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Abstract
The Deep Underground Neutrino Experiment (DUNE) is a next-generation long-
baseline neutrino oscillation experiment that will make precision measurements of
the parameters governing neutrino oscillations. A core objective of DUNE’s design
is to minimise the impact of neutrino-nucleus interaction uncertainties on these
precision measurements. The capability of DUNE’s near detector to move transverse
to the neutrino beam to sample many distinct off-axis fluxes, known as the Precision
Reaction Independent Spectrum Measurement (PRISM), is key to fulfilling this
objective. PRISM is used to construct a unique oscillation analysis where near
detector data is extrapolated directly to the far detector via linear combination
of measurements at different off-axis positions. If constructed carefully, such an
oscillation analysis incorporates the near detector constraint with very little reliance
on potentially fraught neutrino-nucleus interaction models.

This thesis presents a novel method for extrapolating detector effects from the
near to the far detector for the PRISM oscillation analysis. Two distinct imple-
mentations are developed that use machine learning to map event-level information
between the detectors to minimise reliance on simulation of the neutrino-nucleus
interaction. Pairs of identical neutrino interactions at the two detectors are gener-
ated to permit supervised training. One implementation uses a generative model to
map between the reconstructed quantities. The other uses computer vision meth-
ods to perform a style-transfer on the detector response. Both implementations are
demonstrated to enhance the PRISM oscillation analysis by reducing the impact of
systematic uncertainties associated with the interaction model.
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Impact Statement
The Deep Underground Neutrino Experiment is poised to significantly advance
our understanding of nature’s most abundant matter particle via precision mea-
surements of neutrino oscillations. This thesis contributes to this programme of
precision measurements by introducing a novel technique that reduces the impact
of a key class of systematic uncertainties. The technique is developed and demon-
strated to be effective, establishing a path towards its use in oscillation analyses
once detector data becomes available.

Within the wider field of neutrino physics, the specific application of deep learn-
ing used in this thesis is of benefit. Both the use of a generative model to overcome
ill-defined mappings between detectors and the application of style-transfer to de-
tector readout are novel and contribute to advancing research methodologies in the
field.

Outside of academia, measurements of neutrino oscillations enrich society by ad-
vancing our fundamental understanding of nature and offering a promising solution
to the mystery of matter-antimatter asymmetry in the Universe. While there are no
immediate practical applications for neutrinos, future technologies may one day be
influenced, directly or indirectly, by their properties. Making precise measurements
in the present ensures that future breakthroughs are not severely delayed by gaps
in our foundational knowledge.
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Introduction 1
The Standard Model (SM) of particle physics is the leading theory of the fundamental par-
ticles and their interactions via the electromagnetic, weak, and strong forces. It provides
a mathematical framework for making predictions from a small number of free parame-
ters and has proved remarkably consistent with experimental data at all accessible energy
scales thus far. However, many observed phenomena cannot be explained by the SM,
suggesting the necessity of extensions and reformulations to yield a deeper understanding
of nature. This motivates a programme of precision measurements to probe the least well
understood areas. One area that warrants particular scrutiny is neutrino oscillations due
to compelling experimental evidence for the phenomenon of violating charge-parity (CP)
symmetry.

The Deep Underground Neutrino Experiment (DUNE) is a next-generation long-
baseline neutrino oscillation experiment that will make precision measurements of lep-
tonic CP violation, the neutrino mass ordering, and the oscillation parameters θ13, θ23,
∆m2

32, and δCP. To accomplish this, DUNE must minimise the impact of systematic
uncertainties. Of particular importance are the systematic uncertainties associated with
the neutrino-nucleus interaction model. Such a model is necessary to infer the incident
neutrino energy and flavour from final state charged particles observed in a detector. The
near detector (ND) of DUNE is an integral part of minimising these uncertainties. Placed
close to the source of the neutrino beam prior to the effect of oscillations, the ND will
strongly constrain the interaction model via measurements of neutrino-nucleus interac-
tions. However, since no complete neutrino-nucleus interaction model exists, empirical
corrections will need to be applied to force agreement between ND data and the model.
Fitting the empirically corrected simulation to oscillated data at the far detector (FD)
can significantly bias oscillation parameter measurements. Overcoming this challenge is
key to DUNE’s programme of precision oscillation parameter measurements.

The aspect of DUNE’s design that aims to overcome this challenge is the Precision Re-
action Independent Spectrum Measurement (PRISM). PRISM is the capability of DUNE’s
ND to move transverse to the neutrino beam to sample different neutrino fluxes. The set
of neutrino fluxes accessible through this transverse movement can be linearly combined
into a flux comparable to the oscillated flux expected at the FD. This facilitates a unique
oscillation analysis methodology where ND data can be extrapolated to the FD for a data-
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1 Introduction

driven prediction that is compared directly to FD data. This largely removes the necessity
of constraining any particular interaction model and so reduces the risk of bias oscillation
parameter measurements.

An important challenge in the PRISM oscillation analysis is to correct for distinct
detector effects so that a prediction composed of ND measurements may be compared with
FD data. Performing this correction with minimal reliance on an interaction model is a key
component in realising the full potential of the PRISM oscillation analysis methodology.
This thesis introduces two novel techniques for making this correction. These techniques
are shown to be robust to changes in the interaction model owing to their utilisation of the
full phase space of individual ND data events rather than a single binned variable. They
are implemented using modern deep learning methods trained on carefully manipulated
simulation.

This thesis begins with an overview of neutrino physics in Chapter 2. The chapter
covers the discovery of the neutrino and the first indications of its mass from a historical
perspective, the formulation of a massive neutrino in the SM, the various phenomena
relevant to neutrino oscillations, and the experimental status of neutrino oscillations. The
aim of the chapter is to provide context and motivation for DUNE’s oscillation physics
programme.

Chapter 3 covers the design of DUNE’s detectors and neutrino beam and is followed by
a discussion of the simulation and reconstruction in Chapter 4. These chapters describe
aspects of DUNE necessary for context and understanding of later chapters focusing on
developments within the PRISM oscillation analysis.

In Chapter 5 the PRISM oscillation analysis is explained in detail. This includes
the current method for the detector effects correction that is reliant on simulation of an
interaction model. At the end of the chapter, potential improvements to the analysis are
outlined. In this discussion the techniques that comprise the subject of this thesis are
first introduced and motivated.

Chapter 6 describes the creation of a paired dataset of identical neutrino interactions
at the ND and FD. Such a dataset is required for the deep learning approach that drives
the proposed techniques of an event-level detector effects correction.

The two proposed detector effects correction techniques, one operating on recon-
structed quantities and the other directly on detector response, are presented in Chapters 7
and 8 respectively. For each technique, there is a discussion of the methodology and of
the results of a study intended to probe the technique’s interaction model dependence.

Chapter 9 concludes this thesis by summarising the key results and identifying impor-
tant avenues for future work.

– 10 –



Neutrino Physics 2
This chapter provides an overview of the development in understanding of the neutrino
from its initial proposal through to observations of flavour oscillation. The formulation
of the neutrino sector in the Standard Model is reviewed with particular emphasis on the
phenomenology of flavour mixing. An overview of neutrino-nucleus interaction modelling
is given. Lastly, relevant experimental results on the measurement of neutrino oscillations
are highlighted.

2.1 The Neutrino Chronology
The experimental necessity of the neutrino originates in the early 20th century as exper-
iments looked to probe matter beyond the atomic level. Armed with an understanding
of the atom based on the Bohr model [1], Rutherford measured the scattering of alpha
particles on air. The findings of this experiment, presented in 1920 [2], led to the discov-
ery that the hydrogen nucleus is present in all other nuclei. To emphasis the importance
of this seemingly fundamental constituent, the positively charged hydrogen nucleus was
coined the proton. This discovery prompted the formulation of an atomic model where
the nucleus consists of protons and a smaller number of nuclear electrons. The model
explained β-decay as the emission of one of the nuclear electrons.

A key deficit in this model was the prediction of a monochromatic β-radiation spec-
trum, as is observed for α-radiation. In 1927, Ellis and Wooster studied the energy of
β-radiation from radium decay [3]. They found conclusively that β-radiation forms a
continuous energy spectrum. In Rutherford’s description of the atom this implied a vi-
olation of energy conservation. This revelation, along with the failure of the model to
predict the correct spin for multiple nuclei, prompted Pauli’s famous letter [4] in which
the addition to the nucleus of an unobserved spin-1/2 neutral particle with very small
mass is proposed. This new particle, named the neutron, would be emitted alongside the
electron in a β-decay such that if its energy and the energy of the electron were measured
the total energy spectrum would be monochromatic.

Experiments starting with Bothe and Becker in 1930 [5] discovered that a highly pene-
trating radiation made up of neutral particles can be generated through the absorption of
alpha particles by some specific light nuclei. In 1932 Chadwick made a precise measure-
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2 Neutrino Physics 2.1 The Neutrino Chronology

n

ν
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e

Figure 2.1: Four-point interaction of Fermi’s theory of weak interaction

ment of the mass of these neutral particles and postulated the existence of the neutron
that we know today [6]. Just a few months later, atomic models with a proton-neutron
nucleus are proposed that resolve many outstanding experimental problems. However,
the origin of the β-decay process remained unaccounted for, as Chadwick’s neutron has a
much larger mass than that proposed by Pauli. This was remedied in 1934 with Fermi’s
theory on β-decay [7] that incorporated Pauli’s neutron (now known as the neutrino)
in the decay process. The theory predicts a four-point interaction, meaning there is no
mediator particle, originating from a term in the Hamiltonian that is a product of the yet
unobserved neutrino field along with the other fields shown in Figure 2.1. The interaction
has a matrix element

M = GF√
2

(upγ
µun) (ueγ

νuν) , (2.1.1)

where GF is the Fermi Constant and γµ are Dirac matrices. In analogy to electromag-
netism, the bilinear terms are only of vector type. This theory of weak interaction correctly
predicted the observed continuous β-decay spectrum. Although, it would later be found
that having only a vector current is not supported by experiment. One notable discrep-
ancy was the lack of a mechanism for parity violation, a necessity for any good theory
of the weak interaction following Wu’s measurement of maximal parity violation in the
β-decay of 60Co nuclei [8].

In the years following Fermi’s theory, interest in making an indirect measurement of
the neutrino grew. The detection came in the mid 1950s when Cowan and Reines observed
the inverse β decay process,

νe + p → e+ + n, (2.1.2)

a prediction of Fermi’s theory, using an intense flux of antineutrinos from the Savannah
River nuclear reactor [9]. The experiment used a water-based detector doped with cad-
mium. The observed signal was a pair of prompt photons from the positron annihilation
followed by a delayed light signal from the neutron capture on the cadmium.

Shortly after this discovery, a table-top experiment by Goldhaber, Grodzins, and
Sunyar measured the neutrino to be exclusively left-handed [10]. This measurement fit
well with the major theoretical development of the time, the refinement of Fermi’s theory
to a vector minus axial (V–A) theory of the weak interaction developed by both Feynman
and Gell-Mann [11] and Marshak and Sudarshan [12]. The V–A theory takes its name

– 12 –



2 Neutrino Physics 2.1 The Neutrino Chronology

from the combination of vector and axial currents which make up interactions of the form

jµ ∝ ψγµ 1
2
(
1 − γ5

)
φ, (2.1.3)

where ψ and φ are Dirac fields. It can be shown that the product of axial and vector
currents, present in the cross-term of scattering amplitude calculations, violates parity,
as demanded by the results of Wu’s experiment. Using the properties of the projection
operators, we can also show that the weak interaction only couples left-handed particles
or right-handed antiparticles,

ψγµ 1
2
(
1 − γ5

)
φ =

(
ψL + ψR

)
γµφL

= ψLγ
µφL.

(2.1.4)

This means the neutrino, which only interacts via the weak force, can only ever be pro-
duced as a left-handed particle.

Thus far, there was experimental evidence for only the electron neutrino. This changed
in 1962 when the first accelerator neutrino experiment at Brookhaven National Laboratory
discovered the existence of the muon neutrino [13]. By impacting a 15 GeV proton beam
on a beryllium target, a flux of kaons and pions were produced which provided a neutrino
beam through the decaysK/π → µν. The interaction of the beam neutrinos on aluminium
nuclei was measured using a spark chamber. The experiment observed a large excess of
muon events over electron events. This provided strong evidence for the neutrino that
couples to the muon being distinct from the neutrino that couples to the electron. Fast
forward to 2001, the DONUT accelerator neutrino experiment at Fermilab measured the
tau neutrino [14]. This experiment followed much of the same principles as the earlier
experiment at Brookhaven but used neutrinos from the decay of the charm-strange D
meson, DS → τν and subsequent τ → νX, and with a detector optimised to observe a
track with a kink that is characteristic of the very short-lived tau decaying.

The V–A theory was very successful in its experimental predictions but had some
significant theoretical shortcomings. It was not known why it possessed no conserved
current as in quantum electrodynamics, how to come to terms with the unitarity violation
caused by the neutrino cross section being linear with the neutrino energy, and why the
interaction is very short ranged. In the 1960s work on developing a unified electroweak
theory to address these problems was progressing rapidly. Work in the early part of
the decade by Glashow [15] and Salam and Ward [16] explored the weak force being
mediated by massive bosons and unification under the symmetry group SU(2) × U(1) but
failed to produce a consistent theory. The path to a unified theory seemed to be through
spontaneous symmetry breaking (SSB) of exact symmetries to explain the approximate
conserved currents of the weak interaction. A key challenge was in Goldstone’s theorem,
that states every symmetry group generator broken via SSB gives rise to a massless boson
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2 Neutrino Physics 2.1 The Neutrino Chronology

[17, 18]. Any such boson would have been easily observed experimentally and so their
existence is ruled out. The breakthrough came when, independently of each other, Higgs
[19], Brout and Englert [20], and Guralnik, Hagen, and Kibble [21] showed that if the
broken symmetry was a gauge symmetry rather than a global symmetry, the resulting
boson would be a massive spin-1 vector particle. The consequence of this was understood
by both Salam [22] and Weinberg [23] who constructed a renormalisable, as proved by ’t
Hooft a few years later [24], electroweak theory based on an exact symmetry group that
undergoes the SSB SU(2)×U(1)Y → U(1)e. The resulting theory contains the photon and
the three massive vector bosons W+, W−, and Z that mediate the weak force. The mass
of these bosons appears in the denominator of the propagator which solved the problem
of unitarity and explains the short range of the weak force. The neutrino fits neatly into
this theory as part of the left-handed lepton field SU(2) doublets

 e
νe

 ,
 µ
νµ

 ,
 τ
ντ

 . (2.1.5)

At the time of the theory’s formulation no mass term for the neutrino was included due
to an absence of any experimental support for neutrino mass. This electroweak theory is
the basis of the modern SM and so will be discussed in more detail in § 2.2.

The next significant development in the understanding of the neutrino’s nature came
with Ray Davis’ experiment in Homestake Mine to measure the solar neutrino flux starting
in the 1960s [25]. The Homestake experiment employed a tank of C2Cl4 to detect electron
neutrinos from the Sun through the inverse β-decay process

νe +37 Cl →37 Ar + e−. (2.1.6)

The Argon atoms were periodically counted to give a solar neutrino event rate. Over
decades of operation, the experiment consistently measured only ∼ 1/3 of the predicted
solar neutrino rate [26]. This deficit became known as the ’solar neutrino problem’. It was
confirmed by the later experiments GALLEX [27], Kamiokande [28], and SAGE [29] which
when combined also found it to be an energy dependent effect. Since these results were
only for solar neutrinos and only sensitive to electron neutrinos, they could be explained
by an incorrect model of the solar neutrino flux or as an incorrect description of the
neutrino in the SM.

The theory of neutrino oscillations offered an explanation for the solar neutrino prob-
lem. Developed from work by Maki, Nakagawa, and Sakata [30] and Pontecorvo and Gri-
bov [31, 32], the theory proposed neutrinos having small masses which is demonstrated
to induce oscillations between flavours. In the early 2000s the SNO [33], KamLAND [34],
and Super-Kamiokande [35] experiments were able to confirm the oscillation hypothesis
by measuring the flux from multiple flavours and from solar, reactor, and atmospheric
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sources. These results confirmed that the solar model was correct and so resolved the
solar neutrino problem as a consequence of neutrinos changing flavour. This was evidence
of a non-zero neutrino mass. The mechanism of this oscillation will be discussed more in
§ 2.3.

2.2 Neutrinos in the Standard Model
2.2.1 The Standard Model

The SM Lagrangian is determined by SU(3)×SU(2)×U(1)Y gauge symmetry, the Poincaré
group spacetime symmetry, the requirement it produces a renormalisable quantum field
theory (QFT), and the choice of group representations for the particle fields. The gauge
symmetry gives rise to the the gauge fields Gg

µ, where g ∈ {1, . . . , 8}, Aa
µ, where a ∈

{1, 2, 3}, and Bµ for the groups SU(3), SU(2), and U(1)Y respectively. To allow for parity
violation, the fermion fields are treated as separate left- and right-handed two-component
Weyl spinors rather than as a single four-component Dirac spinor. Using the notation
(p,q)n, where p is the dimension of the SU(3) representation, q is the dimension of the
SU(2) representation, and n is the U(1)Y hypercharge, the fermions of the SM are listed
in Table 2.1. In addition to the fermions, there is single a Higgs doublet φ, which is a
scalar field in the (1,2)1/2 representation.

The SM Lagrangian is then constructed by writing the most general gauge invari-
ant, Poincaré invariant, and renormalisable Lagrangian possible with the available fields.
Ignoring the theta terms, collections of terms in the SM Lagrangian can be grouped as

LSM = Lgauge + Lspinor + Lhiggs + Lyukawa. (2.2.1)

In an attempt at brevity, we will only consider the leptonic sector when discussing these
terms, i.e. ignore the quarks and SU(3) gauge field. The Minkowski metric convention

Table 2.1: Fermion fields of the Standard Model and their SU(3) × SU(2) × U(1)Y representa-
tions. Colour indices are omitted.

Representation Fields

Leptons

(1,2)−1/2 l1L =
(
νeL

eL

)
, l2L =

(
νµL

eL

)
, l3L =

(
ντL

τL

)
(1,1)−1 e1

R = eR, e
2
R = µR, e

3
R = τR

Quarks

(3,2)1/6 q1
L =

(
uL

dL

)
, q2

L =
(
cL

sL

)
, q3

L =
(
tL
bL

)
(3,1)2/3 u1

R = uR, u
2
R = cR, u

3
R = tR

(3,1)−1/3 d1
R = dR, d

2
R = sR, d

3
R = bR
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ηµν = diag(1,−1,−1,−1) is used and Einstein notation is implied except for with gener-
ation indices.

The gauge term consists of contractions of the field strength tensors,

Lgauge = 1
4A

a
µνA

aµν + 1
4BµνB

µν , (2.2.2)

where,

Aa
µν = ∂µA

a
ν − ∂νA

a
µ + g2ε

ijkAj
µA

k
ν , (2.2.3)

Bµν = ∂µBν − ∂νBµ, (2.2.4)

where g2 is a coupling constant and εijk are the SU(2) structure constants. This term
includes cubic and quartic interactions for the SU(2) gauge field which, after SSB, describe
self-interactions of the W and Z bosons.

The spinor term for the lepton fields is

Lspinor =
3∑

m=1

(
lmL i /Dl

m
L + em

R i /De
m
R

)
. (2.2.5)

where /D is the contraction of the gamma matrices with the covariant derivative. The
covariant derivative is defined by the representation of the field it acts on as

Dµ = ∂µ + ig2A
a
µT

a
SU(2) + i

g1

2 Y Bµ1, (2.2.6)

where T a
SU(2) are the generators of the field’s SU(2) representation and Y is the field’s

U(1) hypercharge. From this, we see that the spinor term (2.2.5) gives rise to coupling
of the fermion fields to the gauge fields which in turn is responsible for the interactions
between the fermion fields we see in nature.

The Higgs term consists of all allowed couplings of the scalar field with itself,

Lhiggs = (Dµφ)†Dµφ+ µ2φ†φ− λ(φ†φ)2, (2.2.7)

where µ2 and λ are the mass parameter and self-coupling constant of the Higgs potential
respectively. So far we have not been able to write a mass term for the fermion fields
since a Dirac mass made up of left and right-handed fields,

L ⊃ m (eLeR + eReL) , (2.2.8)

would break SU(2) symmetry. But, using gauge invariant couplings to the Higgs field we
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can write a Yukawa term,

Lyukawa = −
3∑

m=1

3∑
n=1

ymn
l lmL φe

n
R + h.c., (2.2.9)

where ymn
l are the Yukawa coupling constants of a complex 3 × 3 Yukawa matrix Yl. This

appears to result in a complicated mixing of the lepton generations via coupling to the
Higgs and controlled by the 18 real parameters of Yl. But, many of these parameters can
be removed through a redefinition of the lepton fields. For any complex matrix Y there
exists a biunitary transformation using two unitary matrices VL and VR, such that V †

LY VR

is real and diagonal. We can use these unitary matrices for the Yukawa matrix to redefine
the lepton fields,

lmL → V mn
L lnL, e

m
R → V mn

R en
R. (2.2.10)

Since the redefinition matrices are unitary, it is easy to see the spinor terms for the leptons
(2.2.5) are left unchanged. The field redefinitions also diagonalise the Yukawa term in
generation index to give

Lyukawa = −
3∑

m=1
ym

l l
m
L φe

m
R + h.c.. (2.2.11)

This procedure of diagonalising the Yukawa matrix can be repeated for the quark fields.
However, due to the presence of an additional right-handed field (see Table 2.1) there
are two possibilities for left-right Yukawa couplings that results in two Yukawa matrices
to be diagonalised. This requires that the two components of qm

L are rotated differently
which results in the kinetic Lspinor term changing following the diagonalisation of the
Yukawa matrices. Couplings of the quarks to the gauge fields pick up factors of the field
redefinition matrices which creates couplings that mix generation indices. This behaviour
is described by the Cabibbo-Kobayashi-Maskawa (CKM) matrix and is responsible for
interactions mediated by the W boson changing quark families. We will see in § 2.2.4 this
mixing behaviour can also occur for the lepton fields.

2.2.2 Electroweak Symmetry Breaking

The key component that relates the SM Lagrangian to our observable world is electroweak
symmetry breaking. This is responsible for giving mass to fermions and generating mas-
sive gauge bosons through the Higgs mechanism. Spontaneous symmetry breaking arises
when there is a symmetry of the Lagrangian’s equations but not of the solution to these
equations. For the Higgs Lagrangian (2.2.7), the potential term has a set of minima de-
fined by φ†φ = µ2/2λ = v2/2. Without loss of generality, we may choose the minimum to
be

φ0 =
 0

v√
2

 , (2.2.12)
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this is known as the vacuum expectation value (VEV) of this Higgs field. When the Higgs
field assumes this VEV it is clear that much of the SU(2) × U(1)Y symmetry will not be
present in the equations. To test this, we consider how the generators of the group act
on the VEV. If T aφ0 = 0, the generator does not change the VEV and is unbroken, if
T aφ0 6= 0, the generator is broken. We find that the original SU(2) × U(1)Y generators
are broken. However, the linear combination of generators T 3 + Y is unbroken,

(
T 3 + Y

)
φ0 =

(1
2σ

3 + 1
21
)
φ0

=
1 0

0 0

 0
v√
2


= 0.

(2.2.13)

This single unbroken generator generates the residual symmetry group U(1)em which is
the symmetry associated with charge conservation. The electroweak symmetry breaking
pattern is SU(2) × U(1)Y → U(1)em.

To examine the effect of the Higgs field’s VEV on the rest of the Lagrangian, we
expand the Higgs field around φ0 in the parametrised form

φ(x) = exp
(
i

√
2
v
ξ(x)aT̂ a

) 0
1√
2(v + ϕ(x))

 , (2.2.14)

where T̂ a are the three broken generators we obtain through linear combinations of the
original generators such that one of the generators is the unbroken T 3 + Y and the set of
new generators still forms a vector space basis for the Lie algebra. When this parametri-
sation is substituted into the Higgs potential term (2.2.7), the fields ξ(x)a appear in the
particle spectrum as massless scalar fields known as Goldstone bosons. This was the obser-
vation of Goldstone’s theorem mentioned in § 2.1. However, since we built our Lagrangian
with local symmetries, we have the redundancy to fix the gauge. Making a gauge trans-
formation such that the aspirant massless scalar fields ξ(x)a are set to zero is known as
going to the unitary gauge,

φunitary(x) =
 0

1√
2(v + ϕ(x))

 . (2.2.15)

Using the Higgs field in the unitary gauge, we may examine the particle spectrum after
SSB.

Starting with the Higgs potential (2.2.7) we find

Lhiggs = . . .+ λv2ϕ+ λvϕ3 + λ

4ϕ
4. (2.2.16)
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The scalar field ϕ is the Higgs boson with a mass mϕ =
√

2λv2 =
√

2µ and self-interaction
terms. The new vector boson fields and their masses can be found be substituting φunitary

into the kinetic term for the Higgs field (2.2.7). After some manipulations to reveal the
particle spectrum, the resulting fields and their masses are,

Aµ = cos θWBµ + sin θWA
3
µ, mγ = 0, (2.2.17)

W±
µ = 1√

2
(A1

µ ∓ iA2
µ), mW = g2v

2 , (2.2.18)

Zµ = cos θWA
3
µ − sin θWBµ, mZ = v

2

√
g2

1 + g2
2, (2.2.19)

where we have introduced the Weinberg angle

sin θW = g1√
g2

1 + g2
2

, cos θW = g2√
g2

1 + g2
2

. (2.2.20)

The gauge covariant derivative (2.2.6) is then written in terms of these new gauge fields,

Dµ = ∂µ + ig2 sin θW (T 3 +Y )Aµ + i(g2 cos θWT
3 −g1 sin θWY )Zµ + i

g2√
2

(W+
µ T

+ +W−
µ T

−),
(2.2.21)

where T± = T 1±iT 2. We identify W±
µ and Zµ as the gauge bosons of the weak interaction

and Aµ as the photon field which corresponds to the unbroken residual symmetry U(1)em.
The residual symmetry’s coupling constant is the electric charge which we find is a mixture
of the coupling constants from the original SU(2) × U(1)Y gauge group, e = g2 sin θW .

