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Abstract—The Integrated Sensing and Communications
(ISAC) paradigm is anticipated to be a cornerstone of the
upcoming 6G networks. In order to optimize the use of wireless
resources, 6G ISAC systems need to harness the communication
data payload signals, which are inherently random, for both
sensing and communication (S&C) purposes. This tutorial paper
provides a comprehensive technical overview of the fundamental
theory and signal processing methodologies for ISAC transmis-
sion with random communication signals. We begin by intro-
ducing the deterministic-random tradeoff (DRT) between S&C
from an information-theoretic perspective, emphasizing the need
for specialized signal processing techniques tailored to random
ISAC signals. Building on this foundation, we review the core
signal models and processing pipelines for communication-centric
ISAC systems, and analyze the average squared auto-correlation
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function (ACF) of random ISAC signals, which serves as a
fundamental performance metric for multi-target ranging tasks.
Drawing insights from these theoretical results, we outline the
design principles for the three key components of communication-
centric ISAC systems: modulation schemes, constellation design,
and pulse shaping filters. The goal is to either enhance sensing
performance without compromising communication efficiency or
to establish a scalable tradeoff between the two. We then extend
our analysis from a single-antenna ISAC system to its multi-
antenna counterpart, discussing recent advancements in multi-
input multi-output (MIMO) precoding techniques specifically
designed for random ISAC signals. We conclude by highlighting
several open challenges and future research directions in the field
of sensing with communication signals.

Index Terms—Integrated Sensing and Communications
(ISAC), deterministic-random tradeoff, modulation basis, con-
stellation design, pulse shaping, multi-antenna precoding

I. INTRODUCTION
A. Background and Motivation

EXT-generation wireless networks (5G-Advanced (5G-

A) and 6G) are increasingly recognized as a pivotal en-
abler for a broad spectrum of emerging applications, including
the Digital Twin, Metaverse, Smart Cities, Industrial Internet-
of-Things (IoT), and the Low-Altitude Economy powered
by Unmanned Aerial Vehicles (UAVs) [1], [2]. These appli-
cations promise to revolutionize industries and societies by
providing advanced digital experiences, real-time environment
monitoring, and intelligent automation. In May 2023, the
International Telecommunications Union (ITU) successfully
completed the Recommendation Framework for IMT-2030,
which is commonly referred to as the global 6G vision [3].
This achievement marks the formal initiation of the 6G stan-
dardization process, laying the foundation for the development
of next-generation communication systems. Among the six
key usage scenarios identified by the ITU, Integrated Sensing
and Communications (ISAC) stands out as a particularly
transformative innovation [4], [5]. ISAC is envisioned to
offer integrated solutions that combine wireless sensing and
communication (S&C) functions in a seamless and efficient
manner, thereby enhancing the performance and capabilities
of 6G networks [5], [6]. By incorporating native sensing
functionalities directly into the communication infrastructure,
ISAC-enabled cellular networks will further unlock distributed
sensing of unprecedented scale. In doing so, it will support
another one of key 6G usage scenarios, that of integrated
artificial intelligence (AI) and communications, by generating
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the necessary volume of sensory data to build the networked
intelligence.

ISAC technologies can be conceptualized in a number of
progressive stages [7]. The initial stage focuses on the inde-
pendent use of spectral resources by S&C systems, ensuring
no interference between the two. In the subsequent stage, both
S&C functions are consolidated onto a shared RF front-end. In
the third stage, namely, fully integrated ISAC systems, S&C
functions are performed on a unified hardware platform using
a shared waveform within the same frequency band [6]. In
such a system, a single radio signal is transmitted to both
deliver data information to communication users, as well as to
acquire critical sensory information from the returned echoes,
e.g., range, angle, velocity, trajectory, size and shape of targets
of interest, or even image of the surrounding environment.
This integration poses considerable challenges at the physical
layer (PHY), where innovative signaling schemes are crucial
for supporting higher-layer ISAC applications. Among various
design strategies, three primary approaches have garnered
significant attention from both academia and industry, as
outlined below.

1) Sensing-Centric Design: Sensing-centric design focuses
on incorporating communication bits into legacy radar wave-
forms, which is often referred to as the information embedding
method [8]. Taking chirp waveforms as an example, this can
be achieved by representing communication symbols using
inter-pulse modulation, through varying the amplitude, phase,
frequency, or even the chirp rate of each chirp pulse [9]-[11].
Additionally, for a MIMO radar system, useful information can
also be embedded in the spatial domain, through techniques
like sidelobe control of the beampattern [12]-[14], or via in-
dex modulation (IM) [15]-[18]. The IM-based sensing-centric
ISAC was first introduced in [15], where a set of IV, orthogonal
waveforms is transmitted from a radar equipped with N,
antennas. By permuting the assignment of these waveforms
to the antennas, information can be readily encoded, with
each permutation corresponding to a unique communication
symbol. This approach effectively enables data transmission at
a bit rate of fprp - logy V¢!, where fprp is the pulse repetition
frequency (PRF) of the radar. Building on this idea, the
multi-carrier agile joint radar communication (MAJoRCom)
framework [17], [18] introduces a more dynamic modulation
technique based on the carrier-agile phased array radar (CAE-
SAR) platform. In this scheme, the carrier frequency is varied
randomly between pulses, and different frequency tones are
allocated to individual antenna elements. This dual-domain
agility in both spatial and spectral dimensions facilitates the
joint execution of radar sensing and data communication tasks.
However, since most sensing-centric methods rely on inter-
pulse modulation (or slow-time coding) to avoid disrupting
the structure of radar waveforms, these approaches typically
result in lower data rates, constrained by the PRF [19].

2) Communication-Centric Design: The communication-
centric design refers to ISAC signaling strategies that
strictly follow the standard communication system process-
ing pipeline. In such systems, the sensing functionality is
implemented over standardized communication waveforms
and protocols, such as 5G New Radio (NR) [20] and IEEE

802.11ad [21], without altering the fundamental structure of
the signal processing chain. As a result, the available design
degrees of freedom (DoFs) are limited to tunable parameters
within this architecture. Early efforts in communication-centric
ISAC date back to the code-division multi-access (CDMA)
era, where Oppermann sequences were explored for dual-
purpose communication and radar functionalities [22]. A more
widely studied example is the orthogonal frequency division
multiplexing (OFDM) waveform [23], [24], whose sensing
capabilities were first demonstrated in [25]. Building upon
this, orthogonal time-frequency space (OTFS) modulation has
been proposed as a candidate for 6G ISAC due to its rep-
resentation in the delay-Doppler domain, aligning well with
radar target characterization [26]-[29]. However, while OTFS
shows resilience to Doppler shifts in communication systems,
its sensing performance is generally comparable to that of
OFDM, and both waveforms depend largely on the radar
receiver’s complexity for optimal performance [26], [29]. As
will be elaborated in later sections, OFDM achieves the lowest
average ranging sidelobe level when carrying independent and
identically distributed (i.i.d.) Quadrature Amplitude Modula-
tion (QAM) and Phase Shift Keying (PSK) symbols, making
it a strong candidate for ranging applications. Recently, affine
frequency division multiplexing (AFDM) has emerged as a
novel waveform offering robustness in high-mobility scenarios
while supporting both S&C objectives [30], [31]. While in
principle, any communication waveform can be repurposed
for sensing, this reuse comes with limitations. Since these
waveforms are optimized primarily for communication perfor-
mance, the sensing functionality, which is added as an overlay,
may suffer from reduced performance or limited tunability.
Nevertheless, the communication-centric approach remains
attractive due to its low complexity, backward compatibility,
and suitability for real-world deployment.

3) Joint Design: In contrast to communication-centric
methods, the joint design strategy offers far greater flexibility
by constructing ISAC waveforms from the ground up. This
approach does not rely on standard communication or radar
signal processing blocks. Instead, it formulates ISAC signaling
as a multi-objective optimization problem, allowing for end-to-
end waveform design that balances S&C performance. Typical
joint design formulations aim to optimize communication
metrics, such as inter-user interference, under sensing con-
straints like MIMO radar beampattern requirements, or radar
waveform similarity [32]-[37]. Alternatively, one may opti-
mize the sensing-specific objective functions, e.g., radar beam-
forming gain [38], [39] or Cramér-Rao Bound (CRB) [40],
subject to communication signal-to-interference-plus-noise ra-
tio (SINR) constraints. Beyond conventional optimization-
based approaches, joint design may also be realized through
learning based techniques [41], [42]. Recent advances fur-
ther consider practical implementation challenges, including
hardware impairments and front-end non-idealities [43]-[46].
Unlike communication-centric designs, joint designs are not
constrained to standard waveforms and may employ novel
signal structures, such as intra-pulse modulated chirps [32]
or other suitable constant-modulus analog waveforms, that
optimize sensing metrics while still carrying massive com-
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munication data. However, this flexibility comes at the cost of
increased computational complexity and lack of compatibility
with existing infrastructure, making joint design less viable for
near-term standardized deployment.

Among the three design philosophies, the communication-
centric ISAC design holds more promise for practical de-
ployment in 5G-A and 6G networks, primarily due to its
low implementation costs and full compatibility with existing
cellular infrastructure [20]. Indeed, ISAC standardization is
progressing well within the 3rd Generation Partnership Project
(3GPP), which builds upon the 5G NR protocols. For instance,
a key focus of 3GPP Release 18 (Rel-18) is on improving
device positioning [47], crucial for ISAC and wireless sensing
in 5G-A. As a further step, a Technical Report TR 22.837 was
introduced towards Rel-19 in April 2022, identifying 32 ISAC
use cases [48]. In August 2023, the Technical Specification
TS 22.137 outlined the service requirements for wireless
sensing, detailing eight key performance indicators (KPIs)
[49]. These include positioning accuracy, velocity estimation
accuracy, confidence levels, sensing resolution, miss detection
probability, false-alarm probability, sensing service latency,
and refresh rates. Additionally, in December 2023, a study
on channel modeling for ISAC was approved [50]. More
recently, the 3GPP defined the scope of 6G research in the
6G Study Item Description (6G SID, RP-251809) towards
Rel-20 [51], where “sensing” was identified as one of the
nine key objectives. Complementary work is also underway in
the European Telecommunications Standards Institute (ETSI),
focusing on ISAC-specific use cases and security. Meanwhile,
IEEE 802.11bf aims to enhance WLAN standards for sensing
[52]. On top of that, air interface technologies for ISAC are
expected to be finalized in the first set of 3GPP 6G technical
specifications under Rel-21 [53]. As part of this evolution,
research on PHY signaling and processing techniques for
communication-centric ISAC will become increasingly crucial.

B. Sensing With Communication Data Payload Signals

The current 5G NR and Wi-Fi-based communication-centric
ISAC signaling frameworks primarily rely on reference sig-
nals, commonly referred to as “pilots”, that are embedded
within standardized communication frame structures. For in-
stance, in 3GPP Rel-18, Reduced-Capability (RedCap) de-
vices utilize positioning reference signals (PRS) for downlink
positioning and sounding reference signals (SRS) for uplink
localization [47], [54]. Other PHY reference signals, such as
channel state information reference signals (CSI-RS), demodu-
lation reference signals (DMRS), and synchronization signals,
have also been leveraged for sensing applications [S5]-[57]. A
representative early implementation of this pilot-based ISAC
philosophy is the IEEE 802.11ad-based system developed for
vehicular networks [21]. In this framework, radar sensing is
performed using only the preamble of each Single-Carrier
(SC) PHY frame, namely, the Short Training Field (STF) and
Channel Estimation Field (CEF). This time-division design
cleanly separates the S&C functions and has demonstrated
practical feasibility and low implementation complexity.

Despite their favorable correlation properties (e.g., Zadoft-
Chu sequences, m-sequences, and Golay sequences) and ease

of implementation, such reference signals occupy only a
limited portion of time-frequency resources, typically around
10-15% in 5G NR and 1-2% in IEEE 802.11ad. For example,
in a typical 802.11ad SC PHY frame containing 511 data
blocks with a chip rate of 1.76 GHz, the preamble (comprising
7552 samples) accounts for only about 2.2% of the frame
duration. In long-frame configurations, this ratio drops to
as low as 0.36% [58]. Consequently, the achievable sensing
resolution and SINR is fundamentally constrained by the
restricted resources allocated to the reference signals. Scaling
up performance in such designs often requires accumulating
information across multiple frames, introducing additional
latency and system complexity. To overcome these limitations,
a promising direction is to repurpose the communication data
payload, which occupies 85% to 98% of the total time-
frequency resources, for both S&C tasks. By fully exploiting
the entire bandwidth and time duration of communication sig-
nals, this approach offers substantial improvements in range-
Doppler resolution, target detection probability, and parameter
estimation accuracy, which aligns closely with the long-term
vision of integrating pervasive, seamless sensing capabilities
into future 6G networks.

While leveraging data payload signals for ISAC offers
significant performance gains over conventional pilot-only
schemes, these signals are not inherently designed for sensing
applications, leading to critical challenges in implementing
communication-centric ISAC systems. First, unlike pseudo-
random sequences discussed earlier, data payload signals are
random signals that carry useful information [59]. These
signals are generated randomly from specific codebooks, with
their structure determined by the distribution of information
sources. Recent advancements in ISAC information theory
have underscored a key distinction between the requirements
for S&C. That is, communication systems rely on random
signals to efficiently convey information, while radar sensing
systems demand deterministic signals with favorable ambi-
guity properties. Consequently, the randomness embedded in
ISAC signals improves the communication rate but deterio-
rates sensing performance, giving rise to the deterministic-
random tradeoff (DRT) between S&C [60]-[63]. This tradeoff,
particularly concerning the input distribution of ISAC signals
[64], poses a significant challenge in characterzing the Pareto
performance boundary for S&C. In this context, the work
in [61] examined a basic point-to-point (P2P) ISAC system
operating over vector Gaussian channels, and evaluated the
achievable S&C performance at communication- and sensing-
optimal operating points, respectively, providing valuable the-
oretical insights into the design of more sophisticated ISAC
systems by leveraging the DRT.

Second, beyond the foundational nature of the theoretical
findings derived from ISAC information theory [60]-[63], it
is of practical importance to further evaluate and optimize
the achievable sensing performance under real-world com-
munication signals. Conceived primarily for data delivery,
communication signals have a format fundamentally different
from conventional radar signals. At its most basic level, a
practical communication signal can be decomposed into the
following key components [65]:
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o Channel Codes that encode information sources into
coded bit sequences to improve transmission reliability.

o Constellation Symbols mapped from bit sequences that
carry information.

o Orthonormal Modulation Basis that conveys these sym-
bols by formulating discrete-time signals.

o Pulse Shaping Filter that converts discrete time-domain
samples into continuous-time signals.

e MIMO Precoder required in multi-antenna systems to
enable multi-stream or multi-layer transmission.

Each of these components significantly influences the re-
sulting sensing performance, yet their impacts remain
largely unexplored. To effectively guide the development of
communication-centric ISAC systems for future 6G networks,
a deeper understanding of how these core elements of com-
munication systems influence the sensing performance is es-
sential. This understanding serves as the basic motivation of
the study in this tutorial paper.

C. Organization of This Paper

In this tutorial paper, we present a comprehensive techni-
cal overview of recent advances in the fundamental theory
and signal processing methodologies for P2P ISAC systems
that leverage random data payload signals [60]-[63], [66]-
[70]. We begin by introducing the DRT between S&C from
an information-theoretic standpoint in Sec. II, underscoring
the importance of developing tailored signal processing ap-
proaches specifically for random ISAC signals [60]-[63],
[71]-[73]. In particular, we review the capacity-distortion (C-
D) theory for state-dependent memoryless ISAC channels [63],
depicting the impact of input distribution for both S&C. We
then generalize our analysis to vector Gaussian channels by
examining the CRB-rate tradeoff for ISAC [61], which reveals
the optimal distribution and structure of ISAC signal matrix at
sensing- and communication-optimal points, and characterizes
the achievable S&C performance, respectively.

Expanding on this theoretical foundation, we proceed to
review the core signal models and processing pipelines for
communication-centric ISAC systems in Sec. III. A key focus
is on the auto-correlation function (ACF) of random ISAC
signals, which serves as a critical metric for assessing the
sensing performance in multi-target ranging applications [66].
Due to the inherent randomness of data payloads, analyzing
the statistical property of ACF becomes essential, instead of
relying on specific instances. Recent research has focused on
deriving a closed-form expression for the expected squared
ACF [66], taking into account arbitrary modulation techniques
and constellation mappings within the Nyquist pulse shaping
framework. This expression is metaphorically described as an
“iceberg-in-the-sea” structure, where the “iceberg” represents
the squared mean of the ACF of random ISAC signals,
determined by the pulse shaping filter, and the “sea level”
corresponds to the variance, which reflects the variability
introduced by the data randomness.

Drawing insights from these results, we further overview
the design principles for the three key components of
communication-centric ISAC systems in Sec. 1V, including

modulation schemes [67], constellation designs [68], and pulse
shaping filters [66], [69]. The objective is either to im-
prove sensing performance without sacrificing communication
efficiency, or, alternatively, to establish a scalable tradeoff
between the two. This balance is crucial for enabling the
seamless integration of S&C functionalities within the same
system. Notably, we show that among all orthogonal lin-
ear modulation schemes, OFDM attains the lowest average
ranging sidelobe level for i.i.d. QAM/PSK symbols [67]. We
then review a probabilistic constellation shaping method to
maximize the communication rate while further reducing the
sidelobe level for OFDM signaling [68], followed by a Nyquist
pulse design approach to reshape the ACF of ISAC signals
[66], [69]. Furthermore, we extend the discussion to more
complex MIMO settings in Sec. V, elaborating on the latest
advancements in data-dependent and data-independent MIMO
precoding techniques specifically designed for random ISAC
signals [70].

Finally, we conclude with a discussion of several open
challenges and promising future research directions in sensing
with random communication signals. We hope that this work
would provide reference value to the ongoing efforts for
implementing ISAC in the forthcoming 6G networks.

Notations

Throughout this paper, a, a, and A represent random
scalars, random vectors, and random matrices, respectively.
Their corresponding deterministic quantities are denoted by a,
a, and A, respectively. The size-N identity matrix is denoted
by In. The size-N discrete Fourier transform (DFT) matrix
is denoted as F, with its (m,n)-th entry being defined as

= — 2= ith j denoting the imaginary unit. The
Kronecker product and Hadarmard product between matrices
A and B are denoted by A ® B and A ® B, respectively.
|lz||, denotes the ¢, norm, which represents the ¢ norm
by default when the subscript is omitted. The notations E(-)
and var(-) denote the expectation and variance of the input
argument, respectively. (-)*, (-)7, and (-)¥ represent the
complex conjugate, transpose, and Hermitian transpose of their
arguments, respectively. a,, denotes the n-th column of A.
The notation Diag(-) denotes the matrix obtained by placing
its arguments on the main diagonal of a square matrix. Tr(-)
stands for the trace of a square matrix, and rank(-) stands
for the rank of a matrix. The subscripts in the aforementioned
notations may be omitted when they are clear from the context.

II. DETERMINISTIC-RANDOM TRADEOFF IN ISAC
SYSTEMS: AN INFORMATION-THEORETIC PERSPECTIVE

In this section, we introduce the fundamental DRT between
S&C, highlighting the need for developing dedicated signal
processing techniques towards random ISAC signals. We first
review the C-D theory for the state-dependent memoryless
ISAC channel, framing the S&C tradeoff as a functional op-
timization problem from an information-theoretic perspective.
Building on this foundation, we generalize the DRT to vector
Gaussian ISAC channels by depicting the CRB-rate region.
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Fig. 1. The P2P ISAC model: An ISAC Tx transmits a unified signal to
sense targets while communicating with a communication Rx. A dedicated
sensing Rx is either collocated with the ISAC Tx (monostatic mode), or placed
separately but connected with the ISAC Tx through a wired link (cooperative
bistatic mode).

A. System Model

We consider a P2P ISAC system, as shown in Fig. 1, where
the ISAC transmitter (Tx) emits a unified signal to both sense
targets and transmit information to a communication receiver
(Rx). Simultaneously, a dedicated sensing receiver (Rx) is
either collocated with the ISAC Tx (monostatic mode) or
placed separately and connected to the Tx via a wired link
(cooperative bistatic mode). In both scenarios, the sensing
Rx has full knowledge of the transmitted ISAC signal, while
the communication Rx does not, as the ISAC signal carries
information intended for the communication user. Specifically,
the primary objectives of S&C subsystems are:

o Sensing: Detecting the presence of targets and accurately
estimating key parameters such as delay, Doppler, and
angle by processing echo signals reflected from targets.

o Communication: Decoding information bits transmitted
by the ISAC Tx via processing the received signal output
from the communication channel.

