S C S’) and all p € At : AFg p' and B Fg/ p' implies

Fs p';

7. For non-empty finite T, I' Fg A iff for all S’ such that S C S’ it holds that, if
Fs Bforall BeT,thenFg A;

8. TEAIffT Fg AforallS.

SN AE W=

Weak validity uses a non-monotonic notion, whereas in strong validity classical
validities are monotonic by definition. Since by Theorem 4 S-monotonicity induces
a collapse between |- and IS and all formulas of the strong ecumenical semantics
are monotonic, local and global validities are non-distinguishable.

5 An ecumenical proof system for strong ecumenical validity

In this section we will prove soundness and completeness of the natural deduction
ecumenical system NEp presented in Fig. 1 (which is a version of the system CIE
presented in (Nascimento, 2018) with a restriction on iterations of the “classicality”
operator) w.r.t. the strong ecumenical BeS.

For finite I" we say that I" -y, A holds if and only if there is a deduction of 4
from I using the rules of NEg.

5.1 Soundness

Contrary to what happens with completeness, the proof of soundness follows easily
from the proof in (Sandqvist, 2015).

Lemma23 kg A° iffFg ~— A"
Proof (=) Suppose Fs A°. Then, for all S Q_S’ , we have A® Eg L. Suppose that,
for some of those ', Fg» = A" Then we have A* Fg: 1, which yields a contradiction.

Thus for all such §’ we have #g —A?, hence ~A’ g L is vacuously satisfied and
Eg ~—A® holds.
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T [4] Iy L'y
I 1T, 115
B L int A— B A el
A— B ! B e
r T [y [A] I's [B]
A; .
T A S v
Iy I's r
114 II, 11
A B A1 VAN A2 .
K N.i- 1
N A-int A j-eim
T [_|Az] Fl F2
1 I I, 11
1 . ¢ -A*
a1 1-elim jl_c AC-int A T A A€ - elim

Fig. 1 Ecumenical natural deduction system NEg

(<) Suppose =g ——A?. Then, for all S C S’, =A? g L. Suppose that for some
of those ' it holds that A* Eg, L. Then we have g =A%, andthus g L andFg L.
Contradiction. Hence A’ g L forall S C S™, and thus Fg A°. ]

Theorem 24 (Soundness) If I' - g, Athen I' E A.

Proof Due to the collapse between local and global consequence in strong seman-
tics, if we eliminate all clauses for classical formulas and define A¢ = -—A* we
get an equivalent definition. Then, since all the remaining semantic clauses are just
Sandqvist’s clauses for intuitionistic logic, our proof of soundness follows from his
(provided A€ is treated as ——A? on induction steps). The only important difference
is in the treatment of L — elim, which is slightly different due to the consistency
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requirement. The induction hypothesis gives us I' £ | and thus I Fg L for arbitrary
S, from which we conclude that forno S C S’ we have Fg B for all B € I'. But then
I' Eg: A holds vacuously for all such §’, which shows I Fg A for arbitrary 4 and
arbitrary S and thus ' F A. o

5.2 Completeness

We will now prove completeness of the natural deduction system shown in Fig. 1
w.r.t. the strong ecumenical semantics. We use an adaptation of Sandqvist’s proof
(2015); changes are made only to deal with classical formulas and the consistency
constraint.

Lemma 25 p ¥g L iff the system S’ obtained by adding a rule which concludes p
from empty premises to a consistent S is also consistent.

Proof This is strengthened syntactic counterpart of Lemma 13.

Assume p g L. Let S’ be the system obtained by adding a rule concluding p from
empty premises to S'. Suppose that g/ L. Then there is a deduction IT in S" showing
L. If it does not use the new rule added to S, I1 is also a deduction in S, so S would
violate the consistency requirement. If it does use the new rule, by replacing every
occurrence of it by an assumption with shape p we get a deduction showing p g L,
which contradicts our initial hypothesis. Since a contradiction is obtained in both
cases, we conclude Fg/ L

For the other direction, assume the system S’ obtained by adding a rule which
concludes p from empty premises to S is consistent. Assume p Fg L. Since S C S’
we have g/ L, violating the consistency requirement. Thus, p ¥g L. o

Let I be the set of all subformulas of formulas contained in a set I Let
Ag = {=AY|A° € T}. Now, let I'* = (T'U {A})%*) U (Afrygay)susy))

We start by producing a mapping o which assigns to each formula 4 in I'* a unique
p? such that:

1. pA=gq,ifA=¢ (forqe At,);
2. Else,p? € Atand (p?)* ¢ I'*.

Notice that, since the assigned atoms are unique, p* = p? iff A=B.

Consider now any semantic consequence I F A. Fix any mapping a for I'*. Notice
that, since I is finite by definition and there are infinitely many atoms in the language,
there are always enough atoms to supply such a mapping. Following Sandqvist’s
strategy, we start by using the mapping « to build an atomic system A which is finely
tailored for our proof.