We have seen how SSB generates the massive vector bosons we observe in nature.
Another effect of the Higgs field assuming its VEV is on the Yukawa couplings (2.2.11).
Substituting φunitary in for these terms we find

Lyukawa = −
3∑

m=1
ym

l

(
νm

eL em
L

) 0
v√
2

 em
R + h.c.

= −
3∑

m=1

ym
l v√
2
em

L e
m
R + h.c..

(2.2.22)

This has the form of a mass term for each generation with mass mm
l = ym

l v/
√

2. SSB has
resulted in two separate massless Weyl spinors, em

L and em
R , forming into a single massive

Dirac spinor which correspond to the leptons we observe experimentally.

With this discussion of SSB, we now have a complete description of the electroweak
SM. It describes the particle content of nature and all possible tree-level interactions with
a total of 19 free parameters to be measured experimentally. A notable feature is that
there is no mass term for the neutrino, it is described as a left-handed massless particle.
As we have discussed in § 2.1, there is strong experimental evidence that the neutrino
does have mass. The reason for neutrinos being massless in the SM is both a historical
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artefact and because it is not clear which mechanism for generating a massive neutrino is
best supported experimentally. We will discuss how we might incorporate neutrino mass
into the SM in the next section.

2.2.3 Mechanisms for Neutrino Mass

Multiple experiments in the late 1990s and early 2000s confirmed oscillations of neutrinos
between flavours, a phenomenon implying a neutrino mass that differs by generation. So
we must look for a theoretical description of the neutrino mass that, ideally, explains
why their mass is so low, < 1 eV compared to the next lightest fermion with a mass of
me = 511 keV.

Without extending the particle content of the SM there is no way to write a mass term
for the left-handed neutrino that is both gauge invariant and satisfies renormalisability.
The simplest extension to the SM would be to include a right-handed neutrino field νm

R

which would be sterile, meaning in the trivial representation of the gauge group, i.e.
(1,1)0. With these extra fields, the most general allowed Lagrangian picks up extra
terms,

L ⊃ −
3∑

m=1

3∑
n=1

pmnlmL φ̃ν
n
R −

3∑
m=1

Mmνm
R (νm

R )c + h.c., (2.2.23)

where pmn are Yukawa couplings, Mm are the Majorana mass couplings, φ̃ = iσ2φ
∗ such

that the Yukawa term is U(1)Y invariant, and (νRm)c = c(νRm)T are the charge-conjugated
fields. The first term is a familiar Yukawa coupling and the second term is known as the
Majorana mass term. This Majorana mass term can only be written for the new right-
handed fields since they are fully neutral under the SM gauge group.

With this addition of a right-handed neutrino, there are two ways we can reproduce a
small neutrino mass. One is to have the Yukawa couplings pmn be of order unity and the
Majorana mass Mm be very large at ∼ 1014 GeV. After diagonalising the Yukawa cou-
plings and performing electroweak symmetry breaking, the mass potential of the neutrinos
becomes

L ⊃ −
3∑

m=1

pmv√
2
νm

L ν
m
R −

3∑
m=1

Mmνm
R (νm

R )c + h.c.. (2.2.24)

Then diagonalising the resulting mass matrix, we find, for each generation, one light eigen-
state with mass ∼ 0.1 eV and one very heavy eigenstate at ∼ 1014 GeV. This mechanism of
generating a light neutrino is called the seesaw mechanism. The heavy eigenstate would
be well beyond the energies we can probe experimentally and the light eigenstate is the
familiar neutrino. An interesting consequence of the Majorana mass term is that it would
require the neutrino spinor field to follow the Majorana equations of motion which enforce
ψc = ψ, i.e. the neutrino is its own antineutrino. There would only be the neutrino, which
when produced by the decay of a W− is left-handed and when produced by the decay
of a W+ is right-handed. In this scenario we say the neutrino is Majorana. The other
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way to generate small neutrino mass is to forbid the introduction of the Majorana mass
term. This can be done by enforcing lepton number conservation in the Lagrangian which
so far has only been an accidental symmetry of the SM. The Yukawa couplings for the
neutrinos would then be set much smaller than those of the other leptons to generate
a small neutrino mass after SSB. The neutrino spinor field would then follow the Dirac
equation only. There would be the left-handed neutrino and right-handed antineutrino
we observe through the weak interaction and the right-handed neutrino and left-handed
antineutrino that do not couple to the weak force. In this scenario we say the neutrino is
Dirac.

2.2.4 Lepton Mixing

With the addition of the right-handed neutrino field required for generating a mass term,
the full post-SSB Yukawa term for the leptons becomes

Lyukawa = −
3∑

m=1

3∑
n=1

(
ymn

l v√
2
em

L e
n
R + pmn

ν v√
2
νm

L ν
n
R

)
+ h.c.. (2.2.25)

To diagonalise this term the field redefinitions in (2.2.10) are no longer sufficient. We
must now individually transform the fields of the left-handed doublet,

em
L → V mn

eL en
L, e

m
R → V mn

eR en
R,

νm
L → V mn

νL νn
L, ν

m
R → V mn

νR νn
R,

(2.2.26)

where the U(3) transformations are chosen such that they diagonalise the Yukawa cou-
plings, V †

eLYlVeR and V †
νLPνVνR. These field redefinitions diagonalise the Yukawa couplings

(2.2.25) but, since we were not free to choose the νm
L transformation to be the same as

for em
L , the leptonic charged current couplings are affected,

Lspinor ⊃
3∑

m=1
i
g2√

2
W+

µ ν
m
L γ

µem
L + h.c.

→
3∑

m=1

3∑
m=1

i
g2√

2
W+

µ

(
V np†

νL V pm
eL

)
νn

Lγ
µem

L + h.c..

(2.2.27)

These field redefinitions have revealed charge current interactions that mix lepton gen-
eration indices. The mixing is controlled by the matrix UPMNS

mn = V np†
νL V pm

eL , called the
Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix.

The PMNS matrix is responsible for the phenomenon of neutrino oscillations and we
have seen that it is a consequence of requiring the neutrino to have mass. It will be
useful for the next section to parametrise the PMNS matrix here. The PMNS matrix is
a 3 × 3 unitary matrix so it appears to depend on 32 = 9 real parameters. However, it is
possible to make non-symmetry phase transformations of the fermion fields that simplify
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UPMNS but leave the kinetic and mass terms in the Lagrangian invariant. If we assume the
existence of a Majorana mass term, we only have phase changes of em

L alongside identical
phase changes of em

R that leave the Lagrangian invariant. This means the PMNS matrix
has 9−3 = 6 physical parameters and may be parametrised by 3 orthogonal transformation
parameters and 3 phases in the form UPMNS = U(θ12, θ23, θ13, δCP)×diag(eiα1 , eiα2 , 1). The
two phases α1,2 are called Majorana phases. If we could consider the neutrino as Dirac
this allows phase transformations of νm

L and νm
R which reduces the number of physical

parameters to 9 − 3 − (3 − 1) = 4. The −1 coming from the transformation of all lepton
flavours by the same phase having no effect on UPMNS. The standard parametrisation of
the PMNS matrix without the Majorana phases is,

UPMNS =


1 0 0
0 c23 s23

0 −s23 c23




c13 0 s13e
−iδCP

0 1 0
−s13e

iδCP 0 c13



c12 s12 0

−s12 c12 0
0 0 1



=


c12c13 s12c13 s13e

−iδCP

−c23s12 − s23c12s13e
iδCP c23c12 − s23s12s13e

iδCP s23c13

s23s12 − c23c12s13e
iδCP −s23c12 − c23s12s13e

iδCP c23c13

 ,
(2.2.28)

where cij = cos θij and sij = sin θij. The parameters θij are referred to as the mixing
angles and the parameter δCP is referred to as the CP violating phase.

2.3 Neutrino Oscillations

The neutrino eigenstates associated with the weak interaction are called the flavour eigen-
states. We define the flavour eigenstate by observing the accompanying charged lepton
produced in interactions. The eigenstates associated with the mass terms are called, sur-
prisingly, the mass eigenstates. The mass eigenstates are those of the free Hamiltonian
and so are the eigenstates that are most convenient to use when considering time evolu-
tion. The experimental phenomenon of neutrino oscillations is that the flavour eigenstate
can differ between creation and interaction. We will see how this phenomenon arises
through the PMNS matrix.

2.3.1 Three Flavour Oscillations

The PMNS matrix acts as a mixing matrix between the flavour eigenstates, |να〉 where
α ∈ {e, µ, τ}, and the mass eigenstates, |νi〉 where i ∈ {1, 2, 3},

|να〉 =
∑

i

Uαi |νi〉 . (2.3.1)
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The mass eigenstates have the standard quantum mechanical time evolution,

|να(t)〉 =
∑

i

Uαie
−iĤt |νi〉 =

∑
i

Uαie
−i
√

p2+m2
i t |νi〉 ≈

∑
i

Uαie
−iEte−i

m2
i

t

2E |νi〉 , (2.3.2)

where, assuming the neutrinos to be ultrarelativistic p = |~p| � mi, we have made the
approximation Ei =

√
p2 +m2

i ≈ E + m2
i

2E
. We have also made the simplification that

the mass eigenstates are created with the same energies, Ei = E. The probability of
measuring a neutrino in the flavour state β after it was created in a flavour state α and
travelled for some time T is given by the amplitude of the overlap of the states,

Pα→β = |〈νβ|να(T )〉|2 =
∣∣∣∣∣∑

i

UαiU
∗
βie

−i
m2

i
T

2E

∣∣∣∣∣
2

. (2.3.3)

It is more common to describe oscillation probabilities in terms of distance travelled
L rather than T . Since the neutrinos are ultrarelativistic, the two are interchangeable.
Making the change to L and performing some manipulations, we can rewrite the oscillation
probability as

Pα→β = δαβ − 4
∑
i>j

Re
(
UαiU

∗
βiU

∗
αjUβj

)
sin2

(
∆m2

ijL

4E

)

+ 2
∑
i>j

Im
(
UαiU

∗
βiU

∗
αjUβj

)
sin

(
∆m2

ijL

2E

)
,

(2.3.4)

where ∆m2
ij = m2

i −m2
j and are called the mass splitting terms.

From the form of the oscillation probability (2.3.3) it is clear that the Majorana phases,
which appear as a factor of diag(eiα1 , eiα2 , 1), have no effect on oscillations. The equation
(2.3.4) then tells us that neutrino oscillations depend on the 3 mixing angles and single
phase of the PMNS mixing matrix (2.2.28) along with 2 independent mass splitting terms
which by convention are ∆m2

21 and ∆m2
32. It is also a function of L/E which can be

controlled experimentally. When we consider antineutrino oscillations να → νβ, the term
involving the imaginary part of the PMNS matrix elements flips sign. If this term is
non-zero, neutrino oscillations would be a CP violating process since Pα→β 6= Pα→β. The
magnitude of this term is controlled by the aptly named CP violating phase parameter of
the PMNS matrix.

2.3.2 Matter Effects

Thus far we have only considered oscillations in a vacuum. Experimentally, neutrinos
will often be propagating through a non-negligible amount of matter and so be subject
to a potential caused by coherent interactions with the medium. This results in the
matter effect. We must formulate oscillation probabilities with matter effects taken into
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account in order to properly fit oscillations parameters to experimental data. This was
first done by Wolfenstein [36] and later expanded on by Mikheyev and Smirnov [37] and
so is also known as the Mikheyev-Smirnov-Wolfenstein (MSW) effect. It is because the
potential experienced by different neutrino flavours is not equal that a phase difference
arises which causes oscillations through matter effects. For accelerator neutrinos, where
the propagation medium is the Earth, all flavours will interact via the Z boson, called
a neutral current (NC) interaction, with the same amplitude. However, the electron
neutrinos can also undergo scattering with electrons via the W boson, called a charge
current (CC) interaction. These interaction channels, shown in Figure 2.2, result in a
different potential for the electron neutrino which alters the dynamics of oscillations.

For simplicity, we will examine the matter effect in the two flavour paradigm where
there is only one mixing angle and the PMNS matrix is given by the 2×2 submatrix of the
matrix found on the right of the product in (2.2.28). In a vacuum, the mass eigenstates
obey the Schrödinger equation,

i
d
dt

ν1

ν2

 = H0

ν1

ν2

 , (2.3.5)

where H0 is the vacuum Hamiltonian . Using the same approximations as in the previous
section and ignoring any constant phase factors since they do not affect probabilities, the
Hamiltonian is

H0 = 1
2E

m2
1 0

0 m2
2

 . (2.3.6)

We can then use 2 × 2 mixing matrix U to write (2.3.5) in terms of the flavour basis,

i
d
dt

νe

νµ

 = UH0U
†

νe

νµ


=
m2

1 +m2
2

4E 1 + ∆m2

4E

− cos 2θ sin 2θ
sin 2θ cos 2θ

νe

νµ


= ∆m2

4E

− cos 2θ sin 2θ
sin 2θ cos 2θ

νe

νµ

 ,
(2.3.7)

where in the last equality the constant phase factor is omitted.

We can now introduce matter effects through the additional potential for the electron
neutrinos, diag (Ve, 0). Considering matter to be a homogeneous and isotropic gas of
electrons, this potential is given by Ve = ±

√
2GFNe where GF is the Fermi constant, Ne

is the electron density of matter, and the ± is for neutrinos and antineutrinos respectively.
A derivation of this potential term can be found in Section 9.1 of [38]. Using the freedom
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νe νe

e−, p, n e−, p, n

Z

νe e−

e− νe

W±

(a) νe interactions with matter.

νµ, ντ νµ, ντ

e−, p, n e−, p, n

Z

(b) νµ,τ interactions with matter.

Figure 2.2: NC and CC neutrino interactions with matter.

to add a constant phase factor, the effective Hamiltonian of neutrinos in matter is

HM = ∆m2

4E

− cos 2θ sin 2θ
sin 2θ cos 2θ

+
Ve

2 0
0 −Ve

2


= ∆m2

4E

− cos 2θ + A sin 2θ
sin 2θ cos 2θ − A

 ,
(2.3.8)

where
A = ±2

√
2GFNeE

∆m2 . (2.3.9)

Defining an effective mixing angle θM and an effective mass splitting ∆mM the matter
Hamiltonian takes the same form as the vacuum Hamiltonian in (2.3.7),

HM = ∆m2
M

4E

− cos 2θM sin 2θM

sin 2θM cos 2θM

 . (2.3.10)

Which means the oscillation probabilities will follow the same functional form as in the
previous section with θ → θM and ∆m → ∆mM . For two flavour oscillations this is

Pe→µ = sin2 θM sin2
(

∆m2
ML

4E

)
. (2.3.11)

The effective parameters are found by re-expressing the matter Hamiltonian (2.3.8) in the
same form as the vacuum Hamiltonian (2.3.7). This gives

∆m2
M = C∆m2, (2.3.12)

sin 2θM = sin 2θ
C

, (2.3.13)

where
C =

√
(cos 2θ − A)2 + sin2 2θ. (2.3.14)

The treatment of matter effects for three flavours follows similarly but is far more
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tedious, the results can be seen in [39]. Examining the two flavour oscillation probability
(2.3.11) is enough to provide insight into the consequences of the matter effect. One such
consequence is a resonance condition known as the MSW resonance that occurs when
cos 2θ = A. Even with a very small vacuum mixing angle, oscillations will be significantly
enhanced when this condition is met. We also see that the oscillation probabilities will be
different for neutrinos and antineutrinos due to the ± in A (2.3.9), meaning experimentally
observing Pα→β 6= Pα→β in the presence of matter effects is not enough to indicate CP
violation, precision measurements of the oscillations probabilities are required. Lastly,
we see that the MSW resonance depends on the sign of the mass splitting, ∆m2, as it
appears in the denominator of A (2.3.9). This means that through the matter effect we
can have strong experimental sensitivity to not just the difference in mass between the
mass eigenstates, but also their ordering.

2.3.3 Physics From Oscillation Measurements

The neutrino mass and in turn the phenomenon of flavour oscillations is a divergence with
the SM strongly supported by experimental data. It is important that precision measure-
ments of the parameters governing oscillations are made to inform both the underlying
theory of particle physics and our understanding of experimental data where properties
of the neutrino are relevant.

The mixing angles θ12, θ13, and θ23 form the real part of the PMNS matrix and along
with δCP determine the flavour mixing pattern. Precision measurements of the mixing
angles are important in determining the unitarity of the PMNS matrix. In § 2.2.3 the
PMNS matrix is unitary by definition but this is under the implicit assumption of there
being only three generations of leptons. A common feature of extensions to the SM is
to include additional massive fermionic singlets, often sterile neutrinos. The inclusion of
n sterile neutrinos that may mix with the SM neutrinos means the PMNS matrix is the
3 × 3 submatrix of a larger (3 + n) × (3 + n) unitary mixing matrix,

U =



Ue1 Ue2 Ue3 . . . Ue(3+n)

Uµ1 Uµ2 Uµ3 . . . Uµ(3+n)

Uτ1 Uτ2 Uτ3 . . . Uτ(3+n)
...

...
...

. . .
...

U(3+n)1 U(3+n)2 U(3+n)3 . . . U(3+n)(3+n)


. (2.3.15)

Since a unitary matrix has orthonormal column and rows, it is clear the 3 × 3 submatrix
would not be unitary. As such, an important test of potential new physics is validating
the unitarity of the PMNS matrix by testing the condition ∑3

m=1 UmpU
∗
mq = δpq. This

requires precision measurements of the mixing angles.
A mixing angle of particular importance is θ23. Determining the octant of θ23, mean-
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Figure 2.3: Illustration of the neutrino mass hierarchy. Coloured bands represent the pro-
portion of each flavour eigenstate the mass eigenstates are composed of. For each band δCP is
varied from 0 (bottom) to π (top). Figure from [41].

ing θ23 > 45◦ or θ23 < 45◦ where 45◦ corresponds to maximal mixing, is necessary to
understand the structure of the PMNS matrix. This result would be a strong model dis-
criminator for many SM extensions that introduce new flavour symmetries, such as an µ-τ
symmetry [40]. Particular attention is given to the octant of θ23 because experimentally
it is a very difficult measurement owing to the presence of nearly degenerate solutions for
the oscillation probability.

The determination of the sign of the mass splitting terms and so the order of mass
eigenstates is of significant importance. Current experimental constraints on the mass
splitting and the sign of ∆m2

21 leave two possible scenarios for the mass ordering. Re-
solving the mass ordering as normal ordering (NO), m1 < m2 < m3, or inverted ordering
(IO), m3 < m1 < m2, is known as the neutrino mass hierarchy problem. It is represented
pictorially in Figure 2.3. One important consequence of the mass ordering is its effect
on neutrinoless double β-decay (0νββ). This is a double β-decay with no neutrinos in
the final state. Such a process is only possible if a Majorana mass term exists so that an
outgoing right-handed massive neutrino can couple as an incoming left-handed neutrino
to another W boson. We see from Figure 2.4 that the effective Majorana mass mββ, which
determines the rate of 0νββ, is highly dependent on the mass ordering. For this reason,
resolving the mass ordering through oscillation measurements is an important part of the
search for a Majorana neutrino.

Perhaps the most consequential of the oscillation parameters is the CP violating phase.
The abundance of matter over antimatter in the observable universe is thought to be a
consequence of some baryon/lepton asymmetry producing process in the very early uni-
verse known as baryogenesis/leptogenesis. In 1967, Sakharov proposed three conditions
necessary for any theory of baryogenesis which also apply analogously to one of leptoge-
nesis [43]:
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Figure 2.4: Effective Majorana neutrino mass mββ as a function of lightest neutrino mass
for normal ordering (left) and inverted ordering (right). The solid lines show allowed values
from the best fit neutrino oscillation parameters and the colour scale the marginalised posterior
distributions. Figure from [42].

1. Baryon number violation. To permit a process that can create baryons from
anti-baryons and vice-versa.

2. C and CP violation. To allow enhancement of baryon producing processes and
suppression of anti-baryon producing processes.

3. Loss of thermal equilibrium. To prevent baryon number violating processes
having the same rate as their inverse process.

The SM permits some CP violation through the quark sector but not enough to satisfy the
second condition for models of baryogenesis. A leading model for leptogenesis generates
a lepton asymmetry via CP violating decays of right-handed Majorana neutrinos which
in turn generates the baryon asymmetry [44]. Such a model may account for the present
day baryon asymmetry if the neutrino is Majorana and there is sufficient leptonic CP
violation.

CP violation in neutrino oscillations implies that Pα→β 6= Pα→β. However, even with
CP violation, invariance to CPT demands that Pα→α = Pα→α. Therefore, the CP asym-
metry is given by Aαβ

CP = Pα→β − Pα→β ∀ α 6= β. This corresponds to experiments that
can measure neutrinos in a new flavour to the production flavour, called appearance, in
both neutrino and antineutrino modes. This is in contrast to experiments that measure
only a deficit of neutrinos in the same flavour as the production flavour, called disappear-
ance. When expressing Aαβ

CP in terms of the oscillation parameters, it is found that there
is always a factor called the Jarlskog invariant J [45] given by

J = sin θ13 cos2 θ13 sin θ12 cos θ12 sin θ23 cos θ23 sin δCP, (2.3.16)

which can be shown to be independent of the choice of basis for the mixing matrix we
have through phase redefinitions of lepton fields. It is therefore the physically meaningful
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measure of leptonic CP violation. From J , we see that CP is conserved for δCP = 0,±π
and maximally violated for δCP = ±π/2. In addition, that by constraining δCP and the
mixing angles in the standard PMNS parametrisation (2.2.28), the amount of leptonic
CP violation can be measured.

2.4 Neutrino Interactions
As shown in § 2.3, the oscillation probability is always a function of the true neutrino
energy. This means that in order to measure oscillation parameters the neutrino energy
must be known for each event. Experimentally we cannot achieve monoenergetic neutrino
fluxes. For accelerator neutrino experiments, this is due to pions and kaons being produced
with their own energy spectra and then undergoing two-body decay in a beam that is not
perfectly collimated, we will cover this in more detail in § 3.4. Because of this, it is
necessary to reconstruct the neutrino energy for each event. This requires an interaction
model, also called a cross section model, that relates a neutrino incident on a nucleus
with a given energy to a set of final state particles that can be measured in a detector.
By implementing these models in Monte Carlo (MC) simulations, they can be used to
understand how reconstructed energy in the detector relates to the neutrino energy the
oscillation probabilities depends on. Such MC implementations are known as neutrino
event generators.

We consider the initial interaction of a neutrino on a nucleus as a scattering with
a single nucleon suspended in the nuclear medium. To model this we must know the
neutrino-nucleon cross section as a function of energy. For the energy ranges relevant to
accelerator neutrino experiment, the total cross section will have contributions from three
types of neutrino-nucleon interaction. These types of interaction are shown schematically
in Figure 2.5.

Neutrinos with energies lower than the mass of their associated lepton may only inter-
act with a nucleon via NC scattering. As the neutrino energy increases, CC interactions

νl l−

n p

W±

(a) CC quasielastic.

νl l−

n

n

π+
∆+

W±

(b) CC resonance production.

νl l−

n, p

W± π±,0

X

(c) CC deep inelastic scattering.

Figure 2.5: Examples of the three main types of CC neutrino-nucleon interactions. Here
l = e, µ, τ and X represents the hadronic system excluding pions.
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Figure 2.6: Predictions [46] and measurements [47] of total muon neutrino (left) and antineu-
trino (right) per nucleon CC cross section. Contributions from different interactions shown, QE
is the CCQE interaction introduced in § 2.4. The error bars represent the uncertainties in the
cross section measurements. Figure from [48].

accompany this NC interaction channel. The simplest CC interaction is quasielastic scat-
tering (CCQE) with a nucleon as shown in Figure 2.5a. This occurs when neutrinos
acquire sufficient energy to create the lepton’s mass. At higher energies, an additional
interaction channel becomes available to the neutrino known as resonance production
(RES) as shown in Figure 2.5b. In this interaction the nucleon is excited into a bary-
onic resonance which quickly decays back to a nucleon and, most often, a single pion.
Finally, at even higher energies, the neutrinos can scatter directly off quarks in a deep
inelastic scattering (DIS) interaction as shown schematically in Figure 2.5c. A DIS in-
teraction causes the break up of the nucleon containing the struck quark. This results in
hadronisation and the formation of a shower of strongly interacting particles.

The contribution from each of these interaction types to the total neutrino cross section
is shown in Figure 2.6. There is significant overlap between different interaction types and
for the energy spectrum of many accelerator neutrino experiments, most notably DUNE,
the total cross section will often be made up of multiple interaction types. For this reason,
it is important the interaction model accurately predicts the relative contribution of each
interaction type to the total cross section as a function of energy.

Modern accelerator neutrino experiments use detectors with a heavy nuclei medium
to allow high interaction rates. For this reason, the interaction model must simulate
neutrino-nucleus scattering rather than only neutrino-nucleon scattering. One part of this
is to consider the initial state of the nucleon. Inside the nucleus, a nucleon is constantly
changing its momentum as it moves in a nuclear potential, resulting in a smearing of
the reconstructed energy that needs to be understood. This is typically described using a
simple relativistic Fermi gas model [49, 50] with more advanced models being investigated
such as the use of spectral functions [51]. In addition, the model of the initial state of
the nucleus needs to also account for a Pauli blocking effect where interaction channels
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Figure 2.7: Illustration of nucleon-nucleon and pion-nucleon final state interactions of the
hadronic component of the initial interaction. Different interactions result in significantly dif-
ferent kinematics and multiplicities for the particles escaping the nucleus. Figure from [54].

that result in nucleons being in a state that is already occupied by another nucleon
are forbidden. Lastly, it is important that correlations between nucleons are modelled
properly to account for the interaction channel where the W in Figure 2.5a is absorbed
by a pair of nucleons resulting in two outgoing nucleons and an enhanced cross section.
These are known as two-particle-two-hole (2p2h) interactions [52]. These interactions are
dominated by channels where the two nucleons interact via an exchange of a virtual pion
known the meson exchange current.

After modelling the initial state of the nucleus to get an accurate description of the
neutrino-nucleon interaction, final state interactions (FSI) must be considered. These are
interactions the outgoing particles from the neutrino-nucleon interaction may undergo as
they traverse the nuclear medium to be potentially emitted from the nucleus. Typically
the lepton will escape the nucleus but the hadrons will interact as they propagate through
the nucleus. They can change their momentum via scattering, undergo absorption, or
collide with nucleons and generate additional particles. Some of the possible FSI effects
are illustrated in Figure 2.7. One method of modelling FSI is the intranuclear cascade
model [53].