In this model, communication performance is typically
measured by the achievable rate or channel capacity, which
is omitted here for brevity. The sensing performance, on the
other hand, critically depends on the specific sensing task.
Broadly, sensing tasks can be categorized into estimation and
detection, defined as follows [74], [75]:

« Estimation: Extracting target parameters, such as delay,
Doppler frequency, and angle, from noisy or interfered
observations.

o Detection: Determining the state of a target (e.g., pres-
ence/absence or multiple hypotheses) based on observed
echo signals.

Accordingly, estimation performance is typically quantified
by the MSE, while detection performance is evaluated using
metrics like detection and false-alarm probabilities. These
metrics are explained in further detail below.

« Estimation Metrics: Estimation accuracy can be eval-
uated by the difference between the ground truth and
estimated value. Let h be the ground truth of sensing
parameters, such as delay, Doppler, or angle, with h de-
noting their estimates. The estimation error is quantified
by the MSE ¢, defined as

2
) ; ey

EZ:E<’h—F1

where the expectation is taken over both h and h, given
their potential randomness.

o Detection Metrics: The detection problem, in its simplest
form, is commonly framed as a binary hypothesis testing
problem, where H, hypothesis stands for the case that
the sensing Rx detects only the noise, and H; hypothesis
signifies the situation that the sensing Rx receives target
return plus noise. Accordingly, the detection probability
Pp is the probability that, when the target is present,
the sensing Rx correctly chooses H;. The false alarm
probability, on the other hand, is the probability that the
sensing Rx erroneously selects 7; when the target is
absent. These probabilities can be expressed as:

PD = PI" (H1|H1) 5 PFA = Pr (H1|H0) . (2)

Notably, both detection and estimation metrics may be
unified as a generic distortion measure in the context of infor-
mation theory, which is defined by a bounded distance function
d(h, F]) For estimation tasks, a common distortion function is
the Euclidean distance, d(h, h) = |h — h|2, which induces the
MSE in (1). For detection tasks, one may define h € {0,1}
as a binary variable indicating the presence or absence of a
target, and use the Hamming distance d(h,h) = h & h as the
distortion metric. Accordingly, the expected distortion in this
case can be written as [60]:

]E{heaﬁ}:

(1@1)Pr(ﬁz1|h:1)+(0@90)Pr(ﬁ:0|h:0)

+(1@0)Pr(h=1h=0)+©a1)Pr(h=0h=1)

=1—Pp+ Pra,

3)
Under the Neyman-Pearson criterion [75], where Pra is fixed,
minimizing the average Hamming distortion in (3) leads to the
maximization of the detection probability.

Next, we review the C-D framework, which has emerged
as a powerful tool for analyzing the tradeoff between S&C
performance in ISAC systems. In this context, a generic
distortion metric is used as a universal KPI for sensing, without
committing to a specific task such as parameter estimation or
target detection. Rather than being derived from a particular
implementation, the C-D theory serves as an information-
theoretic abstraction of practical ISAC transmission models,
such as those illustrated in Fig. 1, with the goal of charac-
terizing the fundamental performance boundaries that jointly
govern both S&C under generic ISAC channel models.

B. Capacity-Distortion Theory

1) Information-Theoretic Model for Monostatic ISAC:
The shared use of resources in ISAC systems inherently
couples the performance of S&C, leading to a fundamental
tradeoff between the two functionalities. The C-D framework,
originally formulated in recent works such as [63], offers a
unified information-theoretic perspective on this tradeoff [76].
In contrast to the classical rate-distortion theory developed
for the lossy source coding [59], in which both rate and
distortion metrics pertain to communication fidelity, the C-D
framework re-interprets these metrics for the ISAC paradigm:
The achievable rate quantifies the communication throughput
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in the Shannon-theoretic sense, while the distortion serves
as a task-agnostic measure of sensing reliability, abstracting
over task-specific objectives. To elaborate, consider the P2P
monostatic ISAC system as an example', where the ISAC
channel is modeled as a memoryless state-dependent delayed-
feedback channel [63], [71]-[73], subject to a channel law,
defined as a conditional distribution P, where:

e x € X is the ISAC transmitted signal;

e h € H denotes the sensing channel state, representing the
target parameter of interest (e.g., delay, Doppler, angle,
or a binary detection variable;

e y € Y represents the received signal at the communica-
tion Rx;

e z € Z denotes the reflected echo signal used for sensing
(delayed feedback to the Tx).

As shown in the information-theoretic model in Fig. 2, the
ISAC Tx consists of two components:

e An enconder for delivering a message w € W;

¢ An estimator (collocated sensing Rx) for inferring the
unknown target parameter h by analyzing the received
echoes.

At each time slot ¢ € {1,2,...,
follows:

n}, the system evolves as

o The state realization h, ~ P, is drawn independently
from a known distribution;

o The encoder generates the ISAC signal x; = @; (w,z'!),
where z'~! = {z1,25,...,2;_1} denotes the sequence of
the prior echoes;

o The channel produces outputs y; and z; according to
Pyz\xh (yza Zi‘xia hz)

Upon relying on the above model, a (2"%,n) ISAC coding
scheme consists of [63]:

o Message Set V: containing at least 2" messages for
transmission;

« Encoding Functions ®; : WV x Z~! — X: one per time
index 7, generating each channel input x; as a function
of the message w and previously received echoes z°~1;

¢ Decoding Function ¢ : H™ x Y" — W: designed to
recover the transmitted message using both the sequence
of communication outputs y and the sensing channel
state h. The decoded message may be expressed as
W =1 (h", y™):

. State Estimator h : X" x Z" — H™ adopted by
the sensing Rx to estimate the state sequence hn =
h (x",z"), where H" denotes the finite set of recon-
structed state values.

2) S&C Performance Evaluation: To evaluate the sensing
performance of the presented ISAC system, we use the average
per-block distortion by relying on a certain distortion function
d(h,h), e.g., Euclidean distance for estimation or Hamming
distance for detection. This is defined as:

ZE{ (hishi)}. @)

I'While we focus on the P2P case, the C-D framework has been extended to
multi-user settings, such as two-user memoryless broadcast and multi-access
ISAC channels [72], [73].

INQ.) {d(h”, h™) }

6
| ISAC Tx | P,
—— A
WL Encoder i Pyzlxh Yi, C??T(m w
. h Estimator |
) (Sensing Rx)

__________ f[

Fig. 2. An information-theoretic model for the P2P monostatic ISAC system.

Zi—1

Thanks to the memoryless nature of the ISAC channel, it
is provable that the optimal estimator h* is single-letterized,
which minimizes the expected posterior distortion, given by

h*(z, z) := arg min Z Pyjxz(h|z, z)d(h, ). )
e i

This yields an estimation error:

() =E{dh. h*(x 2)lx =}, O

which acts as the sensing cost function for a given instance
of ISAC signal x. For communication performance, on the
other hand, we consider the average error probability of the
transmitted message:

2nR

PM .= 2nR ZPr W £ ilw = i). (7)

=1

To model the constraint on wireless resources (e.g., transmis-
sion power or bandwidth), we introduce a cost function b(-)
for the ISAC signal x, defined by

E {b(x" Z]E{b xi)} - ®)

Given a resource budget B, a rate-distortion-cost tuple
{R,D,B} is deemed achievable if there exists a (2", n)
ISAC coding scheme, such that [63]

lim P = (9a)
n—oo
lim A™ < D, (9b)
n— o0
lim E{b(x")} < B. (9¢)
n—0o0

Under the above framework, the C-D tradeoff of an ISAC
system is defined as
Cp(D) =sup{R|{R, D, B}is achievable}.  (10)
Although the above definition clarifies the operational mean-
ing of the C-D tradeoff, it is often challenging to directly

compute Cg(D) in a tractable manner. To that end, the fol-
lowing information-theoretic C-D function, which maximizes
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the conditional mutual information (MI) over the ISAC signal
distribution Py(z), was proved to be equivalent to (10) [63]:

Cp(D) =arg gl?ﬁl(x;ﬂh) (11a)
s.t. Z P (z)e(x) < D, (11b)

reX
> P(a)b(x) < B, (11c)

reX

where I (x;y|h) stands for the conditional MI between the
input x and output y conditioned on the channel h, and (11b)
and (l1c) represent the constraints on the average sensing
distortion and resource cost, respectively. For a given channel
law P, x, the functional optimization problem (11) may
be solved in an iterative manner via the celebrated Blahut-
Arimoto (BA) algorithm [77], [78].

3) Example of the C-D Tradeoff in the Linear Gaussian
Channel: We consider a scalar linear Gaussian channel P, |,
with the following input-output relationship [71]:

y=hx+n, z=y, (12)

where the channel coefficient h € R, obeying the Gaussian
distribution, is the parameter to be estimated by the ISAC
signal x € R, and n € R is the additive white Gaussian
noise (AWGN) with zero mean and unit variance. The resource
budget is the transmit power, which is set as E(|x|?) < B =
10. Here, the communication Rx wishes to recover x upon
receiving y, whereas the sensing Rx wishes to estimate h by
observing the echo signal z with a minimum MSE (MMSE)
estimator. We note here that the model (12) assumes perfect
feedback. This is a toy model simply to illustrate the C-D
tradeoff, which may not fully align with the realistic ISAC
transmission scenario elaborated in later sections.

Fig. 3 portrays the C-D tradeoff result as well as correspond-
ing optimal ISAC signal distributions under the above model,
through numerically solving problem (11). It is observed that
at points () and @), the optimal input distributions of x are
the Gaussian and BPSK constellations, respectively, corre-
sponding to the communication-optimal and sensing-optimal
performance. Along the C-D tradeoff curve, P,(z) smoothly
evolves from Gaussian to BPSK, indicating a gradual reduction
in the randomness of the ISAC signal [71].

C. CRB-Rate Region for Vector Gaussian ISAC Channels

1) Generic Framework: The C-D theory presented above
provides clear evidence of the DRT between S&C in terms of
the input distribution of the ISAC channel. A natural question
arises as to whether this tradeoff holds in more complex
scenarios, such as MIMO or OFDM systems with multiple
sensing parameters. To explore this, the study in [61] examined
the CRB-rate tradeoff between S&C in the context of the
following P2P vector Gaussian ISAC channel model:

Y. =H, )X+ Z,
Y. =HX+ an

(13a)
(13b)

where X € CNt*N denotes the dual-functional ISAC wave-
form emitted from the ISAC Tx, Y, € CN-*N and Y, €
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Fig. 3. The C-D tradeoff boundary of the real-valued scalar Gaussian channel
scenario with B = 10, as well as the Pareto-optimal input distributions P (x)
along the boundary.

CNexN are signal matrices received at the S&C Rxs, H, €

CNsxNe and H, € CNexNt represent the S&C channel
matrices, while Z; € CN+*N and Z. € CNe*N are white
Gaussian noise matrices, with each entry being i.i.d. and
following CA (0, 02) and CA (0, 02), respectively. Moreover,
the sensing channel H, is assumed to be a function of
the sensing parameter vector 1 € R, which has a prior
distribution P, and may include delay, Doppler, and angle
parameters of one or more targets. The two channels may be
correlated with each other to a certain degree, depending on
the specific ISAC scenarios.

While the focus of this tutorial is on the P2P ISAC channel
in (13), which corresponds to a single-user communication
and multi-target sensing scenario, this framework can be
readily extended to a multi-user (MU) scenario by treating H,
as the MU-MIMO communication channel matrix. However,
due to the complex coupling between users and targets, the
tradeoff between target sensing and multi-user communication
remains largely unexplored in the existing literature. Even
in communication-only scenarios, such as MIMO broadcast
channels, the capacity region is still an open problem in
information theory. The inclusion of multiple sensing targets
adds additional complexity to this challenge. This highlights
the need for foundational research before scaling to multi-user
systems, which is identified as a key direction for future work.

The sensing channel matrix H,; may have different forms
depending on the specific sensing scenarios and adopted target
models. Below, we discuss two typical cases.

o Multi-Target Angle Estimation: Consider estimating the
angles of () point-like targets within a single delay-
Doppler bin, using a MIMO-ISAC system. Here, the
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sensing channel is defined in the spatial domain as:

Q
H, =) B.b(0,)a” (), (14)
q=1

where (34, 04, and ¢, denote the complex amplitude,
angle of arrival (AoA), and angle of departure (AoD)
of the ¢-th target?, respectively, with a(¢) and b (0)
being the steering vectors of transmit and receive antenna
arrays, determined by the array geometry. Specifically,
for uniform linear arrays (ULAs) with half-wavelength
spacing, the steering vectors may be modeled as

a(9) = [Lermne, e me]

L . . T
b(0) = [1,e/n0, . e/ (N mDsin] (15)

where N;, N, and N, stand for the antenna number at
ISAC Tx, sensing Rx, and communication Rx, respec-
tively, and N is the number of time-domian snapshots.
Accordingly, the target parameter vector 1 is a size-4¢)
vector containing AoA, AoD and real/imaginary parts of
B4 for each target.

o Multi-Target Ranging with OFDM: Consider estimat-
ing the ranges of @ static targets under OFDM signaling
with N; subcarriers. Assume that each target has a
delay T, and a complex amplitude 3,. After removing
the cyclic prefix (CP), the sensing channel becomes a
circulant matrix, decomposable as:

Q
H, :FJI\LfIt Diag{z Bqc (Tq)}FNt) (16)

q=1

where F) is the IN-dimensional discrete Fourier trans-
form (DFT) matrix, and c (t) is the frequency-domain
steering vector defined over subcarriers, which is

c(t) = [1, eI2mAST e*ﬂ”(Nt*l)AfT} Toan

with Af being the subcarrier spacing. In such a case,
Ny = N, = N; represent the number of subcarriers, and
N is the number of OFDM symbols. As a consequence, 1
is a size-3(Q) vector comprising T, and the real/imaginary
parts of 3, for each target.

Beyond these examples, the generic model in (13) is widely
applicable to more complex sensing scenarios, which are
omitted here for brevity.

We now examine the CRB-rate tradeoff using the MIMO-
ISAC system as an example. As illustrated in Fig. 1, an
ISAC Tx equipped with N; antennas emits a dual-functional
ISAC signal X over N consecutive time slots, enabling
communication with an [V .-antenna communication Rx, while
simultaneously estimating the parameter vector 1 by observing
the echo signal Y, at an N,-antenna sensing Rx. We therefore
model X as a random matrix governed by a distribution
Px (X)), with its realization fully known to the sensing Rx
but unknown to the communication Rx. Under such a setup:

2Note that under the monostatic mode we have Bg =04, Vq.

e The communication performance is quantified by the
achievable rate, characterized by the input-output MI
conditioned on the channel H, i.e., I(X;Y|H,).

e The sensing performance is evaluated using the CRB,
which serves as the lower bound for the MSE of any
weakly unbiased estimator of the target parameter 1.

Since the unified ISAC signal X serves both S&C functions,
the ISAC system cannot simultaneously achieve sensing-
optimal and communication-optimal performance, leading to a
fundamental tradeoff between CRB and communication rate.
A rigorous analytical characterization of this tradeoff would
provide valuable insights for system design and ISAC signal
optimization.

Unlike conventional radar systems, the sensing CRB of the
considered ISAC system is not straightforwardly characteriz-
able due to the randomness in the probing waveform X. To
address this issue, one may treat X as a random but known
nuisance parameter, and resort to the Miller-Chang bound
(MCB) as a potential solution [79]. In particular, the MCB
is obtained by computing the CRB for a given instance of
X, and then taking the expectation over X. For any weakly
unbiased estimate 1, the resulting MSE is lower-bounded by
the Bayesian MCB as follows:

e=E{Il—nl*} = Ex {T (M) }

where My x € CHEXE js the Bayesian Fisher Information
matrix (BFIM) of 1 [80], which can be equivalently expressed
as an affine map of the sample covariance matrix Rx :=
N~IXXH in the following form [61]:

(18)

M, x = #(Rx) :=

N 71 T2

= ( B .RYB{ + Z B RxBj +Mp |,
s n=1 m=1

19)

with the term M p representing the prior FIM contributed by
P,,. Additionally, the matrices B , and By ,, are partitioned
from the Jacobian matrix 2YectHs)

The Bayesian MCB in (18) may be achieved by the max-
imum a posterior (MAP) estimator at the high SNR regime
[80]. By comparing (18) and (11b), it becomes evident that the
MCB serves as an equivalent average sensing cost function of
the random ISAC signal X, even though it is not a traditional
“distortion” metric. Consequently, the CRB-rate tradeoff in
the ISAC system can be framed as the following Pareto
optimization problem:

min o {Tr[(@®x) |} - (1= 1K YL

Px (X
(20a)

st. E{Tr (Rx)} = Pr, (20b)

where Pr stands for the average transmit power budget, and
p € ]0,1] is a parameter that balances the tradeoff between
S&C objectives. As illustrated in Fig. 4, adjusting o from
0 to 1 traces out the Pareto boundary of the two objectives,
capturing the achievable CRB-rate pairs and thus defining the
CRB-rate region of the ISAC system.
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Fig. 4. CRB-Rate tradeoff for a P2P monostatic ISAC system.

Despite the convexity of (20) with respect to Px, obtaining
the complete CRB-rate boundary is computationally challeng-
ing due to the infinite dimensionality of Px. Therefore, our
focus shifts to the two extreme points Pcg and Psc, represent-
ing the optimal ISAC signal distributions for communication
and sensing, respectively. Notably, the line segment connecting
these two points forms a time-sharing inner bound for the
CRB-rate region.

2) S&C Performance at Pcg: Given the linear Gaussian
model in (13b), the communication rate at Pcg is maximized
by a Gaussian input distribution, where each column of X
is independently drawn from CA(0, RS), with a statistical
covariance matrix defined by

RE =U.AcsUY, 1)

where U, contains the right singular vectors of H., and Acg
is a diagonal matrix with eigenvalues determined by the water-
filling power allocation approach. Consequently, the optimal
ISAC signal structure at Pcg is given by

X% = U, AYD, (22)

where D is an information-bearing random matrix containing
i.i.d. entries following CN(0,1). The resulting achievable rate
at Pcg can then be expressed by the renowned Shannon
capacity formula as

Ccs = E {1og det (I + o ?H R$SHY ) } . @)

In contrast to the communication rate that depends on
the statistical covariance matrix of X, the sensing CRB is
determined by the sample covariance matrix Rx. The latter
follows a complex Wishart distribution due to the Gaussian-
distributed X©S at Pcg. Unfortunately, the CRB at Pcg, which
involves calculating the expectation of a highly nonlinear
function of Rx, is unlikely to be expressed in a closed form.
To that end, one may resort to establishing the lower- and
upper-bounds of the sensing CRB ecg as follows [61]:

N-Tr { [@(R)C(S)} _1}

N — min {K, rank(f%%s)} .
(24)
Observe that the two bounds become identical when N — oo.

Tr { [@(ﬁgs)} _1} <egs <

3) S&C Performance at Psc: Evaluating S&C performance
at point Pgc is generally more challenging than at Pcg, as
neither the optimal ISAC signal distribution nor the achievable
communication rate is explicitly determined at this stage.
Denoting the CRB at Psc as egc, we can characterize it using
the Jensen’s inequality:

E{Tr |[(@Rx) "]} 2 T {(@[ERx) "}

o {fi(6)] =

where RSC is the optimal covariance matrix at Psc, attained
by solving the deterministic CRB minimization problem:

(25)

~ ~1-1 ~
RSC = argmin Tr{[sﬁ(R)} } s.t. Te(R) < Pr.
R-0, R=RH
(26)
The equality in (25) holds if and only if
1 ~
—XX# =Rx = E(Rx) = RS, (27

N

indicating that Rx becomes deterministic at Psc>. This sug-
gests the optimal ISAC signal structure at Psc as follows:

X5¢ = VN(RYO)V2Q = VNU.AYQ,  (28)

where Uy and Agc are the eigenvectors and eigenvalues of
RSE, and Q € Crank(Ase)XN s 3 semi-unitary matrix (i.e.,
QQ* = I that carries communication data, which belongs to
the Stiefel manifold. The communication degrees of freedom
(DoFs) are constrained to Q due to the deterministic nature of
R§(C. Under this configuration, the achievable communication
rate can be expressed as

Csc = argmax I (Q; Y JH,) s.t. QQY =1.
Pq(Q)

Deriving an explicit form of Cgc is challenging; however, as
shown in [61], the asymptotic rate at Psc in the high SNR
regime is given by:
I'ank(/lsc)
2N

(29)

Cso :E{ (1
+0(a?2),

) log det (o, *H . RSCH) + co}
(30)

where ¢y is irrelevant to the SNR and approaches zero as
N — oo. The rate in (30) may be achieved asymptotically by
a uniformly distributed QQ over the Stiefel manifold.