We start by defining atomic correspondents of the natural deduction rules (for
ie{1,2}):
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I [p4) Iy [y
I1 Iy 11,
B A—B A
p p
% pA_)B —ant B pA_)B —elim
p p
L Lo Tt T
" HlB I, I
P AvaA Av
pA1 VA; T -t P qq 1 pAVB, q — elim
Iy Iy r
1 11D} I1
A B A1NA,
p 4 .
: PA/\Bp pH"? —int pti A — elim
I I, 1Ty II
1 e A -At 1 .
Ac p —int P T P pA° — elim g 1, g—elim

We now add atomic rules to NV for all formulas D € I'*, according to the follow-
ing criteria.

1. Forevery formula D with shape 4 — Bor A A B,weadd p” — int and p” — elim
to V.

2. For every formula D with shape A V B we add the rules p” — int to NV, and for
every D with shape A V B and every ¢ € At we add p,p — elim to NV.

3. Forevery formula D with shape A we add p? — int and p” — elim to . Notice
that, by the definition of A% and I'*, if A¢ € (T'U {A})“® then —A® € T'*;

4. Foreveryq € At weadd L,q— elimtoN;

5. We also stipulate that A/ contains no rules other than those added by this
procedure.

Since all atomic systems are now required to be consistent, before using A/ in the
completeness proof we must prove that it is consistent. One interesting way to do this
is by proving atomic normalization results for N

We start by providing some definitions required for the normalization proof.

A1VAs _ it pA%B
9

A1NAs

Definition 10 Rules with shape pA"EB —int, p —int and

pA° —int are introduction rules of N'. Rules with shape p —elim, pAVEB,

q — elim, pA~ B —elim, pA"—elim and L — elim are elimination rules of N.
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Definition 11 For any rule p” — elim or p?, ¢ — elim of N, we say that the atom
with shape p? occurring above it (or the leftmost occurrence if there is more than
one)is the rule’s major premise. The major premise of 1, q — elim is L. All other
premises are the rule’s minor premises.

For simplicity, we sometimes refer to the rules of A/ simply as A — int, V —int,
— —int, A° —int, A — elim,V — elim,— —elim, A° — elim,and L — elim, omit-
ting further qualifiers where the context makes the meaning clear.

Definition 12 The /ength of a derivation is the number of formula occurrences in it.
The degree of an atomic formula p* relative to a previously fixed mapping a of for-
mulas into atoms, denoted by d[p“], is recursively defined as:

5}

ey
Il
=}
=
b
Il

. Q&.
=¥
=
(S
m
>
=
£

| =dp? +1;

[pA"B] = d[p?] + d[p®] + 1;
[pVP] = dlp”] + d[p®] + 1
[pA=P) = d[p?] + d[p®] + 1;

SN AEWD =

Notice that this is slightly different from Definition 6 because now the degree of clas-
sical formulas needs to be the degree of its intuitionistic version plus 2.

Definition 13 A formula occurrence in a derivation IT in A/ that is at the same time
the conclusion of an application of an introduction rule and the major premise of an

elimination rule is said to be a maximum formula in I1.

Example 1 The following are examples of maximum formula occurrences:

" Iy
'y 1o
Iy p” .
A —asg P —intn
5 pA=B _elim
b
]
Iy
L oge Iz
e 2 nt,n A
p p O
T p° —elim
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Definition 14 A sequence Aj, Ao, ..., A,, of formula occurrences in a deduction is
a thread if A, is a (possibly discharged) assumption, 4,, stands immediately below
A, forevery 1 < m < nand 4, is the conclusion of the deduction.

Definition 15 A sequence A1, As, ..., A, of consecutive formula occurrences in a
thread is a segment if and only if it satisfies the following conditions:

1. A, is not the consequence of an application of V-elimination;
2. Each 4,,, for m<n, is a minor premise of an application of V-elimination;
3. A, is not the minor premise of an application of \VV-elimination.

The last formula of a segment is called the vertex of the segment.
Definition 16 A segment that begins with an application of an introduction rule or the
L — elim rule and ends with the major premise of an elimination rule is said to be a
maximum segment.
Observe that maximum formulas are special cases of maximum segments.
Example 2 In the derivation below, the sequence p”1/42, pA1/42 starting with the

application of A-introduction and ending with an application of A-climination is a
maximum segment.

)" Iy A" I3
Iy Il I3 [P Iy
I ph p AnAs o T4
pAVB pAA p —wm pAin
pAl/\A2 pAVB,pAIAA2 —elim,n,m
—a pAlAA2 — elim
p 1

Definition 17 The degree of a derivation IT in NV, d[I1], is defined as

d[IT) = max{d[p®] : pis a maximum formula or the vertex of a maximum segment in IT}.

We adapt Prawitz’s usual proper and permutative reductions for intuitionistic logic
(Prawitz, 1965) to the system N . Besides the usual reductions for the operators A, —,
V and -, we have a new reduction for maximum formulas of the form A

[pﬂAl]n Il
11, —Al
L. I, A [P~ ]

——pA" —int,n A reduces to I,

T pAC —elim L
I, s
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Definition 18 A derivation IT of I" Fxr A is called critical if and only if:

1. II ends with an application § of an elimination rule.

2. The major premise p? of f is a maximum formula or the vertex of a maximum

segment.

d[II] = d[p”].