The critical role of the interaction model is to provide a map from the true energy of
the incident neutrino to the reconstructed energy in the detector. One method of energy
reconstruction is to select CCQE interactions and consider the kinematics of the outgoing
lepton only. This requires accurate knowledge of the smearing from the nucleon’s initial
motion, the 2p2h contributions, and FSI effects that can change pion multiplicity to pro-
duce QE-like events from non-QE interactions. Alternatively, there is the calorimetric
energy reconstruction which looks to measure the energy of all the final state particles.
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Final state particles meaning the particles that escape the nucleus following the neutrino-
nucleon interaction. This is the method that DUNE is designed to use. For this method
to work well the interaction model must predict not just the fraction of neutrino energy
absorbed by the nucleus one way or another, but an accurate prediction of the multiplici-
ties and kinematics of final state particles. This is because the detector will have different
efficiencies and resolutions for different particles and their energies. Most notably, it may
not be possible to reconstruct the energy of neutral particles in the final state.

A key problem with the models employed by event generators to simulate the afore-
mentioned nuclear effects is that there are significant uncertainties in the models them-
selves rather then just the parameters that govern them. This is expected to be a large
source of systematic error and potentially bias in the precision measurement of oscillation
parameters DUNE aims to make. Multiple experiments aim to study relevant interaction
models including MiniBooNE [55], MicroBooNE [56], MINERνA [57], and SBND [58].
By comparing neutrino-nucleus data to simulation at different energies they hope to im-
prove modelling and properly parametrise uncertainties. Despite this, it is expected that
interaction modelling will continue to be a dominant systematic uncertainty.

2.5 Neutrino Oscillation Measurements
Sensitivity to the full set of oscillation parameters requires access to multiple oscillation
channels, a range of L/E, and exploitation of the matter effect. Accurate measurement
of all parameters is therefore dependent on measurements from multiple experiments in
distinct configurations. An overview of some of the important measurements from various
experiments will be given in this section.

2.5.1 Solar and Long Baseline Reactor Neutrinos

The solar neutrino experiments, mentioned in § 2.1, primarily measure the survival prob-
ability for electron neutrinos. Solar neutrinos are generated by thermonuclear reactions
in the interior of the Sun with various reaction chains contributing to the total flux. The
solar neutrinos have energy ∼ 10 MeV and are, of course, at a baseline of approximately
1 AU. At this L/E, the electron neutrino survival probability is dominated by θ12 and
∆m2

21 with the sign of the latter being accessible through the contribution from matter
effects with the Sun.

Long baseline reactor neutrino experiments are also sensitive to the same oscillation
parameters through measuring the survival probability of reactor electron antineutrinos.
The KamLAND experiment measured electron antineutrinos with an energy spectrum
peaking at ∼ 4 MeV from 56 nuclear reactors across Japan at a flux-weighted average
baseline of ∼ 180 km [59]. Importantly, KamLAND was able to measure the survival
probability as a function of L/E as shown in Figure 2.8. This provided a precise mea-
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Figure 2.8: Ratio of observed signal νe with no oscillation expectation for the KamLAND
experiment. L0 = 180 km is the flux-weighted average reactor baseline. Figure from [59]

surement of θ12 and ∆m2
21.

Combining results from KamLAND with data from multiple solar neutrino experi-
ments results in a strong constraint on θ12 and ∆m2

21 as shown in Figure 2.9. In the
combined fit the sensitivities of the solar experiments and KamLAND complement each
other, highlighting the importance of leveraging multiple experimental configurations. We
also see from the fit that the sign of the mass splitting is resolved as ∆m2

21 > 0 which
means the mass eigenstate ν2 must be heavier than ν1.

2.5.2 Short Baseline Reactor Neutrinos

KamLAND is one of many reactor neutrino experiments that aimed to measure a dis-
appearance of electron antineutrinos from nuclear reactors. The other experiments are
typically situated much closer to the reactors than KamLAND. At baselines of 0–2 km,
the oscillations are most sensitive to the parameters θ13 and ∆m2

31. The constraints on
these parameters from the Daya Bay and RENO reactor neutrino experiments can be
seen in Figure 2.10. We see that Daya Bay provides an accurate measurement of θ13. It
should be noted that short baseline reactor experiments are not sensitive to the sign of
the mass splitting through matter effects.

2.5.3 Atmospheric Neutrinos

Thus far, we have not mentioned the possibility of measuring atmospheric neutrinos.
Atmospheric neutrinos are produced when cosmic rays strike the atmosphere to create a
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Figure 2.9: Allowed regions and best fit in sin2 θ12 – ∆m2
21 from solar neutrino experiments

(black), KamLAND (blue), and a combined analysis of the two (shaded). The star is the best
fit value of the combined analysis. The solar experiments considered are Homestake, GALLEX,
GNO, SAGE, Borexino, Super-K, and SNO. Figure from [60].

Figure 2.10: Allowed regions and best fit in sin2 θ13 –
∣∣∆m2

31
∣∣ with normal ordering assumed

from Daya Bay (red) and RENO (blue) experiments. Figure from [60].
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Figure 2.11: Super-K atmospheric neutrino data. Events are divided by e- or µ-like and energy
and are binned by zenith angle with cos Θ < 0 corresponding to upward-going particles. The
hatched region is the no oscillation prediction and the solid line is the best fit expectation for
νµ ↔ ντ oscillations. Figure from [35].

hadronic shower containing pions. The charged pions then decay as π → µνµ followed by
decay of the muon as µ → eνeνµ to produce a neutrino flux that is mostly νµ and νµ and
with energies ranging from a few MeV up to 109 GeV. Atmospheric neutrino oscillations
are dominated by the parameters θ23 and ∆m2

32, meaning the expected effect would be an
absence of upward-going muon neutrinos, as these have travelled up through the Earth,
and an excess of upward-going tau neutrinos.

In 1998 the Super-Kamiokande (Super-K) collaboration reported the results of an ex-
periment that utilised a 50 kiloton water Cherenkov detector to reconstruct the flavour,
energy, and direction of atmospheric neutrinos [35]. A clear oscillation signature was ob-
served by binning observations into zenith angle as seen in Figure 2.11. The measurement
of a disappearance in µ-like interactions for upward-going neutrinos alongside a relatively
constant rate of e-like interactions in all directions was strong evidence of νµ → ντ os-
cillations. After almost 15 cumulative years of data-taking, Super-K’s latest oscillation
parameter constraints from atmospheric neutrinos only is, with normal hierarchy assumed,
sin2 θ23 = 0.587+0.036

−0.069 and |∆m2
32| = 2.50+0.12

−0.31 × 10−3 eV2 [61].

2.5.4 Accelerator Neutrinos

Accelerator neutrinos are produced by impacting a proton beam on a target material
to produce mesons which can then decay into a beam of predominantly muon neutrinos
and antineutrinos. The first accelerator neutrino experiment being the 1962 Brookhaven
experiment mentioned in § 2.1. The prospect of using neutrino beams to study oscillations
only became viable with the invention of the magnetic focusing horn [62] that allowed
for the formation of a approximately collimated beam. Using different polarities for the
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Figure 2.12: MINOS far detector muon neutrino disappearance measurement. The ratio shows
fits for alternate explanations of the deficit: neutrino decay and decoherence. Figure from [69].

magnetic horn also allows for both neutrino and antineutrino beams with good purities.
Long baseline neutrino experiments utilise such a focused neutrino beam and consist
of a near detector (ND) to constrain systematic uncertainties by measuring the initial
unoscillated beam flux and a far detector (FD) that measures the oscillated flux. They
measure both the νe appearance and disappearance channels from the initial νµ flux with
both neutrino and antineutrino beams. This makes them sensitive to the oscillation
parameters |∆m2

31|, |∆m2
32|, θ23, θ13, δCP, and potentially the mass ordering through

matter effects.

The first long-baseline accelerator neutrino experiments were K2K [63] with a baseline
of 250 km and MINOS [64] with a baseline of 735 km. Both experiments were able to make
clear disappearance measurements as demonstrated for MINOS in Figure 2.12. This
allowed for constraints on the values of ∆m2

31 and θ23 [65, 66]. Measurements of the
appearance channel where also made which gave some sensitivity to θ13 [67, 68].

The next generation of long-baseline detectors were T2K [70] and NOvA [71]. These
experiments were designed to have an improved sensitivity to the appearance channel
over their predecessors. With much greater statistics, both experiments were also able to
make improved measurements of the disappearance channel resulting in better constraints
on |∆m2

31| and θ23 as shown in Figure 2.13. The T2K experiment was able to confirm a
non-zero θ13 with conclusive statistical significance and produce a best fit of sin2 2θ13 =
0.140+0.038

−0.032 assuming NO, fixed |∆m2
32| and θ23, and CP conservation [72]. By making

measurements of the appearance channel for both neutrinos and antineutrinos, NOvA
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Figure 2.13: Allowed regions and best fit in sin2 θ23 –
∣∣∆m2

31
∣∣ for NOvA (red), T2K (blue),

and MINOS (green). Shown for normal hierarchy assumed (left) and inverted hierarchy assumed
(right). Figure from [60].

Figure 2.14: Allowed 1σ and 2σ regions and best fit in δCP – sin2 2θ23 for NOvA, T2K, and
their combination. Shown for normal hierarchy assumed (right) and inverted hierarchy assumed
(left). Figure from [75]

and T2K made measurements of δCP to establish whether CP violation occurs in neutrino
oscillations [73, 74], these are shown overlaid in Figure 2.14. The measurements exhibit
tension for the NO case with the T2K data providing the best constraint and favouring
maximal CP violation of δCP ∼ 3π/2. However, neither experiment was able to exclude
CP conserving values of δCP for either mass ordering with a credible interval greater than
3σ, falling short of the 5σ typically required for discovery.

Establishing conclusively if CP violation occurs in the leptonic sector and increasing
the precision of oscillation parameter measurements is the purview of the upcoming long-
baseline experiments DUNE [76] and Hyper Kamiokande [77], the former will be discussed
at length in the next chapter.
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Table 2.2: Best fit and 3σ ranges for oscillation parameters from global fit of oscillation
experiments. Shown for both normal and inverted ordering scenarios. Global fit data from
NuFIT [75].

Normal Ordering Inverted Ordering

Best Fit Point ±1σ 3σ range Best Fit Point ±1σ 3σ range

sin2 θ12 0.304+0.013
−0.012 [0.269, 0.343] 0.304+0.013

−0.012 [0.269, 0.343]
sin2 θ23 0.570+0.018

−0.024 [0.407, 0.618] 0.575+0.017
−0.021 [0.411, 0.621]

sin2 θ13 0.02221+0.00068
−0.00062 [0.02034, 0.02430] 0.02240+0.00062

−0.00062 [0.02053, 0.02436]
∆m2

21 7.42+0.21
−0.20 × 10−5 eV2 [6.82, 8.04] × 10−5 eV2 7.42+0.21

−0.20 × 10−5 eV2 [6.82, 8.04] × 10−5 eV2

∆m2
32 2.514+0.028

−0.027 × 10−3 eV2 [2.431, 2.598] × 10−3 eV2 −2.497+0.028
−0.028 × 10−3 eV2 [−2.583,−2.412] × 10−3 eV2

δCP 195+51
−25

◦ [107, 403]◦ 286+27
−32

◦ [192, 360]◦

2.5.5 Current Oscillation Parameter Constraints

The best constraint on the parameters governing three flavour neutrino oscillations are
obtained by combining data from the experiments discussed in this section along with
many others not mentioned. This global fit of oscillation parameters is provided by
NuFIT [75] and shown in Table 2.2.

Substantial improvements on these constraints are expected from the three main next-
generation experiments: DUNE, Hyper-K, and the Jiangmen Underground Neutrino Ob-
servatory (JUNO) [78]. Hyper-K will probe CP-violation through high-statistics νe/νe

appearance measurements, while JUNO will determine the neutrino mass ordering via
high-precision measurements of reactor antineutrino oscillations. These three experiments
will provide powerful and complementary tests of the PMNS framework.
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Neutrino Experiment 3
The Deep Underground Neutrino Experiment is a next-generation long-baseline neutrino
oscillation experiment that primarily aims to make precision measurements of neutrino
oscillation parameters with an emphasis on resolving the neutrino mass ordering and
making a conclusive observation of CP violation in the lepton sector. This will be accom-
plished using large scale liquid argon time projection chambers (LArTPCs), the world’s
most intense neutrino beam, and an innovative near detector (ND) design. This chapter
will start with an overview of the core components of DUNE. This will be followed by a
discussion of some of DUNE’s physics goals. LArTPC technology will subsequently be
reviewed. The neutrino beam facility, the ND, and the far detector (FD) comprising the
experiment will then be described.

3.1 Overview
As illustrated in Figure 3.1, DUNE consists of a neutrino beam generated by the Long-
Baseline Neutrino Facility (LBNF) at the Fermilab, a ND ∼600 m downstream, and a FD
at a baseline of 1285 km and 1.5 km below the surface. In addition, there are multiple
prototype detectors designed to test detector technologies, facilitate development of data
acquisition and reconstructions algorithms, and study neutrino interactions on argon. The
FD will host four detector modules each with a fiducial mass of at least 10 kt while the
ND will consist of multiple unique detectors designed to constrain relevant systematic
uncertainties and handle neutrino pile-up.

At the time of writing, the designs for the ND and FD complex are complete and
excavation of the FD site is finished. Detector designs are in mature stages and construc-
tion for some components is underway. Construction of the full experiment is planned in
a phased approach. Phase I will consist of two FD modules totalling 20 kt fiducial mass
and is anticipated to start taking early physics data in the late 2020s from non-beam
neutrino sources. As part of this phase, the beam and ND will come online by 2032. The
full experiment design will be realised with Phase II which will include an additional two
10 kt FD modules, upgraded beam power, and an upgraded ND. It is expected that it
will take up to 16 years of data taking following the completion of Phase I for DUNE to
accomplish all of its core physics goals [80].
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Figure 3.1: Illustration of the experimental configuration of DUNE. Figure from [79].

3.2 Physics Goals
DUNE will be a long-baseline neutrino oscillation experiment, an observatory for neutrinos
from astrophysical sources, and act as a nucleon-decay detector. This permits a rich
physics programme. In this section, we will focus on the SM neutrino oscillation and
supernova neutrino burst measurements. Not discussed is DUNE’s ability to improve
global nucleon decay sensitivities and the wide range of physics beyond the SM DUNE is
sensitive to. A thorough review of these topics can be found in [41].

3.2.1 Standard Model Neutrino Oscillations

Similarly to the accelerator neutrino experiments discussed in § 2.5.4, DUNE will mea-
sure both the electron (anti)neutrino appearance and muon (anti)neutrino disappearance
channels. Good energy resolution, flavour identification, and high statistics will permit
strong constraints on oscillation parameters that are either superior or complementary to
existing measurements. The wide-band and high-energy neutrino beam will give DUNE
unique sensitivity to both δCP and the mass ordering through the appearance channel.
The appearance probabilities plotted in Figure 3.2 highlight this sensitivity to δCP.

DUNE’s oscillation physics sensitivities from beam neutrinos are shown in Figure 3.3.
They highlight some of the key expected results from DUNE:

• A conclusive determination of the neutrino mass ordering that will be possible for
all true values of δCP.

• A measurement of δCP with a resolution of ∼5–15◦ that will give a conclusive deter-
mination of leptonic CP violation for a large range of true parameter space around
maximal CP violation.

• A strong constraint on θ23 with potential to resolve the octant depending on the
true value.
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Figure 3.2: Appearance probability for neutrinos (left) and antineutrinos (right) for different
possible values of δCP. The baseline and energy range are chosen to be relevant for DUNE.
Figure from [76].

Aside from the beam neutrino measurements, the high fiducial mass of DUNE allows
for oscillation physics programmes with other neutrino sources. Atmospheric neutrinos
can be used to improve the sensitivity to CP violation [81, 82] and the mass ordering [83].
Solar neutrinos can provide new sensitivity to the parameters ∆m2

21 and θ12. This would
help investigate the slight tension between reactor and solar neutrino measurements shown
in Figure 2.9. In addition, DUNE has a unique capability to constrain certain aspects of
the solar neutrino flux [84].

3.2.2 Supernova Neutrino Bursts

The sensitivity of DUNE to low energy neutrinos in the region of 5–30 MeV allows for the
detection of the electron neutrino spectrum from a galactic core-collapse supernova. The
dominant channel for detection by DUNE is the CC absorption of an electron neutrino
on argon,

νe +40 Ar → e− +40 K∗, (3.2.1)

where 40K∗ is an excited state. The interaction creates a short electron track that can
be reconstructed alongside possible light and secondary particle signatures. Additionally,
there are channels for the equivalent electron antineutrino capture and the elastic scat-
tering of the neutrino with an electron. Core-collapse supernovae are expected to occur
in the Milky Way once every few decades [85]. As of yet, there has been a single occur-
rence where a supernova neutrino burst was observed. A few dozen antineutrinos from
SN1987A, an extragalactic supernova, were measured via inverse β-decay by neutrino
observatories operational at the time [86, 87, 88]. During the several decades operational
lifetime of DUNE there is a reasonable chances of another such event occurring. If it were
to occur, DUNE would make a detailed measurement of the neutrino and antineutrino
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(a) Significance of mass ordering determination as
a function of true δCP for true normal ordering.

(b) Significance of mass ordering determination as
a function of true δCP for true inverted ordering.

(c) Significance of θ23 octant determination as a
function of true sin2 θ23.

(d) Resolution of δCP measurement as function of
true δCP.

(e) Significance of CP violation determination, i.e. δCP 6= 0, π, as a function of true δCP.

Figure 3.3: Expected DUNE beam sensitivities to mass ordering (a,b), the octant of θ23

(c), and CP violation (d,e) for equal parts neutrino and antineutrino beam running mode.
Sensitivities are shown as a function of true δCP since its current value is unknown. Greater
years of exposure correspond to increased statistics. The CP violation, θ23 octant, and mass
ordering sensitivities are given by a likelihood ratio expressed in terms of a test statistic for the
two outcomes, ∆χ2 = χ2

B − χ2
A. Figures from [76].
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(b) Time-dependent energy spectrum. Stages of
the core-collapse relevant to the neutrino signal are
shown.

Figure 3.4: Expected measured neutrino event rates for core-collapse supernova at 10 kpc for
a 40 kt liquid argon detector. Events are broken down into electron elastic scattering (red),
antineutrino CC absorption (blue), and neutrino CC absorption (green). Figure from [89].

spectrum as shown in Figure 3.4.
Measurement of the neutrino spectrum would provide a unique window to numerous

astrophysical phenomena. In particular, it would be an important model discriminator
for the dynamics of and mechanism for supernova explosions. The supernova neutrino
burst is also prompt with respect to the electromagnetic signal. Observation of the burst
can provide an early warning and some pointing information for astronomers. In addition,
measurement of the neutrino burst provides sensitivity to the mass ordering through mat-
ter effects and to many models that extend the SM. A detailed overview of the potential
physics programme can be found in [90].

3.3 Liquid Argon Time Projection Chamber
Technology

The LArTPC is the primary detector technology for both the ND and FD of DUNE. It
was introduced in 1977 by Rubbia [91], building on a proposal from Nygren [92], and first
operated at scale as a neutrino detector for the ICARUS experiment in 2010 [93]. The
LArTPC has since been employed at scale for the MicroBooNE experiment [94] and for
ProtoDUNE-SP [95], a prototype of the DUNE FD.

3.3.1 Detection Principle

The operating principle of a typical LArTPC is shown in Figure 3.5. As the name sug-
gests, the detection medium is purified LAr, necessitating a cryostat to reach < 87 K
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Figure 3.5: Schematic of LArTPC operating principle. Shown with a horizontal electric field
and wire plane charge readout. Photon detection system is not shown. Figure from [96].

temperatures. An incident neutrino may interact with an argon nuclei ejecting a set of
final state particles from the nucleus. The charged particles will propagate through the
LAr, ionising the argon atoms to produce free ionisation electrons. A uniform electric
field applied using an anode and cathode plane will then drift the ionisation electrons
through the LAr to the anode which is instrumented as a sensing plane. The design of
the sensing plane can vary but it conventionally consists of several planes of sensing wires
that the drifting electrons induce a current on as they approach. In addition to ionisa-
tions electrons, particles propagating in the LAr produce scintillation light which can be
measured using photon detection systems around the detector.

The choice of LAr as a medium is driven by multiple factors. Argon is a noble element
allowing ionisation electrons to drift freely through the LAr without being reabsorbed.
LAr has a high electron mobility, reducing the electric field strength required to reach
desired drift lengths. LAr has a low ionisation threshold. Furthermore, it has a high
scintillation light yield and is transparent to its own scintillation light. The choice of
using argon in its denser liquid state is driven by the requirement to maximise neutrino
interaction rates.

In the conventional configuration, the sensing plane at the anode consists of three
layers of wire planes. The first two planes are biased such that they are transparent to
the electrons. They are called the induction planes. The last plane is biased such that
it collects the drifting electrons. This plane is called the collection plane. The wires
of the collection plane are strung vertically while the wires of the induction planes are
angled at approximately ±45◦ to the collection plane wires. Drifting electrons induce a
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current on the wires which is digitised by an analogue-to-digital converter (ADC). The
signal from each of the three wire planes corresponds to a two-dimensional ADC image
in wire number and drift time. Obtaining the drift time requires measuring the time
of the interaction in the detector. This is typically performed using scintillation light.
Precision neutrino beam timing may also be used. The three two-dimensional wire plane
images can then be combined into a single three-dimensional image of the event. With
an appropriate wire pitch and drift length, a LArTPC can perform three-dimensional
imaging of neutrino events with millimetre spatial resolution. Once calibrated, the ADC
allows for a calorimetric energy estimation from the image. The scintillation light can
also be used for complementary calorimetric information.

3.3.2 Particle Propagation in Liquid Argon

Neutrinos interacting in a LArTPC are reconstructed by observing the final state particles
of the interaction with an argon nucleus. The path of the particles through the LAr and
the energy they lose as they travel is measured using ionisation electrons and scintillation
light. This allows the charged final state particles to be reconstructed accurately when
they deposit all their energy in the LAr, i.e. they do not escape the detector. For neutrons
in the final state this is much harder and they are typically treated as missing energy
that needs to be corrected for in the neutrino energy estimation using a neutrino-nucleus
interaction model. Neutrons are able to scatter with and be captured by argon nuclei
which can produce scintillation light and sometimes eject a proton, but this happens on
long timescales so the neutron will often escape the detector or the interaction cannot be
associated with the original neutrino event.

Charged particles propagating in LAr can be approximately split into two categories
by their topology: track and shower. Tracks are typically produced by muons, protons,
and charged pions. An example of a track most likely produced by a proton is shown in
Figure 3.6a. The mean rate of energy lost in a track is well understood via the Bethe-
Bloch equation [97] for moderately relativistic charged heavy particles passing through
matter. Predictions for different particles are shown in Figure 3.7. It is clear that the
sharp increase in energy lost at low momenta well describes the increase in deposited
charge visible at the end of the proton track in Figure 3.6a. For a sufficiently long track,
the distinct rate of energy loss for each particle can be used to identify the type of particle
associated with a track. If a track particle does not interact inelastically and its type can
be identified by other means, the Bethe-Bloch equation can also be used to estimate the
initial energy by measuring the range of the track from start to stop. This is particularly
useful for muon energy reconstruction.

An example of a shower can be seen in Figure 3.6b. Showers are generated by a
cascading process of photons pair producing into e+e−, which then radiate photons via
bremsstrahlung, which then pair produce into e+e−, and so on. This process continues
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(a) Example of a track. 1 GeV proton candidate. (b) Example of a shower. 6 GeV electron candidate.

Figure 3.6: Event displays from ProtoDUNE-SP data showing examples of a track and shower
topology. Particle beam is coming from the left. Figure from [98].

Figure 3.7: Mean rate of energy loss for charged particles propagating in different liquid media
as a function of momentum calculated with the Bethe-Bloch equation. The rate for muons,
protons, and pions is shown by adjusting the x-axis according to their masses. Figure from [99].
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Figure 3.8: Diagram of the LBNF neutrino beamline. The beam starts on the right with
extraction from the Main Injector. Figure from [101].

until enough energy has been lost to the LAr that energy loss of the electron via ionisation
begins to dominate over bremsstrahlung. Showers are created by electrons, positrons and
photons. A neutral pion will also produce showers through its decay to two photons. The
inelastic nature of a shower means it is not possible to apply the Bethe-Bloch equation
for energy estimation and instead an estimate is made by summing the ionisation energy
visible in the shower.

3.4 The LBNF Neutrino Beam
The LBNF neutrino beam [100] provides the source of neutrinos for DUNE’s long-baseline
oscillation physics. The neutrinos are generated using a proton beam accelerated to
between 60 GeV and 120 GeV by the Booster and Main Injector synchrotrons at Fermilab.
Protons enter the Main Injector from the Booster in batches. Multiple batches are then
extracted in spills of 10µs with an extraction cycle time of 1.2 s.

After being extracted from the Main Injector, the proton spill is transported to the
target hall. This is shown in Figure 3.8. In the target hall the protons collide with a
cylindrical graphite target, producing a secondary beam of charged mesons, primarily
pions. A single spill consists of 7.5 × 1013 protons-on-target (POT) and for energies of
120 GeV this corresponds to a beam power of 1.2 MW. With allowances for downtime, the
1.2 MW beam corresponds to 1.1 × 1021 POT per year. As part of DUNE’s Phase II, a
suite of upgrades to Fermilab’s accelerator facilities known as the Proton Improvement
Plan II [102] will increase the beam power to 2.4 MW.

The secondary beam of charged mesons is focused into a beam using three magnetic
horns. The horns can be configured to focus positively charged particles while diverting
negatively charged particles by running in forward horn current (FHC) mode and vice
versa by running in reverse horn current (RHC) mode. Once focused, the mesons travel
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Figure 3.9: Composition of expected FHC (left) and RHC (right) flux spectra for the LBNF
beamline time-integrated over 1 year normal running at 1.2 MW. Figure from [76].

through a 194 m decay pipe where they decay. The dominant decay modes are those of
the pion and kaon to µ+νµ for FHC mode and µ−νµ for RHC mode. At the end of decay
pipe is a beam dump that absorbs any muons, protons, and undecayed mesons. The result
is an approximately collimated neutrino beam dominated by νµ in FHC mode and νµ in
RHC mode. For this reason, FHC is synonymous with a neutrino beam and RHC with
an antineutrino beam.