4) DRT in Vector Gaussian ISAC Channels: We now turn
to the discussion of the DRT for the vector Gaussian ISAC
model in (13), by examining the S&C performance at two
corner points. First, it is clear from the structures of (22) and
(28) that the randomness level of ISAC signals decreases as
the system shifts from the communication-optimal point to the

31t is worth mentioning a special case when N — oo, in which Rx
becomes deterministic at Pgc, such that the equality in (25) and (27) both
hold. In this case, due to the deterministic property of Rx, the Gaussian
signaling becomes optimal for both S&C functions, and we can optimize the
covariance matrix Rx to characterize the complete Pareto boundary between
Psc and Psc; see, e.g., [36], [37] for examples when H (1) and H are
deterministic (instead of random in our context). This, however, only serves
as an S&C performance upper bound for the general case with N being finite
in general.
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Fig. 5. The outer bound and the semi-unitary-Gaussian time-sharing inner
bound of the CRB-rate region for the task of simultaneous target angle
estimation and single-user MIMO communication, with various values of
snapshot number V.

sensing-optimal point. This occurs because the communication
codewords transition from the i.i.d. Gaussian matrix D to the
uniformly distributed semi-unitary matrix Q. This tradeoff in
the optimal input distribution of ISAC signals can be seen as a
generalized form of the Gaussian-BPSK tradeoff in the scalar
Gaussian channel, discussed earlier in the C-D theory.

Additionally, the DRT is evident in the achievable rate (29)
at Pyc, where a reduction in communication DoFs leads to a
rate loss compared to the Gaussian capacity Csc. Conversely,
greater randomness in the ISAC signal can impair the sensing
performance, as seen in the CRB. Specifically, (24) indicates
that a Gaussian-distributed ISAC signal could inflate the
CRB by a factor greater than 1, in contrast to the minimum
CRB achievable at Psc by signals with deterministic sample
covariance matrices.

5) Example of Simultaneous Target Angle Estimation and
Single-User MIMO Communication: To validate the effective-
ness of the above theoretical framework, we consider a simple
monostatic MIMO-ISAC system equipped with ULA antennas
for simultaneous target angle estimation and communication
in a single-target, single-user scenario. In this configuration,
the sensing channel matrix adopts the following structure:

H, = Bb(0)a’ (), (31)

where 3 and O represent the target’s complex amplitude and
Ao0A, respectively. The parameter vector is then given by:

n = [0,Re(B), Im(B)]" . (32)

We assume that 3 follows a circularly symmetric Gaussian
distribution with unit variance, while 0 follows a von Mises
distribution with a mean of 30° and standard deviation of 5°.
The system employs N; = N, = 10 antennas at the ISAC
Tx and sensing Rx, respectively, and N, = 1 antenna at
the communication Rx, which is positioned at 6. = 50°. In

Fig. 5, we examine the tradeoff between the CRB of AoA
estimation and the achievable communication rate, illustrating
both inner and outer bounds for varying snapshot number
N. The inner bound is achieved through a semi-unitary-
Gaussian time-sharing strategy, which combines optimal sig-
naling schemes at Pgc and Pcg in a time-division manner. The
outer bound, on the other hand, is derived by neglecting ISAC
signal randomness in the weighted optimization problem (20),
which reduces to solving the following deterministic convex
optimization problem by varying p from 0 to 1:
. -1
Aoin pTr [(4*(Rx)) }— (33)
(1 —p)logdet (I +o,*H.RxH!)

s.t. Tr (Rx) = PT.

It can be seen that there is a noticeable performance gap
between the inner and outer bounds due to the DRT between
S&C. However, as N increases from 3 to 50, this gap
diminishes, indicating that the DRT becomes less significant
with more independent observations.

D. From DRT Theory to Random ISAC Signal Processing

The information-theoretic insights presented in the previous
section reveal a fundamental tradeoff between S&C, rooted
in the statistical structure of the transmit signal X. This
tradeoff, termed the DRT, identifies the input distribution as
a critical design DoF in ISAC systems. Unlike traditional
radar systems that rely on deterministic or structured pseudo-
random signals (e.g., m-sequences, Gold codes), future 6G
ISAC systems must extract sensing information directly from
communication signals, which are inherently random due to
their data-carrying nature. This shift brings both opportunities
and challenges. On one hand, the randomness enhances com-
munication throughput by maximizing entropy and mutual in-
formation. On the other hand, it induces stochastic fluctuations
in the received echo signals, potentially degrading sensing
performance in terms of resolution, estimation accuracy, and
detection probability. As a result, it becomes necessary to
develop new performance metrics and processing methods
tailored to sensing with random communication signals.

To connect the theoretical underpinnings with practical im-
plementation, the following sections transition from capacity-
distortion theory to the physical-layer design and processing
strategies for communication-centric ISAC systems. We begin
by analyzing the sensing performance of standard communica-
tion waveform, examining their auto-correlation characteristics
and matched filtering behavior. We then explore how to
systematically design key building blocks, such as modulation
schemes, constellation mapping, pulse shaping filters, and pre-
coding strategies, to enable joint S&C operation with tunable
tradeoffs. Due to space constraints, other system components
such as source/channel coding and quantization are left for
future investigation. The subsequent sections are organized as
follows: Sec. III and Sec. IV focus on single-antenna ISAC
transmission with random communication signals, while Sec.
V extends the discussion to MIMO-based ISAC systems.
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III. COMMUNICATION-CENTRIC ISAC TRANSMISSION

We now turn to concrete signal processing techniques for
the point-to-point ISAC model introduced in Fig. 1, beginning
with the single-antenna case. Specifically, we consider an
ISAC system composed of a single ISAC Tx, a communication
Rx, and a sensing Rx. The ISAC Tx emits a random data-
bearing signal intended for the communication Rx. Simul-
taneously, the sensing Rx captures the echo of this signal
reflected from multiple targets, and subsequently estimates the
targets’ delay parameters. Consistent with the system setting
and assumptions in Sec. II-C, the information symbol vector
s is unknown to the communication Rx, but is fully known to
the sensing Rx.

A. Communication-Centric ISAC Signal Model
Let us consider the following generic baseband ISAC signal:

N-1

X(t) = Y xuplt —nT),

n=0

(34)

where T stands for the symbol duration, p(t) is the
impulse response of a pulse shaping filter, and x =
[x07x1,...7xN,1]T € CN*! represents N discrete time-
domain samples, generated from

N-1
x=Us = g SnUnp,
n=0

where s = [so,s1,...,sv_1]" € CN*! denotes N data
symbols that are independently drawn from a constellation S,
and U = [ug,u1,...,un_1] € U(N) is an N-dimensional
unitary matrix representing the orthonormal modulation basis
in the time domain. Note that signal model (34) serves as
a practical realization of the information-theoretic model in
Sec. II-B. The assumptions for these three components are
elaborated as follows:

1) Constellation: Throughout the paper, we adopt a rota-
tionally invariant constellation S with zero mean, zero pseudo-
variance, and unit power, defined as:

E(ls|*) =1,

We remark that most commonly employed constellations,
such as PSK, QAM, and Amplitude and Phase Shift Keying
(APSK), satisfy these criteria. The two exceptions are BPSK
and 8-QAM, which are seldom used in modern cellular
wireless networks. Additionally, the constellation needs not to
be uniformly distributed; each point may be transmitted with
distinct probabilities if the probabilistic constellation shaping
(PCS) technique is applied, as will be discussed later.

2) Modulation Basis: The modulation basis U € U(N),
which carries information symbols, is often referred to as
a “waveform” in a broader context, with U(N) denoting
the size-IN unitary group. For clarity, we list several typical
examples below:

(35)

E(s) =0, E(s?)=0, VseS.  (36)

e SC Modulation: U = Iy. In this case, the signaling
basis consists solely of N time-domain Kronecker-Delta
functions, forming an SC signal.

o OFDM Modulation: U = FK,I , where we recall that
Fy € CV*N represents the N-dimensional DFT matrix.
Here, the signaling basis is constructed using /N orthogo-
nal sinusoidal functions, which are also Kronecker-Delta
functions in the frequency domain.

o CDMA Modulation: U = Cy, where Cn € CN*N de-
notes the N-dimensional Hadamard matrix, correspond-
ing to Walsh codes widely used in CDMA2000 [81].

« AFDM Modulation: U = AZF{ AR, where A. =
Diag(1, ., e 2me(N - 1)? ). This configuration

makes U an inverse discrete affine Fourier transform
(IDAFT) matrix with tunable parameters c; and cs, with
symbols placed in the affine Fourier transform (AFT)
domain [23].

o OTFS Modulation: U = FII\}[l ® In,. In this case, the
symbols are mapped to the delay-Doppler (DD) domain,
where N7 and Ny = Nﬁl represent the number of
occupied time slots and subcarriers, respectively. Note
that OTFS is a 2-dimensional modulation scheme by its
definition [82].

To facilitate efficient signal processing in the frequency do-

main, we assume that a cyclic prefix (CP) is added to the signal

x, which is longer than the maximum delay of the target or

communication path.

3) Pulse Shaping Filter: The pulse shaping filter plays a
crucial role in modern wireless communication systems by
eliminating inter-symbol interference (ISI) while limiting the
signaling bandwidth. Here, we employ a band-limited Nyquist
prototype pulse with a one-sided bandwidth B and a roll-off
factor o, resulting in a symbol duration of T = 1+O‘ . The
Nyquist pulse ensures zero ISI among symbols, Wthh can be
expressed as the following condition:

~ 1, n=0
p(nT)={0’ n£0’
= [p(t)

where p (T (t — 7)dt is the ACF of p(t). This
translates to an equlvalent frequency domain condition, known
as the folded-spectrum criterion, given by [65]

5 o)

m=—0o0

—j2mel?
e’ ,

Vnez, (37)

(38)

where g(f) is the Fourier transform of p (7), which is also the
squared frequency spectrum of the pulse p(t).

B. Signal Processing for Communication and Sensing

In this subsection, we elaborate on the signal processing
pipeline for both S&C, which is also illustrated in Fig. 6.
Without loss of generality, we model both communication
and sensing channels as linear time-invariant (LTI) multi-path
channels containing I paths and @) targets, respectively. Their
time-domain impulse responses can be expressed as

Z Bid( qu

where 6(t) is the Dirac-Delta functlon, B; and -y, denote the
complex amplitudes of the ¢-th communication path and the

— Te, z 7—s,q (39)
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Fig. 6. A signal processing pipeline for P2P ISAC model in Fig. 1. The communication Rx aims to correctly detect symbols in the presence of multi-path
interference, whereas the sensing Rx aims at extracting range parameters of multiple targets.

g-th sensing target, respectively, with 7. ; and 7, 4 representing
the corresponding delays. For simplicity, we omit the impact
of Doppler phase shifts on the two channels here, reserving
those effects for future discussions. Note that h.(t) and hs(t)
may exhibit certain correlations depending on the geometric
environment, indicating that communication paths and sensing
targets might partially overlap. This overlap gives rise to
another fundamental tradeoff in S&C, known as the subspace
tradeoff (ST). Due to space constraints, we will not delve into
the details of the ST here and instead refer interested readers
to [62] for further information.

1) Receive Signal Model: By transmitting the ISAC signal
X(t), the received signals at the communication and sensing
Rxs are expressed as

Ye(t) = he (t) *X(t) + z(t)

N-1
- Z Bz Z an t - TLT Te z) + Zc(t) (403.)
= n=0
ys(t) —hs( ) #X(t) + zs(t)
Q N-1
=Y "9 Y xup(t —nT —7.4) +24(t),  (40b)
q=1 n=0

where z,(t) and z,(t) stand for the zero-mean white Gaus-
sian noise with variances o2 and o2, respectively. For the
communication Rx, the objective is to detect the information
symbols s embedded in X(¢) from (40a), using an estimate of
the channel h.(t). In contrast, the sensing Rx aims to detect the
(@ targets and extract corresponding delay parameters {7 4}
by the observation in (40b), with prior knowledge of X(t).

2) Signal Processing for Communication: Let us first dis-
cuss the signal processing procedure at the communication
Rx’s side. Upon receiving y.(t), the communication Rx per-
forms a symbol-wise matched-filtering (MF) by using the
pulse shaping filter, leading to the following output signal [65]:

Je(r) = / ye(t)p" (t — 7)dt. 1)

Sampling at 7 = (7', where ¢ € Z, yields

Zﬁz anpz n,Te,i +chv

where py - := p(kT —7), and Z.; = [ z.(¢)p* (t — ¢T)dt rep-
resents the output noise, which remains Gaussian distributed.
By defining y. as the discrete MF output vector, where its
(¢ + 1)-th entry corresponds to y.(¢T"), we obtain:

y.({T) = (42)

I
= Zﬁiﬁ;ix +Ec = H./Us +EC7

(43)
=1
~ -~ ~ ~ T
where Z. = [Z;0,Z¢,1;---,Ze,N—1] , and

poch,i p_lﬂ—c,i p_N+17Tc,i

~ P17, Po,r.; P-N+2,7.;
P, = ) ) ) (44)

pN—l,‘rc’i pN—Q,TCJ‘, pO,TC,i

is a Toeplitz matrix, making the equivalent channel matrix H,
also Toeplitz. If a CP is added to the time-domain sequence
x, then H. becomes approximately circulant after the CP is
removed from the received signal. It can be observed that ISI
exists among the entries of s since H .U is not a diagonal
matrix. To recover the information symbols, the ISI needs to
be eliminated through channel equalization. This is typically
achieved by first estimating H. using known pilot symbols,
followed by implementing an equalizer based on the estimate.
To reduce signal processing complexity, one may employ
OFDM modulation by setting U = F¥, which yields:

yOroM — 0 Fil's + 7,

= VNF}! Diag (Fyh,) FyFils + 7,

= VNF{ Diag (Fxh.)s + Z, (45

where we utilize the property that a circulant matrix can be
diagonalized by the DFT matrix [83], with h. denoting the
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first column of H.. Accordingly, the ISI can be removed by
simply performing a DFT on (45), resulting in:

FyyOoM — \FDlag(FNh)erFsz,

(46)
which can be readily processed as /N parallel additive white
Gaussian noise (AWGN) channels.

While OFDM minimizes the complexity of symbol detec-
tion by diagonalizing the multi-path channels, other modula-
tion schemes such as SC, CDMA, AFDM, and OTFS can also
be employed to satisfy specific application requirements, such
as ensuring reliable communication in high-mobility channels.

3) Signal Processing for Sensing: We now turn our focus
to processing the received sensing signal (40b) to extract the
target delay parameters, where the first step is also to perform
MF over the observed echo signal ys(t). In sharp contrast
to its communication counterpart, the matched filter used for
sensing is the transmitted baseband signal X(t) rather than the
pulse shaping filter p(t), leading to the following output [84]:

X (t — 7)dt
/t—qu t—T)dt+/ s(OX* (t —7)dt

—Toq) T2:(7), 0<7 <NT. (47)

where R(7) = [X(¢)X*(t—7)dt is the ACF of the ISAC signal
X(t), and z4(7) is the output Gaussian noise. It is worthwhile
to point out that other methods, such as compressive sensing,
may also be adopted to reduce sampling rates and improve
resolution [85]. In order to highlight the impact of random
data over sensing performance, here we employ the most basic
MF approach for ranging, while designating the investigation
of more advanced algorithms as our future work.

Notably, ys(7) can be interpreted as a linear combination
of @ time-shifted versions of R(7), with added noise, often
referred to as the range profile in radar literature [86]. To detect
the targets, one typically identifies () peaks in the squared MF
output |ys(7)|?, where an example is portrayed in Fig. 7 for
ranging with OFDM signal using 16-PSK constellation and
root-raised cosine (RRC) pulse shaping under an SNR = 0
dB, including Q = 3 targets with varying amplitudes located
at 10m, 20m, and 25m, respectively. The target detection may
be achieved using thresholding algorithms such as the constant
false-alarm rate (CFAR) detector [86]. In order to improve the
sensing performance, it is desirable for |y4(7)|? to exhibit high
peaks at 7 = 7, while maintaining low sidelobes elsewhere,
which benefits both target detection and estimation.

To further enhance the sensing performance, the coherent
integration technique can be employed to effectively reduce
both sidelobe and noise levels. In this scheme, the ISAC
Tx transmits M i.i.d. information symbol sequences, de-
noted as s(9 s .. s(M=1 by emitting M ISAC sig-
nals X(O(¢),xM(#),...,xM- 1)( ). Assume that the target
parameters {7}, and {7s, q} ~_, remain constant over the
M transmission slots such that the sensing Rx can gener-

ate M range profiles y(o)( ),ygl)(T), Ly )(T) through

0 .......... Target l
Target 2
---------- Target 3
= 20 Range Profile
=
3
2 -40F
=
g
< 60 F
80 PRy P HIR RIS FE .
0 5 10 15 20 25 30 35
Range [m]
Fig. 7. An example of the range profile for OFDM signal with PSK

constellation, including 3 targets located at 10m, 20m, and 25m.

matched-filtering the M received echoes. By coherently inte-
grating these MF outputs, we obtain:

M—-1
b ) Y 3 R
m=0 q=1

| M
= F(m)
+ i /Z_Ozs (r), 0<7<NT.
(48)

where R(™) (1) is the ACF of X(")(t), and fgm)(r) represents
the output noise from the m-th matched filter.

Observe that the noise term in (48) has been averaged,
resulting in a reduction of its variance. Furthermore, the overall
target sensing performance now critically depends on the

geometry of the coherently integrated ACF, defined as:

] M=l
=7 Z R(™)(7)
m=0

As will be shown later, the sidelobe levels of R(7) are also sup-
pressed thanks to the independence among the M realizations.
Due to the randomness of communication symbols carried by
the ISAC signal X" (t), R(7) becomes a random function.
Therefore, it is more appropriate to analyze its statistical
properties rather than focusing on a single realization. In
particular, we aim to characterize the expected value of the
squared magnitude of R(7), given that R(7) is a complex-
valued function. This expectation is defined as:

0<7<NT. (49)

2
—7)dt

M-1

Z / 0m) () (1
(50)

In the following subsections, we review recent research efforts
in deriving closed-form expressions for (50) for a generic com-
munication signal, and provide useful insights for designing
ISAC signals based on the mathematical structure of (50).

E (IR(7)[?)

C. Characterization of the ISAC ACF

1) Discretization of the ACF: For ease of analysis, let
us commence by discretizing the ISAC signal X(t) over a
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temporal grid of Ts = %, yielding

N-1 N-1
X(kTs) = > xup(kTs—nT) = > x,6(kTs—nT)@p(kTy),
n=0 n=0

(6D
where £ = 0,1,...,LN — 1, and ® denotes the cyclic
convolution due to the addition of a CP. Note here that
L > 1 is required to capture the impact of pulse shaping on
sensing performance. If L = 1, the discretization simplifies to
x = Us due to the zero-ISI property of the Nyquist pulse.
This, however, neglects the contributions of the pulse shaping
filter on the mainlobe and sidelobes of the ACF.

Define p, := p(kTs), and X, := X(kTy), so that the
discrete versions of the pulse and baseband si%nal can be
represented as vectors p = [pg,p1,...,pLn—1] and X =
[io,il,...,iLN,l]T, with the energy of the pulse being
normalized to ||p||® = 1. In a practical communication Tx,
pulse shaping can be implemented digitally through an up-
sampling and interpolation procedure applied to x, recasting
(51) into a vector formulation as

X = qup, (52)
where
T T T 1T
Xup = [X070L717X170L717"'7XN*170L71] ’ (53)
and P € CLNXLN is a circulant matrix defined as
Po  PLN-1 --- D1
P1 Po ce D2
P= . . s (54
PLN-1 PLN-2 --- Do

which interpolates x to a higher resolution before transmission.
Accordingly, the discrete version of the ACF R(7) is given by

Ri = x"Jx =xIL P J, Pxyp, k=0,1,...,LN —1,
(55
where Jj, € CENXEN g the k-th periodic time-shift matrix,
defined by [87]

| 0 Ipn—g
Jk—[Ik 5 ] (56)
and
0 I
Jy=Jdn-r=JdF = [ Inr © ] (57)

Note that the periodicity in Jj, is again due to the addition of
the CP. It follows that the discrete version of the coherently
integrated ACF (49) becomes

. 1 M-—1
Re =17 > xmH g xm),

m=0

(58)

2) The “Iceberg in the Sea” Structure of the ACF: To shed
light on the communication-centric ISAC transmission under

random signaling, the v2vork of [66] derived a closed form of
the expectation of |Rx|", given by

— ~ 2
E(Re[?) = LN|Ff. 8|
|
Iceberg

#3780 + =28 |77 (o F)| .