4. Every other maximum formula or maximum segment in IT has a degree smaller
than d[p?].

W

The next two lemmas show how derivations can be reduced to lower degrees. The
proof is by induction on the length of the derivation (see Appendix A).

Lemma 26 Let I1 be a critical derivation of A from I Then I1 reduces to a derivation
II' of A from I such that d[II'] < d[IH].

Lemma 27 Let IT be a derivation of A from I' in N such that d[II] > 0. Then I1
reduces to a derivation II' of A from I' in N such that d[IT'] < d[I].

Proof By induction over the length of IT. We examine two cases depending on the
form of the last rule applied in I1.

1. The last rule applied in II is and introduction rule. The result follows directly
from the induction hypothesis.

2. The last rule applied in IT is an elimination rule. IT has the following general
form:

I I,
PL ... Dn
p

By the induction hypothesis, each derivation

IL;
Pi
(1 < i < n)reduces to a derivation
11,/
Pi
such that d[IT}] < d[II;]. Let IT* be:
I, I,
Pr ... Dn
p
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If d[IT*] < d[IT], we can take II" = IT*. If d[II*] = d[II], then IT* is a critical deriva-
tion and, by Lemma 26, it reduces to a derivation II’ such that d[II'] < d[II].
u]

Theorem 28 Let I1 be a derivation of A from I" in N. Then II reduces to a normal
derivation IT' of A from I' in N..

Proof Directly from Lemma 27 by induction on d[IT].

Our choice of normalization strategy is incidental—we could just as well have
used Prawitz’s original strategy or another. The crucial point is that A/ satisfies nor-
malization, a property we now leverage to establish its consistency.

Definition 19 Let IT be a derivation in A and 4 any formula occurrence in I1. The
derivation IT' obtained by removing from IT all formula occurrences except 4 and
those above 4 is called a subderivation of T1.

Lemma 29 [f II is a normal derivation in N then all its subderivations are also
normal.

Proof Let IT be a normal derivation and IT' any of its subderivations. It is straight-
forward to see that if I’ contains a maximal formula or segment then that formula
or segment is also maximal in II, contradicting the assumption that IT was normal.
Therefore, no subderivation II’ of IT contains a maximal formula or segment, so
every such I’ is normal. O

Lemma 30 If 1] is a normal derivation in N that does not end with an application of
an introduction rule, then II contains at least one undischarged assumption.

Proof We prove the result by induction on the length of derivations.

1. Base case: I1 has length 1. Then the derivation is just a single occurrence of an
assumption p and shows p s p, so it depends on the undischarged assumption
p-

2. I has length greater than 1 and ends with an application of a elimination rule.
Then consider the subderivation IT" of IT which has as its conclusion the major
premise of the last rule applied in IT. Since IT’ is a subderivation of IT and IT is
normal, by Lemma 29 we have that IT’ is normal. Notice that, if II' ended with
an application of an introduction rule, since its conclusion is the major premise
of an elimination rule there would be a maximum formula in I, so since IT is
normal IT’ cannot end with an introduction rule. But then IT' is a deduction with
length smaller than that of I that does not end with an introduction rule, hence by
the induction hypothesis it has at least one undischarged assumption. Therefore,
since no elimination rule is capable of discharging assumptions occurring above
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its major premise, we conclude that the open assumption of IT’ are not discharged
by the last rule application and so are also open assumptions of I1.

Theorem 31 N is consistent.

Proof Assume, for the sake of contradiction, that there is a derivation IT showing
Far L. By Theorem 28, IT reduces to a normal derivation IT" showing ks L. A quick
inspection of the shape of introduction rules reveals that no introduction rule can

have p (= L) as its conclusion, hence the last rule of II’ cannot be an introduction
rule. But then from Lemma 30 it follows that II’ must have at least one undischarged
assumption, hence it cannot be a derivation showing s L. Contradiction. There-
fore, ¥ nr L. ]

We have now established that AV is a valid atomic system, so we can proceed with
the completeness proof. Before doing so, we present a lemma traditionally used in
BeS completeness proofs—originally proved by Sandqvist in (2015) as Theorem 3.1.
In our new framework, this lemma holds in a slightly modified form when consider-
ing general bases, but it also retains its original form when restricted to the simulation
base.

Lemma32 Let{p;,...,pn} beanysetof atoms and S any atomic system. Let q be any
atom. Then {p;,...,pn} Es qiff either {ps,...,on} Fs qor{ps,...,pn}tts L

Proof Assume {pi,...,pn} Fs q. Let S’ be the set of rules obtained by adding to
S a rule with conclusion p; for each 1 <+¢ < n. If §' is inconsistent, there must be a
deduction IT showing g/ L. Notice that, if IT does not use one of the new rules of .S,
then IT is already a deduction in S and so S is inconsistent, contradicting the assump-
tion that S is an atomic system. Now let IT’ be the deduction obtained by replacing
every conclusion of one of the rules added to S’ with shape p; by an assumption with
shape p;. Since all new rules added to S to obtain " are removed by this procedure, we
conclude that I’ is a deduction showing I' Fg L for some " C {py,...,p,}, which
allows us to conclude {p1,...,pn} Fs L. If Sis consistent, then a single application
of each of its new rules yield g/ p; and thus Fg/ p; for all 1 < ¢ < n, hence since
{p1,.-.,pn}t Fs gand S C S’ we conclude Fg/ ¢ and thus -5 ¢. Once again we can
replace every new rule of §" with conclusion p; by an assumption with the same shape
and obtain a deduction showing I" Fg ¢ for some I C {p1,...,pn}, so it follows
that {p1,...,pn} Fs q. Since ' is either consistent or inconsistent, we conclude that
either {p1,...,pn} Fs qor{p1,...,pn} Fs L, as desired.