The predicted FHC and RHC neutrino flux from the LBNF beam is shown in Fig-
ure 3.9. The beam has a high muon neutrino purity but does contain some contamination.
Electron neutrinos known as intrinsic νe are present in the flux. These primarily come
from muons decaying before the beam dump and uncommon charged kaon decays. There
is also a wrong-sign component of the flux from decays of (positive)negative particles that
make it past the focusing horn into the decay pipe in (RHC)FHC mode. The wrong-sign
component of the flux makes up a larger proportion of the measured events in RHC mode
than in FHC mode since the CC inclusive cross section for neutrinos is larger than that
for antineutrinos.

3.5 The Near Detector
The ND utilises three detectors with distinct detector technologies to measure unoscil-
lated neutrinos from the LBNF beam to constrain interaction model and flux systematic
uncertainties. Figure 3.10 shows the layout of the ND hall. Starting upstream with re-
spect to the neutrino beam, the first detector is ND-LAr. This is the primary LAr target
of the ND, a necessity for constraining interaction model systematics relevant to the LAr
detectors of the FD. Next is a downstream tracker that measures the momenta of muons
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Neutrino Beam Axis

ND-LAr

ND-GAr/TMS

On-Axis

30.5m Off-Axis

Figure 3.10: Diagram of ND hall with detectors in the far off-axis position. ND-GAr of Phase
II (displayed) occupies the same position as TMS of Phase I (not displayed).

exiting ND-LAr. In Phase I this will be The Muon Spectrometer (TMS)1. In Phase II
it is planned to upgrade TMS to ND-GAr which will, in addition to measuring exiting
muon momentum, enable neutrino on argon measurements complementary to ND-LAr.
Both ND-LAr and ND-GAr/TMS will be able to continuously move up to 30.5 m in the
direction transverse to the neutrino beam. This is called moving off-axis. The capability
of the ND to move off-axis is known as the Precision Reaction Independent Spectrum
Measurement (PRISM or DUNE-PRISM). After ND-GAr/TMS, is the System for on-
Axis Neutrino Detection (SAND) which will stay on-axis to measure the stability of the
neutrino beam to reduce the impact of flux systematics.

3.5.1 ND-LAr

ND-LAr is a modular LArTPC with a fiducial mass of 67 t. The choice of a LArTPC is
necessitated by the need to constrain cross section and detector uncertainties at the FD.
The proximity of ND-LAr to the LBNF target hall means the detector will be subject
to neutrino pile-up with O(50) interactions in each beam spill. With the conventional
LArTPC design discussed in § 3.3.1, it would not be possible to reliably disentangle single
events from a spill lasting 10µs because of the comparatively slow drift time of ∼1 ms.
The ND overcomes this problem with a 3D pixel readout and a unique modular design

1Following an ominous rebrand from the Temporary Muon Spectrometer
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Figure 3.11: A diagram of the Module-0 demonstrator [106]. This is representative of the
design of a single ND-LAr module which will be 1 m × 1 m × 3 m.

that segments the active volume into many small optically isolated drift regions.
The detector is divided into 35 optically isolated independent LArTPC modules in a

5 × 7 grid. These comprise a detector with dimensions 5 m in the direction parallel to
the neutrino beam, 7 m in the direction perpendicular, and 3 m vertically. A diagram of
a single module prototype is shown in Figure 3.11. The cathode in the centre produces
two 50 cm drift volumes for each module. The charge readout at each anode consists of
LArPix pixel tiles [103]. These are grids of charge-sensitive self-triggering pixels that serve
as anode surfaces to collect the drifted ionisation electrons. Each pixel is associated with
a two-dimensional spatial coordinate and when combined with the drift time provides a
natural three-dimensional representation of the event. The pixel pitch is planned to be
< 4 mm. The non-anode sides of the modules are instrumented with the light readout
system which consists of both LCM [104] and ArCLight [105] tiles. Importantly, the light
system will be able to combine timing and approximate spatial information to tag the
time when clusters of charge are produced. When for each module this timing information
is combined with the three-dimensional charge readout, ND-LAr will be able to make
accurate associations of the charge within a pile-up to distinct neutrino events.

3.5.2 TMS and ND-GAr

With a reasonable fiducial volume applied to the neutrino interaction vertex, the size
of ND-LAr is sufficient to contain the hadronic system of all but the highest energy
beam neutrino events. However, muons with momentum exceeding 0.7 GeV/c have ranges
greater than ∼3 m and so will typically exit the detector. To accurately reconstruct
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neutrino energy for the whole beam spectrum, the momentum of exiting muons must be
measured. In Phase 1 this will accomplished with TMS. TMS is a magnetised calorimeter
of alternating steel and plastic scintillator planes, much like the MINOS detector [107],
that will be positioned downstream of ND-LAr. The muon momentum is measured using
its range and the charge is determined via its curvature due to the magnetic field, allowing
for rejection of the wrong sign background.

In Phase II, TMS will be replaced by the more capable detector ND-GAr. ND-GAr is
a magnetised detector consisting of a high-pressure gaseous argon (GAr) TPC surrounded
by a calorimeter. The fiducial mass of the GAr is nearly 1 ton. Electrons from charged
particles ionising the argon atoms are drifted to a charge readout by an electric field
parallel to the magnetic field. The curvature of the muon track in the magnetic field allows
both the charge and momentum to be measured, ensuring ND-GAr fulfils its essential
role as a muon spectrometer. In addition, ND-GAr will make measurements of neutrino
interactions on argon independently of ND-LAr. Gaseous argon has a much lower energy
threshold for charged particle tracking than LAr which will allow for better measurements
of the final state particles near to the interaction vertex. This is particularly useful for
constraining interaction model uncertainties that result in low energy pions and protons
in the final state.

3.5.3 PRISM

As mentioned previously, PRISM is the capability of ND-LAr and the muon spectrometer
to move off-axis with respect to the neutrino beam. To understand why this is useful, we
must consider the kinematics of the meson decays that produce the muon neutrino beam.
The dominant decay is π → µνµ which is shown in the lab frame in Figure 3.12. Applying
energy and momentum conservation to this decay yields an equation for the energy of the
outgoing neutrino,

Eν =
m2

π −m2
µ

2 (Eπ − pπ cos θ) . (3.5.1)

Assuming a perfectly collimated beam, going to off-axis positions is equivalent to sampling
different decay angles θ. Therefore, at different off-axis positions the kinematics of the
pion decays that produce the neutrino beam can be significantly different as shown in
Figure 3.13a. The effect this has on a neutrino flux is shown in Figure 3.13b. At greater
angles θ, corresponding to greater off-axis positions, the neutrino flux peaks at lower
energies and its width reduces. This is a consequence of the maximum kinematically
allowed energy reducing and thus the range of possible neutrino energies. This can be
understood by considering the decay in the rest frame of the pion. Conservation laws in
the rest frame yield for the neutrino energy,

Eν =
m2

π −m2
µ

2mπ

≈ 30 MeV. (3.5.2)
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Figure 3.12: Two-body decay of pion to a neutrino and muon in the lab frame.
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(b) Expected flux from a Gaussian pion distribu-
tion. Off-axis angles have different normalisations.

Figure 3.13: Energy of the neutrino from two-body pion decay π → µνµ and example of
resulting neutrino flux. Shown for different neutrino-pion decay angles θ. The decay angle of
40 mrad is equivalent to the ND in a ∼ 23 m off-axis position.

In the lab frame, the perpendicular component of the neutrino energy cannot exceed this
maximum. Therefore, at higher decay angles the maximum neutrino energy is lower as it
approaches 30 MeV at θ = π/2.

The ability to access lower energy and narrower neutrino fluxes by putting detectors
off-axis is well known and was exploited by both the T2K and NOvA experiments. While
the ND and FD of DUNE are situated on-axis, PRISM will permit the exploitation of
the off-axis effect at the ND. ND-LAr and the muon spectrometer will be movable by
up to 30.5 m off-axis with a granularity of 10 cm and a sub centimetre precision. Such
a movable detector was first proposed as nuPRISM for the J-PARC neutrino beamline
[108]. In practice, PRISM gives the DUNE ND access to a continuous range of unique
fluxes. It is planned that the ND will periodically move to different off-axis positions for
data-taking to exploit this. We will discuss the impact of PRISM’s off-axis capability on
oscillation measurements in § 3.5.5.
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3.5.4 SAND

The primary goal of the SAND detector is to provide a time-dependent constraint on the
LBNF flux during the operation of DUNE by making on-axis beam neutrino measure-
ments. Such a constraint is necessary since the neutrino flux depends on properties of
the beamline hardware as well as on hadron production physics relevant to the interac-
tion of protons with the target. For example, both the alignment of the focusing horns
and the density of the graphite target can significantly change the flux at the ND. Over
the lifetime of DUNE, many of these properties will change by unpredictable amounts.
When combined with in situ beamline monitoring, SAND will allow for identification and
modelling of beamline instabilities.

SAND will repurpose the magnet and electromagnetic calorimeter from the KLOE
experiment [109]. The main inner target and tracking component of SAND will be a
system of orthogonal straw tube trackers with a carbon target in addition to a thin LAr
target.

3.5.5 Role in Oscillation Measurements

The measured quantities at the ND and FD are selected neutrino event rates at different
reconstructed energies. Schematically, this event rate in reconstructed energy Erec can be
expressed at each detector as a convolution,

N ND(Erec) =
∫
dEν ΦND(Eν) × σ(Eν) ×DND(Eν , Erec),

N FD(Erec) =
∫
dEν ΦFD(Eν) × Posc(Eν) × σ(Eν) ×DFD(Eν , Erec),

(3.5.3)

where Φ(Eν) is the beam neutrino flux, Posc(Eν) is the oscillation probability for the rele-
vant channel, σ(Eν) is the neutrino-argon cross section, and D(Eν , Erec) are the detector
effects composed of the efficiency and resolution. Extracting oscillation parameters re-
quires a measurement of the oscillation probability. Due to different detector effects and
the presence of oscillations at the FD, the ratio N FD(Erec) / N ND(Erec) does not yield the
oscillation probability. Instead, an accurate model of the flux, cross sections, and detector
effects is required to fit the FD data for the oscillation probability.

The role of the ND is to make measurements of the unoscillated neutrino beam that
inform the FD prediction for a given oscillation hypothesis. This is typically achieved by
using ND data to fit a model for the flux and cross sections which is then used to make
a prediction at the FD. This is especially important for the cross section model which, as
discussed in § 2.4, is poorly understood a priori. The high ND statistics permits strong
model constraints for DUNE [110].

A challenge with using the ND in this way comes from there being no known complete
neutrino-nucleus interaction model. A model with the correct form and many unknown
parameters can be safely constrained by the ND. However, an incomplete model will dis-
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Figure 3.14: Allowed regions in sin2 θ23 – ∆m2
32 from fit using nominal MC (dashed) and using

the mock dataset (shaded). Allowed regions drawn for different years of exposure. Figure from
[110].

agree with the ND data even after its parameters have been constrained. This necessitates
the addition of extra degrees of freedom to the model to force agreement with the data.
When possible, these modifications will be theoretically well motivated but often will have
to be empirical corrections. These corrections may result in good data-MC agreement at
the ND, but are not appropriate when applied to the very different FD flux. This can
incur an unknown bias in the oscillation parameters measured by the FD.

A study outlined in Chapter 4 of [110] clearly demonstrates this risk of a biased
measurement. In this study, a mock dataset is generated by transferring 20% of proton
kinetic energy to neutrons in the nominal simulation. This is a proxy for effects that are
present in data but are not described by the interaction model used in simulation. The
interaction model is then empirically reweighted to produce a good data-MC agreement for
the on-axis ND measurement. Fitted oscillation parameters obtained using this reweighted
interaction model for the FD data are shown in Figure 3.14. The result for the mock
dataset is a clear bias in the measured oscillation parameters.

The mock dataset causes biased measurements because model corrections, especially
those not well grounded theoretically, that result in good data-MC agreement for the
on-axis ND measurement usually do not capture the correct relationship between true
neutrino energy and reconstructed neutrino energy. PRISM can help remedy this through
comparing ND data to MC at many off-axis positions with unique energy spectra. This
will help identify any model corrections that would result in biased oscillation parameter
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Figure 3.15: Diagram of the FD complex with the two Phase I detector modules shown. Figure
from [79]

measurements when applied to an oscillated energy spectra. However, it will likely not be
possible to produce a reasonable set of model corrections that simultaneously reproduce
all relevant final state particles and their kinematics over all sampled off-axis energy
spectra. In this case, PRISM can be utilised to perform an oscillation analysis that relies
on linearly combining off-axis measurements to reproduce expected FD oscillated spectra.
This way, the ND constraint is transferred directly to the FD along with any unknown
cross section effects. This will be discussed in depth in Chapter 5.

3.6 The Far Detector

A diagram of the FD underground facility is shown in Figure 3.15. The facility will
eventually house four detectors each contained in a cryostat with internal dimensions
of 62.0 m deep along the beam direction, 15.1 m wide, and 14.0 m high. Each detector
module will have a 10 kt fiducial mass. The first two LArTPC detector modules to be
installed in Phase I will be a horizontal drift (HD) configuration module and a vertical
drift (VD) configuration module. In Phase II a second optimised VD module will be
installed along with a module of opportunity that is currently undergoing research and
development. In this section, only the Phase I modules will be described with particular
emphasis on the HD technology as it is most relevant to this thesis.

– 55 –



3 The Deep Underground Neutrino Experiment 3.6 The Far Detector

Figure 3.16: Design of the HD module drift regions. Anodes (A) and cathodes (C) are labelled.
Figure from [111].

3.6.1 Horizontal Drift

The HD detector is segmented into drift volumes by alternating anode cathode planes as
shown in Figure 3.16. The maximum drift length will be 3.5 m and a 500 V/cm uniform
electric field will be applied across each drift region. This corresponds to a maximum drift
time of ∼2 ms. The detector readout is located at the anode planes which are composed
of anode plane assembly (APA) units. One anode plane is made from a grid of APAs 2
high and 25 deep, totalling 150 APAs for the full detector.

A schematic of an APA is shown in Figure 3.17. The APA realises the conventional
LArTPC readout discussed in § 3.3.1. The wires of the collection plane, heretofore known
as the Z plane, are strung vertically with a wire pitch of 4.8 mm. The two planes of
induction wires U (outermost) and V (innermost) are wrapped around both sides of the
APA such that they provide full coverage of the APA and cross each collection wire only
once. This is achieved with a wire angle of ±35.7◦ with respect to the collection plane
wires. The induction wire pitch is 4.7 mm. The grid wires G are biased to act as a
shielding plane against long range induction effects from the drifting electrons and are
not read out.

The photon detection system is located in between the wire planes of the APA as shown
in Figure 3.18. Silicon photomultipliers (SiPMs) are used as part of the X-ARAPUCA
design [112, 113] as the photon detectors. The X-ARAPUCA is a photon trap coupled
with several SiPMs. The design is economical and has a high detection efficiency.
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Figure 3.17: Schematic of a HD APA. The induction wires (U and V) are wrapped around
both sides of the APA frame while the collection (X) and grid (G) wires are strung separately
on both sides. Figure from [111].

The front-end readout electronics for the wires are located at the head of the APA
frame as shown in Figure 3.18. These will operate submerged in LAr to take advantage
of the improved gain and reduced electronics noise from the low temperatures. Noise
is expected to be below the level of 1000 e− per channel. For comparison, a minimum
ionising particle corresponds to between 20 k and 30 k e− per channel. A linear electronics
response up to 500 k e− per channel is targeted to avoid saturation for the majority of
beam neutrino events. To meet these design requirements, a 12-bit ADC is used with
a 2 MHz sampling frequency. The digitised electronics response is shown in practice for
ProtoDUNE-SP, a prototype HD detector, in Figure 3.19. The waveforms exhibit the
expected bipolar and unipolar forms for induction and collection wires respectively with
a good signal-to-noise ratio.

3.6.2 Vertical Drift

The VD detector module shares the same detection principles as the HD module but with
some design differences. Notably, it utilises a vertical drift. This is accomplished with a
single cathode plane that bisects the detector into a top and bottom drift region, each
with a maximum drift lengths of 6.5 m. By applying a higher voltage than for the HD
cathode, a uniform 500 V/cm electric field is generated to drift electrons to the anodes at
the top and bottom of the detector where the charge readout electronics are located.

The anode planes are composed of a grid of 3.4 m × 3 m charge readout planes (CRPs).
The CRPs are made of printed circuit board layers instrumented for charge readout. This
is shown schematically in Figure 3.20. Appropriately biased perforations in the boards
combined with layers of charge sensitive strips etched into the board produce a readout
analogous to that of the HD module. The VD module will use the same X-ARAPUCA
photon detection system as the HD module but installed on the vertical walls of the
cryostat.
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Figure 3.18: Schematic of a stacked APA pair as they would appear in the full HD anode
plane. The photon detection bars are mounted across the width of the APA (left) and the
readout electronics are located at the head of the APA (right). Figure from [111].
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Figure 3.19: Digitised response of a single collection wire (top) and a single readout wire
(bottom) for ProtoDUNE-SP data. Response is from drifted ionisation electrons most likely
produced by cosmic muons.
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Figure 3.20: Schematics of a VD CRP relevant to charge readout. Left: Field lines of the
perforated printed circuit board design. Right: Printed circuit board layers of the CRP showing
charge readout strips (coloured horizontal lines) and perforations (grey cylinders). Figures from
[114].
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DUNE Simulation and
Reconstruction 4
Predicting the neutrino event rate discussed in § 3.5.5 requires a full simulation chain en-
compassing the neutrino production at the LBNF beam through to the detector response
at the near and far detector. A sequence of reconstruction algorithms is also required to
reconstruct the energy and flavour of incident neutrinos. In this chapter, the simulation
and reconstruction suite for the near and far detectors will be discussed. The discussion
will cover the aspects of the simulation and reconstruction chain necessary to infer the
properties of incident beam neutrinos from the charge they deposit in the detectors.

4.1 Event Generation in LAr
At both the ND and FD, the simulation chain starts by generating a neutrino interaction
in LAr using a shared set of tools. This encompasses a simulation of the beam neutrino
production, its interaction with an argon nucleus, the propagation and ionisation of the
final state particles in the LAr, and the drift of the ionisation electrons to charge readout
instrumentation.

The first step of the chain is the simulation of the LBNF beamline to generate neu-
trino fluxes for given horn polarities and POT. This is accomplished with the G4LBNF
simulation tool [115] that conducts a detailed Geant4 [116, 117, 118] simulation of the
beamline from the primary proton beam through to the beam dump. This is the software
used to generate the expected fluxes shown previously in Figure 3.9.

With the expected neutrino flux on hand, a simulation of the neutrino’s interaction
with the argon nuclei is performed using the GENIE generator [119]. This simulates the
interaction of an incident neutrino with a nucleon followed by the nuclear effects discussed
in § 2.4. The output of the generator is a set of final state particles originating from an
interaction vertex within the detector.

Next, the interactions of the final state particles as they propagate through the detector
is simulated. This is performed with Geant4. The particles are propagated through the
detector in discrete steps each with an associated energy loss. Any decays and secondary
interactions that may occur during the propagation are also simulated with Geant4.

The set of energy depositions within the active volume of the detector must then be
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processed into ionisation arriving at the charge readout. First, for each step through the
active LAr, the number of ionisations is calculated using the ratio of the energy deposited
to the average energy to produce an electron-ion pair for argon. This is subject to statis-
tical fluctuations through a Fano factor [120] that empirically corrects for deviations from
Poisson statistics due to correlations. To find the number of electrons that are free to drift
the anode, a recombination factor is applied to account for electrons recombining with
argon ions. This factor is computed using either Birks model [121] or the modified Box
model [122]. After recombination, we are left with a number of ionisation electrons that
drift towards a readout plane. The electrons are drifted in groups with the drift veloc-
ity and diffusion in the longitudinal and transverse directions simulated using measured
properties of LAr at a given temperature and electric field strength. The reattachment of
electrons to impurities in the LAr that may occur during the drift is simulated by applying
a mean lifetime to the drifting electrons. The lifetime is measured using calibrations or
with purity monitors in the LAr [123].

After the ionisation electrons arrive in the vicinity of the anode, the commonality
between FD and ND is broken. The different charge readout at each detector necessitates
different simulation and reconstruction chains.

4.2 The Far Detector
The FD simulation and reconstruction software is implemented in the art framework [124]
and is built upon the LArSoft software suite [125]. art is an event-processing framework
that ensures reproducibility and is interoperable with ROOT [126]. In this section, we
will only give an overview of the software chain for the HD detector. The HD is simulated
using a reduced geometry that is 13.9 m deep along the beam direction, 7.3 m wide, and
12.0 m high. This contains a single central anode plane of APAs in a 2 × 6 grid and is
known as the ‘1x2x6’ geometry. The 1x2x6 geometry is used to reduce the computational
cost of simulation at the expense of a small drop in the containment of beam neutrinos.
Simulation of the full 10 kt geometry is currently under development and will be used for
future analyses.

4.2.1 Detector Response Simulation

The Wire-Cell Toolkit [127] is used to simulate the response of the sense wires to drifted
charge. The ionisation electrons are assumed to drift in a uniform field up to 10 cm from
the wire planes where a more detailed simulation of the field in the proximity of the wire
planes is performed. At this stage, the current induced on each wire from a group of
electrons is calculated using a 2D field response function of a single wire to a single point-
like electron. The field response is computed using the Garfield TPC drift simulation code
[128] by simulating the drift paths of a single electron positioned at many discrete starting
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Figure 4.1: Simulated detector response (top) and deconvolved charge (bottom) for an event
in the Z (left), U (middle), and V (right) planes. Shown is a crop of a single APA. The simulated
event is a 3.7 GeV νµ DIS interaction.

positions. The range of starting positions span 21 wires centred on the wire of interest
and a step size of one tenth of a wire pitch is used. This generates a 2D field response for
a wire that accounts for current induced by electrons incident on neighbouring wires as
well as on itself.

Application of the field response function yields the current induced on each wire.
Next, this is convolved with an electronics response function. This describes the amplifi-
cation and shaping by the pre-amplifier, the effect of RC filters, and the digital sampling
into a 12-bit ADC. Applying the electronics response function to the induced current
gives the full simulated detector response to drifted ionisation electrons. An example of
the detector response simulation is shown in the top row of Figure 4.1.

4.2.2 Signal Processing and Hit Finding

Signal processing is the first stage of the reconstruction chain. The objective is to recon-
struct the charge distribution of the incident electrons from the digitised waveform. This
requires unfolding the convolution of the field response and electronics response functions
to recover the number of ionisation electrons incident on each wire as a function of time.
This process is known as deconvolution. By combining the field and electronics response
into a single detector response function R(t, t′), the measured signal M(t′) for a single
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wire in the 1D case can be written as,

M(t′) =
∫ ∞

−∞
R(t, t′)S(t)dt, (4.2.1)

where S(t) is the original charge signal. By assuming the detector response function to be
time-invariant, R(t, t′) = R(t′ − t), we can take a Fourier transform of both sides to yield
M(ω) = R(ω)S(ω), where ω is an angular frequency. The desired signal is then simply

S(ω) = M(ω)
R(ω) . (4.2.2)

Which can be then be returned to the original time domain via the inverse Fourier trans-
form. In practice, the presence of electronics noise means the high frequency components
of the noise spectrum will often be strongly amplified by (4.2.2). To address this, a
software filter F (ω) is introduced,

S(ω) = M(ω)
R(ω) F (ω). (4.2.3)

To account for contributions to the measured signal of a given wire from electrons
incident on neighbouring wires, (4.2.1) can be expanded to the 2D case to give a measured
signal for the i-th wire,

Mi(t′) =
∫ ∞

−∞
(. . .+R1(t′ − t)Si−1(t) +R0(t′ − t)Si(t) +R1(t′ − t)Si+1(t) + . . .) dt,

(4.2.4)
where Si is the charge signal inside the boundaries of the i-th wire, R0 is the detector
response function for charge incident on the wire of interest, and Rn is the detector
response function for the charge incident on a wire n wires adjacent to the wire of interest.
It is assumed that the detector response is translationally invariant, i.e. it is independent
of the absolute position of the wire. The deconvolution then follows the same procedure
as for the 1D case. An example of a deconvolved detector response is shown in the bottom
row of Figure 4.1. More details on the signal processing procedure can be found in [129].

After deconvolution, the waveforms are parametrised into hits that are the input to
downstream reconstruction algorithms. A hit finder module parametrises the deconvolved
waveform by fitting it with a multiple Gaussian hypothesis. The resulting hits have a
coordinate in wire number and time, a width in time, and a magnitude that can be
calibrated to the energy loss of a particle in the LAr. An example of the fitted hits for a
single induction wire can be seen in Figure 4.2. Due to induction wires being wrapped,
an additional step is performed to determine which of the two drift volumes either side
of an APA a hit is associated with. This disambiguation is performed by associating hits
across all three planes.
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Figure 4.2: Example of hits on a single induction wire produced by multiple Gaussian fitting
to the deconvolved waveform.

4.2.3 Track and Shower Reconstruction

The high resolution and multiple 2D views of an event produced by a LArTPC allows for
accurate reconstruction of the particle hierarchy of an event. This means the clustering of
hits into track- and shower-like objects, the identification of primary and secondary inter-
action vertices, and the association of reconstructed objects with particles. The particle
hierarchy summarises the interactions of the final state particles in the detector and allows
the association of hits, and so energy depositions, with individual final state particles. The
main event reconstruction software for the DUNE FD is the Pandora pattern-recognition
software for LArTPCs [130]. Pandora employs a multi-algorithm approach and has been
implemented with success on ProtoDUNE-SP [131] and MicroBooNE [132] data.

The multi-algorithm approach allows for flexibility in how Pandora reconstructs the
particle hierarchy. The overall approach is as follows:

• 2D Clustering. Hits from each wire plane are considered separately and clustered
based on their proximity and an assumption of a track-like topology. The algorithms
at this stage are designed to prioritise purity over completeness, i.e. produce clusters
that do not contain hits from more than one true particle.

• Track Reconstruction. Clusters from each of the three 2D wire plane are com-
pared to identify triplets of clusters that belong to the same single particle. The
combined independent clustering outcomes from the three planes are used to re-
fine the clustering further. The result is a set of track-like cluster triplets, each
representing a single reconstructed particle.