Sea Level

— [E®y)|* +var(Re), k=0,1,...,LN —1, (59)

where ka € CN>! contains the first N entries of the (k+1)-
th column of the size-L N DFT matrix Fy,n, and V € RVXN
is defined as:

V = (FyU) @ (FLU*), (60)

where U is the modulation basis. Since V is generated by
the entry-wise square of an unitary matrix FyU, it becomes
a bi-stochastic matrix with nonnegative real entries [88], each
of whose rows and columns sums to 1. Moreover, x denotes
the kurtosis of the adopted constellation S, defined as [67]:

_E{s-EOI"} _
O E{ls—E(s)*}
which is the normalized fourth moment of the constellation.
Finally, due to the folded spectrum criterion and that the roll-
off factor a < 1, the vector g € CV*! is determined by the
squared spectrum of pulse p in the following manner:

E(s|*), VseS, (61)

jork

gr=9+(An—gle T,

(62)

where g = [g0,91, - - - ,gN_l]T contains the first N samples
of the squared spectrum N(Fpyp) ® (Fjyp*) € CEN*L
Notably, the impact of all three signaling blocks—modulation
basis, constellation, and pulse shaping—on the shape of the
ACF is well-captured in (59).

The equation (59) reveals an intriguing “iceberg-in-the-sea”
structure. The “iceberg” portion represents the squared mean
of Ry, which can be rigorously shown to correspond to the
squared ACF of the pulse itself [66], expressed as:

LN|f1£r1§k|2 = |PHJ1cp
This “iceberg” component defines the overall shape of (59).
Meanwhile, the “sea level” aspect is driven by the variance
of Ry, which arises largely from the randomness of commu-
nication symbols. By coherently integrating M MF outputs
derived from M i.i.d. ISAC signals, the “sea level” can be
significantly reduced by a factor of M.

3) Example on the Average Squared ACF of OFDM Signal-
ing: Fig. 8 demonstrates an example using OFDM signaling
with a 16-QAM constellation and o = 0.35 RRC pulse
shaping, under an L = 10 over-sampling ratio. Here, we
compare the average squared ACFs for various values of M.
Notably, the ACF of the random OFDM signal aligns closely
with the pulse’s ACF near the mainlobe region, representing
the “tip” of the “iceberg”. Beyond this region, the sidelobes
are dominated by the “sea level” component. By increasing the
number of coherent integrations from M = 1 to 100 and then

> k=0,1,...,LN—1.

(63)
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Fig. 8. The average squared ACF and corresponding coherent integration
versions of an OFDM signal, with 16-QAM constellation and o« = 0.35
RRC pulse shaping, N = 128, L = 10, M = 1,100, and 1000.

to 1000, we observe an obvious reduction in the “sea level”
by 20 dB and 30 dB, respectively, thereby revealing more of
the “iceberg” component in the average squared ACF.

Building on these observations, we next review recent
advances in optimizing modulation basis, constellation design,
and pulse shaping for random ISAC signals. These enhance-
ments aim to boost sensing performance while preserving
optimal communication quality, or to establish a scalable
tradeoff between S&C.

IV. WAVEFORM DESIGN FOR RANDOM ISAC SIGNALS

In this section, we present design guidelines for three
core building blocks in communication-centric ISAC systems,
focusing on reshaping the statistical properties of the ACF
of random ISAC signals. Specifically, our objective is to
minimize the average peak-to-sidelobe level ratio (PSLR)
of R; in (58), thereby enhancing multi-target sensing per-
formance in the range domain within the MF framework.
While Doppler effects were not explicitly modeled in this
paper, the reviewed ACF shaping framework may be extended
to design ambiguity functions with desired delay-Doppler
characteristics, thereby enhancing robustness to mobility. Such
Doppler-resilient design is particularly relevant in scenarios
with high relative velocities. Nevertheless, due to the lack of
closed-form expressions for the expected ambiguity surface
of random communication signals, such design remains ana-
Iytically intractable at present. A full characterization of this
behavior is thus reserved for future investigation.

According to [66], [67], the average mainlobe level of the
ACF under arbitrary modulation basis, constellation mapping,
and pulse shaping filter, can be expressed in closed form as:

B2 2, (k=N

E(Ro?) = N2+ 2

indicating that the mainlobe level is determined solely by the
kurtosis of the constellation. Furthermore, when the coherent

(64)

TABLE I
KURTOSIS VALUES OF TYPICAL SUB-GAUSSIAN CONSTELLATIONS
Constellation PSK 16-QAM 64-QAM 128-QAM
Kurtosis 1 1.32 1.381 1.3427
Constellation | 256-QAM | 512-QAM | 1024-QAM | 2048-QAM
Kurtosis 1.3953 1.3506 1.3988 1.3525

integration number M is sufficiently large, the impact of the
kurtosis becomes negligible, resulting in an approximately
constant average mainlobe level of N2. Recognizing this, it
suffices to optimize only the average sidelobe level, which can
be formulated as the following generic optimization problem:

min E(|Rx[?),

Vke KSL7
U€cU(N), Pi(s), 0<g<1

(65)

where U and g denote the modulation basis and squared
spectrum of the pulse, respectively, as defined above, Ps(s)
represents the input constellation distribution, and gy, refers
to the sidelobe region #. While seeking for the globally optimal
solution of (65) remains a highly challenging task, in what
follows, we elaborate on the general design methodology of
each component.

A. Modulation Basis Design

From (59), it is evident that the modulation basis influences
the sidelobe level solely through the squared norm term
VT (gr © fi.1)|? in the “sea level” part. For a given pair
of pulse shaping filter and constellation, (65) simplifies to:

- - 2
. . T (~ %
UIEI%JI(HN) (k—2) HV (Qk © fk+1) H

s.t. V = (FnU) © (FyU™). (66)
Clearly, the optimal modulation basis depends on the sign
of (k — 2), also referred to as the excess kurtosis [89].
Notably, if the constellation follows a standard complex Gaus-
sian distribution, i.e., s ~ CN(0,1), the kurtosis equals 2.
In such a case, the average sidelobe level at each lag k&
remains constant irrespective of the chosen modulation basis,
as the standard Gaussian distribution is invariant under unitary
transformations. Inspired by this, we classify constellations
into two categories: sub-Gaussian (x < 2) and super-Gaussian
(k > 2). It is worth noting that commonly used constellations,
e.g., QAM and PSK, are sub-Gaussian, with their kurtosis
values summarized in Table I. Meanwhile, super-Gaussian
constellations may be advantageous in scenarios demanding
high energy efficiency or where non-coherent communication
methods are employed [90]-[92]. Typical examples include
index modulation and APSK constellations with exponentially
growing radii [67].

4Although clutter effects were not explicitly modeled in this paper, the
proposed ACF design framework can be directly applied to target detection
in range-spread clutter environments. In such cases, clutter suppression can be
interpreted as a weighted sidelobe shaping problem, where the weights reflect
the clutter scattering strength at different range bins. For further modeling and
design details, we refer readers to [69].
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1) Ranging-Optimal Modulation for Sub-Gaussian Constel-
lations: Let us first discuss the modulation design for sub-
Gaussian constellations. In this case, problem (66) reduces to:

~ ~ 2
VT (90 fi )|
o H gr © fr

st. V= (FyU)o (FLU). (67)

Although problem (67) is generally non-convex, it was proven
in [66] that the globally optimal solution exhibits the following
structure:

w» = FAIT Diag(0), (68)

where IT is any size-N permutation matrix, and 8 € CV*!
can be any vector with unit-modulus entries. This corresponds
to OFDM modulation, subject to permutation and phase shifts
in the subcarriers. Recalling that V' is a bi-stochastic matrix,
the optimality of (68) is established by showing that the
objective function of (67) is maximized when V is any real
permutation matrix IZ. This result is derived by using the
Schur-convexity of the 2 norm and the concept of majoriza-
tion [93]-[95]. More technical details can be found in [66].

Overall, the result in (68) suggests the following: For
sub-Gaussian constellations (e.g., QAM and PSK), OFDM
achieves the lowest average ranging sidelobe at every lag.

2) Ranging-Optimal Modulation for Super-Gaussian Con-
stellations: Let us now move to the super-Gaussian constel-
lations with x > 2. In such a case, problem (66) becomes

- ~ 2
. T [~ *
Ueu(v) HV (gk © f’““) H

st. V= (FyU)o (FiUY). (69)

By exploiting again the Schur-convexity of the ¢ norm, and
applying a similar argument, one may readily show that the
objective Nis minimized if the bi-stochastic matrix is uniform,
namely, V = %11? Accordingly, the optimal modulation
basis takes the form of

U,

super = 1T Diag(8), (70)

corresponding to an SC modulation subject to arbitrary per-
mutation and phase shifts of time-domain symbols.

Overall, the result in (70) suggests that: For super-Gaussian
constellations, SC achieves the lowest average ranging side-
lobe at every lag.

3) Example of the Average Sidelobe Level of Different
Modulation Bases: We present an example in Fig. 9 to validate
the optimality of OFDM for sub-Gaussian constellations, using
the standard 16-QAM alphabet with a kurtosis of 1.32. The
average squared ACF is compared across three modulation
bases: OFDM, SC, and CDMA2000 (where U is a Hadamard
matrix), transmitting N = 128 i.i.d. symbols with an L = 10
over-sampling ratio, and employing an RRC pulse shaping
filter with o« = 0.35. As predicted by the theoretical results,
Fig. 9 demonstrates that OFDM produces the lowest sidelobe
at every lag, achieving a 5 dB improvement over both SC
and CDMA. Additionally, after coherently integrating i.i.d. MF
outputs for M = 100 times, a 20 dB reduction in the sidelobe
level is observed in the “sea level” region for all signaling
schemes.

0 I ——SC, M = 1, Numerical
—— CDMA, M = 1, Numerical
—— OFDM, M = 1, Numerical
10 | | SC, M =100, Numerical
"""" CDMA, M = 100, Numerical
"""" OFDM, M = 100, Numerical
a ---------- ACF of the RRC ("Iceberg")
T 20t
E) 5 dB reduction /|
3
~ 301
=
& i
g5 i
E 0L ]
< ’ iS dB red'yctiorw'
=50 i
-60 HE
-10 0
Delay Index

Fig. 9. The average squared ACF and corresponding coherent integration
versions of SC, CDMA, and OFDM signals, with 16-QAM constellation and
a = 0.35 RRC pulse shaping, N = 128, L = 10, M =1 and 100.

4) Discussion on Optimality of OFDM/SC: The afore-
mentioned results provide valuable design insights for the
modulation formats of communication-centric ISAC systems.
While these findings are mathematically rigorous, a further
understanding of the optimality of OFDM/SC requires ad-
dressing the following critical question: What is the physical
interpretation underlying these mathematical results?

To depict the physical insight, we examine the problem
through the lens of the Fourier duality and central limit
theorem (CLT). Consider a signal with infinite bandwidth,
as illustrated in Fig. 10a, which exhibits a perfectly flat
amplitude spectrum. According to the Fourier duality, this
implies that its ACF is a Dirac-Delta function in the delay
domain. This represents the ideal sensing signal for ranging,
as it leads to a perfect MF output with no ambiguity. However,
as shown in Fig. 10b, the presence of random fluctuations
in the communication data payload causes variability in the
squared spectrum of the ISAC signal, which, in turn, causes
random sidelobes in the ACF of Fig. 10b. Intuitively, this
suggests that minimizing the average ranging sidelobe level of
an ISAC signal is equivalent to minimizing the fluctuations in
its frequency-domain representation, which can be quantified
by the variance of the squared spectrum, and is proportional
to the frequency-domain kurtosis of the signal. Thus, reducing
ranging sidelobes can be achieved by minimizing the signal’s
frequency-domain kurtosis.

To explore this further, we re-examine the ISAC modulation
basis design as presented in Fig. 10c. As outlined in the
generic model in (35), a modulation basis can be interpreted
as a unitary rotation U applied to the i.i.d. symbol sequence
s. Accordingly, the corresponding frequency-domain digital
samples are given by FyUs, where the product FxU remains
unitary. Based on the CLT, a linear transform applied to
a random vector with i.i.d. entries results in a distribution
that asymptotically approaches a Gaussian form. As a con-
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Fig. 10. Physical interpretation of the optimality of OFDM and SC modulation. (a) The ideal case: A completely flat spectrum leads to a Dirac-Delta ACF;
(b) Random data payload causes variability in the squared spectrum, introducing random sidelobes in the ACF; (c) The optimal modulation basis minimizes
the fluctuation in the squared spectrum, which is measured by the kurtosis of F)yUs, where FyU is a unitary transform.

sequence, any unitary transform FnU increases the kurtosis
of i.i.d. sub-Gaussian symbols, while it decreases the kurtosis
of i.i.d. super-Gaussian symbols. Therefore, to minimize the
kurtosis of the vector FiyUs, where s is sub-Gaussian (e.g.,
QAM and PSK), the optimal strategy is to retain its kurtosis,
which is achieved by setting FyU = I, corresponding to the
OFDM modulation. In contrast, if s is super-Gaussian, since
any unitary transform would reduce its kurtosis, the optimal
strategy is to maximize the rotation over s. In this case, the
appropriate transformation is FyU = Fly, leading to the SC
modulation.

B. Constellation Design

Now, we shift our focus from modulation format to con-
stellation design. As noted in (59), E(|Rx|?) depends on the
constellation solely through its kurtosis. For a given pair of
modulation format and pulse shaping filter, the minimum
kurtosis (and consequently sidelobes) can be achieved with
any PSK constellation, given the fact that x > 1. However,
PSK may result in lower communication rates compared to
its QAM counterpart of the same order, highlighting again the
DRT in ISAC systems [61].

To balance the achievable rate for communication and
ranging sidelobe level for sensing, a practical approach is
constellation shaping [96], [97], which is originally tailored
for improving the spectral and energy efficiencies of digital
communication systems. Constellation shaping techniques can
be broadly classified into two categories: probabilistic con-
stellation shaping (PCS) and geometric constellation shaping
(GCS). PCS modifies the constellation’s probability density
function (PDF) through a distribution matcher, which maps the
bit stream to the desired probability distribution of the constel-
lation. In contrast, GCS directly optimizes the amplitudes and
phases of constellation symbols themselves. Both techniques
are capable of reshaping the statistical characteristics of the
adopted constellation.

1) Probabilistic Constellation Shaping for ISAC: For the
ISAC constellation design problem, we focus on the PCS
approach, which can be formulated as an optimization problem
aimed at maximizing the communication MI under a ranging
sidelobe level threshold, with the latter being governed by the
constellation’s kurtosis. Moreover, the designed constellation
This can be expressed as [68]:

max I(y.;s
max (Yeis)

st. E(ls|*) < co, E(Js]) =1,

E(s) =0, E(s?) =0, s€ S, (71)
where P;(s) stands for the distribution of constellation, y.
represents the MF output signal at the communication receiver,
and cg > 1 is a pre-determined constant that controls the
kurtosis of the constellation, ensuring that the average ranging
sidelobes remain within acceptable bounds. The alphabet S
denotes the set of discrete constellation points, which must
satisfy normalized power and rotational symmetry constraints,
as outlined in (36).

Problem (71) is inherently a functional optimization prob-
lem, as the optimization variable P;(s) is a function defined
over S. Indeed, problem (71) may be viewed as a specific ex-
ample of the C-D tradeoff problem in (11), where the kurtosis
constraint acts as a sensing cost function. However, the MI in
the objective function does not have a closed-form expression
due to the discrete alphabet S. To address this challenge, an
optimization-based PCS method was introduced in [68] for
M;-ary QAM constellations under OFDM modulation. In this
case, the multi-path communication channel is diagonalized
into N parallel orthogonal AWGN channels, allowing us to
focus on the MI of each single scalar AWGN channel, which
is denoted as I(y.;s).

Let ps = [ps,;1,Ps,2, - - -+ Ds, MJT be the probability distribu-
tion vector of the considered M;-ary QAM constellation, with
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Sm being the m-th QAM symbol. The MI, by its definition,
can be represented as [98]:

P(Yelsm)
07 m csm 10 7d c
I(ye; Zps / (vlsm) log = 2 ===y
= max Zpsm / (elsm)log Lom0e) gy (72
a(sm|ye) P(ye)

F(p57qs|yc)

where ¢(s,,|y.) is the probability transition function from the
received signal set )Vc to the constellation alphabet S, and
Qs|yc 1s its discretized form. The optimization problem (71)
can thus be reformulated as [68]:

maxmax F(ps, q5|yc)
Ps  Qsly.

S MS
4 2
s.t. E ps,m|8m| S €0, E ps,m|sm| -
m=1 m=1
M M
2

§ DPs;mSm = 0, § DPs,mSy, = 0
m=1 m=1

MS

Z DPs,m = 1,

m=1

Psm =0, Vom, (73)
where the last two constraints are enforced since ps is a
point on the probability simplex. Here, F(ps, gs|y.) is jointly
concave in ps and gy, and all constraints are linear in the
probability vector ps, making it a convex program. By exploit-
ing this fact, a modified Blahut-Arimoto (MBA) algorithm
was proposed in [68]. Through constructing the Lagrange
multiplier of (73), and iteratively solving for ps and gy,
in an alternative manner, the MBA method ensures efficient
convergence to the global optimum.

2) Example of Probabilistic Constellation Shaping for ISAC
Systems: We present an illustrative example to demonstrate
the effectiveness of the PCS approach for ISAC. Fig. 1la
shows the optimal PCS results for 16-QAM and 64-QAM
constellations at different kurtosis thresholds ¢y, with the
probability of each point represented by color depth. As the
kurtosis threshold decreases, symbols with nearly or exactly
unit modulus are transmitted with higher probabilities, while
those on larger or smaller circles are less likely to be used.
This aligns with the DRT theory, which suggests that sensing
favors constellations with constant modulus. Inevitably, this
reduces the communication MI and therefore introduces a
graceful tradeoff with the communication rates. Note that
reducing the ACF sidelobe level would enhance the weak
target detection performance in the range domain, as the
sidelobe of strong clutter can significantly interfere with or
even mask the mainlobe of weak targets. By realizing this,
Fig. 11b illustrates the explicit S&C performance of 64-
QAM under OFDM modulation across different transmit SNR
values, highlighting the achievable communication rate and the
detection probability for sensing a weak target in the presence
of strong clutter. By adjusting cg, the PCS method pro-
vides a scalable tradeoff between S&C performance metrics,
significantly outperforming the naive time-sharing approach

(@) 16-QAM (b) 16-QAM-PCS: ¢=1 (c) 16-QAM-PCS: ¢=1.15
| A ]
0 0.02 0.04 0.06 0.08 0.1 0.12

(d) 64-QAM (e) 64-QAM-PCS: ¢ =1 (f) 64-QAM-PCS: c,=1.25

; |
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(a) PCS results for 16-QAM and 64-QAM.
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(b) An explicit performance tradeoff between S&C.

Fig. 11. An illustrative example of the PCS technique for random ISAC
signals. (a) PCS results for 16-QAM and 64-QAM under varying values
of the kurtosis threshold co; (b) An explicit performance tradeoff between
target detection probability for sensing and achievable rate for communication
implemented by adjusting co from 1 to 1.381 (kurtosis of the uniform
64-QAM) in the PCS approach, under OFDM modulation and 64-QAM
constellation, with different values of transmit SNR.

between standard uniformly distributed 64-QAM and 64-PSK
constellations.

C. Pulse Shaping Design

We conclude this section by discussing pulse shaping design
methodologies for ISAC, given a specific pair of constellation
and modulation bases. A closer examination of (59) reveals
that E(|Ry|?) is a convex quadratic function of gy, and thus
convex in the squared spectrum of the pulse, namely, the vector
g. Therefore, one may minimize the sidelobe level within the
region [Cgp, over the feasible set of g.