For the converse, assume that either {p1,...,pn} Fs q or {p1,...,pn}tFs L.
Take any S C S’ such thatFg p; forall1 < ¢ < n.Thentg p; foralll <i < n.If
{p1,...,Pn} Fs g then by composing the deduction of each p; from empty premises
with the deduction with premises {p1, ..., p,} and conclusion g we obtain a deduc-
tion showing g/ g, so also Fg/ ¢ and thus {p1,...,p,} Fs ¢ by arbitrariness of S".
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If {p1,...,pn} Fs L then by composing the deductions in the same way we obtain
a deduction showing g/ L, meaning that there cannot be any extension S’ of S such
thatFgs p; forall1 < i <mn,so{p1,...,pn} Fs ¢ holds vacuously.
O

This shows that inclusion of the consistency constraint in the semantics also intro-
duces the possibility of vacuous satisfaction of consequences, which in the case of
consequences having sets of atoms in their antecedent boils down to inconsistency
of that set with respect to the base. It is also worth remarking that, due to the use of
excluded middle in the metalanguage, the proof of this lemma is only constructive
when consistency of the extension S’ of S is decidable. Although this cannot be guar-
anteed in general, it can be guaranteed for the particular atomic systems we use at the
end step of the completeness proof.

Even though the original version of this result does not hold for bases in general,
it holds for simulation bases A/ and its extensions:

Lemma33 Let {p;,...,pn} be any set of atoms. Let q be any atom and S any exten-
sion of N'. Then {py,...,pn} Fs qiff {p1,...,pn} Fs ¢ D

Proof Assume {p1,...,pn} Es q. By Lemma 32 we have either {p1,...,pn} Fs ¢
or {p1,...,pntts L. If {p1,...,pn}ttFs q the proof is finished, and if
{p1,.-.,pn}t s L we can apply L, q — elim at the end of the deduction showing
this to obtain another deduction showing {p1,...,pn} Fs ¢, so the proof is finished.
The converse is a direct consequence of Lemma 32. o

This means that we are still capable of using the result in its original form in the
context of completeness proofs, even though it no longer holds for bases in general.

Our last lemma for completeness is proven by induction on the degree of formulas
(see Appendix A).

Lemma 34 Forall A€ I'* and all N C S it holds that 5 A iff g p™.
Theorem 35 (Completeness) I' = A implies I' F g, A.

Proof Define a mapping a and a system N for I" and 4 as shown earlier. Define a set
At = {(pA|A €T},

Suppose I' E A. By the definition of strong validity, we have I" Er A. Now define
B as the system obtained from A/ by adding a rule concluding p® from empty prem-
ises for every p? € TAt+,

We split the proof in two cases:

1. B is consistent. Then it is a valid extension of N. By the definition of B, we
have 5 p? for all p? € T'A*+. By Lemma 34, for all B € I'* we have that, for
any N C S, kg pP iff Eg B. Since I' C I'*, we conclude F5 B for all B € T.
Since I' For A and N C B, we also have Fz A, and so by another application of
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Lemma 34 we conclude 5 p?. Thus, we conclude that there is a deduction IT of
plin B.

If the deduction does not use any of the rules contained in 5 but not in NV, IT is
a deduction in V, and so Fr p?. If it does use some of the rules, by replacing
every new rule concluding p? by an assumption p® we obtain a deduction IT’ of
N which shows A Fx p4, for some A C T'A%~. Thus, in any case we obtain
some deduction showing T'At - p?.

Let IT be the deduction showing T'A* 5, p* obtained earlier. Define IT' as the
deduction obtained by replacing every formula occurrence p? in I1 by A (atoms ¢
occurring on instances of atomic rules for disjunction and | -elimination which
are not mapped to anything by o are not substituted). Since every instance of
every atomic rule becomes some instance of a rule in our system of natural
deduction, it is straightforward to show by induction on the length of derivations
that IT' is a deduction showing I' Fng, A.

2. Bis inconsistent. Then there is a deduction IT in B showing 5 L. If IT does not
use any rule contained in 3 but not in N/, we have - L, contradicting Theorem
31. Then, IT must use some of the new rules. But then we may replace every new
rule of B which concludes p? by an assumption with shape p? to obtain a deduc-
tion showing A ks L for some A C IAt+ | Define IT' as the deduction obtained
by replacing every formula occurrence p? in IT by A. It is straightforward to
show by induction on the length of derivations that I’ is a deduction showing
I' FNgg L. As a finishing touch, we apply L — elim to obtain a deduction show-
ing r }_NEB A.

O

Notice that the only non-constructive part of the completeness proof is the step for
A = A° in Lemma 34. This means that by removing A from the language we would
have a fully constructive proof of completeness for intuitionistic logic.