• Shower Reconstruction. The clusters hitherto assumed to be track-like are clas-
sified as track- or shower-like. Shower-like clusters then undergo merging in each
2D plane and are subsequently matched across the planes to produce reconstructed
shower-like cluster triplets.
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Figure 4.3: Illustration of the stages of Pandora reconstruction. The initial 2D clustering
(left) is followed by track and shower reconstruction for individual particles (middle) which are
then reconstructed into a particle hierarchy (right). The different colours represent distinct
reconstructed clusters. Shown is a ProtoDUNE-SP beam particle data event. Figure from [131].

• Particle Hierarchy Creation. The 2D triplets are projected into 3D hits in
the detector. Additional algorithms operate on the 3D hits to refine the clusters
further. The reconstruction concludes by organising the resulting particles into a
particle hierarchy, identifying the original final state particles and any subsequent
particles generated via inelastic interactions.

Figure 4.3 illustrates the stages of this sequential particle hierarchy reconstruction.
With a reconstructed particle hierarchy, the 3D hits are parametrised into track and

shower software objects that are associated with the original 2D hits. These are used
as analysis inputs. The track object is a collection of trajectory points while the shower
object is a cone. Both of these include calorimetric information and association maps to
the original 2D hit objects.

4.2.4 Neutrino Signal Selection

A long-baseline oscillation analysis requires the ability to select muon neutrino or electron
neutrino events at the FD. Since νµ/νe interactions are discriminated using the lepton, this
also requires rejecting NC interactions. The reconstructed particle hierarchy may be used
to make this selection. However, the primary tool developed for making this selection
is the convolutional visual network (CVN) [133]. The CVN is a convolutional neural
network (CNN) trained on simulation to identify the flavour and interaction channel of
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Figure 4.4: Distribution of CVN CC νe (left) and CC νµ (right) score for a simulated FHC beam
with 3.5 years exposure. Divided into contributions from the signal and relevant backgrounds.
For the CC νµ score, backgrounds from CC νe interactions are negligible and so not shown. The
red arrows shows the selection cut that gets applied to the score. The distributions for the RHC
beam are similar and use the same selection cuts. Figure from [133].

neutrino events from images of their interactions in the LArTPC. The input to the CVN
is one 500×500 pixel image of the hits from each of the three wire planes. The pixel maps
are in wire number and time coordinates with the time coordinate being downsampled to
match the spatial size of the wire pitch. The event will often need to be cropped to fit the
500 × 500 pixel image. The centring of the crop is chosen using an approximation of the
neutrino interaction vertex based on the known neutrino beam direction. The three views
of the event are passed through independent encoder CNNs and the representations are
then combined and pass through a single CNN head that predicts, among other outputs,
a probability score for each neutrino flavour and for the interaction being NC.

Distributions of CVN scores are shown in Figure 4.4. The distributions show clear
separation between the signal CC νµ/νe and relevant backgrounds. By applying the
selection cuts displayed on the figure, the CVN scores allows for selected neutrino samples
with purities and efficiencies of ∼ 90%.

4.2.5 Neutrino Energy Estimation

The reconstruction of the incident neutrino’s energy is performed by combining contribu-
tions from the leptonic and hadronic components of the interaction. The splitting of the
interaction into these components uses the reconstructed particle hierarchy from Pandora.

For a CC muon neutrino interaction, the muon energy is measured in two ways de-
pending on if the muon is fully contained in the detector or not. When the muon is
contained, which is usually the case for beam neutrinos with a fiducial volume cut applied
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to the interaction vertex, the range of the track is used to reconstruct the energy. This
follows from the principles discussed in § 3.3.2. When the muon track is not contained, the
energy is estimated using the multiple Coulomb scattering (MCS) method first applied
in the context of LArTPCs for the ICARUS detector [134]. MCS is the electromagnetic
scattering of a charged particle with atomic nuclei as it traverses a medium. The MCS
method is premised on the fact that this scattering is dependent on the momentum of the
charged particle. The scatters cause perturbations in the muon track as it travels through
the LAr. This can be measured by slicing the track into windows and fitting a line within
each window to extract the scattering angle between subsequent windows. The scattering
angles permit a fit for the muon’s momentum. The reconstructed muon energies from
both the range and MCS methods are made to match the simulated true muon energy
using a linear MC correction.

For a CC electron neutrino interaction, the energy of the electron shower is measured
by summing the charge of the collection plane hits associated with the shower. The ion-
isation charge is converted to energy deposited by the particle using correction factors
for the electron lifetime and recombination effects discussed in § 4.1. The resulting re-
constructed shower energy has a linear MC correction applied to match the true electron
energy in simulation.

For both electron and muon neutrino CC interactions, the energy of the hadronic
system is reconstructed in the same way as for the electron using hits associated with the
hadronic system. The reconstructed hadronic energy is the most sensitive to the neutrino-
nucleus interaction model since the hadronic system includes contributions from neutral
particles not visible to the charge readout. This missing energy has to be accounted for
in the linear MC correction applied to the reconstructed hadronic energy. This folds into
the reconstructed neutrino energy a strong dependence on the interaction model.

Figure 4.5 shows the energy resolutions for the discussed algorithms, with MC cor-
rections applied, on simulated neutrino samples. The energy resolution is ∼16% for the
muon neutrino sample and ∼13% for the electron neutrino sample. As expected, the
resolution for the hadronic component of the interaction is significantly worse than as for
the lepton.

4.3 The Near Detector
The heterogeneity of the ND and the novel pixel readout design of ND-LAr means the
development of a complete simulation and reconstruction chain is somewhat more chal-
lenging than as for the FD. In this section, we will give an overview of the ND simulation
and reconstruction available at the time of this thesis and relevant to the work within
it. This comprises a ND facility geometry with ND-GAr, a full detector simulation of
ND-LAr, and a parametrised reconstruction of neutrino events using ND-LAr in conjunc-
tion with ND-GAr. A full reconstruction chain for ND-LAr, the downstream tracker, and
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Figure 4.5: Energy resolutions for simulated FHC beam νµ (left) and νe (right) with contain-
ment cuts applied. Shown for the reconstructed neutrino energy (top), reconstructed lepton
energy (middle), and reconstructed hadronic energy (bottom). A Gaussian is fitted to each and
the fit parameters displayed. For the νe events, the neutrino energy resolution is better than
the naive sum of the lepton and hadronic resolutions due to an anticorrelation between the two.
This anticorrelation, which arises from hadronic energy being misassigned to the electron shower
and vice versa, partially cancels in the sum taken when obtaining the neutrino energy.
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matching between the two is currently under development using both a Pandora and an
end-to-end deep-learning approach [135]. The ND software is not implemented in the art
framework and does not make use of the LArSoft software suite as the FD does. Instead,
ND software is currently framework-free with a miscellany of file formats.

4.3.1 Detector Response Simulation

For ND-LAr, the current induced on pixels at the anode and the subsequent electronics
response is simulated with the larnd-sim library [136]. A pixillated charge readout
requires a factor O(10–100) more readout channels than a set of wire planes with the same
pitch. This increased channel count motivates the parallelisation of detector simulation
algorithms. For this reason, many of larnd-sim’s algorithms are implemented on GPUs.

Calculating the current induced on each pixel follows a similar procedure to that of
the FD described in § 4.2.1. The ionisation electrons are drifted uniformly until they
come within 0.5 cm of the anode where a 3D field response function, the dimensions
being time and two pixel coordinates, is used to find the induced current on each pixel.
The field response is pre-calculated by simulating the drift paths of a single electron in
a grid of starting points. The starting points have a 0.33 mm separation in both pixel
directions and for each pixel the grid encompasses the 8 nearest neighbour pixels. The field
response function is then used to calculate the induced current on the pixels from drifted
ionisation charge. The induced current calculation for a pixel due to drifted charge from
each Geant4 step, a straight line of deposited energy converted into ionisation electrons,
is simplified by discretising the step into many point-like charges and accounting for
diffusion by making a number of random 3D perturbations to each discrete point.

Next, the electronics response of the self-triggering pixel pads is simulated. At each
pixel the signal from collected electrons is amplified by a charge-sensitive amplifier. As
the signal on the pad accumulates, the output voltage of the amplifier grows. If it reaches
a set discrimination threshold, digitisation of the output voltage into an 8-bit ADC is
triggered and the amplifier is reset. An ADC count representing the magnitude of the
signal has then been recorded and the accumulated signal at the pixel discarded. Noise
associated with the trigger reset, the discrimination threshold, and uncorrelated noise are
included in the simulation. For each simulated event the resulting data packets consisting
of an ADC count, a timestamp, and a channel ID are stored in an array in the HDF5
format [137].

An example detector response simulated using larnd-sim is shown in Figure 4.6. A
simple reconstruction of the drift coordinate produces a voxelised image of the underlying
event with a structure in the drift direction particular to the self-triggering pixel readout
design.
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Figure 4.6: Simulated detector response for ND-LAr to a single ∼ 7 GeV νµ interaction using
larnd-sim. The event within the full detector (top) with cathode planes (shaded fixed z),
anode planes (unshaded fixed z), and module boundaries is displayed. The event within a single
drift volume (bottom left) and a zoom on the interaction vertex (bottom right) is also shown.
The drift coordinates (z) are obtained using the true interaction time. The drift coordinate is
downsampled by a factor of 10 for visibility.
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4.3.2 Parametrised Reconstruction

A parametrised reconstruction of ND-LAr and ND-GAr is used as a substitute for a full
reconstruction chain that is still under development. The ND parametrised reconstruction
uses true event information from GENIE and Geant4 to approximate the outputs of a
realistic neutrino event reconstruction. This is applied to simulated neutrino events with
interaction vertices in the fiducial volume of ND-LAr to facilitate realistic long-baseline
oscillation analysis studies that require ND simulation.

The reconstruction of the muon depends on which volumes it propagates through
during the Geant4 simulation of the ND facility. For CC muon neutrino events there
are four possibilities:

• Tracker matched. The muon travels more than 50 cm through the active GAr
volume of ND-GAr. In this case, the muon is matched perfectly to the neutrino event
in ND-LAr, the sign is reconstructed perfectly, and the muon energy is reconstructed
with a resolution of 2%.

• Electromagnetic calorimeter reconstructed. The muon travels more than 5 cm
through the electromagnetic calorimeter that surrounds the TPC of ND-GAr and
stops within it. In this case, the muon is matched perfectly to the neutrino event in
ND-LAr, the sign is reconstructed perfectly, and the muon energy is reconstructed
with a resolution of 10%.

• Contained in LAr. The muon stops in the active volume of ND-LAr. In this case,
the charge reconstruction is only attempted for RHC mode with an efficiency of 75%
based on Michel electron tagging. No charge reconstruction is implemented for the
FHC beam since the antineutrino background to the neutrino signal is considered
negligible. The muon energy is reconstructed with a 5% resolution.

• Exiting. The complement of the three previous possibilities. The muon cannot
be properly reconstructed in this case and an energy estimate is made based on
the range of the longest of the muon and pion tracks inside the active volume of
ND-LAr.

For events not tracker matched or electromagnetic calorimeter reconstructed, there are
probabilities that the event will be misreconstructed as an electron neutrino or a NC
interaction. Misreconstruction as an electron neutrino may occur when there is a neutral
pion in the final state and misreconstruction as a NC interaction when the muon track is
shorter than 1 m.

The reconstruction of CC electron neutrino interactions depends only on the energy of
the electron. An efficiency of 0% at 300 MeV rising to 100% at 700 MeV is used to decide
if the electron is correctly reconstructed. If misreconstructed, the event is treated as a NC
interaction. If correctly reconstructed, the electron energy is obtained with a resolution
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that depends on the true energy as 0.03 + 0.1/
√
Ee. These implementations of efficiency

and energy resolution are designed to approximate the performance of FD simulation.
True NC interactions are usually correctly identified as NC. There is a possibility of

being misidentified as a CC electron neutrino interaction when there is a neutral pion in
the final state and as a CC muon neutrino interaction when there is a charged pion in the
final state with a > 1 m track.

The reconstruction of the hadronic energy is simply the sum of true deposited energy of
all hadrons and their progeny within the active volume of ND-LAr. No energy thresholds
or resolutions are applied. It is assumed that the hadronic energy deposits can be perfectly
associated with their respective particle type and the reconstructed hadronic energy is split
into contributions from different particle types. This approximation does not reflect the
expected performance of full ND-LAr reconstruction which will have a worse hadronic
energy resolution.

The parametrised reconstruction also reports the sum of the hadronic energy in a
collar region of ND-LAr defined as the outer 30 cm of active volume. This is called the
hadronic veto. It is used to veto events that are likely to have hadronic energy deposited
outside of the detector. A veto energy of 30 MeV is typically used.
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By modelling the flux of neutrinos from the LBNF beam at different off-axis positions
of the near detector, measurements from off-axis positions can be linearly combined to
produce a near detector spectrum that very closely matches the oscillated far detector
spectrum for any set of oscillation parameters. This PRISM capability enables an oscilla-
tion analysis where a prediction of the oscillated far detector spectrum is made via linear
combinations and is fitted to far detector data to extract the oscillation parameters. The
methodology of such an analysis will be discussed in this chapter.

The methodology for the oscillation analysis described in this chapter was developed
by DUNE collaborators prior to the work described in this thesis. The development of
the analysis is detailed in the thesis [138] which performs the first demonstration of a full
long-baseline PRISM oscillation analysis.

5.1 Overview
A diagram outlining the steps to construct a prediction of the FD event rate through linear
combination of off-axis ND event rates is shown in Figure 5.1. The ND data is used directly
to make a prediction at the FD rather than being used to tune an interaction model. The
oscillation analysis then proceeds by fitting the FD prediction, which is a function of
the oscillation parameters, to the FD data. This approach to an oscillation analysis, as
opposed to using the ND data to constrain model parameters, is known as extrapolation.
The extrapolation approach is well-known and was taken for the NOvA oscillation analysis
where simulation was used to convert measured ND νµ event rates to expected FD event
rates [74]. The important distinction of the DUNE-PRISM extrapolation is that the linear
combination of many off-axis measurements produces a FD prediction with an underlying
neutrino energy spectrum that closely matches the underlying oscillated neutrino energy
spectrum of the FD data. This ensures significant cancellation of many energy-dependent
model uncertainties that would not be possible with access to only a single flux at the ND.
PRISM can be used to generate a FD prediction for the four oscillation analysis channels
of DUNE: νµ disappearance, νµ disappearance, νe appearance, and νe appearance.

The PRISM oscillation analysis necessarily depends on the modelling of beam flux
at different off-axis positions in order to calculate coefficients for the linear combination.
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In addition, some amount of interaction model dependence may also enter the analysis
through elements of the extrapolation procedure that rely on MC corrections. We will
see how this occurs and how it can be minimised in the following sections.

5.2 Monte Carlo Data
The analysis is constructed from and applied to ND and FD simulation. The former will
be referred to as MC and the latter, which is subject to statistical fluctuations, will be
referred to as data. The MC is used to realise the steps outlined in Figure 5.1 which are
then applied to ND data to produce a prediction which can be compared to FD data.
Once the analysis has been validated, the effects of systematic uncertainties evaluated,
and we have waited patiently for some number of years, it can be applied to real data
from the ND and FD.

Unless stated otherwise, the ND and FD exposure in this chapter is assumed to be
3.5 years each for FHC and RHC mode with a beam power of 1.2 MW. Four FD modules
are assumed for a FD exposure of 336 kt-MW-Yrs.

5.2.1 Near Detector

A 4 m × 2 m × 3 m fiducial volume is defined within ND-LAr that must contain the true
neutrino vertex for an event to be selected. The 4 m wide fiducial volume is then divided
into 8 off-axis bins each 50 cm wide. As the ND physically moves to new off-axis positions,
each off-axis bin of the fiducial volume will correspond to a new absolute off-axis position.
In this way, the PRISM analysis is binned by off-axis position with a bin width of 50 cm
over the full range of off-axis positions the ND may take. The true neutrino interaction
vertex is used for this binning.

The relative exposure at each off-axis bin for a proposed schedule of off-axis detector
positions over the course of a year is shown in Figure 5.2. This is the schedule used in
this analysis. The ND MC does not follow this specific run plan and so each off-axis bin
is weighted to match the relative exposure. The MC can then be scaled for any absolute
exposure.

The current of the magnetic focusing horns is nominally set to 293 kA, but will run
for one week per year at a special horn current of 280 kA with the detector in the on-axis
position. The lowering of the current reduces the ability of the magnetic horns to focus
high-energy mesons on-axis. This results in a dip in the neutrino flux in the region of
3–5 GeV which has been demonstrated to be beneficial to the PRISM linear combination.
The 280 kA horn current data is included in the analysis in a single 4 m wide bin centred
on-axis to suppress statistical fluctuations associated with the short exposure. It is treated
as an additional off-axis bin. Further discussion of the ND off-axis schedule and of the
special horn current run can be found in Chapter 4 of [110].
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For each off-axis position

Selected ND
νµ(νµ) event rate

Subtract predicted
ND backgrounds

Unfold ND
detector effects

νe(νe) appearance
prediction?

Apply
νe/νµ(νe/νµ) cross
section correction

Add FD detector
effects

Linearly combine
extrapolated

off-axis ND data

Oscillation
Parameters

Add predicted FD
backgrounds

Apply FD
flux-matching MC

correction

Predicted selected
νµ(νµ) or νe(νe)
FD event rate

True

False

Figure 5.1: Flow diagram showing the steps for creating a PRISM prediction for the FD νµ,
νe, νµ, or νe event rate. The steps start at the green input box and end at the red output box.
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Figure 5.2: Relative exposure at each off-axis bin for the schedule of ND off-axis positions
used in the analysis. Relative exposure also shown for the on-axis 280 kA horn current run. The
same schedule is used for FHC and RHC beam.

As discussed in § 4.3.2, full event reconstruction is not available for the ND. Using the
reconstructed energies from the parametrised reconstruction, the ND analysis variable is
defined as

Evis
rec = Eµ

rec + Eπ±

rec + Eπ0

rec + Ep
rec + Eother

rec . (5.2.1)

The reconstructed energy associated with neutrons is omitted as it is not expected to
be accessible by a full event reconstruction. The analysis variable represents the recon-
structed visible energy at the ND. In analogy to (5.2.1), a visible energy is used as the
truth analysis variable. It is defined as

Evis
true = Eµ

true + T π±

true + T π0

true + T p
true + T other

true , (5.2.2)

where Ttrue refers to true kinetic energy. Visible reconstructed and true energy variables
are used to minimise the interaction model dependence of unfolding.

With reference to the parametrised reconstruction discussed in § 4.3.2, CC νµ(νµ)
events for FHC(RHC) mode are selected using the following criteria:

• True interaction vertex is within ND-LAr’s fiducial volume.

• Muon is either tracker matched or contained in LAr.

• Event is reconstructed as a CC muon neutrino interaction.

• Muon charge is reconstructed as negative(positive).
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• True hadronic energy in ND-LAr’s hadronic veto region does not exceed 30 MeV.

Applying this selection produces the ND data spectra shown in Figures 5.3a and 5.3b. The
selection can also be applied to the ND MC to yield the predicted background rates. The
NC current background, shown in Figures 5.3c and 5.3d, is caused by tracks from charged
pions being misidentified as muon tracks. Only NC interactions with sufficient energies
to produce a charged pion track of sufficient length contribute to this background. The
wrong-sign background, shown in Figures 5.3e and 5.3f, occurs when wrong-sign neutrinos
have their charge incorrectly reconstructed. This may happen when the muon track is
contained in the LAr rather than tracker matched. For clarity, one-dimensional selected
ND data and predicted background event rates at two distinct off-axis detector positions
are shown in Figure 5.4.

5.2.2 Far Detector

MC samples for the FD are generated independently of any specific oscillation hypothesis.
For the unoscillated FHC flux of beam muon neutrinos and intrinsic electron neutrinos
three samples are generated: a non-swap sample where νµ → νµ and νe → νe, an electron-
swap sample where νµ → νe and νe → ντ , and a tau-swap sample where νµ → ντ and
νe → νµ. The same three samples are generated for the RHC flux. These samples can
then be combined to produce an oscillated FD flux for any oscillation hypothesis.

The FD MC is generated in the 1x2x6 geometry. The full reconstruction chain de-
scribed in § 4.2 is used except with a 1D field response for the detector response and signal
processing steps. The reconstructed neutrino energy,

Eν
rec = Elep

rec + Ehad
rec , (5.2.3)

is used as the analysis variable.
For a neutrino event to be selected in the FD, its true neutrino vertex must be within

a fiducial volume defined as 50 cm from the active volume boundaries except for the down-
stream boundary where it is 150 cm. It is assumed the hadronic and leptonic components
of the event can be properly reconstructed if the vertex is within this fiducial volume.
The CVN score for the event must pass the cuts outlined in § 4.2.4 to be selected as either
CC νµ(νµ) or CC νe(νe).

The resulting selected FD spectra for a set oscillation hypothesis can be seen in Fig-
ure 5.5. The predicted background rates are also plotted. The RHC mode spectra have
more significant contributions from backgrounds than the FHC mode spectra. This is
due to the enhanced cross section for neutrinos over antineutrinos increasing the wrong-
sign background while reducing the signal event rate for the RHC mode spectra. There
is an intrinsic electron neutrino background which contributes significantly to the elec-
tron neutrino appearance spectra as it is impossible to distinguish from the signal. The
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(a) Selected FHC νµ signal.
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(b) Selected RHC νµ signal.
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(c) Predicted FHC νµ NC background.
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(d) Predicted RHC νµ NC background.
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(e) Predicted FHC νµ wrong-sign background.
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(f) Predicted RHC νµ wrong-sign background.

Figure 5.3: ND selected muon neutrino signal event rate spectra and predicted backgrounds.
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(a) FHC νµ, [−0.5, 0.0) m off-axis
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(b) RHC νµ, [−0.5, 0.0) m off-axis
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(c) FHC νµ, [−25.5, −25.0) m off-axis
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(d) RHC νµ, [−25.5, −25.0) m off-axis

Figure 5.4: ND selected muon neutrino signal event rate spectra and predicted backgrounds
for two example off-axis positions. For (a) and (b), the dip at 1–1.5 GeV is due to events where
the muon exits ND-LAr and then does not have sufficient residual range to be tracker matched
or electromagnetic calorimeter reconstructed by ND-GAr.
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(a) FHC νµ disappearance.
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(b) RHC νµ disappearance.
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(c) FHC νe appearance.
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(d) RHC νe appearance.

Figure 5.5: FD selected neutrino event rate spectra with contributions from predicted back-
grounds. Shown for selected νµ, νµ, νe, and νe which comprise the four analysis channels. NuFIT
4.0 oscillation parameters [139] are assumed.

other background contributions are from NC interactions and non-signal CC neutrino
interactions.

5.3 Extrapolation of Off-Axis Measurements
To compare a prediction composed of ND measurements with FD data, differences be-
tween the ND and FD must be corrected for. The prediction must be in the Eν

rec variable
(5.2.3) of the FD rather than the original Evis

rec variable (5.2.1) of the ND. To make this
correction, differences in backgrounds, efficiency, and resolution between the detectors
must be accounted for as outlined in the loop of Figure 5.1.

5.3.1 Near Detector Backgrounds

First, the predicted ND background event rate in each bin of Evis
rec must be subtracted from

the data. The background rates are shown in Figure 5.3 and the subtraction is applied to
each off-axis bin. The resulting spectra are then treated as being pure νµ(νµ) event rates.
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5.3.2 Near Detector Effects

To remove detector effects is to map back to the true variable Evis
true (5.2.2). This requires

correcting for both selection efficiency and detector resolution. The selection efficiency
for the i-th off-axis bin, εi, is defined as the ratio of the total selected signal events with
the total true signal events in the i-th off-axis bin. The selection efficiency must be
calculated as function of Evis

true since the reconstructed energy is not a good variable for
events that are not selected. The selection efficiency at each off-axis position is shown
in Figures 5.6a and 5.6b. The selection efficiencies have a number of notable features.
The drop in efficiency at ∼1 GeV is where the muon will typically be energetic enough to
exit ND-LAr but not to enter and be reconstructed by the downstream tracker. The rise
and fall in efficiency that repeats every 2 m, resulting in horizontal bands in the figure, is
due to each absolute off-axis position being composed of contributions from the 8 relative
off-axis bins the fiducial volume is split into. Off-axis bins nearer the edge of the fiducial
volume are less likely to pass the hadronic veto selection criterion. The more gradual
change in the efficiency with off-axis position is due to using a true visible energy rather
than a true neutrino energy variable. The topology of the interactions in a fixed Evis

true bin
is dependent on the underlying true neutrino energy spectrum which in turn depends on
the off-axis position. Lastly, the RHC efficiency is generally higher than the FHC since
antineutrino interactions tend to be more elastic so that the muon is more likely to reach
the downstream tracker and there is less hadronic activity to contain.

The detector resolution can be described as a smearing matrix MND that maps from
true to reconstructed visible energy for the selected signal events,

Evis
rec,i =

∑
j

MND
ij Evis

true,j. (5.3.1)

MND is constructed using ND MC under the assumption that the detector resolution is
independent of off-axis position. First, an unnormalised smearing matrix is generated by
binning the on-axis ND MC in Evis

true and Evis
rec. The selection efficiency is then included

in this smearing matrix by enforcing that, for each off-axis position, the sum over the
reconstructed energy bins for each true energy bin is equal to the efficiency associated
with that true energy, i.e. ∑i M

ND
ij = εj. We then have, for each off-axis position, an

efficiency-normalised smearing matrix that describes the detector effects at the ND. The
smearing matrices for the on-axis position are shown in Figures 5.6c and 5.6d.

To remove the detector effects, each off-axis spectrum is unfolded using the associated
smearing matrix. The naive approach is to simply invert the matrix MND. However,
statistical fluctuations would produce large bin-to-bin fluctuations in the inverted matrix.
This would in turn lead to very large variances in the solution for ~Evis

rec, resulting in large
statistical errors and a strong dependence on systematic uncertainties that change the
form of MND. To remedy this, the unfolding is performed with regularisation to reduce
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(a) FHC νµ efficiency.
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(b) RHC νµ efficiency.
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(c) FHC νµ efficiency-normalised on-axis smearing
matrix.
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(d) RHC νµ efficiency-normalised on-axis smearing
matrix.