1) Generic Pulse Shaping Design: To proceed, we first
discuss the constraints on g. It is evident that the folded
spectrum criterion (38) is implicitly satisfied in (62), ensuring
the Nyquist property of the pulse and consequently eliminating
the ISI. This guarantees that the communication performance
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remains unaffected. Moreover, the pulse has a roll-off factor
a € [0,1], implying that (1 — «)N entries of g are either 0
or 1. Upon letting N, = aN, and assuming that N — N, is
even, these constraints can be expressed as

. N_Na
0, if0<n< -1,
gn = (74)
e NN oy

Additionally, to ensure the roll-off part is monotonically

increasing, we impose the following constraints:
NoNogpy NtNo

Finally, the power of the pulse has been normalized, yielding

the constraint: N1
— N
> = bR

n=0

Therefore, the generic pulse shaping problem may be formu-
lated as [69]:

In+1 — gn > 0, 2. (75

(76)

min E(|§k|2), VkeKsL
0<g<1

st (74) — (76), (77)

which is a linearly constrained convex Pareto problem.

2) Iceberg Shaping: To further simplify the problem, note
that the geometry of E(|R|?) is primarily determined by the
“iceberg” part when the coherent integration number M is
sufficiently large. Based on this observation, one can focus
on shaping the “iceberg”, i.e., the squared ACF of the pulse
shaping filter itself, rather than minimizing the sidelobes of
both the “iceberg” and “sea level” components. In this case,
the objective is to minimize either the sum of the sidelobes
over the region [Cgp of the iceberg, or the maximum sidelobe
within this region, yielding the following problem [66]:

~ 2 ~ 2

. H ~ H ~

min ‘ ‘ or max‘ ‘

0292 E fk+1gk £ fk+1gk
kesL

s.t.  (74) — (76), (78)

which is a linearly constrained convex quadratic program that
can be efficiently solved via off-the-shelf numerical tools.

3) Example of ISAC Pulse Shaping Design: We present a
design example of the ISAC pulse shaping filter with coherent
integration in Fig. 12, where we apply the iceberg shaping
technique in (78) to minimize the summation of the ranging
sidelobes within the region [23.74m, 31.24m]. The ISAC signal
adopts OFDM modulation, carrying N = 128 iid. 16-
QAM symbols, under an over-sampling ratio of L = 10.
To demonstrate the performance improvement gained from
sidelobe reduction in the “iceberg”, we consider a two-target
detection scenario, where one target is located at 20m and the
other at 30m. The target at 20m has an amplitude 43 ~ 46
dB higher than the one at 30m. The benchmark is the RRC
pulse shaping, with a roll-off factor of a = 0.35 set for both
the RRC and iceberg shaping techniques.

Fig. 12a shows the ranging root mean squared error (RMSE)
curves with and without coherent integration. It can be ob-
served that, before the coherent integration operation, both

~ —O —RRC, No Integration
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(a) Range estimation performance with/without coherent integration.
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(b) Range profiles with/without coherent integration.

Fig. 12. The range estimation performance and profiles of two targets under
OFDM with 16-QAM constellation, where N = 128, a« = 0.35, L = 10,
M = 1000, and range region of interest is [23.74m, 31.24m].

the RRC and iceberg shaping techniques suffer from poor
ranging performance. However, after coherently integrating
over M = 1000 i.i.d. MF output signals, the ranging RMSE is
reduced by more than 78%. Additionally, the iceberg shaping
method achieves an extra 50% improvement in ranging ac-
curacy compared to its RRC counterpart. This improvement
is also clearly visible in the corresponding range profiles
shown in Fig. 12b. Without coherent integration, the weak
target is obscured by the sidelobes generated by the ‘“sea
level” for both pulses, resulting in large range estimation
errors. With 1000 times of coherent integration, the “sea level”
sidelobes are effectively reduced by 30 dB, after which the
ranging performance is primarily determined by the sidelobes
generated from pulses themselves. In this case, the peak
corresponding to the weak target can be accurately detected
for the ISAC signaling scheme with the designed pulse, thanks
to the minimization of the sidelobes within the range region
of interest. However, for the RRC pulse, the weak target may
be inaccurately located due to the high sidelobe at 24.5m.
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V. MIMO PRECODING WITH RANDOM ISAC SIGNALS

Building on the insights from single-antenna systems in the
previous sections, we now extend our analysis to multi-antenna
ISAC systems, where spatial-domain precoding introduces
an additional DoF for balancing S&C performance. While
earlier sections focused on time-frequency waveform design
aspects such as modulation, constellation, and pulse shaping
under random signaling constraints, this section examines how
spatial processing can be exploited to further enhance the
sensing capabilities of communication-centric ISAC systems.
The motivation for this section stems directly from the DRT
discussed in Sec. II. In MIMO systems, the random nature
of the transmitted symbols still limits the direct control over
the signal pattern in time and frequency, but precoding enables
structured control over the spatial distribution of signal energy,
even when the symbols remain random. This opens up new
research opportunities for shaping the spatial beampattern
for sensing purposes without compromising the information-
carrying role of the communication signals.

Specifically, we present the general MIMO ISAC signal
model in Sec. V-A, and then introduce a pair of precod-
ing strategies, namely, data-independent and data-dependent,
which respectively offer long-term and symbol-level control of
the sensing performance. Dedicated algorithms for designing
such precoders under both sensing-only and ISAC scenarios
are detailed in Sec. V-B and V-C, respectively. By doing so, we
provide a unified signal-level framework for extending random
ISAC waveform design into the spatial domain.

A. Signal Model and Ergodic LMMSE

Consider a P2P monostatic MIMO ISAC system, with a BS
equipped with V; transmit antennas and Ny receive antennas
at its sensing Rx, serving a communication user (CU) with
N, receive antennas while simultaneously detecting one or
multiple targets. Assume that target sensing is conducted over
a coherent processing interval consisting of N time-domain
snapshots. Following the vector Gaussian model in (13), the
MIMO signal models for S&C are expressed as

Y.=HX+ Z07
Y, =H. X+ Z;.

(79a)
(79b)

In the above, Y. € CNe*¥ represents the received signal
matrix at the CU receiver and Y, € CM+*N denotes the
echoes at the BS sensing receiver, the matrix H, € CNex Ny
is the P2P MIMO channel and H, € CV+*"t is the spatial-
domain TIR matrix to be estimated, the matrices Z,. € CNex¥
and Z, € CN=*N represent additive noise, with each entry fol-
lowing CA(0,02) and CN(0,02), and X € CNe*¥ denotes
the ISAC signal matrix. Additionally, we assume that the TIR
matrix H, follows a wide-sense stationary random process,
such that its statistical correlation matrix Ry = E{HYH,}
keeps unchanged.

We now make some remarks on the signal model in (79).
First, the model in (79) aligns with the one in (40) in a MIMO-
OFDM setting, which can be interpreted as narrowband S&C
signals over a sub-channel. Accordingly, H, and H, are S&C
channel matrices defined for each sub-carrier. Second, this

20

model may be seen as a special case of the generic vector
Gaussian model in (13), with the parameter to be estimated
being the sensing channel matrix itself, namely, 1 = vec (Hy).
As a special case, the TIR matrix may also be modeled as
(14). For sensing purposes, this section focuses solely on
estimating the TIR matrix H; for each sub-carrier, which will
then be collected across all sub-carriers for further processing
to extract delay and angle parameters of the targets.

Let us provide more elaboration on the ISAC signal matrix
X in (79), which is expressed as

X =WS, (80)

where W € CNt*Nt ig the precoding matrix to be optimized
and S € CM*N represents the data payload matrix. Let
f(W;S) denote a generic sensing cost function, as described
in (6). The objective of this section is to design the precoding
matrix W to optimize the sensing cost function f(W;S),
given the (statistical) information of S.

Analyzing and exploring the structure of the cost function
f(W;S) often provides valuable insights into the solution
of the corresponding optimization problem [99], [100]. To
facilitate the discussion, we use the linear minimum mean
squared error (LMMSE) precoder as a specific example of
the sensing cost function f(W;S) in this section. Given the
ISAC signal X and the correlation matrix Ry for the sensing
channel, the celebrated LMMSE estimator of H is given by:

H, =Y. (X"RyX + 02N, Iy) " X"Ry,  (81)
which results in an MSE expressed as [101]

1
O'ENS

-1
F(W;S) = Tr{(RHl + - WSSHWH) } (82)
Based on this, the precoding design problem can be straight-
forwardly formulated as:

min f(W;S)

, (83)
st W% < Pr,

where Pr is the transmit power budget.
In traditional MIMO radar systems, S in (80) is a deter-
ministic orthogonal training signal satisfying %SSH = Iy,
[102]. In this case, problem (83) simplifies into:
! WWH)_l
02N,

S

. 1
min Tr { (RH n (844)

st. [|[W]% < Pr. (84b)

The above problem has a closed-form water-filling solution
given by [101]:

2
Wwe = USTNSQ {max (poIn, — A_l,O)}% ;o (85

where QAQ! is the eigenvalue decomposition of R and yq is
a constant (i.e., the “water level”) such that |[Wwe|% = Pr.

In sharp contrast to traditional radar systems, ISAC systems
must employ random signals for target sensing. Since Gaussian
signals achieve the capacity of P2P Gaussian channels as
shown in (79a), we consider Gaussian signaling for ISAC
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systems as an example. Let S = [s1, 82, ...,sy] € CNeXN de-
note the transmitted random ISAC signal, where each column
is i.i.d. and follows the complex Gaussian distribution with
zero mean and covariance Iy, i.e., s; ~ CN (0, Iy,). In this
case, the objective function in problem (83) becomes a random
variable (as it depends on the random variable S). Therefore,
it is natural to consider an ergodic LMMSE (ELMMSE) that
accounts for the signal randomness, defined as [70]:

n %NWSSHWH)%] } ,
’ (86)

where the expectation is performed over S. The ELMMSE
may be interpreted as a sensing analogy to the ergodic
communication rate [103], which can be regarded as a time
average of the MSE achieved by random ISAC signals.

fetmmse (W) := E {Tr[(R;f

B. Sensing-Only Precoding Design

In this part, we explore the sensing-only precoding designs
under random signaling, which serves as a performance bench-
mark for the ISAC precoding that will be detailed later on. The
corresponding optimization problem may be formulated as:

n‘}‘i/n fermmse(W)

' (87)
Wz < Pr.

We present two precoding schemes tailored for problem
(87): Data-dependent precoding (DDP) scheme and data-
independent precoding (DIP) scheme.

1) Data-Dependent Precoding: Let {Sm} 1 denote a set
of M i.i.d. Gaussian data realizations. In the monostatlc mode,
each S, is known to both the ISAC Tx and the sensing Rx.
As a result, the precoding matrix W in problem (87) can
be designed as a function of S across all data realizations,
which we denote as W,, := W(S,,). The corresponding
optimization problem then takes the following form:

O'N

m s

min Tr{(R f—W,S,, sHWH) 1} )

Wil < Pr.

For each given data realization S,,, problem (88) ad-
mits a closed-form solution, as shown in [70, Theorem 1].
Specifically, let S, = UmZ‘me denote the singular value
decomposition (SVD) of S,,, and define the matrix I, as

0 0 - 1
0 --- 1 0

II, = (39)
1 0 --- 0

Then, the modified water-filling solution of problem (88) is
expressed as [104]:

W&pt = Q[(Mm@i - Bm)+] %H0U£7 m=12...,M,
(90)
where ©,, = UzN HOEmZ HO, m = (A@m)_ and pp,

is a parameter chosen to satisfy the transmit power constraint
IWePt % =

21

It is evident from the expression of WPt in (90) that the
precoding matrix W,,, depends on the data realization S,,.
Therefore, this scheme is referred to as the data-dependent
precoding (DDP). Since the DDP scheme is designed adap-
tively based on the instantaneous data realization, it generally
achieves the minimum ELMMSE; however, this comes at the
cost of high computational complexity.

2) Data-Independent Precoding: Different from the DDP
scheme, the DIP scheme aims to find a precoder W that
is independent of the signal realization. Given the fact that
the closed-form expression of fg mmse is non-obtainable, the
data-independent precoder can be obtained by applying the
stochastic gradient descent (SGD) algorithm to solve problem
(87) offline, providing a favorable tradeoff between estimation
performance and computational complexity. Below we present
the SGD algorithm in detail.

Let f(W; S) be defined as in (82). The gradient of f(W; S)
with respect to the variable W at a given point Wy is

-2
- (Rffl + 27w WoSSHWoH) W,SSH

oD

Accordingly, the gradient of fg mmse with respect to W at
point Wy is given by

V fetmmse (Wo) = E{V f(Wy;S)},

which again has no closed-form expression. Towards that end,
the key idea behind SGD is to approximate the true gradient
in (92) by the gradient evaluated at a mini-batch of samples,
given by

92)

V fetmmse(Wo) = (93)

V(W S),

\D| > VI (W; S)
Sep

where D denotes number of Gaussian samples generated

at point Wy. At the r-th iteration of the projected SGD

algorithm, the precoding matrix W is updated as
Wt — Proj {W(r) - €(T)@fELMMSE(W(T))}, (94)

where (") is the stepsize (or “learning rate”) and Proj{-} is
the projection operator onto the feasible set of problem (87),
i.e., the ball constraint.

Some remarks regarding the above SGD algorithm are in
order. First, to ensure the convergence of the (projected) SGD
algorithm, the nonnegative stepsizes (") in (94) must be
chosen to satisfy the following conditions [105], [106]:

is(’“) = oo and i ‘E(T) ’ < 00
r=1 r=1

Second, increasing the mini-batch size |D| can reduce the vari-
ance of the error in approximating the true gradient, thereby
improving numerical performance in terms of computational
efficiency and robustness. However, this comes at the cost of
having to compute a larger number of local gradients. By
the law of large numbers, as the mini-batch size tends to
infinity, the gradient in (93) converges to the true gradient in
(92), and the (projected) SGD algorithm effectively reduces

(95)
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Fig. 13. Achievable sensing performance of the DDP and DIP schemes com-
pared with the conventional water-filling approach under Gaussian signaling,
where the Ny = 32, N = 24 and Ny = 64, N = 48 cases are illustrated.

to the (projected) GD algorithm. Finally, incorporating the
moment information into the SGD algorithm can accelerate
its convergence. In particular, a modified version of SGD with
momentum was introduced in [70] to solve problem (87) in
the presence of complex unknown variables.

3) Example of Sensing-Only Precoding Design: We provide
an example in Fig. 13 to show the superiority of MIMO
precoding designs dedicated to random signals under sensing-
only scenarios, where we consider two parameter settings with
Ny = Ny = 32)N = 24 and N; = N; = 64, N = 48,
respectively. The attainable ELMMSE with varying SNR is
shown for both DDP and DIP approaches, with the water-
filling precoder (85) serving as the baseline scheme. The re-
sults for all the three methods are averaged over 1000 random
realizations of i.i.d. Gaussian signal samples. As predicted by
the theoretical analysis, the DDP scheme achieves the lowest
ELMMSE in general, followed by its DIP counterpart. On the
other hand, the water-filling precoder tailored for deterministic
training signals suffers from a 3 dB performance loss as well
as a severe error floor compared to the DDP and DIP designs,
confirming the necessity of taking the data randomness into
account.

C. ISAC Precoding Design

In this subsection, we extend the precoding design from
the sensing-only scenario discussed in the previous subsection
to the ISAC scenario. Throughout this subsection, we assume
that the channel matrix H, in (79a) is perfectly known. Then
the achievable communication rate (in bps/Hz) of the P2P
Gaussian channel in (79a) is [107]:

R(W) =logdet (Iy, + 0, 2 H-WWH"H?) . (96)
The precoding design problem in the ISAC system is formu-
lated as the minimization of ELMMSE, subject to communi-
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cation performance and power budget constraints, as follows:
min fermmse (W)
st. R(W) >Ry, |W|% < Pr,

where Ry corresponds to the communication rate requirement.
Again, we present two precoding schemes, namely, DDP and
DIP, tailored for problem (97).

1) Data-Dependent Precoding: We follow the same ap-
proach and notation as in Sec. V-B. By introducing an auxiliary
variable £2,,, = W,, W we can rewrite the rate constraint
in problem (97) as

R(£2,,) = logdet (I, + 0, *H .2, H") > Ry.

o7

(98)

The data-dependent precoder W can then be obtained by
solving the following optimization problem with respect to
W, for a given data realization S, :

win f(Wi; Sm)
st. R(£2,)> Ry, 2,, =W, Wi |W|% < Pr.

A penalty-based alternating optimization (AO) algorithm
has been proposed in [70] for solving problem (99). The
algorithm essentially applies the AO algorithm to solve the
penalized version of problem (99) as follows:

. . P . H)| 2
wiin f(Wp; Sp) + 2H-Qm W W %

i (100)
st.  R(£2,) > Ry, |W|% < Pr,

where p > 0 is the penalty parameter. Specifically, problem
(100) with respect to the variable §2,, is convex and can be
solved efficiently; the corresponding subproblem with respect
to the other variable W,,, can be addressed using the projected
gradient descent algorithm. For more details on the proposed
penalty-based AO algorithm, please refer to [70, Sec. IV].

2) Data-Independent Precoding: By introducing the aux-
iliary variable 2 = WW and adding a penalty term for
this equality constraint to the objective function, we obtain
the following penalized version of problem (97):

. p H 2
min Es {f(W;8)} + 5|2 -WW
min ~s{ ( )} 2H 7 (101)
st. R(2) > Ry, |W|% < Pr.

This problem can be solved in a similar manner to problem
(100) using the AO algorithm. The only difference is that the
projected SGD algorithm is employed to solve the subproblem
with respect to the variable W.

3) Example of ISAC Precoding Design: We illustrate the
tradeoff between S&C performance of DDP and DIP schemes
in Fig. 14, under N;, = N, = 32, N = 20 and 32, and
SNR = 15 dB. The baseline technique here is the precoding
design that minimizes the deterministic LMMSE (84a) subject
to the communication rate and power constraints. It can
be clearly observed that the DIP design acquires 3bps/Hz
communication rate improvements over the baseline method
for N = 20, while achieving the same ELMMSE for sensing.
Moreover, DDP achieves more than 1.5 dB reduction in the
ELMMSE compared to the DIP, while satisfying the required
communication rate.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in IEEE Journal on Selected Areas in Communications. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2025.3614025

Baseline (N = 20)
———DIP Scheme (N = 20)
DDP Scheme (N = 20)

Baseline (N = 32)
————— DIP Scheme (N = 32)
DDP Scheme (N = 32)

3 bps/s/Hz

Normalized ELMMSE [dB|

-

15 e ‘

18 20 22 24 26 28 30 32
Communication Rate [bps/s/Hz|

Fig. 14. The S&C performance tradeoff under different precoding designs,
with the parameter setting Ny = Ng = 32, N = 20 and 32, and SNR =
15 dB.

VI. OPEN PROBLEMS AND FUTURE DIRECTIONS

In this section, we highlight the open problems in sensing
with random communication signals, and identify promising
directions for future research in this area.

A. Open Problems

1) 2D Ambiguity Function Characterization: While much
of the current literature (including this tutorial) focuses on the
ACF to assess the sensing performance of communication-
centric ISAC signals, it is important to recognize that the ACF
offers only a partial characterization of the sensing capability.
In particular, the ACF corresponds to the zero-Doppler cut of
the ambiguity function (AF) [84], and thus primarily captures
performance in terms of multi-target ranging under static or
low-Doppler conditions. This makes it well-suited for applica-
tions such as indoor positioning or vehicular sensing in slow-
speed regimes. However, future 6G ISAC systems are expected
to operate in dynamic environments with high-mobility users
and targets, where both delay and Doppler resolution are crit-
ical. In such scenarios, the 2D AF, which jointly characterizes
the resolution and multi-target interference properties in the
delay-Doppler domain, becomes a more comprehensive and
meaningful metric for analyzing the sensing performance of
random ISAC signals. That said, extending the analysis from
ACF to the full AF is highly non-trivial. The AF involves
a two-dimensional correlation structure in the time-frequency
domain. For random ISAC signals carrying modulated data
symbols, the statistical behavior of the AF depends critically
on the modulation scheme, pulse shaping, and data distribution
of the signal. Deriving closed-form expressions or meaningful
performance bounds under general signaling formats thus
poses a significant theoretical and computational challenge.
Despite this, the insights obtained from ACF-based analysis
provide a solid first step toward understanding sensing with
random signals.
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2) Mismatched Filtering and Sparse Recovery under Ran-
dom ISAC Signaling: In this tutorial, as well as in most of
the existing literature, sensing signal processing is performed
using the MF framework. In this approach, the received echo
signal is convolved with a replica of the transmitted ISAC
signal to form a range profile, and target detection is based
on localizing the resulting peaks. While MF is known to
maximize the target’s SNR at each peak, it may not be optimal
for reducing sidelobe levels caused by the data payload. To
address this, mismatched filtering (MMF) could be explored
as a more general method to further enhance the sensing
performance, which conceives the impulse response of the
filter as a nonlinear function of the transmitted ISAC signal.
One example of the MMF is the Reciprocal Filtering [108],
which performs element-wise division of the echo signal in the
frequency domain. While the Reciprocal Filter can effectively
eliminate sidelobes generated by random data, resulting in a
clean “iceberg” without any “sea level”, it may suffer from the
SNR reduction by amplifying the noise. Thus, it is essential to
develop novel MMF techniques that balance sidelobe suppres-
sion and SNR loss under random ISAC signaling. Furthermore,
sparse recovery techniques, such as matching pursuit algo-
rithms and their variants, can be employed in this context to
enhance sensing resolution by exploiting the inherent sparsity
of radar targets [109]. However, a comprehensive investigation
is required to address the challenges posed by the randomness
of ISAC signals and its impact on the performance of these
algorithms.