It is important to remark that our use of the excluded middle in the metalan-
guage (either B is consistent or it is inconsistent) is not problematic in this particular
instance, in the sense that it does not affect the constructive character of the proof.
For the particular extension B we use during the proof, since B consists only of
logical rules and axioms concluding atoms contained in I'At, it is straightforward to
show that 5 p“ holds if an only if T Fyg,, A, meaning in particular that by putting
A = 1 we can show that the consistency of B is equivalent to the consistency of I" in
NEg. Naturally, if the same strategy was employed in intuitionistic logic we would
use a base 5 whose consistency is equivalent to the consistency of I in propositional
intuitionistic logic, and since the consistency of I' is decidable for every I' (especially
since I is finite) then the consistency of B is also decidable for every B.

The fact that the inductive steps for constructive proofs only use constructive rea-
soning but the steps for classical proofs require classical reasoning bears testament to
the fact that our definitions indeed capture the meaning of classical and intuitionistic
proofs. As such, the ecumenical behavior observed in the metalanguage should be
taken as evidence both of the independence between the distinct notions of proof and
of their conceptual adequacy.

@ Springer



Synthese (2025) 206:197 Page 29 0f 39 197

6 Conclusion

We have proposed a weak and a strong version of BeS for ecumenical systems. While
the first helped furthering our understanding concerning the difference between dou-
ble negations in intuitionistic logic and provability in classical logic, the ecumenical
semantics comes into full swing when the strong notion of BeS is provided, since it
allows for a new ecumenical natural deduction system which is sound and complete
w.r.t. it.

This distinction allows us not only to obtain classical behavior for formulas con-
taining classical atoms and intuitionistic behavior for formulas containing intuition-
istic atoms, but also to put on the spotlight basic properties of semantic entailment
which are not always evident in traditional semantic analysis. It may also shed light
on semantic differences between intuitionistic and classical logics from an even
broader perspective.

In the course of this paper we have also shown that it is possible to furnish the
absurdity constant | with a conceptually adequate and technically sound definition
by requiring all systems to be consistent. This can be done in non-ecumenical con-
texts as well, provided some procedure capable of showing consistency of the syntac-
tic calculus (such as a normalization proof) is available.

There are many ways to further develop this work in the future. First of all, the role
of local and global validity in BeS should be better explored, since it opens wide the
classical behavior as it appears in other semantic settings for classical logic, e.g., as in
Kripke models for classical logic (Ilik et al., 2010). One very interesting step in this
direction would be to propose a proof system for our weak version of BeS. Of course,
there is the natural question of what would be the BeS proposal for Prawitz’s ecu-
menical system, from which this work took its inspiration but also other ecumenical
systems, such as the ones appearing in (Liang & Miller, 2013; Dowek, 2016; Blanqui
et al., 2023). Another option would be to investigate new combinations of locally and
globally defined connectives for the weak semantics. Finally, it would be interesting
to lift this discussion to ecumenical modal logics (Marin et al., 2020).

Appendix A: Detailed proofs of selected results

Proof of Lemma 6. Let I' IF5 A. Then, by the definition of local consequence, for
every ' such that S C S we have that if IF5, B for all B € T then IF%, A. Now, let
S’ be any extension of S in which for all S” such that S’ C S”, we have Il—é,, B for
all B € T. Consider any such S". Since I' IF5 A4 holds and S” is also an extension of
S (by transitivity of extension), we have that IF%, B for all B € T implies 5, A.
Since S” is an extension of §', by definition we have I-%,, B for all B € T, and thus
we have IF5,, A. But this holds for arbitrary S” extending S, and so for every S”
we have IF%, A. Since §' is an arbitrary extension of S satisfying the antecedent of
Clause 8 of the Definition 7, we conclude T' IF§ A. o

Proof of Lemma 11. It follows from Theorem 5 that (p® IF5 L) iff (p® IF§ L), since
p'is an intuitionistic formula and L is either the intuitionistic ¢ or the equivalent L.
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On the other hand, (p® IF§ L) iff (% —p?) follows from the clause for implication.
Thus we only need to prove that (p g L) iff (p* IF5 L).

(=) Let p -5 L. Assume that there is an extension S’ of S in which IF%, p’. By
Clause 1 we have g/ p and, since §' is an extension of S and thus contains all its
rules, p g/ L. By composing both derivations we get -5 L, which clashes with
the consistency requirement. Thus, for all S’ extending S we have ¥% p?, which
together with Clause 4 yields p IF5 L.

(<) Assume p’ IF L and p¥g L. Let S’ be the system obtained by adding to S
only a rule a which concludes p from empty premises. We start by proving that S’
is consistent, as thus a valid extension of S in our semantics.

Assume S’ is inconsistent, and consider the proof IT of L in §'. There are two
possibilities:

1. IfTI does not use the rule a, then IT is a proof in S. This yields a contradiction, as
S must be consistent.

2. IfIT uses the rule a, replace each application of a in I by an assumption p. This
immediately yields a derivation showing p -5 L, contradicting the second initial
hypothesis.