Figure 5.6: MC components of ND detector effects correction procedure. ND selection ef-
ficiencies for each off-axis position and 280 kA horn current (top) and ND smearing matrices
normalised to the on-axis position selection efficiency (bottom).
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the variance at the cost of a small bias.
Tikhonov regularisation [140, 141] is applied by formulating the unfolding as the min-

imisation
min
Evis

true

(
‖MND ~Evis

true − ~Evis
rec‖2 + ‖Γ ~Evis

true‖2
)
, (5.3.2)

where ‖·‖ denotes the Euclidean norm and Γ is a regularisation matrix. Γ is chosen to
be the second-derivative finite difference operator,

Γ = τ



1 −2 1 0 . . . 0 0 0
0 1 −2 1 . . . 0 0 0
0 0 1 −2 . . . 0 0 0
0 0 0 1 . . . 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 . . . 1 −2 1
0 0 0 0 . . . 0 0 0
0 0 0 0 . . . 0 0 0



, (5.3.3)

where τ is a parameter controlling the strength of the regularisation. The effect of the
regularisation is to penalise curvature in the solution, producing a smooth unfolding. The
parameter τ is optimised to minimise the amount of bias introduced to the solution while
still suppressing the variance. By differentiating with respect to Evis

true,i, it can be shown
that (5.3.2) is solved by

Evis
true,i =

∑
j

DijE
vis
rec,j, (5.3.4)

where Dij are elements of the unfolding matrix D given by

D =
((

MND
)T

MND + ΓTΓ
)−1 (

MND
)T
. (5.3.5)

A comparison of unfolding with Tikhonov regularisation to a simple numerical matrix
inverse can be seen in Figure 5.7. The fluctuations between neighbouring bins are strongly
suppressed by the introduction of regularisation.

The unfolding matrices D are then used to correct for the ND detector effects at each
off-axis position. Since the unfolding has the effect of migrating events across energy
bins, a covariance matrix must be introduced into the analysis to account for correlations
between bins. A diagonal covariance matrix for each off-axis position is defined and
propagated through the unfolding.

5.3.3 νe/νµ Cross Section Ratio

The PRISM analysis builds predictions from unoscillated beam νµ(νµ) data. For the νe(νe)
appearance analysis this means a correction for the difference between the νµ(νµ) and
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Figure 5.7: Comparison of unfolding matrices for matrix inverse (left) with Tikhonov regu-
larised unfolding using τ = 0.1 (right). Both are for the smearing matrix in Figure 5.6c. A
reduced energy range is used for visualisation.
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Figure 5.8: νe/νµ (left) and νe/νµ (right) cross section ratios. Error bars show statistical
uncertainty from MC spectra used for the ratio. Coarser binning is used for visualisation.

νe(νe) cross sections must be applied. These cross section ratio corrections, σ(νe)/σ(νµ)
and σ(νe)/σ(νµ), are derived from MC as a function of Evis

true so that they can be applied
to each unfolded off-axis spectrum.

A muon neutrino and an electron neutrino event rate Evis
true spectrum are generated

with an identical flux. The cross section ratio is made by dividing the true signal νµ(νµ)
event rate with the true signal νe(νe) event rate. The absence of detector effects means the
fluxes cancel and the desired cross section ratio is obtained. The resulting cross section
ratios can be seen in Figure 5.8. For an appearance analysis, each unfolded off-axis ND
spectrum is weighted by this cross section ratio.

5.3.4 Far Detector Effects

To complete the extrapolation to the FD reconstruction variable Eν
rec, we need to introduce

FD detector effects to the unfolded off-axis spectra. This follows a similar procedure to
§ 5.3.2 except without the need to unfold. The selection efficiency at the FD is given
as a function of Evis

true by taking the ratio of selected signal events, i.e. events that pass
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Figure 5.9: FD MC selection efficiencies for the four analysis channels.

the neutrino flavour identification cut on the CVN’s outputted score, with the total true
signal events. This is done for each of the four analysis channels. The selection efficiencies
can be seen in Figure 5.9.

A FD smearing matrix, MFD, is constructed from simulation. It maps from true
visible energy to reconstructed neutrino energy for the selected signal events, analogous
to (5.3.1). A separate smearing matrix is made for each of the four analysis channels
and their associated signal. As with the ND smearing matrix, the selection efficiency is
included in the MFD matrices by enforcing that the sum over the reconstructed energy
bins for each true energy bin is equal to the selection efficiency at that true energy.
With this normalisation, MFD can be used to smear each unfolded off-axis ND spectrum
to the selected signal event rate Eν

rec spectrum for the desired analysis channel. The
covariance matrix introduced for the ND unfolding stage is further propagated through
the application of the FD smearing matrix. The normalised FD smearing matrices for each
of the four analysis channels can be seen in Figure 5.10. The FD smearing matrices are
considerably less diagonal than their ND counterparts in Figures 5.6c and 5.6d. This is due
to the FD MC using a full reconstruction chain rather than a parametrised reconstruction.
In a future iteration of the analysis with access to ND MC that utilises a full reconstruction
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Figure 5.10: FD MC smearing matrices for the four analysis channels normalised to the
selection efficiency for the associated analysis channel.

chain, it is expected that the ND smearing matrices will be less diagonal.
The histograms in Figure 5.11 show the unfolded ND off-axis spectra after the FD

smearing matrix has been applied. They show the cumulative effects on the original
spectra, shown in Figures 5.3a and 5.3b, of the procedures outlined in this section.

5.4 Generating a PRISM Prediction
With each off-axis ND spectrum extrapolated to the FD analysis variable they can now
be linearly combined to approximate a single oscillated spectrum. Following some further
corrections to this spectrum, we will then be left with our final FD prediction.

5.4.1 Linear Combination

The extrapolated off-axis ND data event rates, as displayed in Figure 5.11, are represented
as a matrix Ndata with elements Ndata

ij corresponding to the i-th off-axis position and the
j-th reconstructed neutrino energy bin. We then seek to linearly combine the rows of
Ndata in such a way that they form an oscillated FD signal event rate spectrum for a
given oscillation hypothesis, F data

i . The coefficients of the linear combination are derived
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(c) RHC νµ disappearance.
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(d) RHC νe appearance.

Figure 5.11: ND event rate spectra after ND detector effects unfolding and FD detector effects
smearing. The appearance spectra also have the relevant cross section ratio applied.
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from MC in a way that is entirely independent of the neutrino-nucleus interaction model,
requiring accurate modelling of the neutrino beam only. They are calculated using true
signal neutrino event rates from the ND and FD MC as a function of true neutrino energy.
Since the interaction model is identical at both detectors, its effect cancels out and the
calculation is invariant to the choice of interaction model. It would be equivalent to use
the true signal neutrino fluxes, the event rates are used instead for convenience.

Analogously to Ndata, MC is used to generate a matrix of ND off-axis true signal event
rates, NMC. The target oscillated FD true signal event rate is also generated from MC
and is denoted ~FMC. Calculation of the linear combination coefficients is then the task
of solving ~FMC = NMC~c for ~c. Since NMC are νµ(νµ) event rates, the appearance channel
must generate ~FMC using νµ(νµ) event rates to ensure cancellation of the interaction
model. ~FMC for the appearance channel is νµ(νµ) event rates in the oscillated νe(νe)
shape. This is done only for the purpose of calculating ~c.

For the same reasons as for the ND unfolding discussed in § 5.3.2, ~c is solved for using
Tikhonov regularisation. Analogously to (5.3.2), the coefficients are obtained through the
minimisation

min
~c

(
‖NMC~c− ~FMC‖2 + ‖Γ~c ‖2

)
. (5.4.1)

The regularisation matrix is chosen to be the first-derivative finite difference operator,

Γ = τ



1 −1 0 0 . . . 0 0 0
0 1 −1 0 . . . 0 0 0
0 0 1 −1 . . . 0 0 0
0 0 0 1 . . . 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 . . . 1 −1 0
0 0 0 0 . . . 0 1 −1
0 0 0 0 . . . 0 0 0



. (5.4.2)

By penalising gradients in the solution, this choice of regularisation matrix encourages
flat solutions where adjacent coefficients have similar magnitudes. The solution to the
minimisation (5.4.1) is

~c =
((

NMC
)T

WNMC + ΓTΓ
)−1 (

NMC
)T

W ~FMC, (5.4.3)

where W is a diagonal matrix introduced to weight down the residuals associated with
energies below 0.5 GeV and above 5 GeV so that the coefficients prioritise accuracy in the
intermediate energy ranges. This is desirable because the high and lower energies are
hard to reproduce with the ND spectra and they are less important for DUNE oscillation
sensitivity.
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(b) FHC νe appearance.
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(c) RHC νµ disappearance.
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(d) RHC νe appearance.

Figure 5.12: ND off-axis linear combination coefficients calculated using MC for each analysis
channel. Each coefficient ci is plotted at the i-th off-axis position corresponding to the row it
multiplies in NMC~c. NuFIT 4.0 oscillation parameters [139] are assumed.

The calculated linear combination coefficients for each of the four analysis channels
is shown in Figure 5.12. The coefficients for the desired analysis channel can be then be
applied to the unfolded ND event rates Ndata to yield a prediction of the oscillated FD
signal event rate spectrum, ~F data, for the set of oscillation parameters used to make ~FMC.
The covariance matrices from the extrapolated off-axis ND event rates are summed with
a weighting of the associated linear combination coefficient squared to produce a single
covariance matrix for the linearly combined FD prediction.

5.4.2 Far Detector Backgrounds

The linear combination produces a prediction for the FD signal event rate only. We must
add the predicted FD backgrounds, as shown in Figure 5.5, to the linearly combined
spectrum. The result is a prediction of the total expected event rate at the FD.
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5.4.3 Flux-Matching Correction

Given sufficient ND statistics, the accuracy in which the linear combination can reproduce
a desired oscillated flux is limited by two factors. One is that the off-axis positions only
form an approximate basis for fluxes in the range of the beam neutrino energy, meaning
that a perfect match in the linear combination is not expected. This is especially prevalent
in the high energy tails of the oscillated spectra where the ND off-axis fluxes provide
limited coverage. Another is the use of Tikhonov regularisation which introduces a small
bias to the solution. The resulting inaccuracies in the prediction of the oscillated flux are
corrected for using MC to derive a flux-matching correction.

The flux-matching correction is derived using the fractional difference between the
linear combination and the target oscillated spectrum, NMC~c and ~FMC from § 5.4.1 re-
spectively. Since this is a function of true neutrino energy, it is converted to an additive
correction in reconstructed neutrino energy using the FD MC binned in true neutrino
energy and reconstructed neutrino energy. This is then applied to the prediction of the
oscillated spectrum from the linear combination alongside the FD backgrounds.

5.4.4 Predictions

The final FD oscillated prediction is the composition of extrapolating the ND off-axis
data to FD reconstructed neutrino energy, linear combination of the off-axis positions
along with an associated flux-matching correction, and the addition of predicted FD
backgrounds. The final predicted FD spectra are compared to the FD data for a set
oscillation hypothesis in Figure 5.13. The PRISM prediction matches the data very well
but is not a perfect match. This is a result of the regularisation in the unfolding procedure
introducing a small bias. Although not currently implemented in the analysis, this may
be corrected for using MC analogously to the flux-matching correction.

Changing the oscillation hypothesis used to create a PRISM prediction provides a new
set of linear combination coefficients and FD background predictions. When applied to
off-axis ND data, this produces a FD prediction for the new oscillation hypothesis. This
allows the PRISM technique for generating a FD prediction to be used in an oscillation
analysis.

5.5 Sensitivities

To fit the PRISM FD prediction, ~F , to data, ~D, the following chi-squared function is
defined as a goodness of fit,

χ2 = (~F − ~D)TV−1(~F − ~D), (5.5.1)
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Figure 5.13: Predicted FD oscillated spectra made with the PRISM method compared to FD
data. The error bars show statistical error. The error on the prediction (black line) is the square
root of the diagonal elements of the covariance matrix associated with the extrapolation. NuFIT
4.0 oscillation parameters [139] are assumed.
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where V is the combined covariance matrix of the FD data and the PRISM linear com-
bination of the ND data. The FD prediction is a function of the oscillation parameters
and a set of nuisance parameters controlling systematic uncertainties. A scan of the os-
cillation parameter(s) of interest is performed and at each point the χ2 is minimised with
respect to all other oscillation parameters and the nuisance parameters. Penalty terms are
included in the χ2 for the nuisance parameters and any oscillation parameters not being
studied. These terms use a prior distribution to penalise the deviation of a parameter
from its central value in units of the uncertainty. The sensitivities presented are from
Asimov studies [142] where the ND and FD data are nominal MC with true oscillation
parameters from NuFIT 4.0 [139] with normal ordering assumed. Since linearly combined
ND MC is being fitted to FD MC, rather than FD MC to itself, the minimum of the χ2

function is generally not zero. For this reason, the quantity ∆χ2 = χ2 −χ2
min, where χ2

min

is the smallest value of χ2 at any of the fit points, is used to define confidence intervals.
More details in the fitting procedure can be found in Chapter 6 of [138].

The systematic uncertainties are grouped into three categories: flux, cross section,
and detector. The flux uncertainties arise from modelling of secondary hadrons produced
when protons interact with the graphite target, and from uncertainties on the properties
of LBNF components relevant to neutrino production, such as the magnetic horns and
decay pipe. Cross section uncertainties are derived by varying parameters in the GENIE
generator and applying weights to parametrise effects not modelled in GENIE. Detector
uncertainties are implemented as variations in the energy scales and resolutions of both
the ND and FD. More details on the implementation of systematic uncertainties can be
found in Chapter 5 of [138].

5.5.1 Four-Channel Oscillation Analysis

A four-channel oscillation analysis is performed using a joint fit of the νµ, νµ, νe, and νe

predictions. The sensitivities with systematic uncertainties for ∆m2
32, sin2 θ23, and δCP

are shown in Figure 5.14. The true parameter values lie at the centre of the 1σ intervals
as expected. The constraints on the oscillation parameters are reasonably competitive
with current measurements despite the sensitivities only being for a fraction the expected
full exposure for DUNE.

The sensitivities show the impact of different types of systematic uncertainty. The
flux uncertainty has a significant effect on the calculation of the linear combination co-
efficients which is the dominant cause of the reduction in sensitivity associated with flux
uncertainties [138]. This is intrinsic to the PRISM extrapolation and can only be reduced
with improved modelling of the neutrino beam flux. Cross section systematics also result
in a significant sensitivity reduction. Since the linear combination is independent of cross
section systematics, this is caused by the MC components of the analysis used to correct
for different detector effects and backgrounds. It is possible to suppress this sensitivity
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Figure 5.14: PRISM oscillation parameter sensitivities for no systematics (dashed black line),
flux systematics (solid blue line), flux and cross section systematics (solid red line), and full
systematics (dashed yellow line). The dashed vertical line shows the true value of the oscillation
parameter of interest. Figure from [138].

reduction through the data-driven extrapolation techniques that will be discussed in § 5.6.
The effect of detector systematics is due to the different detector designs of the ND and
FD resulting in a set of uncorrelated detector systematics. Data-driven extrapolation
techniques may be able to lessen their impact on the sensitivities but there will always be
a considerable degradation that is irreducible.

5.5.2 Missing Proton Energy Fake Data

The important advantage of using PRISM for an extrapolation analysis, as opposed to
using the ND to constrain an interaction model, is that the validity of the resulting oscilla-
tion parameter constraints is much less dependent on mismodeling of the neutrino-nucleus
interaction. The effect of mismodeling the interaction model on an on-axis constrained
model oscillation analysis was discussed in § 3.5.5. Using a missing proton energy fake
dataset where 20% of the proton energy is transferred to neutrons produced a significant
bias in the measured oscillation parameters as shown in Figure 3.14. This fake data study
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Figure 5.15: Allowed regions in sin2 θ23 – ∆m2
32 from fit to missing proton energy fake data.

Shown for fit of PRISM prediction to FD fake data (red) and fit of FD MC to FD fake data
(blue). Systematic uncertainties are not accounted for in either fits. Figure from [138].

is repeated for the PRISM extrapolation, the resulting sensitivity is shown in Figure 5.15.
The PRISM fit is compared with a fit of FD MC to the FD fake data which is equivalent
to the on-axis analysis used in Figure 3.14 without any ND constraint.

Although the PRISM fit is less biased than the fit to FD MC, the fake data still
produces a significant bias in the measurement. This is due to MC components of the
PRISM extrapolation being dependent on the interaction model. To study this, the ND
selection efficiency and FD wrong-sign background predictions are generated using the
fake data rather than the MC, i.e. the idealised case where these components of the
analysis are entirely data-driven. This removes the effect of mismodeling of the proton
energy from these components of the PRISM extrapolation. The result of this is shown
in Figure 5.16 where the bias seen in Figure 5.15 is eliminated. This demonstrates that
the PRISM analysis is capable of including unknown cross section effects in the ND
constraint, therefore negating the risk of mismodeling the neutrino-nucleus interaction, if
data-driven methods for the extrapolation can be developed. Such methods would reduce
the dependence of the extrapolation on an interaction model.

5.6 Improvements to Extrapolation Method
The detector effects correction component of the PRISM extrapolation introduces a con-
siderable amount of interaction model dependence into the analysis via the generation
of smearing matrices and selection efficiencies using MC. This is antithetical to the aim
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of the PRISM oscillation analysis to be largely unaffected by any potential mismodeling
of the neutrino-nucleus interaction. To address this, new methods for extrapolating the
selection efficiencies and detector resolutions are under development and will be discussed
in this section.

5.6.1 Geometric Efficiency Correction

As discussed in § 5.5.2, the use of a MC correction for ND selection efficiency introduces
significant dependence on the interaction model. At the ND the selection depends on
the containment of the neutrino event, a hadronic veto must be satisfied and the muon
must be tracker matched or contained. As shown in Figures 5.6a and 5.6b, the selection
efficiencies are low and non-uniform at all energies and off-axis positions. This results in
a large MC correction being applied that depends quite strongly on the interaction model
since the containment at a given energy is dictated by the final state particles and their
momenta. For this reason, a geometric efficiency correction is being developed to replace
the MC correction.

The geometric efficiency correction approximates the probability for each individual
selected ND data event to be selected again had it occurred somewhere else in the fiducial
volume. The reciprocal of this probability is then used as an efficiency correction factor
for that event. For each neutrino interaction in the fiducial volume, it is equally likely that
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the same interaction would have occurred with the final state particles rotated around
the beam axis or with the vertex elsewhere in the fiducial volume within the y–z plane,
z being the detector coordinate most closely aligned with the beam axis, of the original
vertex. The latter statement is based on the assumption that the change in flux in the
y and z directions across the fiducial volume of ND-LAr is negligible1. Using this, the
energy deposited in ND-LAr by each selected data event is subject to many random and
uniform rotations around the beam axis and translations of the vertex to other points on
the y–z plane. For each of these random throws, a hadronic and leptonic efficiency factor
is calculated. The hadronic efficiency factor is 1 if the event passes the hadronic veto
and 0 otherwise. The leptonic efficiency factor is the output of a neural network trained
to predict the probability of a muon being tracker matched or contained based on its
initial kinematics. By taking a product of these two efficiency factors at each throw and
averaging the result over O(1000) throws, an estimate of the probability that the initial
selected data event would be selected again is returned.

The geometric efficiency correction allows for a efficiency correction factor for ND data
events that is data-driven, i.e. it is a function of the final state particles present in the ND
data rather than the MC. In its current stage of development, the true energy depositions
in ND-LAr and the true neutrino vertex are used to make the random throws. In the
future, these will be replaced with the 3D ND-LAr detector response and the reconstructed
neutrino vertex. It is expected that when implemented in the analysis it will provide an
accurate prediction for the selection efficiency. A small MC correction will likely be
required to correct for imperfections in the method. The geometric efficiency correction
will greatly reduce the interaction model dependence introduced into the extrapolation
via the ND selection efficiency correction.

5.6.2 Data-Driven Near-to-Far Translation

With the geometric efficiency correction implemented, a MC correction would still be
required for the ND resolution, shown in their efficiency-normalised form in Figures 5.6c
and 5.6d, and for the FD efficiency and resolution, shown in Figure 5.10. Although for the
fake data study discussed in § 5.5.2 the MC based ND efficiency is the dominant source
of bias, a considerable amount of interaction model dependence is introduced into the
analysis via corrections for the detector resolutions and FD efficiency. Furthermore, the
inclusion of full ND reconstruction will make the relation between the reconstructed vari-
able and the true neutrino energy more complex and more dependent on the final state
particles of the interaction than it is with the current parametrised reconstruction. This
may increase the effect of cross section uncertainties on a MC correction. This motivates
the development of a near-to-far translation that predicts relevant FD reconstructed vari-

1For the off-axis positions of the ND, shifts in y and z result in up to 1.7 mrad and up to 0.3 mrad of
off-axis effect respectively while shifts in x result in up to 7.0 mrad of off-axis effect.
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Figure 5.17: Schematic of the processes that produce analysis variables from an incident
neutrino at the ND (top) and FD (bottom). The ND and FD are LArTPCs with different
instrumentation. This means some processes are identical (green boxes) while others are dis-
tinct (red boxes). The dashed arrows represent proposed near-to-far translations: the response
translation (blue) and the reconstruction translation (red).

ables for each ND data event. When combined with the geometric efficiency correction, a
near-to-far translation would also remove the necessity for an unfolding procedure in the
analysis. The development of a near-to-far translation is the focus of this thesis and will
be introduced in this section.

A comparison of the processes that generate reconstructed observables, energy esti-
mations and selection criteria, from a neutrino incident at the ND or FD is shown in
Figure 5.17. A MC correction for the detector effects that is generated by simulating this
chain of processes back to the incident neutrino and applied to the binned ND observable
of choice is highly dependent on the interaction model used in the simulation. However,
as highlighted in the figure, the neutrino-nucleus interactions at the ND are from the
same distribution as those at the FD. Therefore, the characteristics of ND data events
can strongly inform the expected FD observables if properly utilised. A MC correction
that is a function of a single reconstructed variable does not accomplish this. A data-
driven correction that is a function of the ND data event in its entirety, and so of the
underlying neutrino interaction, can. This is the purpose of a near-to-far translation. As
indicated in Figure 5.17, a near-to-far translation may proceed in two ways: via a response
translation or via a reconstruction translation. The response translation uses the ND de-
tector response, i.e. what is measured in the detector before any processing, to predict
the FD detector response to the same underlying neutrino interaction. The FD detector
response can then be reconstructed to yield a prediction of the FD observable for the
original ND data event. The reconstruction translation method is to directly predict the
equivalent FD reconstruction from the reconstructed quantities of a ND data event. This
is simpler than the former method but the full neutrino interaction may not be properly
characterised by the ND reconstruction in all cases.

The near-to-far translation is implemented using machine learning (ML). ML is well
suited to the task since the input data, especially in the case of using ND detector response,
is high-dimensional and the mapping is non-linear. A paired dataset of ND and FD events
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is used to train a model in a supervised manner. The paired dataset is generated using
MC such that each pair shares the same underlying neutrino interaction. This allows a
model to learn a mapping that takes the neutrino interaction from the input data and
encompasses only the differences in detector response and, in the case of the reconstruction
translation, the differences in reconstruction. The resulting mapping will be dependent
on the detector simulation but have very little interaction model dependence.

The development of a paired dataset and its application in implementing a near-to-far
translation will be discussed in the subsequent chapters. It will be useful to outline the
scope of this work. Importantly, it is not expected that a perfect near-to-far translation is
achievable. There will always be some residual that must be corrected for using MC. The
goal is to make this MC correction small so that a significant fraction of the interaction
model dependence may be removed from the analysis.

The development of a near-to-far translation in this thesis is focused on the disap-
pearance analysis channel where muon neutrinos are measured at both the ND and FD.
The appearance analysis channel where muon neutrinos at the ND are compared to elec-
tron neutrinos at the FD presents some additional difficulties. The outgoing lepton is of
course different and the difference in lepton mass can alter the hadronic component of the
interaction, especially at lower energies. However, they both share the same interaction
channels and undergo the same nuclear effects. ND muon neutrino data events can still
be used in data-driven predictions of electron neutrino interactions at the FD. A proposal
for how this would be accomplished will be presented in § 6.1.5.
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The implementation of a near-to-far translation using machine learning requires a train-
ing dataset to learn the mapping between ND and FD. The training data is made by
constructing pairs of ND and FD response and reconstruction to the same underlying
neutrino interaction and subsequent propagation in LAr. A collection of these near-far
pairs form a paired dataset that can be used for training. The dataset encodes the dif-
ferences between the detectors on the level of a single event. This permits learning a
mapping between detectors that only relies on simulation of the detector readout since
the underlying neutrino interaction at the ND and FD is identical for each pair. In this
chapter, the procedure used to generate a paired dataset is outlined and the resulting
dataset is discussed.

This chapter is focused on the FHC disappearance analysis channel, i.e. generating a
sample of muon neutrinos at the ND and muon neutrinos at the FD. The steps required to
generate paired data for the other analysis channels will be discussed. This chapter also
makes the simplification of considering the FD in the reduced size 1x2x6 horizontal drift
configuration only. This is in line with the DUNE’s most recent long-baseline oscillation
analysis [76] where the simplification is used since simulation of this FD configuration is
the most mature.

6.1 Generating Near-Far Pairs
Generating paired ND and FD simulation requires the harmonisation of simulation from
multiple formats and frameworks. To facilitate this, interfaces between a paired HDF5
[137] file structure and the ND and FD software are developed. This enables sharing
of data across the simulation and reconstructions chains of the two detectors. Using
this HDF5 file structure to link disparate software, paired events may be generated. An
overview of the steps taken to generate a paired event is shown in Figure 6.1. Each step
will be detailed in this section.

6.1.1 Shared Neutrino Interaction

The first step is to obtain the underlying interaction within the detector that will be
shared between ND and FD. A neutrino interaction with argon is simulated using GE-
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Figure 6.1: Flow diagram showing the steps for creating a paired near-far event. ND and FD
simulation is applied to the same simulated neutrino interaction and subsequent propagation in
LAr. The steps yield a response pair (blue dashed line) and a reconstruction pair (red dashed
line).
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NIE. The true energy and interaction vertex of the incident neutrino is drawn from the
FHC beam flux of the ND in the on-axis position. The flux at the on-axis position is a
convenient choice to cover the full range of neutrino energies expected in on- and off-axis
ND measurements. The beam flux is precomputed using the G4LBNF simulation of the
beamline.