3) Adaptive Modulation: In Sec. IV-B it was shown that
sensing favors signals with reduced power variability or even
constant modulus signals, at the expense of communication
rates. These signals however tend to have higher power effi-
ciency and offer higher SNRs, as well as the opportunity to
exploit wireless interference [110]. This avails the potential
to recover some of the rate loss through adaptive modulation
(AM) schemes [111], [112] and constructive interference (CI)
exploitation [113]. On one hand, this offers the opportunity
to shift the S&C tradeoffs from the ones showed above to
more favorable communication performance, and in this way
better secure the communication QoS in the communication-
centric ISAC scenarios. On the other hand, such approaches
would necessitate the development of new AM approaches,
co-designed with the ISAC signaling overviewed in this paper,
and ISAC-tailored CI approaches founded on the constellation
shaping above.

4) Sensing with Channel-Coded Signals: Channel coding
is a critical component of modern communication systems,
which adds redundancy to information bits to reduce or correct
decoding errors. Most current studies on communication-
centric ISAC systems focus on uncoded signals, where con-
stellation symbols are i.i.d. drawn from predefined codebooks.
While the effects of modulation schemes, constellation de-
signs, pulse shaping filters, and MIMO precoders on the
sensing performance have been investigated in this tutorial,
the impact of channel coding remains largely unexplored
[114]. Therefore, it would be valuable to evaluate the sensing
performance of random ISAC signals under various practical
channel coding schemes, such as Turbo, LDPC, and Polar
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codes, and to optimize these codes for achieving a balanced
S&C performance.

B. Future Directions

1) Networked Sensing and ISAC with Communication Sig-
nals: In addition to the point-to-point (P2P) ISAC setting con-
sidered in this work, networked sensing and ISAC represent a
transformative direction toward enabling large-scale seamless
S&C [115]-[119]. This necessitates a more comprehensive
investigation of ISAC waveform design and processing in
multi-user, multi-target, and multi-static environments, which
are considerably more prevalent in practical systems. By
leveraging collaboration among BSs and distributed mobile
devices, networked ISAC is particularly promising for applica-
tions like UAV-enabled low-altitude economy and smart trans-
portation systems [120], [121]. Unlike their conventional P2P
monostatic and bistatic counterparts, networked sensing and
ISAC encounter unique challenges, particularly in interference
management. In particular, the simultaneous transmissions
from distributed nodes can significantly degrade both S&C
performance across the network, and the inherent randomness
of communication signals further complicates the analysis
and management of interference. To tackle this challenge,
comprehensive research is needed on BSs’ synchronization,
adaptive BS clustering and scheduling, collaborative precod-
ing, and network-level joint resource allocation. For instance,
BSs can be dynamically grouped into clusters, where joint
precoding within each cluster can leverage cross-link inter-
ference as beneficial signals, while interference coordination
cross clusters is crucial to mitigate inter-cluster interference.
Based on the availability of data information, multiple BSs
can employ the DDP and DIP techniques to improve the
sensing performance without compromising communication
quality. In such cases, the joint optimization of data-dependent
and data-independent precoders across multiple BSs becomes
crucial, with distributed algorithm design playing a key role in
achieving enhanced performance while minimizing signaling
overheads.

2) Secure ISAC with Communication Signals: The move to
pervasive sensing through the ISAC infrastructure opens the
door to entirely new security vulnerabilities over the wireless
network [122]: i) Data-Security: the inclusion of data into
the probing ISAC signal makes it prone to eavesdropping
from potentially malicious radar targets, and with high signal
powers typically used for target illumination. Even if the
data itself is encrypted, simply detecting the existence of a
communication link can jeopardize communication privacy
[123], [124]. ii) Sensing-Privacy: The sensing functionality
introduced by the wireless network can be adversely exploited
by malicious nodes to independently sense potentially sensitive
information about the environment [125]. This is an entirely
new vulnerability that one never had to worry about in a
cellular network. As there is no data link—this is the ability
of a malicious node to independently sense its environment—
higher layer security approaches are inapplicable. The severity
of threat necessitates a new generation of PHY security
solutions tailored for ISAC. The constellation, pulse shaping,
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and precoding design overviewed in this paper needs to be
tuned for PHY security and can play a key role in protecting
against both data eavesdropping and adversary sensing. Their
co-design with classical PHY security approaches such as
artificial noise design, jamming, cooperative security remains
virtually unexplored. Most importantly, while data security
in ISAC is being explored theoretically [126], the realm
of sensing privacy lacks an information theoretic framework
with which to design metrics, signal processing solutions and
transmission mechanisms.

3) Sensing and ISAC with Artificial Intelligence (Al):
While this paper focuses on the information theory and signal
processing aspects of sensing and ISAC, Al has recently
emerged as a key enabler, particularly in processing sensing
and ISAC signals for recognition tasks [127], [128]. Deep
learning algorithms, for instance, are increasingly being uti-
lized for applications such as posture and activity recognition.
The integration of AI with sensing and ISAC introduces both
new challenges and exciting opportunities. A key challenge
arises when random communication signals are employed,
as designing Al algorithms capable of effectively processing
the resulting echo signals becomes complex. A promising
approach to address this is to combine well-established model-
driven radar signal processing methods with innovative data-
driven Al techniques. Another significant challenge is defining
new sensing performance metrics (e.g., recognition accuracy),
and understanding their relationship with the design parame-
ters like modulation types and covariance matrices of trans-
mitted communication signals to guide system optimization.
The incorporation of Al makes establishing quantitative con-
nections between them especially difficult. Despite these chal-
lenges, Al also offers powerful tools to address these issues.
Al techniques can model complex, nonlinear relationships
between sensing performance metrics and signal parameters,
providing insights that are difficult to obtain through traditional
methods. Furthermore, Al can optimize a variety of functional
blocks, e.g., input distribution of the constellation, through
end-to-end learning [129], making it an invaluable asset in
advancing sensing and ISAC technologies.

4) Integrated Sensing, Communication, and Powering (IS-
CAP) with Communication Signals: In addition to supporting
S&C, radio signals can wirelessly deliver energy to power
low-power devices such as sensors and IoT devices through
wireless power transfer (WPT). With spectrum resources be-
coming more limited, future wireless networks are anticipated
to combine sensing, communication, and WPT, creating multi-
functional ISCAP networks [130], [131]. ISCAP presents
new challenges in designing signal waveforms and optimizing
communication signals to balance the tradeoff among sensing,
communication, and WPT. Unlike traditional ISAC systems,
ISCAP must address the unique requirements of WPT, where
the energy harvesting efficiency depends heavily on the char-
acteristics of the transmitted waveform. Due to the non-linear
radio frequency (RF)-to-direct current (DC) conversion pro-
cess in energy harvesting devices, waveforms with high peak-
to-average power ratio (PAPR) are typically favored to maxi-
mize power transfer efficiency. To overcome these challenges,
optimizing modulation, waveform design, and beamforming is
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crucial. While some initial studies have explored waveform
and beamforming designs in simplified ISCAP scenarios,
a comprehensive system-level analysis and design remain
underdeveloped. For instance, analyzing WPT performance
under various waveforms, such as OFDM, CDMA, and OTEFS,
while accounting for practical energy harvesting constraints,
offers a promising research direction. Similarly, extending
data-dependent and data-independent precoding techniques for
ISCAP is also interesting.

VII. CONCLUSIONS

This tutorial paper has examined recent developments in
the field of communication-centric ISAC transmission, which
maximizes the resource utilization efficiency by leveraging
random data payload signals for both S&C tasks. We first dis-
cussed the information-theoretic foundation of ISAC, empha-
sizing the necessity of developing signal processing techniques
tailored for random ISAC signals. Following this, we reviewed
the core models and methodologies for communication-centric
ISAC systems, with a particular focus on analyzing the statisti-
cal properties of the ACF of ISAC signals, which is critical for
evaluating multi-target sensing performance. As a step further,
a significant part of the discussion was dedicated to the design
principles for key components of ISAC systems, including
modulation schemes, constellation design, and pulse shaping
filters. Here, we highlighted the importance of optimizing the
sensing functionality without sacrificing the communication
performance, or in some cases, developing a scalable tradeoff
that supports both functionalities. On top of that, we also ex-
plored the advancements in MIMO systems, particularly in the
context of dedicated sensing and ISAC precoding techniques
conceived for random data payload signals. Finally, the paper
concluded by identifying several open research challenges
and outlining future directions in communication-centric ISAC
transmission. It is our hope that this work will help guide
the ongoing development of ISAC air interface technologies
that are compatible with the current cellular networks, and
contribute to the standardization and implementation of ISAC
in future 6G wireless networks.

REFERENCES

[1] M. Chafii, L. Bariah, S. Muhaidat, and M. Debbah, “Twelve scientific
challenges for 6G: Rethinking the foundations of communications
theory,” IEEE Commun. Surveys Tuts., vol. 25, no. 2, pp. 868-904,
Second Quarter 2023.

[2] W. Saad, M. Bennis, and M. Chen, “A vision of 6G wireless systems:
Applications, trends, technologies, and open research problems,” IEEE
Network, vol. 34, no. 3, pp. 134-142, 2019.

[3] ITU-R WP5D, “Draft New Recommendation ITU-R M. [IMT. Frame-
work for 2030 and Beyond],” 2023.

[4] Y. Cui, F. Liu, X. Jing, and J. Mu, “Integrating sensing and communi-
cations for ubiquitous IoT: Applications, trends and challenges,” IEEE
Network, vol. 35, no. 5, pp. 158-167, 2021.

[5] J. A. Zhang, M. L. Rahman, K. Wu, X. Huang, Y. J. Guo, S. Chen, and
J. Yuan, “Enabling joint communication and radar sensing in mobile
networks - A survey,” IEEE Commun. Surveys Tuts., vol. 24, no. 1, pp.
306-345, 2022.

[6] F. Liu, Y. Cui, C. Masouros, J. Xu, T. X. Han, Y. C. Eldar, and
S. Buzzi, “Integrated sensing and communications: Toward dual-
functional wireless networks for 6G and beyond,” IEEE J. Sel. Areas
Commun., vol. 40, no. 6, pp. 1728-1767, 2022.

(71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

25

F. Liu, L. Zheng, Y. Cui, C. Masouros, A. P. Petropulu, H. Griffiths,
and Y. C. Eldar, “Seventy years of radar and communications: The road
from separation to integration,” IEEE Signal Process. Mag., vol. 40,
no. 5, pp. 106-121, 2023.

A. Hassanien, M. G. Amin, Y. D. Zhang, and F. Ahmad, “Signaling
strategies for dual-function radar-communications: An overview,” IEEE
Aerosp. Electron. Syst. Mag., 2016.

M. Roberton and E. R. Brown, “Integrated radar and communications
based on chirped spread-spectrum techniques,” in IEEE MTT-S Int.
Microw. Symp. Dig., vol. 1, Aug. 2003, pp. 611-614.

G. N. Saddik, R. S. Singh, and E. R. Brown, “Ultra-wideband multi-
functional communications/radar system,” IEEE Trans. Microw. Theory
Technol., vol. 55, no. 7, pp. 1431-1437, Jul. 2007.

M. Temiz, C. Horne, N. J. Peters, M. A. Ritchie, and C. Masouros, “An
experimental study of radar-centric transmission for integrated sensing
and communications,” IEEE Trans. Microw. Theory Techn., vol. 71,
no. 7, pp. 3203-3216, 2023.

A. Hassanien, M. G. Amin, E. Aboutanios, and B. Himed, “Dual-
function radar communication systems: A solution to the spectrum
congestion problem,” IEEE Signal Process. Mag., vol. 36, no. 5, pp.
115-126, 2019.

A. Hassanien, M. G. Amin, Y. D. Zhang, and F. Ahmad, “Dual-function
radar-communications: Information embedding using sidelobe control
and waveform diversity,” IEEE Trans. Signal Process., vol. 64, no. 8,
pp. 2168-2181, Apr. 2016.

A. Hassanien, M. G. Amin, Y. D. Zhang, F. Ahmad, and B. Himed,
“Non-coherent PSK-based dual-function radar-communication sys-
tems,” in Proc. IEEE Radar Conf. (RadarConf), May 2016, pp. 1-6.
E. BouDaher, A. Hassanien, E. Aboutanios, and M. G. Amin, “Towards
a dual-function MIMO radar-communication system,” in Proc. IEEE
Radar Conf. (RadarConf), May 2016, pp. 1-6.

D. Ma, N. Shlezinger, T. Huang, Y. Liu, and Y. C. Eldar, “FRaC:
FMCW-based joint radar-communications system via index modula-
tion,” IEEE J. Sel. Topics Signal Process., vol. 15, no. 6, pp. 1348-
1364, 2021.

T. Huang, N. Shlezinger, X. Xu, D. Ma, Y. Liu, and Y. C. Eldar, “Multi-
carrier agile phased array radar,” IEEE Trans. Signal Process., vol. 68,
pp. 5706-5721, 2020.

T. Huang, N. Shlezinger, X. Xu, Y. Liu, and Y. C. Eldar, “MAJoRCom:
A dual-function radar communication system using index modulation,”
IEEE Trans. Signal Process., vol. 68, pp. 3423-3438, 2020.

L. Zheng, M. Lops, Y. C. Eldar, and X. Wang, “Radar and communi-
cation coexistence: An overview: A review of recent methods,” IEEE
Signal Process. Mag., vol. 36, no. 5, pp. 85-99, 2019.

Z. Wei, H. Qu, Y. Wang, X. Yuan, H. Wu, Y. Du, K. Han, N. Zhang,
and Z. Feng, “Integrated sensing and communication signals toward
5G-A and 6G: A survey,” IEEE Internet Things J., vol. 10, no. 13, pp.
11068-11092, 2023.

P. Kumari, J. Choi, N. Gonzdilez-Prelcic, and R. W. Heath, “IEEE
802.11ad-based radar: An approach to joint vehicular communication-
radar system,” IEEE Trans. Veh. Technol., vol. 67, no. 4, pp. 3012—
3027, Apr. 2018.

M. Jamil, H.-J. Zepernick, and M. I. Pettersson, “On integrated
radar and communication systems using Oppermann sequences,” in
MILCOM 2008 - 2008 IEEE Military Communications Conference,
2008, pp. 1-6.

K. Wu, J. A. Zhang, X. Huang, and Y. J. Guo, “Integrating low-
complexity and flexible sensing into communication systems,” IEEE
J. Sel. Areas Commun., vol. 40, no. 6, pp. 1873-1889, 2022.

K. Wu, J. A. Zhang, Z. Ni, X. Huang, Y. J. Guo, and S. Chen, “Joint
communications and sensing employing optimized MIMO-OFDM sig-
nals,” IEEE Internet Things J., vol. 11, no. 6, pp. 10368-10383, 2024.
C. Sturm and W. Wiesbeck, “Waveform design and signal processing
aspects for fusion of wireless communications and radar sensing,” Proc.
IEEE, vol. 99, no. 7, pp. 1236-1259, Jul. 2011.

L. Gaudio, M. Kobayashi, G. Caire, and G. Colavolpe, “On the
effectiveness of OTFS for joint radar parameter estimation and com-
munication,” IEEE Trans. Wireless Commun., vol. 19, no. 9, pp. 5951—
5965, 2020.

W. Yuan, L. Zhou, S. K. Dehkordi, S. Li, P. Fan, G. Caire, and H. V.
Poor, “From OTFS to DD-ISAC: Integrating sensing and communica-
tions in the delay Doppler domain,” IEEE Wireless Commun., vol. 31,
no. 6, pp. 152-160, 2024.

M. E. Keskin, C. Marcus, O. Eriksson, A. Alvarado, J. Widmer, and
H. Wymeersch, “Integrated sensing and communications with MIMO-
OTFS: ISI/ICI exploitation and delay-Doppler multiplexing,” IEEE
Trans. Wireless Commun., pp. 1-1, 2024.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

[48]

[49]

[50]

[51]

This article has been accepted for publication in IEEE Journal on Selected Areas in Communications. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2025.3614025

L. Gaudio, G. Colavolpe, and G. Caire, “OTFS vs. OFDM in the pres-
ence of sparsity: A fair comparison,” IEEE Trans. Wireless Commun.,
vol. 21, no. 6, pp. 4410-4423, 2022.

A. Bemani, N. Ksairi, and M. Kountouris, “Affine frequency division
multiplexing for next generation wireless communications,” IEEE
Trans. Wireless Commun., vol. 22, no. 11, pp. 8214-8229, 2023.

, “Integrated sensing and communications with affine frequency
division multiplexing,” IEEE Wireless Commun. Lett., vol. 13, no. 5,
pp. 1255-1259, 2024.

F. Liu, L. Zhou, C. Masouros, A. Li, W. Luo, and A. Petropulu, “To-
ward dual-functional radar-communication systems: Optimal waveform
design,” IEEE Trans. Signal Process., vol. 66, no. 16, pp. 4264-4279,
Aug 2018.

F. Liu, C. Masouros, A. Li, H. Sun, and L. Hanzo, “MU-MIMO
communications with MIMO radar: From co-existence to joint trans-
mission,” [EEE Trans. Wireless Commun., vol. 17, no. 4, pp. 2755—
2770, Apr. 2018.

X. Liu, T. Huang, and Y. Liu, “Transmit design for joint MIMO radar
and multiuser communications with transmit covariance constraint,”
IEEE J. Sel. Areas Commun., vol. 40, no. 6, pp. 1932-1950, 2022.
X. Liu, T. Huang, N. Shlezinger, Y. Liu, J. Zhou, and Y. C. Eldar,
“Joint transmit beamforming for multiuser MIMO communications and
MIMO radar,” IEEE Trans. Signal Process., vol. 68, pp. 3929-3944,
2020.

Z. Ren, Y. Peng, X. Song, Y. Fang, L. Qiu, L. Liu, D. W. K. Ng, and
J. Xu, “Fundamental CRB-rate tradeoff in multi-antenna ISAC systems
with information multicasting and multi-target sensing,” IEEE Trans.
Wireless Commun., vol. 23, no. 4, pp. 3870-3885, 2024.

H. Hua, T. X. Han, and J. Xu, “MIMO integrated sensing and
communication: CRB-rate tradeoff,” IEEE Trans. Wireless Commun.,
vol. 23, no. 4, pp. 2839-2854, 2024.

J. A. Zhang, X. Huang, Y. J. Guo, J. Yuan, and R. W. Heath,
“Multibeam for joint communication and radar sensing using steerable
analog antenna arrays,” IEEE Trans. Veh. Technol., vol. 68, no. 1, pp.
671-685, 2019.

C. B. Barneto, T. Riihonen, S. D. Liyanaarachchi, M. Heino,
N. Gonzilez-Prelcic, and M. Valkama, “Beamformer design and op-
timization for joint communication and full-duplex sensing at mm-
waves,” IEEE Trans. Commun., vol. 70, no. 12, pp. 8298-8312, 2022.
F. Liu, Y.-F. Liu, A. Li, C. Masouros, and Y. C. Eldar, “Cramér-Rao
bound optimization for joint radar-communication beamforming,” IEEE
Trans. Signal Process., vol. 70, pp. 240-253, 2022.

J.  Miguel Mateos-Ramos, C. Héger, M. Furkan Keskin,
L. Le Magoarou, and H. Wymeersch, “Model-based end-to-end
learning for multi-target integrated sensing and communication under
hardware impairments,” [EEE Trans. Wireless Commun., vol. 24,
no. 3, pp. 2574-2589, 2025.