We then conclude that S’ is consistent. But, given that Fg/ p, we have H—g, o,
which can be used together with the assumption p IF5 L to show IFX L and thus
Fs L, contradicting the consistency requirement. Thus p Fg L. ]

Proof of Lemma 16 We show the result by induction on the complexity of formulas.

1. A=p'.

=) If H—ém p® then -g.c p, and since the deduction showing this is also a
deduction in the arbitrary S’ we have -5/ p and IF%, p’.

(<) Assume IF%, p’. Then g/ p. If we had a deduction showing p Fgic L
then it would also be a deduction showing p Fg/ L, which would allow us
to compose the deductions to show -5 L and obtain a contradiction, hence
pFgic L. But by the definition of |-complete extensions we have that

p¥gre Limpliesg.c p, so we conclude -5, o p.

2. A=rp°.

(=) IfIF5. o p° then p ¥ . L, hence definition of L -complete extensions
Fsie p,solFL, pi forall S-¢ C S” and by Theorem 2 and Clause 7 of Defi-

nition 7 also IF%, pe.

(<) Assume IF%, p¢ for arbitrary St¢ C S’. Then p¥g L. If plgic L
then since S+¢ C S’ we would have ptg L and this would lead to a
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contradiction, so p#¥gic L and by definition of L-complete extension
Fgic pand so IF5.c p', which by Theorem 2 and Clause 7 of Definition 7

yields |I—§Lc pe.

3. A= B

(=) If k5. B® then BIFL,, L. By Lemma 13 there is a S+ C 5"
with -5, B’. Induction hypothesis: IF5. o B’ and also I-§, B' for every

S+¢ C S’  Then by Theorem 3 also -5, B¢ for all S+¢ C §’.
(<) Let I-§, B¢ for arbitrary S+ C 5. Then B WL, L, hence by Lemma

13 thereisa S’ C S” with IF,, B’. Induction hypothesis: I-5, » B*. Then by
Theorem 3 we have H—éLc Be.

4. A=BAC.

(=)IflF5.c BACthenlts, o BandIF, . C.Induction hypothesis: -5, B

and IF%, C forall S*¢ C S’. Then IF%, B A C for arbitrary S+¢ C S,
(<) Let IF%, B A C for arbitrary S+¢ C S’. Then I-%, B and IF%, C. Induc-
tion hypothesis: lkch B and ‘Fch C'. Then \FéLc BAC.

5. A=B—C.

(=)IflF5. . B — Cthen B IF§. o C.Inductionhypothesis: forall S-¢ C 5/,
IF5. o Biff Ik, BandIF5. o CiffIF5, C. Then Lemma 15 applies to S+¢
and all its extensions with respect to B and C, so since B H—g o C we con-

clude that either 5. B or IS, C. The induction hypothesis then yiclds
WE, Borl-L, C for our chosen S, so by Lemma 15 we have B IFS, C and
thus %, B - C.

(<) Assume IF%, B — C. Then BIF§, C. Induction hypothesis: for all
sic¢ c g, H—gic B iITH—g, B and Il-ch Ciff IFL, C. Then again by apply-
ing Lemma 15 from B IFS, C we conclude ¥%, B or IF:, O, from the induc-
tion hypothesis we conclude H‘é 1o B or Il-é 1o C and by Lemma 15 we

conclude B IFS, o C, so we conclude IF5. o B — C.

6. A=BVC.

(=) Ifll—éLc BV C then, forall S*¢ C S"and all p € At ,if A IF%, p’ and
B IFL, p? then IFE, p?. Now pick any S+¢ C ., pick any p and let S” be any
extension of §" with A I+%, p* and B IF%,, p’. Then since S’ C S” implies
S1+¢ C 8" we conclude IF%, p?, so by arbitrariness of S” we already have
I, BV C.

(<) Assume -4, BV C. Then, for all p € At , if AIFL p? and B IFL, p!
then IF%, p (which is a special case of the semantic condition for disjunc-
tion). Induction hypothesis: for all S+¢ C S”, -5 o BiffI-5, B, IF5. . C

iff IF5, CandIFL, o p?iff -5, p’ forall p € At,. Now pick any S+¢ C S”
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such that AL, p' and B IFL, p? for a particular p € At , if any. Then,
by the induction hypothesis, since both S’ and S” are extensions of S+¢ we
have I-%, B iff V%, B, I+5, C iff IFE, C and IFE, p? iff IFL, p?, so since
AL, p* and B IFE, p' we can apply Lemma 15 to conclude based only
on the equivalence of B, C and p' in S” and S’ that A IF%, p’ and B IFL, p?
also hold, hence since I-%, B v C we conclude -5, p'. Since IF%, p’ by the
induction hypothesis we conclude IF%,, p?, hence for any S+ C S” we have
that if A IF%, p® and B IF%,, p® for an arbitrary p € At then %, p’, which
yieldsIF5.. BV C.

Proof of Proposition 22 Let A = (—p%), B = (p¢) and C = (—p’ V ——p’). Theo-
rem 20 has already shown that (A V B) = —p® V p€ is valid in all S, so now we
show that this is also the case for (A — C)= —p — (—p’V =—p') and for
(B — C)=p°— (=p'V-p').