The final state particles of the interaction are propagated through LAr until they
deposit enough energy to stop ionising. This is accomplished using edep-sim [143], a
wrapper of Geant4, with the LArBath geometry. The LArBath geometry is an 800 m3

volume of LAr centred on the coordinates of the on-axis position of ND-LAr. This is
sufficient to contain the final state particles from interactions of incident beam neutrinos
at all energies. The output of the simulation is a collection of segments, linear steps
through the LAr each with an associated deposited energy.

The collection of segments are then placed in both the FD and ND geometries to be
processed further with their respective detector simulations. The ND geometry used has
ND-GAr as the muon spectrometer. Since the neutrino interaction is generated using the
ND beam flux, the interaction point and orientation does not need to be changed when
placing the segments in the ND.

When creating a reconstruction pair, an additional processing step is required at
the ND. The primary lepton propagation is simulated in the ND geometry, rather than
the LArBath geometry, using edep-sim. The original lepton segments are then replaced
with this new simulation. As demonstrated in Figure 6.2, this is necessary to accurately
reproduce the reconstruction of the lepton with ND-GAr. A process which is highly
dependent on the path taken by the lepton through air, ND-GAr’s cylindrical magnet,
and its magnetised GAr drift chamber. By resimulating the muon in this manner, the
near-to-far translation learnt with the paired dataset will no longer be a function of
the physics underpinning the muon’s propagation since this will come from two distinct
simulations at the ND and FD. The propagation in LAr of the hadronic system and,
importantly, the neutrino-nucleus interaction will remain the same at the two detectors.

When placing the same segments in the FD geometry an Earth’s curvature correction
is applied to the positions of the segments. This is to account for a different beam
direction at the FD caused by the contentious effect of the Earth being spheroidal while
the two detectors are locally level. The correction is a rotation of 11.57◦ upwards about
an axis intersecting the interaction position and parallel to the detector’s drift direction.
The rotated segments are then placed in the FD geometry for a randomly and uniformly
sampled interaction position in the fiducial volume (as defined in § 5.2.2). An additional
processing step of evenly splitting the FD segments into steps of length at most 0.4 mm
is performed to ensure compatibility with the FD detector simulation which requires a
smaller segment size than that required by the ND detector simulation. When generating
a response pair, all FD segments with ND counterpart segments outside of the active
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Figure 6.2: Fraction of CC νµ ND events selected via tracker matching (left) or reconstruction
with the electromagnetic calorimeter (right) at different true lepton energies. Both selection
criteria come from the parametrised reconstruction. Standard ND simulation is compared to
the paired data procedure with and without resimulating the muon in the ND geometry.

volume of ND-LAr are removed.
The result of these steps is a neutrino event at both the ND and FD that shares the

same neutrino-nucleus interaction, the same propagation of the hadronic particles in LAr,
and, for the response pair, the same propagation of the muon in LAr. The events will
undergo the detector simulation and reconstruction of their respective detector.

The use of the LArBath geometry assumes that both the FD and ND-LAr can be
approximated as only LAr. Differences in propagation can arise from small amounts
of other material, mostly fibreglass, in the instrumentation and high voltage systems
of the detectors. The abundance of materials with a higher density than LAr in the
inactive volumes between ND-LAr drift modules is expected to result in a suppression
of the energy deposited in the active volumes on the order of a couple of percent when
compared to LArBath. Although for now this is treated as negligible, it is significant
enough to motivate the future development of a correction to be used in the paired
dataset generation procedure.

6.1.2 Detector Simulation and Reconstruction

In the ND, the parametrised reconstruction discussed in § 4.3.2 is applied directly to the
segments in the detector. The reconstruction yields the criteria for a selection based on
hadronic and leptonic containment and a reconstructed neutrino energy.

To generate response pairs, the detector simulation of the ND discussed in § 4.3.1,
larnd-sim, is applied to the segments. This simulates the ionisation and drift in the LAr
and the response of the charge readout. The output is a collection of data packets along
with a trigger packet that contains an initial timestamp for the interaction.

In the FD, the standard detector simulation and reconstruction algorithms discussed

– 102 –



6 A Paired Near to Far Dataset 6.1 Generating Near-Far Pairs

in Chapter 4 are applied to the energy depositions. These include ionisation and electron
drift in the LAr, the detector simulation and deconvolution with the 2D field response and
the electronics response, and the full reconstruction chain. The reconstruction produces
CVN scores for selection and a reconstructed neutrino energy.

6.1.3 Near-Far Pairing

A reconstruction pair is immediately obtained by associating the ND reconstructed vari-
ables with the FD reconstructed variables. The pair includes all reconstructed variables
available from the ND parametrised reconstruction along with the high-level FD recon-
struction.

To produce a response pair, some additional manipulations are required to put both
detector responses in the same coordinate system. The aim is to transform the ND
detector response into the wire and time tick coordinate system of the FD such that the
two detector responses are spatially aligned. First, the drift coordinate of the ND packets
is calculated using the initial interaction time, given by a trigger packet, to yield 3D
positions in ND-LAr. Unlike the FD, the charge readout of ND-LAr does not include
shielding against long-range induction effects from the drifting electrons, resulting in the
calculated drift coordinate being shifted towards the anode due to the slightly earlier
pixel triggers. This is corrected for with a small empirical shift away from the anode.
The 3D packets are then moved into the FD geometry where they are aligned with their
FD counterpart. The alignment is composed of a translation such that the ND vertex is
moved to the FD vertex, an Earth’s curvature correction, and the removal of any packets
that lie outside of instrumented detector volumes after these transformations. The aligned
packets then have the centres of their 3D positions projected onto the wires they would
be drifted to and the time tick of their expected arrival. This produces three 2D views of
the 3D packets in the wire and time tick coordinate system of the FD. This projection is
illustrated in Figure 6.3. A response pair is then formed by associating each non-empty
wire plane projection of the ND packets with the FD response at that wire plane. The
transformations prior to the projection ensures that ND and FD response at each wire
plane is aligned.

6.1.4 Oscillation Analysis Compatible Pairs

An important benefit of the reconstruction translation is the simplicity of its implemen-
tation. It can be applied as a post-processing step on existing MC productions as it only
requires ND reconstructed variables as input. This is in contrast to the response trans-
lation which would need to be integrated into production workflows since it is unfeasible
to save detector responses for large ND MC samples. This motivates the generation of
a paired dataset with the same detector simulation and reconstruction algorithms used
in the PRISM oscillation analysis discussed in the previous chapter. The reconstruction
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Figure 6.3: Example of a 3D ND-LAr detector response that has been moved to the FD
(bottom) and projected onto wire planes (top). For this example, the 3D detector response
spans two drift volumes and so is encoded by projections to the wires at the backward facing
side of two APAs (drawn in red and green). The projection to each of the wire planes associated
with the two APAs produces a 2D image in wire and time. 80 × 80 crops of the full projections
are shown for visualisation purposes.
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translation learnt with such a dataset may be integrated into the current PRISM analysis
rather than a future iteration. The MC sample used in the current PRISM analysis is
known as the technical design report (TDR) sample in reference to being generated for
DUNE’s TDR [41]. The TDR sample dates back to 2018 and the simulation used to
generate it has some characteristics that require amending the previously discussed steps.

Compared to the current simulation assumed in the previous sections, the TDR simula-
tion employs a 1D field response for the detector simulation and subsequent deconvolution
at the FD. Most relevant to the pair generation procedure, the TDR simulation predates
a substantial refactor of the particle propagation simulation at the FD. A consequence of
this is that there is no appropriate software object to load the segments from the shared
neutrino interaction into. The nearest such object describes groups of ionisation electrons
after they have been drifted to wires. To navigate this, the current simulation is used for
the ionisation and drift of electrons up to the wire planes. The parameters governing these
effects are configured to their TDR simulation values. From here, the TDR simulation
chain can proceed with the remainder of the detector simulation and the reconstruction.
The paired HDF5 file structure allows for this interoperability between distinct software
versions.

6.1.5 Steps to a Complete Four-Channel Sample

The implementation of a near-to-far translation for a complete four-channel analysis re-
quires generating additional paired datasets to encompass νe appearance and different
detector configurations at the FD. To learn a response translation, the steps discussed
previously are sufficient for both the FHC and RHC disappearance analysis channels. For
a reconstruction translation, an additional RHC paired dataset would need to generated.
This would require swapping the FHC beam flux used to generated the initial neutrino
interaction with the RHC beam flux.

To learn a near-to-far translation for the appearance channel, the FD event of a near-
far pair must be the νe interaction equivalent of the νµ interaction at the ND. The proposed
way to construct this equivalent νe interaction at the FD is to replace the muon with an
electron simulated using the same kinematics. The hadronic system of the near-far pair
would remain the same between the ND and FD.

Substituting the muon with an electron does not produce a perfectly equivalent in-
teraction at the FD. Although the processes governing the neutrino-nucleon interaction
and the subsequent FSI are the same for νe and νµ interactions, the smaller mass of the
electron means that on average νe interactions transfer more energy to the nucleon or
quark. The effect this has on some properties of the interaction is shown in Figure 6.4.
The νe is more likely to interact with very high inelasticity and slightly favours DIS over
QE interactions. However, this does not appear to cause significant deviation in the in-
teraction’s final state particles, suggesting that, for a given incident neutrino energy, the
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hadronic system of a νµ interaction describes the hadronic system of a νe interaction well.
This motivates a paired dataset where at the FD the muon is swapped with an electron.
The mapping learnt from this paired dataset will permit a data-driven prediction of νe

interactions at the FD using the hadronic component of νµ interactions at the ND. A small
MC correction would be required to account for differences in the interactions, some of
which have been highlighted in Figure 6.4.

A complete near-to-far translation will require a paired dataset with the simulated FD
in the VD configuration also. This requires swapping the HD configuration FD detector
simulation and reconstruction for those of the VD configuration. For the response pair,
the projection of ND packets to wires would be replaced with a projection to charge
sensitive strips, also generating three paired 2D images for each drift volume.

6.2 Detector Response Pairs
An example of a response pair for the wire planes of one drift volume is shown in Figure 6.5.
On average each ND-LAr event spans 4 FD drift volumes and produces 9 paired 2D wire
plane responses1. The alignment procedure discussed in § 6.1.3 ensures the ND response
overlays the FD response at the appropriate wire and at a time just prior to the formation
of the associated FD pulses. Visible in the figure at a tick of approximately 190 is a gap
in the projected ND packets caused by the crossing of an anode plane in ND-LAr.

To confirm the ND response is consistently being projected to the wire plane with
the correct FD response, the relationship between the summed ADC for both detector
responses is examined in Figure 6.6. There is a clear linear relationship between the pro-
jected ND ADC and the FD ADC at the same wire plane, showing that the ND responses
are being matched with the correct FD event and aligned properly. The smearing can be
attributed to effects such as electronics noise and non-active regions in ND-LAr.

6.3 Reconstruction Pairs
The reconstruction pairs are validated more thoroughly to ensure the near-far pairing
procedure accurately reproduces pure ND and FD simulation. The validation is performed
using 597,320 samples from each of the paired dataset, the FD MC, and the on-axis ND
MC. The near-far pairs are generated using the TDR simulation, as outlined in § 6.1.4,
while the FD and ND MC are sampled from the datasets used in the PRISM analysis.
The paired dataset has been generated using the ND beam flux since the mapping learnt
from it will be applied to ND data. As shown in Figure 6.7, this means the neutrino flux
spectrum of the paired dataset matches that of the ND MC but not the FD MC. The FD

1The wrapping of the induction wires around the APA means the average is not necessarily 4 × 3 = 12
2D wire plane responses.
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Figure 6.4: Comparison of neutrino interaction properties for νµ and νe interactions simulated
with GENIE. Both neutrino interaction samples have the same spectrum of incident neutrino
energy. The error bars of the residuals represent statistical error.
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Figure 6.7: Beam neutrino flux spectrum of paired dataset, ND MC, and FD MC.

spectrum peaks at a higher energy than the ND spectrum due to the FD being at a much
greater distance and so subtending a smaller angle around the on-axis position.

Since the paired data is produced using the same flux as the ND MC, the distributions
of ND reconstructed variables should match each other. This is shown in Figure 6.8. In
this figure, the selection for FHC CC νµ events, as outlined in § 5.2.1, is applied using the
reconstruction from the paired data or ND MC. Therefore, each distribution depends on
its associated reconstructed variable as well as the reconstructed variables that define the
selection criteria. We see that the reconstruction from the paired data matches the pure
ND MC closely except for a small difference in normalisation. This indicates the ND side
of the near-far pair making procedure accurately reproduces the ND MC.

The discrepancy in normalisation is due to events being more likely to pass selection
cuts in the ND MC than in the paired data. This arises from the discrepancy in the
hadronic veto shown in Figure 6.9. Events generated using ND MC have a slightly lower
hadronic veto value than events generated using the paired data procedure, and so are
∼ 5% more likely to meet the associated selection criterion. This is an expected con-
sequence of the LArBath geometry. By not simulating the denser non-LAr volumes in
ND-LAr, hadronic particles have a slightly increased range, making them more likely to
enter the veto region at the detector edges. Since this effect is small, it is not expected to
have a significant effect on the performance of any near-to-far translation trained using
this paired data. However, as discussed at the end of § 6.1.1, correcting for this is a target
for future developments.

Since the flux of the FD MC differs from that used for the paired data, the FD
reconstruction of the paired data is validated as a function of the true neutrino energy.
This is shown in Figure 6.10, where bins of true neutrino energy have been normalised
to unity. The discontinuity at 8 GeV reconstructed lepton energy is caused by the MCS
energy estimation method being used when the muon is identified as uncontained. The
MCS reconstruction is limited to predicting muon energies of less than 10 GeV since
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Figure 6.8: Distributions of reconstructed neutrino energy (top left), leptonic energy (top
middle), hadronic energy (top right), neutrino-lepton opening angle (bottom left), proton energy
(bottom middle), and pion energy (bottom right) for selected νµ events at the ND.
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Figure 6.9: Distribution of hadronic veto for all fiducial volume ND events. The red line shows
the selection cut typically used in the PRISM analysis, Ereco

had Veto ≤ 30 MeV.
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it is not considered reliable for energies higher than this. The population at ∼ 5 GeV
reconstructed and & 7.5 GeV true lepton energy can be attributed to a range-based energy
estimation being applied to muons that are incorrectly identified as contained.

For the neutrino energy, lepton energy, and CVN νµ score, the difference plots are
consistent with statistical fluctuations. For the hadronic energy at true energy < 1 GeV,
there is a migration to slightly lower reconstructed energies for the paired data compared
to the FD MC. This is a small effect that has no discernible impact on the reconstructed
neutrino energy. Its cause is not clear. Overall, the reconstructed energies and the CVN
νµ score match well between the FD MC and the paired data which, along with the ND
MC validation, indicates the near-far pair making procedure accurately reproduces MC
at both detectors.
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(a) Selected νµ reconstructed energies.
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(b) Pre-selection CVN νµ score.

Figure 6.10: Response matrices for FD reconstructed quantities. The true energy bins of
the FD MC and Paired Data histograms are normalised to unity. The difference histograms
are in units of statistical uncertainty that has been propagated through the normalisation and
subtraction.
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Reconstruction Translation 7
The dataset of near-far pairs discussed in the previous chapter enables the training of ML
models to perform a near-to-far translation. The simplest translation is to predict, for each
event, a vector of desired FD reconstruction variables given a vector of ND reconstruction
variables as input. The reconstruction pairs can be used as training data for a ML model
developed to perform this translation. The model would ultimately be applied to ND
data. Such a ML approach provides a high-dimensional correction for detector effects for
each event that would not be possible using the binned approach presented in § 5.3. By
having many ND reconstruction variables as inputs to the model, the prediction will be a
function of the underlying neutrino interaction in so far as the interaction is described by
the ND reconstruction. This should yield a detector effects correction much less dependent
on the interaction model used in the simulation.

The development and early implementation of the reconstruction translation will be
discussed in this chapter. Only the translation for the FHC disappearance channel is
considered.

7.1 Training Data
A dataset of near-far reconstruction pairs generated with the TDR simulation is used as
a training dataset. The dataset consists of 1,198,619 pairs in total. The ND events that
any model trained with this dataset will be applied to are those that pass selection cuts.
In addition, the reconstruction variables are only good descriptors of the interaction when
the event passes selection cuts for containment. For these reasons, the ND selection cuts
used in the PRISM analysis, outlined in § 5.2.1, are applied to the dataset. No cuts on
the FD variables are required since the pairing process places interaction vertices in the
fiducial volume of the FD. The effect of the selection on the dataset is shown in Figure 7.1.
There are 147,703 reconstruction pairs after the selection is applied. Of these, 70,000 are
used for training and the remainder for test and validation.

The ND and FD reconstruction variables selected from the near-far pairs as the input
and targets of the training are outlined in Table 7.1. The choice of ND reconstruction
input variables is limited by the parametrised reconstruction which provides only a high
level description of the neutrino interaction. When full ND reconstruction is available,
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Figure 7.1: Effect of selection cuts applied to the training dataset on true and reconstructed
neutrino energies.

lower level track and shower reconstruction variables that better characterise the event
topology may be included. The distances to the fiducial volume boundary of the FD pair’s
interaction vertex are included in the input since containment in the 1x2x6 geometry is
not guaranteed from the fiducial volume cut which can affect the reconstruction. The FD
reconstruction outputs include the desired FD analysis variable fd_numu_nu_E and FD
selection criterion fd_numu_score. The FD reconstructed hadron and lepton energies are
also included as outputs since doing so was found to improve performance on the main
task of predicting fd_numu_nu_E and fd_numu_score.

7.2 Autoregressive Transformer for Translation
The reconstruction translation is a regression task from a vector of ND variables xND to
a vector of FD variables xFD. The mapping xND → xFD is the correction for the different
detector responses and subsequent reconstructions of the ND and FD. This encompasses
differences in the non-linear transformation of the underlying neutrino interaction by
detector components and differences in the finite resolution of the measured quantities of
each detector. The same problems that arise in unfolding procedures [144] are present in
the reconstruction translation. Namely, each xND does not necessarily correspond to a
unique xFD. To model the distribution of xFD for a given xND, a conditional generative
approach that models p(xFD, z | xND), where z is a noise vector, is considered.

7.2.1 Architecture

Inspired by the recent wider successes of generative pretrained transformer (GPT) archi-
tectures [145] and their application to physics simulations at the Large Hadron Collider
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Table 7.1: Input and target variables for the near-to-far reconstruction translation.

Type Variable Name Description

Input Ev_reco ND reconstructed neutrino energy
Input Elep_reco ND reconstructed lepton energy
Input eRecoP ND reconstructed total proton energy
Input eRecoPipm ND reconstructed total π± energy
Input eRecoPi0 ND reconstructed total π0 energy
Input theta_reco ND reconstructed ν-lepton angle
Input muon_tracker ND muon tracker-matched flag
Input muon_contained ND muon contained flag
Input Ehad_veto ND energy deposited in hadronic veto region
Input fd_vertx_fv_dist FD vertex shortest distance to fid. vol. x boundary
Input fd_verty_fv_dist FD vertex shortest distance to fid. vol. y boundary
Input fd_vertz_fv_fdist FD vertex distance to fid. vol. front z boundary
Input fd_vertz_fv_bdist FD vertex distance to fid. vol. back z boundary

Target fd_numu_score FD CVN CC νµ score
Target fd_numu_nu_E FD reconstructed neutrino energy
Target fd_numu_lep_E FD reconstructed lepton energy
Target fd_numu_had_E FD reconstructed hadron energy

[146], an autoregressive transformer is developed for the reconstruction translation. The
autoregressive aspect refers to interpreting the ND and FD reconstruction vectors as se-
quences and predicting the first FD reconstruction variable in the sequence, xFD,1, given
xND, then the second FD reconstruction variable in the sequence, xFD,2, given xND and
xFD,1, and so on until the full sequence of FD reconstruction has been predicted. More
formally, the joint probability is factorised as

p(xFD|xND) =
i≤NFD∏

i=1
p(xFD,i|x(i)

FD,xND), (7.2.1)

where x(i)
FD denotes the FD sequence up to and including the i-th element, (xFD,i, . . . , xFD,1),

and NFD is the total number of FD reconstruction variables. The order of reconstruction
variables presented in Table 7.1 is used to make the sequences. The two FD reconstruc-
tion variables relevant for the PRISM analysis are placed at the start of the sequence to
ensure they are not impacted by bad predictions of the other FD variables.

The network learns each conditional probability as a Gaussian mixture

p(xFD,i|x(i−1)
FD ,xND) =

∑
j

w
(i−1)
j N (xFD,i;µ(i−1)

j , σ
(i−1)
j ), (7.2.2)

where wj is a probability for each Gaussian in the mixture and the superscript (i − 1)
denotes that the learnable parameter encodes the conditional dependence of xFD,i on
x(i−1)

FD and xND. By predicting the parameters governing the mixture with a sufficient
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Figure 7.2: Transformed Gaussian functions used in the Gaussian mixture to model distribu-
tions of FD reconstruction variables. (a) is used to predict reconstructed energies, (b) is used
to predict the CVN νµ score.

number of Gaussian distributions, the network should be able to accurately reproduce
the conditional probabilities encoded by the training dataset.

To tailor the Gaussian mixture to the FD reconstruction variables, a change of variable
can be applied to the Gaussian distribution. For the CVN νµ score, the Gaussian is trans-
formed as y = (1 + exp(−x))−1, i.e. a sigmoid, to ensure the mixture is bounded between
0 and 1. For the reconstructed energies, the transformation to a log-normal distribution,
y = exp(x), to ensure positive energies was experimented with. However, the asymmetry
of the log-normal distribution was found to introduce bias into the predicted probability
distributions. Non-transformed Gaussians are instead used for the reconstructed energies.
Examples of the aforementioned distributions are shown in Figure 7.2.

The network trained to predict the parameters of the Gaussian mixture uses a trans-
former architecture 1 based on the GPT models. A diagram of the network architecture
is shown in Figure 7.3. The backbone of the network is the transformer block which uses
the attention mechanism to construct a representation of (x(i−1)

FD ,xND) that captures the
correlations between variables necessary to accurately generate the conditional probabil-
ity via the parameters of the Gaussian mixture (7.2.2). The attention is implemented as
a multi-head masked self-attention layer. This combines multiple heads of self-attention
layers [147]. A single-head self-attention applied to a sequence xi of dimension T starts
by embedding the sequence into a d-dimensional embedding space using a learnable linear
transformation. This embedding is denoted xiα. Three matrices are then computed using
learnable transformations denoted Wαβ. These are

Qiα = WQ
αβxiβ, Kiα = WK

αβxiβ, Viα = W V
αβxiβ, (7.2.3)

known as the query, keys, and values respectively. These are then combined into the

1Other non-transformer architectures may also be employed with minimal change to the overall recon-
struction translation framework described in this chapter.
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scaled dot product attention,

Softmaxj

(
QiβKjβ√

d

)
Vjα. (7.2.4)

The numerator, QK>, encodes the similarity of all sequence elements with each other
by taking the dot product in the embedding space of the query and keys. The result is
a T × T attention matrix. This is scaled by 1/

√
d and the softmax function is used to

normalise the attention values of each row to unity. The original representation xiα is
then updated with the learnt attentions by multiplication with the values.

The self-attention is masked to enforce causality. This is only required for the FD
variables where the autoregressive approach means a given FD variable should only depend
on previous elements in the sequence, these being all ND variables and the FD variables
that will have a prediction, and not future elements, these being FD variables that will
not yet have a prediction. The causality mask is applied to the attention matrix QK>.
As an example, for T = 5 and dim(xND) = 3, the mask would be

mask =



1 1 1 0 0
1 1 1 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1


. (7.2.5)

To construct the multi-head masked self-attention layer, multiple masked self-attention
heads are computed in parallel and their outputs concatenated and combined with a final
learnable transformation. This is accomplished by splitting the embedding space such
that, for n heads, the query, key, and values matrices of each head have dimension T×d/n
rather than T × d as for the single-head.

The representation learnt by the transformer blocks is passed through a final linear
layer to predict the parameters of the Gaussian mixture. The weight vector is transformed
with a softmax function to convert the weights to probabilities of each Gaussian in the
mixture. The vector of Gaussian widths is exponentiated to ensure they are non-negative.
The probabilities, widths, and means are then combined to produce the conditional prob-
ability distribution.

The model is implemented in PyTorch [148] making use of its distributions library.
Some of the important hand-tuned hyperparameters are listed in Table 7.2.

7.2.2 Training and Sampling

As indicated in Figure 7.3, the full sequence of ND and FD reconstruction variables with
the final FD variable omitted are inputted to the model during training. A prediction
for all FD conditional probability distributions is made in parallel. A loss function is
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Figure 7.3: Diagram of the GPT transformer architecture used to predict conditional probabil-
ity distributions. The transformer training inputs and outputs are shown. Layers with learnable
parameters are shaded blue while fixed layers are shaded yellow.
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Table 7.2: Transformer model hyperparameters.

Hyperparameter Value

No. transformer blocks 6
No. heads 6
Embedding size 192
Dropout prob. 0.1
No. Gaussian 64

xND

START

Transformer p(xFD,1|xND) xFD,1 ∼ p(xFD,1|xND)

x(1)
FD,xND Transformer p(xFD,2|x(1)

FD,xND) xFD,2 ∼ p(xFD,2|x(1)
FD,xND)

x(2)
FD,xND Transformer p(xFD,3|x(2)

FD,xND) xFD,3 ∼ p(xFD,3|x(2)
FD,xND)

x(3)
FD,xND Transformer p(xFD,4|x(3)

FD,xND) xFD,4 ∼ p(xFD,4|x(3)
FD,xND) xFD

END

Figure 7.4: Schematic of the autoregressive sampling process of the transformer for four pre-
dicted FD variables. x ∼ f(x) denotes a realisation of a random variable with the distribution
f(x).

constructed by evaluating each distribution at the true value of the FD variable,

L = 1
NFD

i≤NFD∑
i=1

(
− log p(xFD,i|x(i−1)

FD ,xND)
)
. (7.2.6)

Minimisation of this loss encourages the predicted conditional distributions to reproduce
the densities of the FD variable in the training dataset.