N. Gonzalez-Prelcic, M. Furkan Keskin, O. Kaltiokallio, M. Valkama,
D. Dardari, X. Shen, Y. Shen, M. Bayraktar, and H. Wymeersch,
“The integrated sensing and communication revolution for 6G: Vision,
techniques, and applications,” Proc. IEEE, vol. 112, no. 7, pp. 676723,
2024.

P. Pulkkinen and V. Koivunen, “Model-based online learning for active
ISAC waveform optimization,” IEEE J. Sel. Topics Signal Process., pp.
1-15, 2024.

V. Koivunen, M. F. Keskin, H. Wymeersch, M. Valkama, and
N. Gonzilez-Prelcic, “Multicarrier ISAC: Advances in waveform de-
sign, signal processing, and learning under nonidealities,” /[EEE Signal
Process. Mag., vol. 41, no. 5, pp. 17-30, 2024.

J. Zhang, C. Masouros, F. Liu, Y. Huang, and A. L. Swindlehurst,
“Low-complexity joint radar-communication beamforming: From op-
timization to deep unfolding,” IEEE J. Sel. Topics Signal Process., pp.
1-16, 2025.

Z. Wu, Y.-F. Liu, W.-K. Chen, and C. Masouros, “Quantized constant-
envelope waveform design for massive MIMO DFRC systems,” IEEE
J. Sel. Areas Commun., pp. 1-1, 2025.

H.-S. Cha, G. Lee, A. Ghosh, M. Baker, S. Kelley, and J. Hofmann.
(2024) “5G NR positioning enhancements in 3GPP release-18”.
[Online]. Available: https://arxiv.org/abs/2401.17594

3GPP, “Feasibility study on integrated sensing and communication
(release 19),” 3GPP, Tech. Rep. TR 22.837 v19.4.0, April 2022.
——, “Service requirements for integrated sensing and communication;
Stage 1 (release 19),” 3GPP, Tech. Rep. TS22.137 v19.1.0, August
2023.

——, “Summary #1 on ISAC channel modelling,” 3GPP TSG RAN
WG, Tech. Rep. R1-240xxxx, April 2024.

——, “Study on 6G radio,” 3GPP, Tech. Rep. RP-251809, June 2025.

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

26

R. Du, H. Hua, H. Xie, X. Song, Z. Lyu, M. Hu, Narengerile, Y. Xin,
S. McCann, M. Montemurro, T. X. Han, and J. Xu, “An overview on
IEEE 802.11bf: WLAN sensing,” IEEE Commun. Surveys Tuts., 2024,
early access.

X. Lin. (2023) “The bridge toward 6G: 5G-advanced evolution in
3GPP release 19”. [Online]. Available: https://arxiv.org/abs/2312.15174
Z. Wei, Y. Wang, L. Ma, S. Yang, Z. Feng, C. Pan, Q. Zhang, Y. Wang,
H. Wu, and P. Zhang, “5G PRS-based sensing: A sensing reference
signal approach for joint sensing and communication system,” IEEE
Trans. Veh. Technol., vol. 72, no. 3, pp. 3250-3263, 2023.

Z. Wei, F. Li, H. Liu, X. Chen, H. Wu, K. Han, and Z. Feng,
“Multiple reference signals collaborative sensing for integrated sensing
and communication system towards 5G-A and 6G,” IEEE Trans. Veh.
Technol., vol. 73, no. 10, pp. 15 185-15199, 2024.

Q. Zhang, K. Ji, Z. Wei, Z. Feng, and P. Zhang, “Joint commu-
nication and sensing system performance evaluation and testbed: A
communication-centric approach,” IEEE Network, vol. 38, no. 5, pp.
286-294, 2024.

Y. Cui, X. Jing, and J. Mu, “Integrated sensing and communications
via 5G NR waveform: Performance analysis,” in Proc. ICASSP, 2022,
pp. 8747-8751.

“Wireless LAN medium access control (MAC) and physical layer
(PHY) specifications amendment 3: Enhancements for very high
throughput in the 60 GHz band,” IEEE Std. 802.11ad, pp. 1-628, 2012.
T. M. Cover and J. A. Thomas, Elements of Information Theory. John
Wiley & Sons, 1999.

F. Liu, Y. Xiong, K. Wan, T. X. Han, and G. Caire, “Deterministic-
random tradeoff of integrated sensing and communications in gaussian
channels: A rate-distortion perspective,” in Proc. IEEE ISIT, 2023, pp.
2326-2331.

Y. Xiong, F. Liu, Y. Cui, W. Yuan, T. X. Han, and G. Caire, “On the
fundamental tradeoff of integrated sensing and communications under
Gaussian channels,” IEEE Trans. Inf. Theory, vol. 69, no. 9, pp. 5723—
5751, 2023.

Y. Xiong, F. Liu, K. Wan, W. Yuan, Y. Cui, and G. Caire, “From
torch to projector: Fundamental tradeoff of integrated sensing and
communications,” IEEE BITS Inf. Theory Mag., vol. 4, no. 1, pp. 73—
90, 2024.

M. Ahmadipour, M. Kobayashi, M. Wigger, and G. Caire, “An
information-theoretic approach to joint sensing and communication,”
IEEE Trans. Inf. Theory, vol. 70, no. 2, pp. 1124-1146, 2024.

Y. Zhang, S. Aditya, and B. Clerckx, “Input distribution optimization
in OFDM dual-function radar-communication systems,” IEEE Trans.
Signal Process., vol. 72, pp. 5258-5273, 2024.

J. G. Proakis and M. Salehi, Digital Communications.
2008.

F. Liu, Y. Xiong, S. Lu, S. Li, W. Yuan, C. Masouros, S. Jin, and
G. Caire, “Uncovering the iceberg in the sea: Fundamentals of pulse
shaping and modulation design for random ISAC signals,” IEEE Trans.
Signal Process., vol. 73, pp. 2511-2526, 2025.

F. Liu, Y. Zhang, Y. Xiong, S. Li, W. Yuan, F. Gao, S. Jin, and
G. Caire, “CP-OFDM achieves the lowest average ranging sidelobe
under QAM/PSK constellations,” IEEE Trans. Inf. Theory, vol. 71,
no. 9, pp. 6950-6967, Sept. 2025.

Z.Du, F. Liu, Y. Xiong, T. X. Han, Y. C. Eldar, and S. Jin, “Reshaping
the ISAC tradeoff under OFDM signaling: A probabilistic constellation
shaping approach,” IEEE Trans. Signal Process., vol. 72, pp. 4782—
4797, 2024.

Z. Liao, F. Liu, S. Li, Y. Xiong, W. Yuan, C. Masouros, and M. Lops,
“Pulse shaping for random ISAC signals: The ambiguity function
between symbols matters,” IEEE Trans. Wireless Commun., vol. 24,
no. 4, pp. 2832-2846, 2025.

S. Lu, F. Liu, F. Dong, Y. Xiong, J. Xu, Y.-F. Liu, and S. Jin,
“Random ISAC signals deserve dedicated precoding,” IEEE Trans.
Signal Process., vol. 72, pp. 3453-3469, 2024.

M. Kobayashi, G. Caire, and G. Kramer, “Joint state sensing and
communication: Optimal tradeoff for a memoryless case,” in 2018
IEEE International Symposium on Information Theory (ISIT), 2018,
pp. 111-115.

M. Kobayashi, H. Hamad, G. Kramer, and G. Caire, “Joint state sensing
and communication over memoryless multiple access channels,” in
2019 IEEE International Symposium on Information Theory (ISIT),
2019, pp. 270-274.

M. Ahmadipour, M. Wigger, and M. Kobayashi, “Joint sensing and
communication over memoryless broadcast channels,” in 2020 IEEE
Information Theory Workshop (ITW), 2021, pp. 1-5.

McGraw-hill,

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


https://arxiv.org/abs/2401.17594
https://arxiv.org/abs/2312.15174

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]
[99]

[100]

This article has been accepted for publication in IEEE Journal on Selected Areas in Communications. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2025.3614025

S. M. Kay, Fundamentals of Statistical Signal Processing, Vol. I:
Estimation Theory. Englewood Cliffs, NJ, USA: Prentice Hall, 1998.
——, Fundamentals of Statistical Signal Processing, Vol. II: Detection
Theory. Englewood Cliffs, NJ, USA: Prentice Hall, 1998.

A. Liu, Z. Huang, M. Li, Y. Wan, W. Li, T. X. Han, C. Liu, R. Du,
D. K. P. Tan, J. Lu, Y. Shen, F. Colone, and K. Chetty, “A survey on
fundamental limits of integrated sensing and communication,” /EEE
Commun. Surveys Tuts., vol. 24, no. 2, pp. 994-1034, 2nd quarter 2022.
S. Arimoto, “An algorithm for computing the capacity of arbitrary
discrete memoryless channels,” IEEE Trans. Inf. Theory, vol. 18, no. 1,
pp. 14-20, 1972.

R. Blahut, “Computation of channel capacity and rate-distortion func-
tions,” IEEE Trans. Inf. Theory, vol. 18, no. 4, pp. 460-473, 1972.
R. Miller and C. Chang, “A modified Cramér-Rao bound and its
applications (corresp.),” IEEE Trans. Inf. Theory, vol. 24, no. 3, pp.
398-400, 1978.

H. L. Van Trees, Detection, Estimation, and Modulation theory, Part
I: Detection, Estimation, and Linear Modulation Theory. John Wiley
& Sons, 2004.

R. Derryberry, S. Gray, D. Ionescu, G. Mandyam, and B. Raghothaman,
“Transmit diversity in 3G CDMA systems,” I[EEE Commun. Mag.,
vol. 40, no. 4, pp. 68-75, 2002.

R. Hadani, S. Rakib, M. Tsatsanis, A. Monk, A. J. Goldsmith,
A. F. Molisch, and R. Calderbank, “Orthogonal time frequency space
modulation,” in Proc. IEEE Wireless Commun. Network Conf. (WCNC),
2017, pp. 1-6.

B. Bamieh. (2018) “Discovering transforms: A tutorial on circulant
matrices, circular convolution, and the discrete Fourier transform”.
[Online]. Available: https://arxiv.org/abs/1805.05533

N. Levanon and E. Mozeson, Radar Signals. John Wiley & Sons,
2004.

D. Cohen and Y. C. Eldar, “Sub-Nyquist radar systems: Temporal,
spectral, and spatial compression,” IEEE Signal Process. Mag., vol. 35,
no. 6, pp. 35-58, 2018.

M. A. Richards, Fundamentals of Radar Signal Processing. McGraw-
Hill Education, 2005.

P. Stoica, H. He, and J. Li, “On designing sequences with impulse-like
periodic correlation,” IEEE Signal Process. Lett., vol. 16, no. 8, pp.
703-706, 2009.

O. Chterental and D. Z. Dokovié, “On orthostochastic, unistochastic
and qustochastic matrices,” Linear Algebra and Its Applications, vol.
428, no. 4, pp. 1178-1201, 2008.

L. T. DeCarlo, “On the meaning and use of kurtosis,” Psychological
Methods, vol. 2, no. 3, p. 292, 1997.

I. Abou-Faycal, M. Trott, and S. Shamai, “The capacity of discrete-
time memoryless rayleigh-fading channels,” IEEE Trans. Inf. Theory,
vol. 47, no. 4, pp. 1290-1301, 2001.

M. Gursoy, H. Poor, and S. Verdu, “The noncoherent Rician fading
channel-part I: Structure of the capacity-achieving input,” IEEE Trans.
Wireless Commun., vol. 4, no. 5, pp. 2193-2206, 2005.

——, “Noncoherent Rician fading channel-part II: Spectral efficiency
in the low-power regime,” IEEE Trans. Wireless Commun., vol. 4, no. 5,
pp- 2207-2221, 2005.

C. Xing, S. Wang, S. Chen, S. Ma, H. V. Poor, and L. Hanzo, “Matrix-
monotonic optimization — Part I: Single-variable optimization,” IEEE
Trans. Signal Process., vol. 69, pp. 738-754, 2021.

——, “Matrix-monotonic optimization — Part II: Multi-variable opti-
mization,” IEEE Trans. Signal Process., vol. 69, pp. 179-194, 2021.
C. Xing, S. Ma, and Y. Zhou, “Matrix-monotonic optimization for
MIMO systems,” [EEE Trans. Signal Process., vol. 63, no. 2, pp. 334—
348, 2015.

J. Barrueco, J. Montalban, E. Iradier, and P. Angueira, “Constellation
design for future communication systems: A comprehensive survey,”
IEEE Access, vol. 9, pp. 89778-89797, 2021.

J. Cho and P. J. Winzer, “Probabilistic constellation shaping for optical
fiber communications,” J. Lightwave Technol., vol. 37, no. 6, pp. 1590—
1607, 2019.

R. W. Yeung, Information Theory and Network Coding.  Springer
Nature, 2008.
S. P. Boyd and L. Vandenberghe, Convex Optimization. ~Cambridge

University Press, 2004.

Y.-F. Liu, T.-H. Chang, M. Hong, Z. Wu, A. Man-Cho So, E. A.
Jorswieck, and W. Yu, “A survey of recent advances in optimization
methods for wireless communications,” IEEE J. Sel. Areas Commun.,
vol. 42, no. 11, pp. 2992-3031, 2024.

[101]

[102]
[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

27

M. Biguesh and A. B. Gershman, “Training-based MIMO channel
estimation: A study of estimator tradeoffs and optimal training signals,”
IEEE Trans. Signal Process., vol. 54, no. 3, pp. 884-893, Feb. 2006.

J. Li and P. Stoica, “MIMO radar with colocated antennas,” IEEE
Signal Process. Mag., vol. 24, no. 5, pp. 106-114, Sept. 2007.

D. Tse and P. Viswanath, Fundamentals of wireless communication.
Cambridge university press, 2005.

B. Tang, J. Tang, and Y. Peng, “Waveform optimization for MIMO
radar in colored noise: Further results for estimation-oriented criteria,”
IEEE Trans. Signal Process., vol. 60, no. 3, pp. 1517-1522, Nov. 2011.
L. Bottou, “Online learning and stochastic approximations,” Online
Learning in Neural Networks, vol. 17, no. 9, p. 142, 1998.

A. Liu, V. K. Lau, and B. Kananian, “Stochastic successive convex
approximation for non-convex constrained stochastic optimization,”
IEEE Trans. Signal Process., vol. 67, no. 16, pp. 4189-4203, Jul. 2019.
A. Goldsmith, Wireless communications. Cambridge university press,
2005.

M. E Keskin, M. M. Mojahedian, J. O. Lacruz, C. Marcus,
O. Eriksson, A. Giorgetti, J. Widmer, and H. Wymeersch. (2024)
“Fundamental trade-offs in monostatic ISAC: A holistic investigation
towards 6G”. [Online]. Available: https://arxiv.org/abs/2401.18011

Y. C. Eldar and G. Kutyniok, Compressed Sensing: Theory and
Applications. Cambridge university press, 2012.

A. Li, D. Spano, J. Krivochiza, S. Domouchtsidis, C. G. Tsinos,
C. Masouros, S. Chatzinotas, Y. Li, B. Vucetic, and B. Ottersten,
“A tutorial on interference exploitation via symbol-level precoding:
Overview, state-of-the-art and future directions,” IEEE Commu. Surv.
Tut., vol. 22, no. 2, pp. 796-839, 2020.

S. T. Chung and A. Goldsmith, “Degrees of freedom in adaptive
modulation: A unified view,” IEEE Trans. Commun., vol. 49, no. 9,
pp. 1561-1571, 2001.

A. Li and C. Masouros, “A two-stage vector perturbation scheme
for adaptive modulation in downlink MU-MIMO,” IEEE Trans. Veh.
Technol., vol. 65, no. 9, pp. 7785-7791, 2016.

C. Masouros and G. Zheng, “Exploiting known interference as green
signal power for downlink beamforming optimization,” IEEE Trans.
Signal Process., vol. 63, no. 14, pp. 3628-3640, 2015.

M. Ahmadipour, M. Wigger, and M. Kobayashi, “Coding for sensing:
An improved scheme for integrated sensing and communication over
MACs,” in Proc. IEEE ISIT, 2022, pp. 3025-3030.

K. Meng, C. Masouros, G. Chen, and F. Liu, “Network-level integrated
sensing and communication: Interference management and BS coor-
dination using stochastic geometry,” IEEE Trans. Wireless Commun.,
vol. 23, no. 12, pp. 19365-19381, 2024.

K. Meng, C. Masouros, A. P. Petropulu, and L. Hanzo, “Cooperative
ISAC networks: Opportunities and challenges,” IEEE Wireless Com-
mun., pp. 1-8, 2024.

——, “Cooperative ISAC networks: Performance analysis, scaling laws
and optimization,” IEEE Trans. Wireless Commun., pp. 1-1, 2024.

G. Cheng, Y. Fang, J. Xu, and D. W. K. Ng, “Optimal coordinated
transmit beamforming for networked integrated sensing and communi-
cations,” IEEE Trans. Wireless Commun., vol. 23, no. 8, pp. 8200-8214,
2024.

Y. Huang, Y. Fang, X. Li, and J. Xu, “Coordinated power control
for network integrated sensing and communication,” IEEE Trans. Veh.
Technol., vol. 71, no. 12, pp. 13361-13 365, 2022.

Z. Lyu, G. Zhu, and J. Xu, “Joint maneuver and beamforming design
for uav-enabled integrated sensing and communication,” IEEE Trans.
Wireless Commun., vol. 22, no. 4, pp. 2424-2440, 2023.

G. Cheng, X. Song, Z. Lyu, and J. Xu. (2024) “Networked isac
for low-altitude economy: Coordinated transmit beamforming and
uav trajectory design”. Submitted to IEEE Trans. Wireless Commun.
[Online]. Available: https://arxiv.org/abs/2406.16946

Z. Wei, F. Liu, C. Masouros, N. Su, and A. P. Petropulu, “Toward multi-
functional 6G wireless networks: Integrating sensing, communication,
and security,” IEEE Commun. Mag., vol. 60, no. 4, pp. 65-71, 2022.

N. Su, E Liu, Z. Wei, Y.-E. Liu, and C. Masouros, “Secure dual-
functional radar-communication transmission: Exploiting interference
for resilience against target eavesdropping,” IEEE Trans. Wireless
Commun., vol. 21, no. 9, pp. 7238-7252, 2022.

N. Su, F. Liu, and C. Masouros, “Secure radar-communication systems
with malicious targets: Integrating radar, communications and jamming
functionalities,” IEEE Trans. Wireless Commun., vol. 20, no. 1, pp. 83—
95, 2021.

J. Zou, C. Masouros, F. Liu, and S. Sun, “Securing the sensing
functionality in ISAC networks: An artificial noise design,” IEEE
Trans. Veh. Technol., vol. 73, no. 11, pp. 17 800-17 805, 2024.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


https://arxiv.org/abs/1805.05533
https://arxiv.org/abs/2401.18011
https://arxiv.org/abs/2406.16946

This article has been accepted for publication in IEEE Journal on Selected Areas in Communications. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2025.3614025

[126] O. Giinlii, M. R. Bloch, R. F. Schaefer, and A. Yener, “Secure integrated
sensing and communication,” IEEE J. Sel. Areas Inf. Theory, vol. 4,
pp. 40-53, 2023.

Y. Cui, X. Cao, G. Zhu, J. Nie, and J. Xu, “Edge perception: Intelligent
wireless sensing at network edge,” IEEE Commun. Mag., 2024, early
access.

G. Zhu, Z. Lyu, X. Jiao, P. Liu, M. Chen, J. Xu, S. Cui, and P. Zhang,
“Pushing Al to wireless network edge: An overview on integrated
sensing, communication, and computation towards 6G,” Science China
Information Sciences, vol. 66, no. 3, p. 130301, 2023.

B. Geiger, F. Liu, S. Lu, A. Rode, and L. Schmalen. (2025)
“Joint optimization of geometric and probabilistic constellation
shaping for OFDM-ISAC systems”. [Online]. Available: https:
/larxiv.org/abs/2501.11583

Y. Chen, H. Hua, J. Xu, and D. W. K. Ng, “ISAC meets SWIPT:
Multi-functional wireless systems integrating sensing, communication,
and powering,” IEEE Trans. Wireless Commun., vol. 23, no. 8, pp.
8264-8280, 2024.