Let S be any system and S’ any extension of it with IF%, —p. Since —p’ only con-
tains intuitionistic subformulas Theorem 5 shows that it is monotonic, so by Theorem
4 for all S" C S” we have I-%,, —p?. Then for any S’ C S” and any ¢ € At if both
-p® IFL, ¢* and —=—p® IFL, ¢* we can combine —p’ IFL,, ¢* with IF,, —p® to obtain
IFL, ¢', so IFL, —p? v ——pi. Since S in arbitrary extension of S with IF%, —p’ we
conclude —p® IF5 —p? v =—p? and thus also —p® IF§ —p’ V —=—p’ by Lemma 6, so we
conclude IF5 —pt — (=p® vV ——p?).

Now let S be any system and S’ any extension of it with IF5,, p° for every S’ C S”.
Then for every such S” we have p ¥ g L. Assume that for some §” we have H—g,, —pt.
Then by Theorem 11 we have p g~ L, which yields a contradiction. Hence, for all
such S” we have K%, —p?, so by Lemma 8 we get -5, ——p’. Now pick any such
S" and consider a S” C S” with —p’ IF5,, ¢ and ——p® IF5,, ¢' for some g € At .
Since ——p’ only contains intuitionistic subformulas we conclude by Theorem 5 that
it is monotonic. Since S” C S”” and IF%,, ——p, by Theorem 4 we have -5, —=—p’,
hence =—p* IFL,,, ¢* and so IF%,, ¢°. From this we conclude that IF5,, —p* vV —=—p’.
But notice that S” is an arbitrary extension of §', so we conclude that if IF5,, p¢ for
every S’ C S” then IF5, —p? v ——p' for all S’ C S”, and by arbitrariness of S’ we
conclude p¢ IF§ —p’ vV =—p', and thus IF5 p¢ — (=p? Vv =—p?).

We have shown that IF5 AV B, IF5 A — C and IF5 B — C hold in any S for
our choice of 4, B and C. Therefore, it suffices to show for some particular S that
WL —pi v ——pt (that is, KL C) to prove the desired result. But since both —p® and
——p’ are purely intuitionistic formulas their semantics is identical to intuitionistic
BeS, so we can simply point out that —p’ V =—p' is not an intuitionistic theorem to
conclude the desired result. In particular, ¥, —p* V =—p’ (as only intuitionistic theo-
rems hold in the empty system), so we have (AV B), (A — C),(B — C) ¥§ C
andalso (AV B),(A— C),(B— C)FC. O

Proof of Lemma 26 Induction over the length of I1. There are two cases to be exam-
ined depending on whether d[II] is determined by a maximum formula or by the
vertex of a maximum segment.
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Case 1: d[II] is determined by a maximum formula. The result follows directly
from the application of a reduction to this maximum formula.

1. The critical derivation IT is:

p AL AA
1 2
A NA, P int

p
pAi pAl/\A2 — elim

We know that d(IT) = d[p*1"42] > d[I1;] (for i € {1,2}). IT reduces to

IT;
p

And the degree of this derivation is equal to d[II;] which is smaller than d[II].

2. The critical derivation IT is:

A
0 A
Pl HQ
B
Hl p A—B int
pA pA—B p —mL,n
B pA_’B —elim
p
IT reduces to the following derivation I1':
Iy
1L
2 I
Iy
B

We can easily see that d[IT'] < maz{d[I],d[Il5] d[p?]} < d[I] = d[pA—5].
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3. The critical derivation IT is:

r
H phr T P D
P )
pAVAs ptiVAz _int 1_;1 1312
A1VAs _ .
q pl ,q —elim,n,m

IT reduces to the following derivation I1':

r
II
p%] T
11;
q
We can easily see that

d[I'] < maz{d[I1], d[ILo], d[IT], d[p*]} < d[II] = d[p*+"2].

4. The critical derivation IT is:

—A’
)"
114
I 1
2e PO~ nt,n A
p Ac .
T p° —elim
IT reduces to the following derivation I1':
11y
]
1L
1

We can easily see that d[IT'] < maz{d[I1,],d[Ils], d[p"*]} < d[II] = d[p*"].2.

5. The critical derivation was obtained through an application of 1. — elim. Then:

2This is the step in which we cannot use Definition 6.
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11
1 I
— o L,pM M2 _elim reduces to
phra P ! = | p —elim
2 PV —elim p
pAi
II An Bim
L b ,
_ L AVB .
e 1,p — elim q2 qs reduces to L L elim

q pAVB,q — elim q

I, I

1 . 11y 1

AB L,pA7B —elim oA reduces to I B — elim
= A8 _ elim pB
p
II;
. 1y II
% 1,p° —elim A reduces to J_l
T P pAC —elim

In all cases it is straightforward to check that the degree of the derivation is
reduced.

Case 2: d[I1] is determined by the vertex of a maximal segment. IT is:

't B)A]n I‘g [pB]m F3
P q q ) Aq Ag
q pAVB,q - elzm,n,m r1 Tk
r

By means of a permutative reduction, IT reduces to the following derivation IT*:

r, A" I 1 Py 5™ I's 1 g
1, Iz Aq Ak I3 Aq Ag
q 71 Tk q 1 Tk
VP r T _AVB )
o P ,r —elim,n,m

Without loss of generality, we can assume that the two derivations of the minor

premises of the application of \V-elimination are critical. By the induction hypothesis,
they reduce to derivations

r, A" Iy ] k 5 I's 2 Zk
1, Iy Aq Ay I3 Ay Ag

q 71 Tk q 71 Tk
AVB

P r o ! pAVB,r—elim,n,m

such that d[IT}] < d[I] and d[I15] < d[II]. We can then take I’ to be:

Iy )" Iy "™ I3

t i} It}

pAVB ” r
7 pAVB,T —elim,n,m
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Proof of Lemma 34 We show the result by induction on the degree of formulas.

1. A=yp’, for some p € At,. Then p* = A, and the result follows immediately
from Clause 1 of strong validity;
2. A=ANAB.

(=) Assume Eg A A B. Then g A and Fg B. Induction hypothesis: Fg p*
and Fg pB. By p* B — int, we obtain g pA/B.

(<) Assume g pA*B. Then, by p*"B — elim we get both Fg p* and
s pP. Induction hypothesis: F5 A and g B. Then, by the semantic clause
for conjunction, Fg A A B.

3. A=AVB.

(=) Assume Fg AV B. Let S’ be any extension of § with Fgs A. The
induction hypothesis yields g p“, and by applying one of the rules for
pAVE —int we get Fg pAVP and so Eg pAVE. By arbitrariness of ' we
conclude A Eg pAVE. An analogous argument establishes B Fg pV 5. Since
Ess AV B, BEg pAVE and B F5 p*VB we obtain F5 p*VZ by the clause
for disjunction, so also Fg pAV 5.

(=) Assume g pAVEB. Let ' be any extension of S with both A Fg/ ¢*
and B Fg ¢* for some g € At . Let S” be an extension of S’ with Eg» p?.
Then Fg» p?, so the induction hypothesis yields Fg» A. Since A Fg ¢* and
Eg» A we conclude Fg ¢*, hence by arbitrariness of $” also p* Eg/ ¢*. An
analogous argument establishes p® Fg ¢°. Lemma 33 yields p* Fg ¢ and
p2 Fg q. Since F5 p*VE we also have g pAVE, so using the deduction of
this atom together with the deductions showing p** g/ ¢ and p® Fg ¢ we
can obtain a deduction showing g/ ¢ by applying p*VZ, ¢ — elim, hence
Fs q'. Since S’ was an arbitrary extension of S with A Fg/ ¢° and B Fg/ ¢*
for arbitrary ¢ € At; and we have shown Fg ¢' we conclude Fg AV B by
the clause for disjunction.

4. A=A—-B.

(=) Assume Eg A — B. Then, forany S C S’, A Fg B. Let S’ be an exten-
sion of S with Eg p?. Then Fg p?, so the induction hypothesis yields
Es A, hence g B and thus g/ p? by another application of the induction
hypothesis, whence Fg: pZ. By arbitrariness of §" we conclude p 5 pZ, so
Lemma 33 yields p* g p®. We can then use the rule p*—~Z — int to con-
clude g pA 5.

(<) Assume g pA7B. Let ' be any extension of S with g/ A. The induc-
tion hypothesis yields Fg p?. Since kg pA~5 we also have Fg pA=5,
and since g p” we can use both deductions to obtain a deduction showing
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kg pP through an application of pA~5 — elim. The induction hypoth-

esis yields Fg B, hence by arbitrariness of §’ we conclude A Fg B and so
':S A — B.

5. A= A°.

(=) Assume Fg A°. ‘
Then, for any S C S’, A*¥g: L. For the sake of contradiciton, assume
that for some S C S’ we have pAi F L. Let S” be an extension of S’ such

that Fg» A’. The induction hypothesis yields g pAi, so by composition
of deducti_ons we obtain Fg» L and thus Fg» L, whence by arbitrariness of
S" also A* Fg L. This contradicts the fact that A* #g L, so we conclude

pAi ¥sr L forall S C S’ hence it also follows by Lemma 25 that, for every

S C 5/, the system obtained by adding a rule concluding pAi from empty
premises to S’ is consistent.

Assume, for the sake of contradiction, that pﬁAi ¥s L. Then, by Lemma 25,
the system S’ obtained by adding a rule concluding p™4" from empty prem-
ises to S is consistent. But by the previous result we also have that the sys-

tem S” obtained by adding a rule concluding pAi from empty premises to S’

—-A

must be consistent. However, since Fg» p?" and Fg» p~4°, we can apply

the pﬁAi — elim rule to show g~ p*, and thus g~ L due to the properties
of the mapping a. Contradiction. Thus, p™4" Fg L, and so Fg p*° can by
obtained trough an application of pA* — int.

(<) Assume Fg p”. Suppose there is an S C S’ such that p* g/ p*. Then,
by p™4" — int we conclude g p~4" and, since S C S’ and thus g pA°,
we conclude -5/ p* through an application of pA° — elim, and thus Fg/ L.
Contradiction. Hence, for all S C _S’ we have p?’ Fg L. Induction hypoth-
esis: for all S C S it holds that A* #g. L, which by the clauses for classical
formulas yield Fg A°. o
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