Y. Chen, Z. Ren, J. Xu, Y. Zeng, D. Ng, and S. Cui. (2024) “Integrated
sensing, communication, and powering (ISCAP): Towards multi-
functional 6G wireless networks”. Submitted to IEEE Trans. Wireless
Commun. [Online]. Available: https://arxiv.org/abs/2401.03516

[127]

[128]

[129]

[130]

[131]

Fan Liu (Senior Member, IEEE) is currently a
Professor with the National Mobile Communica-
tions Research Laboratory, School of Information

-
-« J Science and Engineering, Southeast University, Nan-
b | jing, China. Prior to that, he was an Assistant

Professor with the Southern University of Science

and Technology, Shenzhen, China, from 2020 to

2024. He received the Ph.D. and the BEng. degrees

from Beijing Institute of Technology (BIT), Beijing,

China, in 2018 and 2013, respectively. He has pre-

viously held academic positions in the University
College London (UCL), London, UK, as a Visiting Researcher from 2016 to
2018, and a Marie Curie Research Fellow from 2018 to 2020.

Prof. Liu’s research interests lie in the general area of signal processing
and wireless communications, and in particular in the area of Integrated
Sensing and Communications (ISAC). He is the founding Academic Chair
of the IEEE ComSoc ISAC Emerging Technology Initiative (ISAC-ETI),
Vice Chair and founding member of the IEEE SPS ISAC Technical Working
Group (ISAC-TWG), an elected member of the IEEE SPS Sensor Array
and Multichannel Technical Committee (SAM-TC), an Associate Editor of
the IEEE Transactions on Communications, IEEE Transactions on Mobile
Computing, and IEEE Open Journal of Signal Processing, and a Guest Editor
of the IEEE Journal on Selected Areas in Communications, IEEE Wireless
Communications, and IEEE Vehicular Technology Magazine. He was a TPC
Co-Chair of the 2nd-4th IEEE Joint Communication and Sensing (JC&S)
Symposium, a Symposium Co-Chair for the IEEE ICC 2026 and IEEE
GLOBECOM 2023, and a Track Co-Chair for the IEEE WCNC 2024. He
is a member of the IMT-2030 (6G) ISAC Task Group. He was listed among
the Clarivate Highly Cited Researcher in 2025, and among the Elsevier
Highly-Cited Chinese Researchers from 2023 to 2024. He was a recipient
of numerous Best Paper Awards, including the 2025 IEEE Communications
Society & Information Theory Society Joint Paper Award, 2024 IEEE Signal
Processing Society Best Paper Award, 2024 IEEE Signal Processing Society
Donald G. Fink Overview Paper Award, 2024 IEEE Communications Society
Asia-Pacific Outstanding Paper Award, 2023 IEEE Communications Society
Stephan O. Rice Prize, and 2021 IEEE Signal Processing Society Young
Author Best Paper Award.

28

Ya-Feng Liu (Senior Member, IEEE) is a Professor
at the School of Mathematical Sciences, Beijing
University of Posts and Telecommunications. His
main research interests are nonlinear optimization
and its applications to signal processing, wireless
communications, and machine learning. Dr. Liu cur-
rently serves as an Associate Editor for the IEEE
Transactions on Signal Processing and the Journal
of Global Optimization. He served as an Editor
for the IEEE Transactions on Wireless Communi-
cations (2019-2022), an Associate Editor for the
IEEE Signal Processing Letters (2019-2023), and a Lead Guest Editor for
the IEEE Journal on Selected Areas in Communications special issue on
“Advanced Optimization Theory and Algorithms for Next-Generation Wireless
Communication Networks”. He is an elected member of the Signal Processing
for Communications and Networking Technical Committee (SPCOM-TC) of
the IEEE Signal Processing Society (2020-2022 and 2023-2025). He has
received the Best Paper Award from the IEEE International Conference on
Communications (ICC) in 2011, the Science and Technology Award for Young
Scholars from the Operations Research Society of China in 2018, the 15th
IEEE ComSoc Asia-Pacific Outstanding Young Researcher Award in 2020,
the Youth Science Award of Applied Mathematics from the China Society for
Industrial and Applied Mathematics in 2022, and the IEEE Signal Processing
Society Best Paper Award in 2024. Students supervised and co-supervised by
him won the Best Student Paper Award from the International Symposium
on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks
(WiOpt) in 2015 and the Best Student Paper Award of IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP) in 2022.

Yuanhao Cui (Member, IEEE) is currently
an assistant Professor with School of Informa-
tion Science and Engineering, Beijing Univer-
sity of Posts and Telecommunications, Beijing,
China. Dr. Cui’s research interests lie in the general
area of signal processing and wireless communica-
tions, and in particular in the area of Integrated Sens-
ing and Communications (ISAC) and Low-Altitude
Wireless Network (LAWN). He is the Founding
Chair of the IEEE ComSoc Special Interest Group
on Low-Altitude Wireless Networks (LAWN-SIG),
the founding Secretary of the IEEE ComSoc ISAC Emerging Technology
Initiative (ISAC-ETI), and the founding Secretary of the CCF Scientific
Comunicaiton Standing Committee. He serves on the editorial board on IEEE
Transactions on Mobile Computing, IEEE Vehicular Technology Magazine,
IEEE Journal of Internet of things, IEEE Journal of Biomedical and Health
Informatics. He was a Symposium Co-Chair for IEEE GLOBECOM 2024,
and was an Organizer/the Chair of several workshops and special sessions on
ISAC in flagship IEEE and ACM conferences, including IEEE ICC, IEEE/CIC
ICCC, IEEE SPAWC, IEEE VTC, IEEE WCNC, IEEE ICASSP, and ACM
MobiCom. He is a member of the IMT-2030 (6G) ISAC Task Group. He
was listed among the World’s Top 2% Scientists by Stanford University for
citation impact from 2023 to 2024 He was a recipient of numerous Best Paper
Awards, including the 2025 IEEE Communications Society & Information
Theory Society Joint Paper Award, 2024 IEEE Communications Society Asia-
Pacific Outstanding Paper Award, 2024 IEEE Globecom Best Paper Award,
2024 1IEEE JC&S Symposium Best Paper Award, 2023 ACM MobiCom Best
Paper Award in ISAC, and 2023 IEEE/CIC ICCC 2023 Best Paper Award.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


https://arxiv.org/abs/2501.11583
https://arxiv.org/abs/2501.11583
https://arxiv.org/abs/2401.03516

This article has been accepted for publication in IEEE Journal on Selected Areas in Communications. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2025.3614025

Christos Masouros (Fellow, IEEE) received the

Diploma degree in Electrical and Computer Engi-

neering from the University of Patras, Greece, in

2004, and MSc by research and PhD in Electrical

and Electronic Engineering from the University of

f Manchester, UK in 2006 and 2009 respectively. In

2008 he was a research intern at Philips Research

o Labs, UK, working on the LTE standards. Between

y 2009-2010 he was a Research Associate in the

" University of Manchester and between 2010-2012

a Research Fellow in Queen’s University Belfast. In

2012 he joined University College London as a Lecturer. He has held a Royal
Academy of Engineering Research Fellowship between 2011-2016.

Since 2019 he is a Full Professor of Signal Processing and Wireless
Communications in the Information and Communication Engineering research
group, Dept. Electrical and Electronic Engineering, and affiliated with the
Institute for Communications and Connected Systems, University College
London. His research interests lie in the field of wireless communications
and signal processing with particular focus on Green Communications, Large
Scale Antenna Systems, Integrated Sensing and Communications, interference
mitigation techniques for MIMO and multicarrier communications. Between
2018-22 he was the Project Coordinator of the €4.2m EU H2020 ITN project
PAINLESS, involving 12 EU partner universities and industries, towards
energy-autonomous networks. Between 2024-28 he will be the Scientific
Coordinator of the €2.7m EU H2020 DN project ISLANDS, involving 19 EU
partner universities and industries, towards next generation vehicular networks.
He is a Fellow of the IEEE, Fellow of the Insitute of Electronic Engineers
(IET), the Artificial Intelligence Industry Alliance (AIIA) and the Asia-Pacific
Artificial Intelligence Association (AAIA). He was the recipient of the 2024
IEEE SPS Best Paper Award, the 2024 IEEE SPS Donald G. Fink Overview
Paper Award, the 2023 IEEE ComSoc Stephen O. Rice Prize, co-recipient
of the 2021 IEEE SPS Young Author Best Paper Award and the recipient
of the Best Paper Awards in the IEEE GlobeCom 2015 and IEEE WCNC
2019 conferences. He is an IEEE ComSoc Distinguished lecturer 2024-2025,
and his work on ISAC has been featured in the World Economic Forum’s
report on the top 10 emerging technologies. He has been recognised as an
Exemplary Editor for the IEEE Communications Letters, and as an Exemplary
Reviewer for the IEEE Transactions on Communications. He is an Area
Editor for IEEE Transactions on Wireless Communications, and Editor-at-
Large for IEEE Open Journal of the Communications Society. He has been
an Editor for IEEE Transactions on Communications, IEEE Transactions
on Wireless Communications, the IEEE Open Journal of Signal Processing,
Associate Editor for IEEE Communications Letters, and a Guest Editor for
a number of IEEE Journal on Selected Topics in Signal Processing issues.
He is a founding member and Vice-Chair of the IEEE Emerging Technology
Initiative on Integrated Sensing and Communications (SAC), Chair of the
IEEE SPS ISAC Technical Working Group, and Chair of the IEEE Green
Communications & Computing Technical Committee, Special Interest Group
on Green ISAC. He is a member of the IEEE Standards Association Working
Group on ISAC performance metrics, and a founding member of the ETSI
ISG on ISAC. He is the TPC chair for the IEEE ICC 2024 Selected Areas
in Communications (SAC) Track on ISAC, Chair of the IEEE PIMRC2024
Track 1 on PHY and Fundamentals, Chair of the “Integrated Imaging and
Communications” stream in IEEE CISA 2024, and TPC Co-Chair of IEEE
VTC 2025.

29

Jie Xu (Fellow, IEEE) received the B.E. and Ph.D.
degrees from the University of Science and Technol-
ogy of China. He is currently an Associate Professor
(Tenured) with the School of Science and Engi-
neering, the Shenzhen Future Network of Intelli-
gence Institute (FNii-Shenzhen), and the Guangdong
Provincial Key Laboratory of Future Networks of
Intelligence, The Chinese University of Hong Kong
(Shenzhen). His research interests include wireless
communications, wireless information and power
transfer, UAV communications, edge computing and
intelligence, and integrated sensing and communication (ISAC). He was a
recipient of the 2017 IEEE Signal Processing Society Young Author Best
Paper Award, the IEEE/CIC ICCC 2019 Best Paper Award, the 2019 IEEE
Communications Society Asia-Pacific Outstanding Young Researcher Award,
and the 2019 Wireless Communications Technical Committee Outstanding
Young Researcher Award. He is the Symposium Co-Chair of the IEEE
GLOBECOM 2019 Wireless Communications Symposium and the IEEE
ICC 2025 Communication Theory Symposium, the workshop co-chair of
several IEEE ICC and GLOBECOM workshops, the Tutorial Co-Chair of the
IEEE/CIC ICCC 2019/2022, the Chair of the IEEE Wireless Communications
Technical Committee (WTC), and the Vice Co-chair of the IEEE Emerging
Technology Initiative (ETI) on ISAC. He served or is serving as an Associate
Editor-in-Chief of the IEEE Transactions on Mobile Computing, an Editor
of the IEEE Transactions on Wireless Communications, IEEE Transactions
on Communications, IEEE Wireless Communications Letters, and Journal of
Communications and Information Networks, an Associate Editor of IEEE
Access, and a Guest Editor of the IEEE Wireless Communications, IEEE
Journal on Selected Areas in Communications, IEEE Internet of Things
Magazine, Science China Information Sciences, and China Communications.
He is a Distinguished Lecturer of IEEE Communications Society.

Tony Xiao Han (Senior Member, IEEE) is currently
a research expert and project leader with Huawei
Technologies Co., Ltd. He received the B.E. degree
in Electrical Engineering from Sichuan University
and the Ph.D. degree in Communications Engineer-
ing from Zhejiang University, Hangzhou, China.
He was a Post-Doctoral Research Fellow with the
National University of Singapore, Singapore. His
research interests include wireless communications,
signal processing, Integrated Sensing and Commu-
nication (ISAC), and standardization of wireless
communication. Dr. Han was the Chair of IEEE 802.11 WLAN Sensing
Topic Interest Group (TIG) and the Chair of 802.11 WLAN Sensing Study
Group (SG). He is currently serving as the Chair of IEEE 802.11bf WLAN
Sensing Task Group (TG), and the Chair of Sensing Task Group in Wi-Fi
Alliance. He is also the founding Industry Chair of IEEE ComSoc ISAC
Emerging Technology Initiative (ISAC-ETI), the Vice Chair of IEEE WTC
Special Interest Group (SIG) on ISAC, a Guest Editor of the IEEE Journal
on Selected Areas in Communications (JSAC) Special Issue on “Integrated
Sensing and Communications (ISAC)”. He has served as the Co-Chair of
many workshops, e.g., [IEEE GLOBECOM 2020 workshop on ISAC.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in IEEE Journal on Selected Areas in Communications. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2025.3614025

Stefano Buzzi (Senior Member, IEEE) received
the M.Sc. degree (summa cum laude) in electronic
engineering and the Ph.D. degree in electrical and
computer engineering from the University of Naples
“Federico II” in 1994 and 1999, respectively. He
had short-term research appointments with Princeton
University, Princeton, NJ, USA, in 1999, 2000, 2001,
and 2006. He joined the University of Cassino
and Southern Lazio, Italy, in 2000, where he was
an Assistant Professor and has been an Associate
Professor since 2002 and a Full Professor since
2018. Since 2022, he has been with the Politecnico di Milano, Italy. He
is the General Coordinator of the EU-Funded Innovative Training Network
Project METAWIRELESS, on the application of metasurfaces to wireless
communications, and the EU-Funded Doctoral Network ISLANDS, on inte-
grated sensing and communications for the vehicular environment. He has co-
authored about 200 technical peer-reviewed journals and conference papers,
and, among these, the highly cited paper “What will 5G be?”, IEEE Journal on
Selected Areas in Communications in June 2014. His current research interests
include communications and signal processing, with an emphasis on wireless
communications and 6G systems. He serves regularly as a TPC member for
several international conferences. He is a Former Associate Editor of IEEE
Signal Processing Letters and IEEE Communication Letters and has been
a Guest Editor of five IEEE Journal on Selected Areas in Communications
special issues. From 2014 to 2020, he was an Editor of IEEE Transactions
on Wireless Communications. Currently, he is an Associate Editor of IEEE
Transactions on Communications.

Yonina C. Eldar (Fellow, IEEE) received the B.Sc.
degree in physics and the B.Sc. degree in electri-
cal engineering from Tel Aviv University, Tel-Aviv,
Israel, 1995 and 1996, respectively, and the Ph.D.
degree in electrical engineering and computer sci-
ence from the Massachusetts Institute of Technology
(MIT), Cambridge, MA, USA, in 2002. She was
a Visiting Professor at Stanford University. She is
currently a Professor with the Department of Math-
ematics and Computer Science, Weizmann Institute
of Science, Rehovot, Israel, where she heads the
Center for Biomedical Engineering and Signal Processing and holds the
Dorothy and Patrick Gorman Professorial Chair. She is also a Visiting
Professor at MIT, a Visiting Scientist at the Broad Institute, and an Adjunct
Professor at Duke University. She is a member of the Israel Academy of
Sciences and Humanities and a EURASIP Fellow. She has received many
awards for excellence in research and teaching, including the IEEE Signal
Processing Society Technical Achievement Award (2013), the IEEE/AESS
Fred Nathanson Memorial Radar Award (2014), and the IEEE Kiyo Tomiyasu
Award (2016). She was a Horev Fellow of the Leaders in Science and
Technology Program at the Technion and an Alon Fellow. She received
the Michael Bruno Memorial Award from the Rothschild Foundation, the
Weizmann Prize for Exact Sciences, the Wolf Foundation Krill Prize for
Excellence in Scientific Research, the Henry Taub Prize for Excellence in
Research (twice), the Hershel Rich Innovation Award (three times), and the
Award for Women with Distinguished Contributions. She received several best
paper awards and best demo awards together with her research students and
colleagues, was selected as one of the 50 most influential women in Israel,
and was a member of the Israel Committee for Higher Education. She is the
Editor-in-Chief of Foundations and Trends in Signal Processing, a member of
several IEEE Technical Committees and Award Committees, and heads the
Committee for Promoting Gender Fairness in Higher Education Institutions
in Israel.

30

Shi Jin (Fellow, IEEE) received the B.S. degree in
communications engineering from Guilin University
of Electronic Technology, Guilin, China, in 1996, the
M.S. degree from Nanjing University of Posts and
Telecommunications, Nanjing, China, in 2003, and
the Ph.D. degree in information and communications
engineering from the Southeast University, Nanjing,
in 2007. From June 2007 to October 2009, he was
a Research Fellow with the Adastral Park Research
Campus, University College London, London, U.K.
He is currently with the Faculty of the National
Mobile Communications Research Laboratory, Southeast University. His
research interests include wireless communications, random matrix theory,
and information theory. He is serving as an Area Editor for the IEEE
Transactions on Communications and IET Electronics Letters. He was an
Associate Editor for the IEEE Transactions on Wireless Communications,
IEEE Communications Letters, and IET Communications. Dr. Jin and his
coauthors have been awarded the IEEE Communications Society Stephen O.
Rice Prize Paper Award in 2011, the IEEE Jack Neubauer Memorial Award
in 2023, The IEEE Marconi Prize Paper Award in Wireless Communications
in 2024, and the IEEE Signal Processing Society Young Author Best Paper
Award in 2010 and Best Paper Award in 2022.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



	Introduction
	Background and Motivation
	Sensing-Centric Design
	Communication-Centric Design
	Joint Design

	Sensing With Communication Data Payload Signals
	Organization of This Paper

	Deterministic-Random Tradeoff in ISAC Systems: An Information-Theoretic Perspective
	System Model
	Capacity-Distortion Theory
	Information-Theoretic Model for Monostatic ISAC
	S&C Performance Evaluation
	Example of the C-D Tradeoff in the Linear Gaussian Channel

	CRB-Rate Region for Vector Gaussian ISAC Channels
	Generic Framework
	S&C Performance at PCS
	S&C Performance at PSC
	DRT in Vector Gaussian ISAC Channels
	Example of Simultaneous Target Angle Estimation and Single-User MIMO Communication

	From DRT Theory to Random ISAC Signal Processing

	Communication-Centric ISAC Transmission
	Communication-Centric ISAC Signal Model
	Constellation
	Modulation Basis
	Pulse Shaping Filter

	Signal Processing for Communication and Sensing
	Receive Signal Model
	Signal Processing for Communication
	Signal Processing for Sensing

	Characterization of the ISAC ACF
	Discretization of the ACF
	The ``Iceberg in the Sea'' Structure of the ACF
	Example on the Average Squared ACF of OFDM Signaling


	Waveform Design for Random ISAC Signals
	Modulation Basis Design
	Ranging-Optimal Modulation for Sub-Gaussian Constellations
	Ranging-Optimal Modulation for Super-Gaussian Constellations
	Example of the Average Sidelobe Level of Different Modulation Bases
	Discussion on Optimality of OFDM/SC

	Constellation Design
	Probabilistic Constellation Shaping for ISAC
	Example of Probabilistic Constellation Shaping for ISAC Systems

	Pulse Shaping Design
	Generic Pulse Shaping Design
	Iceberg Shaping
	Example of ISAC Pulse Shaping Design


	MIMO Precoding with Random ISAC Signals
	Signal Model and Ergodic LMMSE
	Sensing-Only Precoding Design 
	Data-Dependent Precoding
	Data-Independent Precoding
	Example of Sensing-Only Precoding Design

	ISAC Precoding Design
	Data-Dependent Precoding
	Data-Independent Precoding
	Example of ISAC Precoding Design


	Open Problems and Future Directions
	Open Problems
	2D Ambiguity Function Characterization
	Mismatched Filtering and Sparse Recovery under Random ISAC Signaling
	Adaptive Modulation
	Sensing with Channel-Coded Signals

	Future Directions
	Networked Sensing and ISAC with Communication Signals
	Secure ISAC with Communication Signals
	Sensing and ISAC with Artificial Intelligence (AI)
	Integrated Sensing, Communication, and Powering (ISCAP) with Communication Signals


	Conclusions
	References
	Biographies
	Fan Liu
	Ya-Feng Liu
	Yuanhao Cui
	Christos Masouros
	Jie Xu
	Tony Xiao Han
	Stefano Buzzi
	Yonina C. Eldar
	Shi Jin