The model is trained until the validation loss indicates convergence. This is typically
reached before 8 epochs. The AdamW optimiser [149, 150] is used, gradient clipping is
enforced, and training is performed with a batch size of 64.

Sampling from the trained model is done by predicting each FD conditional proba-
bility distribution and sampling from them in an autoregressive manner. This is shown
schematically in Figure 7.4 for the prediction of the four FD variables used in the recon-
struction translation. In the event of sampling a negative value for a FD reconstructed
energy, the distribution is resampled until a non-negative value is returned.
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(a) Low true FD energy.
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(b) High true FD energy.
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(c) Certain νµ by FD CVN score.
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score.

Figure 7.5: Example conditional probability distributions predicted by the model. The true
value of the FD variable is marked in red.

7.2.3 Results

The trained model is evaluated on a test dataset of 53,570 near-far pairs. The predicted
conditional probability distributions for the FD reconstruction variables are illustrated
in Figure 7.5 for some example events. These distributions highlight some qualitative
features of the predictions. For low FD reconstructed neutrino energy, the predicted
distributions are tight around the true value. While for higher energies, the distributions
are wider around the true value and sometimes bimodal. This is likely due to the effects
of hadronic and leptonic containment in the 1x2x6 FD that are present even with the
fiducial volume cut applied. In Figure 7.5b, the peak around the true energy may be the
case where the muon is properly contained while the shoulder at lower energies is the case
where the muon exits the detector. The CVN νµ score distributions are typically sharply
peaked near 1 since the application of the ND selection cuts means the training dataset
CVN νµ scores are sharply peaked near 1. Despite this, Figure 7.5d demonstrates that
the distribution can be moved towards lower scores for an event with lower true CVN νµ

score.
Figure 7.6 shows the distributions of FD reconstruction variables predicted by the

model. The predicted distributions generally match the true distributions of the test set
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Figure 7.6: Comparison of predicted and true FD reconstruction distributions. The distribu-
tion of the equivalent ND reconstruction variable is shown where applicable.

well, especially for the two variables relevant to the PRISM analysis, the reconstructed
neutrino energy and CVN νµ score. This is likely because these two variables are the first
to be predicted in the autoregressive sampling and so are less susceptible to variations
in the sampled value of previously predicted FD reconstruction variables. The predicted
conditional probability distributions for the reconstructed neutrino and leptonic energies
are able to account for the bump at 10 GeV caused by MCS reconstruction of uncontained
muons reasonably well.

It is important that the model does not learn the unconditional distributions of the
FD reconstruction variables rather than distributions properly conditioned on the ND
reconstruction variables. The residuals of the model predictions for each event in the
test set are shown in Figure 7.7. The model predictions are unbiased and, for the FD
reconstructed neutrino energy, have a fairly poor resolution. This is expected due to
there being no unique FD reconstruction vector for a given ND reconstruction vector.
To further understand if the model has any unconditional dependence associated with
the neutrino energy spectrum of the training dataset, the test dataset can be weighted
using the true neutrino energy. The model predictions for the test dataset weighted
to the FD oscillated spectrum for NuFIT 4.0 oscillation parameters [139] are shown in
Figure 7.8. The predicted distributions continue to match the true distributions well
with the weighting, suggesting that the predicted probability distributions of the FD
reconstruction variables are conditional on the ND reconstruction.

The conditioning of the predicted FD reconstructed neutrino energy is examined in
Figure 7.9 by marginalising over all but one of the ND variables. The distributions of

– 121 –



7 Reconstruction Translation 7.3 Implementation in PRISM Analysis

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
(Pred - True) / True FD Reco. Neutrino Energy

0

500

1000

1500

2000

2500

N
o.

 E
ve

nt
s

= 0.002
= 0.163

0.2 0.1 0.0 0.1 0.2
(Pred - True) CVN numu Score

0

2000

4000

6000

8000

N
o.

 E
ve

nt
s

= 0.003
= 0.009

Figure 7.7: Residuals for FD reconstructed neutrino energy (left) and CVN νµ score (right)
with fitted Gaussians.
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Figure 7.8: Comparison of predicted and true FD reconstruction distributions for the test set
weighted to a FD oscillated flux.

the model predictions match those of the test dataset closely. The sharp features of the
distributions at high leptonic energies caused by an uncontained muon are present in the
network prediction but slightly smeared, perhaps due to the limitation of modelling the
distribution with a finite number of Gaussians. Accurately reproducing the dependence of
the FD reconstructed neutrino energy on many ND reconstruction variables demonstrates
the capability of the translation to make better use of the neutrino interaction in data
than unfolding and smearing in a single reconstructed variable does.

If the use of composite FD analysis variables in the PRISM analysis is desired it
would be beneficial to have accurate correlations between model predictions. This would
mean analysis variables can be reliably constructed without requiring retraining. This
is examined for FD reconstructed leptonic and hadronic energies in Figure 7.10. The
correlations are reasonably accurate. It could likely be improved by explicitly enforcing
a constraint on the sum of the energies during training.

7.3 Implementation in PRISM Analysis
Since the reconstruction translation only requires high-level reconstruction variables as
input, it can be applied directly to the existing ND analysis files used in the PRISM
analysis. By doing so, the efficacy of the reconstruction translation within the PRISM
oscillation analysis is evaluated. The detector resolution correction via a smearing matrix
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Figure 7.9: Comparison of 2D distributions of predicted and true FD reconstructed neutrino
energy with some of the ND reconstruction variables the prediction is conditioned on: neutrino
energy (top), leptonic energy (top middle), total charged pion energy (bottom middle), and total
proton energy (bottom). The red dashed line is identity.
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Figure 7.10: Comparison of 2D distribution of predicted and true FD reconstructed leptonic
and hadronic energies.

described in § 5.3.2 is replaced with the use of the predicted FD reconstructed neutrino
energy. The impact of this on the FHC νµ disappearance analysis channel is assessed.

7.3.1 Monte Carlo Data

The MC used in the PRISM analysis discussed in Chapter 5 was made with the same TDR
simulation used for training the reconstruction translation. The analysis files comprise
approximately 150 million ND events stored in ROOT trees. The translation input,
shown in Table 7.1, is constructed using the ND reconstruction of the event along with a
randomly and uniformly sampled FD vertex within the fiducial volume. With this input,
the model is used to make a prediction for the FD reconstructed neutrino energy and the
CVN νµ score which is added to the analysis file via a friend tree. Model inference for
one event takes approximately 20 ms with a single CPU core.

7.3.2 PRISM Prediction

Ideally, the reconstruction translation would be implemented alongside the geometric
efficiency correction, discussed in § 5.6.1, as an event-level correction for the detector
effects. This would remove the requirement to unfold the ND spectra to a true energy.
Each ND data event would have a ND selection efficiency correction factor, a predicted
FD reconstructed neutrino energy, and a predicted FD CVN score that the FD selection
cut can be applied to. However, the geometric efficiency correction is not at a stage where
it may be implemented in the PRISM analysis and so the ND selection efficiency must be
corrected for with MC alongside the event-level detector resolution correction from the
translation. The FD selection efficiency is also corrected for using MC to focus only on
the effect of a data-driven detector resolution correction.

First, the selected ND data spectra are taken in the predicted FD reconstructed neu-
trino energy variable, Eν

pred, provided by the translation. The ND MC is also taken in
Eν

pred to produce the predicted background rates in this variable. These spectra are shown
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(a) Selected FHC νµ signal.
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(b) Predicted FHC νµ NC background.
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(c) Predicted FHC νµ wrong-sign background.

Figure 7.11: ND selected muon neutrino signal event rate spectra and predicted backgrounds
in the predicted FD neutrino energy variable.

in Figure 7.11. The predicted MC background rates are subtracted from the selected ND
data to yield pure νµ event rates at each off-axis position.

To correct for selection efficiencies the ND spectra must be unfolded. A smearing
matrix M that maps from true visible energy to predicted FD reconstruction neutrino
energy,

Eν
pred,i =

∑
j

MijE
vis
true,j, (7.3.1)

is constructed using ND MC. For each off-axis position, an efficiency normalised smearing
matrix, Meff , is obtained by enforcing that the sum over the Eν

pred bins for each true
energy bin is equal to the selection efficiency associated with that true energy. The same
ND selection efficiencies shown in Figure 5.6a are used. The matrices M and Meff for the
on-axis position are shown in Figure 7.12.

The efficiency-normalised smearing matrices Meff are used to unfold each off-axis spec-
trum. Unfolding is performed with Tikhonov regularisation, as described in § 5.3.2. The
FD selection efficiency, shown in Figure 5.9a, is then applied to each unfolded ND spec-
trum. The smearing matrix M is applied to the ND and FD efficiency corrected unfolded
spectra to return to the original Eν

pred variable. This completes the detector effects correc-
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Figure 7.12: ND smearing matrices used to make selection efficiency correction.

tion of the off-axis ND spectra. At this stage, the model predicted energy variable Eν
pred

is considered equivalent to reconstructed neutrino energy at the FD, which is the analysis
variable of the FD data, and thus is relabelled Eν

rec.
The formation of a PRISM prediction from the off-axis ND spectra that have been

extrapolated to the FD analysis variables follows the methods of linear combination, FD
background addition, and flux-matching correction as described in § 5.4. The resulting
prediction is shown in Figure 7.13a. The Euclidean distance between the prediction and
data histogram is 232.5. Relative to the prediction using the standard PRISM detector
resolution, as shown in Figure 5.13a, which has a Euclidean distance of 161.0, the pre-
diction matches the data reasonably closely. This demonstrates the good accuracy of the
near-to-far translation. Since the match is slightly worse than as for the standard PRISM
detector resolution correction, an additional MC component is added to the prediction to
correct for the limited accuracy of the near-to-far translation. This small MC correction,
shown in Figure 7.13b, is an additive correction that is simply the residual in each bin
of Eν

rec of the PRISM prediction for a given set of linear combination coefficients and the
data. The result is a largely data-driven detector resolution correction with a small MC
component that will be subject to systematic uncertainties.

7.3.3 Sensitivities

The PRISM prediction using the reconstruction translation is fitted to FD data (the
FD MC for NuFIT 4.0 oscillation parameters) to yield oscillation parameter sensitivities.
These sensitivities are compared to those produced using the standard PRISM detector
effects correction described in § 5.3. For a fair comparison, a final MC correction of the
prediction-data residual is also included in the prediction using standard PRISM detector
effects correction. To study the interaction model dependence, cross section systematic
uncertainties are included in the fit. For both extrapolation methods, the ND selection
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Figure 7.13: PRISM FD FHC νµ spectrum prediction using the reconstruction translation
compared to FD data. NuFIT 4.0 oscillation parameters are used. The error bars show statistical
error.

efficiency is frozen with respect to the cross section systematics to focus only on the
difference in detector resolution correction. The smearing matrix M (7.3.1) is also frozen
as it will not be required following the integration of an event-level ND selection efficiency
correction from the geometry efficiency correction. Therefore, cross section systematics
enter the fit via the backgrounds, the flux-matching correction, the FD selection efficiency,
and the final prediction-data residual MC correction. In addition, for the standard PRISM
procedure they enter via the ND and FD smearing matrices shown in Figure 7.14.

Sensitivities for ∆m2
32 and sin2 θ23 are shown in Figure 7.15. For both fits without

systematics, the impact of statistical uncertainty is greater for the translation. This is
because the smearing matrix used to make the ND selection efficiency correction, the
mapping from Evis

true to FD Eν
pred shown in Figure 7.12, in the absence of the geometric

efficiency correction is less diagonal that its counterpart matrix in the standard procedure,
the mapping from Evis

true to ND Eν
rec shown in Figure 7.14. This smearing matrix contributes

to the covariance matrix when it is used to unfold ND spectra.
Despite the reduced sensitivity in the statistics-only fit, the inclusion of cross section

systematics in the sin2 θ23 fit causes the sensitivities to match between the two methods.
This indicates a slight reduction in interaction model dependence from the reconstruction
translation in the measurement of this parameter. For the ∆m2

32 fit, the reconstruction
translation results in a more substantial sensitivity improvement when cross section sys-
tematics are included. The 3σ and 5σ confidence intervals cover 4.1% and 5.3% less
parameter space respectively.

The presented sensitivities demonstrate that the reconstruction translation is a viable
improvement on the standard PRISM detector resolution correction. It results in an ex-
trapolation that is less dependent on known cross section systematics and that should
by extension be more robust to fake data studies of the like discussed in § 5.5.2. Any
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Figure 7.14: ND smearing matrices used to make selection efficiency and resolution correction
for the standard extrapolation procedure.

improvements to the reconstruction translation model that reduces the size of the MC
correction would further increase the advantage of this method. Possible improvements
include a substantially larger training dataset, a training dataset with uniform neutrino
energy spectrum, and utilising more descriptive input variables from full ND reconstruc-
tion.
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Figure 7.15: PRISM oscillation parameter sensitivities for ∆m2
32 (top) and sin2 θ23 (bottom)

with and without cross section systematic uncertainties. Shown for both the standard extrapo-
lation procedure and the extrapolation using the reconstruction translation. The bottom pane
shows the 3σ (vertical markers) and 5σ (lines) confidence intervals. The inset on the upper plot
is a zoom-in on the best fit point to demonstrate that the reconstruction translation does not
introduce any bias.
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Response Translation 8
A superior but more computationally intensive method of the near-to-far translation is
to use response pairs to train a ML model that predicts the FD detector response given
a ND detector response. With this response translation, the FD prediction is a function
of the full phase space of the neutrino interaction present in data. The topology of the
interaction in the predicted FD response is set by the inputted ND response with the
translation only correcting for the detector effects.

In this chapter, the method of a response translation is outlined and the development
of ML models to implement it is discussed. The translation is validated through recon-
struction of predicted FD responses and a study into the dependence of the method on
cross section systematics is performed.

8.1 Proposed Method

Pile-up removed selected ND data

ND-LAr
response

Muon tracker
reconstruction

Correct for
inactive regions

Predict FD
response

FD
reconstruction

FD analysis
variables

Figure 8.1: Flow diagram of the high-level steps of the response translation that predicts FD
analysis variables from a ND data event. The steps shaded in green require the development of
new algorithms.

The diagram in Figure 8.1 outlines the steps of the proposed response translation. The
translation starts with selected single neutrino interactions in the ND. Obtaining single
interactions requires some level of reconstruction to remove pile-up. Once this has been
done, the raw detector response, rather than a reconstructed object, for single neutrino
interactions is returned. Two algorithms must be developed to translate each event to the
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Figure 8.2: Top-down view of the ND-LAr drift modules. The hatched regions are the inactive
volumes at the anode (∼ 1.3 cm wide) and between adjacent drift volumes (∼ 4.14 cm wide).

FD. The first is a correction for the inactive volumes of the modular ND-LAr. The second
is a prediction of the FD electronics response equivalent to the ND electronics response
in the data. Equivalent meaning the FD response as if the energy depositions present in
the ND interaction had been deposited in the LAr of the FD.

The inactive volumes of ND-LAr are a result of the modular nature of the detector.
Between each drift module there are thin volumes of LAr and other material in the
anode where charge is not drifted to a readout plane. These are shown schematically in
Figure 8.2. The FD also has inactive volumes at the anode and between adjacent APAs
but these are spaced much further apart than at the ND. For this reason, a correction for
the inactive ND volumes must be made for each event. It is proposed to do this by using
computer vision algorithms to predict the electronics response in the inactive volumes as
if the charge in these volumes had been deposited in LAr and drifted to a readout plane.
This process of predicting the detector response in the inactive volumes by interpolation
of the response in the neighbouring active volumes is referred to as infill. An infill with
adequate accuracy will result in contiguous detector response across the inactive volumes
so that there is little impact on the FD track and shower reconstruction of the translated
detector response. In addition, it will give an approximate correction for the missing
deposited energy based on the topology of the event. Performing the infill on the raw
detector response prevents smearing from the ND reconstruction being folded into the
translation.

After infilling the ND-LAr detector response, the equivalent FD response needs to be
predicted. Currently, a muon reconstructed in ND-GAr/TMS is not considered. The FD
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response is predicted only for the hadronic component of the event and the fraction of the
muon track contained in ND-LAr. Steps to predict the FD response for the entire event
by including the ND-GAr/TMS reconstruction are outlined at the end of this section. For
the component of the event contained in ND-LAr, the 3D detector response first needs
to be transformed into the coordinate system of the FD. This requires a reconstructed
interaction vertex and is accomplished with the following steps:

• Rotate the ND event about a vertical axis intersecting the interaction vertex such
that the beam direction is consistent with an on-axis measurement.

• Place in the FD geometry with a randomly and uniformly sampled interaction vertex
within the fiducial volume.

• Apply the Earth’s curvature correction rotation.

• Project the 3D detector response onto the FD wire planes.

These transformation were discussed in more detail in § 6.1.3. With the ND event in
the FD coordinate system, the prediction of the equivalent FD response is treated as an
image-to-image translation problem and performed using ML. A model is trained using
a dataset of response pairs, the creation of which was discussed in Chapter 6 where an
example pair was shown in Figure 6.5. A separate model is used for each of the three
types of wire plane: U, V, and Z.

The predicted FD response can then be loaded into the appropriate FD software
object and passed through any FD reconstruction chain. From this reconstruction, any
FD analysis variable can be obtained.

The response translation will be applied to selected ND data events. For events with
a muon contained in ND-LAr, the electronics response translation alone is sufficient. For
the many events selected with a muon reconstructed in the ND-GAr/TMS downstream
tracker, a prescription to include in the translated FD response the component of the
muon that is outside of ND-LAr is required. This may be done using the muon kinematics
reconstructed by the downstream tracker and ND-LAr to simulate the remaining part of
the muon in the FD. The new muon would be simulated at the reconstructed ND-LAr
exit point of the original muon just prior to the projection of the 3D response to the FD
wire planes. The FD detector simulation would be applied to the new energy depositions
and the resulting response concatenated with the model predicted FD response. When a
full reconstruction of ND-LAr together with the downstream tracker becomes available,
implementing a complete response translation of events with a muon in the downstream
tracker via this method will be an important next step.
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8.2 ND-LAr Inactive Volume Infill
A ML model is trained to infill the ND event, predicting the ND-LAr detector response in
the inactive volumes. The model is applied directly to the 3D ND-LAr detector response
to minimise any directional ambiguities. The development of this model is discussed in
this section.

While it may in principle be possible to incorporate the infill into the 2D near–far
image translation task described in the next section, this approach was found to perform
poorly in practice. For this reason, the dedicated 3D infill model described in this section
was developed.

8.2.1 Sparse Tensor Networks

The key building block of the infill network will be the convolutional neural network
(CNN) layer. CNNs typically employ kernels with two spatial dimensions and are applied
to pixels. A CNN may also operate in 3D by applying kernels with three spatial dimensions
to voxels. However, data from ND-LAr is encoded by 3D images with O(109) voxels and
so applying such 3D convolutions is prohibitively expensive both in terms of memory
and processing time. For comparison, 3 FD APAs would encode a much larger volume
with just O(107) pixels from the wire readout. The challenge of ND-LAr’s high spatial
resolution is addressed by encoding the data as sparse tensors and utilising sparse tensor
network libraries to perform convolutions. Since ND-LAr data has high spatial sparsity,
i.e. many of the voxels are associated with zero ADC, a sparse convolution which ignores
zero voxels will greatly reduce the number of computations. This is true for LArTPC
data more generally and has been recognised as a powerful approach to applying ML in
this domain [151].

Sparse tensor network libraries implement all of the standard neural network layers
to operate on sparse tensors and produce sparse tensors as output. The PyTorch-based
Minkowski Engine [152] sparse tensor network library is used in this work. In Minkowski
Engine, a sparse tensor is represented in the coordinate list format,

C =


x1

1 x2
1 . . . xD

1
...

...
. . .

...

x1
N x2

N . . . xD
N

 , F =


f 1

1 f 2
1 . . . f

Nf

1
...

...
. . .

...

f 1
N f 2

N . . . f
Nf

N

 , (8.2.1)

where C ∈ ZN×D is a coordinate matrix, F ∈ RN×Nf is a feature matrix, D is the
dimension of the space, N is the number of non-zero elements in the sparse tensor, and
Nf is the number of channels. The coordinate list format is implemented as an unordered
map with the D-dimensional integer coordinate as the key and the row index as the value.
This allows for efficient random access to coordinates and their feature vectors along with
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Figure 8.3: Illustration of the generalised convolution applied to a sparse tensor for four output
coordinates (green) and three input coordinates (blue). Figure from [154].

access to neighbouring coordinates of a given coordinate as required for convolutions.
Minkowski Engine’s convolutional layer generalises the conventional convolution on

dense tensors to one that can be applied to sparse tensors [153]. A convolution consists
of kernel weights, W ∈ RKD×Nout×N in , that map an input feature matrix, Fin ∈ RN×N in ,
to an output feature matrix, Fout ∈ RN×Nout , using a kernel of size K. Denoting the
row of the feature matrix for the spatial coordinate u ∈ ZD as f in/out

u ∈ RN in/out and the
submatrix of the kernel weights for a given kernel coordinate i ∈ ZD as Wi ∈ RNout×N in ,
the generalised convolution can be written as

fout
u =

∑
i∈K(u)∩Cin

Wif
in
u+i for u ∈ Cout, (8.2.2)

where Cin is the set of input coordinates, Cout is the set of desired output coordinates,
and K(u) ∩ Cin is the intersection of the set of kernel coordinates for the kernel at the
spatial coordinate u with Cin. In this way, all operations that involve purely non-active
coordinates are skipped. An illustration of the generalised convolution is shown in Fig-
ure 8.3 which, from left to right, has intersections K(u)∩Cin given by {(−1, 0), (1, 1)}, {},
{(−1, 0)}, and {(1, 0)}. The high efficiency of the generalised convolution when applied
to sparse input data makes the application of CNNs to ND-LAr data tractable. Further
information on sparse tensor networks and their implementation in Minkowski Engine can
be found in Chapter 4 of [154].

8.2.2 Data Preparation

Different configurations of particle generation and propagation are passed through the
larnd-sim detector simulation to produce multiple training datasets. These are sum-
marised in Table 8.1 where they are in approximate order of infill difficulty. It is hoped
that by training on each of them consecutively the model will reach a better parameter
space minimum. This technique is known as curriculum learning [155]. A dataset of
30,000 events is made for each configuration.

The configurations with the prefix dummy are made by choosing two spatial coordinates
randomly and uniformly with the associated constraint stated in the description. Energy
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Table 8.1: Configurations of energy depositions in LAr used to make training datasets.

Name Particles Energy Description

dummy_fixzfixy — — Straight line, z & y constant
dummy_fixz — — Straight line, z constant
dummy — — Straight line
single_mu 1 µ− 0.2–3 GeV Single muon
multi_mu 4 µ− 0.2–3 GeV 4 µ− from same vertex
multi_mu_pi 2 µ−, 1 π− 0.2–3 GeV 2 µ− & 1 π− from same vertex
nu Beam flux Beam flux On-axis ND FHC beam neutrino flux

depositions are distributed in a straight line between the two coordinates with constant
segment size and energy deposited at each segment. The configurations of µ− and π− are
made using the Geant4 General Particle Source with initial directions in a cone oriented
along the neutrino beam direction. The energies are randomly and uniformly sampled
from the specified energy ranges.

A coordinate system for the sparse tensor is made by discretising the 3D larnd-sim
input into voxels. For the directions in the plane of the anode, the natural voxel size is the
pixel pitch, 0.38 cm. In the drift direction, the 0.1µs temporal resolution of the electronics
gives a spatial resolution for the readout of 0.016 cm. The voxel size in this direction is
set to 0.16 cm to minimise the distance between subsequent self-triggered packets while
ensuring that no two packets occupy the same voxel. Each drift module is therefore
discretised into 0.38 × 0.38 × 0.16 cm voxels. At the inactive volumes, the discretisation
uses voxel sizes as close to this as possible while maintaining an integer number of voxels.
For the inactive volumes between adjacent drift modules, the gap is 11 voxels across with
a voxel size of 0.377 × 0.38 × 0.16 cm. For the inactive volumes at the anode, the gap is 8
voxels across with a voxel size of 0.38 × 0.38 × 0.1625 cm. The complete discretisation of
the active and inactive regions of ND-LAr consists of 1324 × 800 × 4465 voxels for O(109)
voxels in total. The voxel occupancy of the beam neutrino dataset for this discretisation
is shown in Figure 8.4. This highlights the extreme sparsity of the ND-LAr response,
demonstrating the suitability of a sparse tensor representation.

The feature matrix uses one channel, F ∈ RN×1, which is the pedestal subtracted
ADC of the ND-LAr response. Combined with the aforementioned voxelisation scheme,
sparse tensors for ND-LAr events are formed.

To make infill training data from the simulated ND-LAr response, a self-supervised
approach is taken by applying a randomly shifted mask of the inactive volumes to the 3D
images. The masked image is then the input and the unmasked image is the target. An
example is shown in Figure 8.5. With this training data, the model predicts the response in
masked regions with the same structure as the inactive volumes of the detector. Although
not utilised in this work, the mask may also be applied to ND-LAr response from data
rather than simulation. Doing so in a future application of the infill network when ND-
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Figure 8.4: Occupancy of the beam neutrino dataset.

LAr data is available would remove any effect the data-MC discrepancy may have on the
infill.

8.2.3 Architecture

A model is constructed based on the U-Net architecture [156] using convolutional layers.
A U-Net is an autoencoder network consisting of an encoder and decoder. The encoder
uses strided convolutions to downsample the image to a tensor with small spatial size and
a large feature dimension. This allows features of the image to be learnt at different spatial
scales and gives the network a large receptive field. The decoder uses strided transposed
convolutions to upsample the tensor back to the original spatial dimension of the input.
To help in restoring the input image resolution, the U-Net uses skip connections. These
are concatenations of the tensor in each layer of the encoder to the tensor in the decoder
layer with the same spatial dimension. The U-Net is a clear choice for the infill task since
the downsampling means the network has a large spatial context around the masked
regions while the upsampling with skip connections allows restoration of the original
image dimension with minimal loss of resolution.

The U-Net is made with sparse tensor network layers from Minkowski Engine. An
illustration of the architecture is shown in Figure 8.6. The core convolutional block
used for feature extraction consists of a convolutional layer, a normalisation layer, and
a non-linearity. This block can be made to downsample or upsample by replacing the
convolution with a strided convolution or a strided transposed convolution respectively.
An encoder block consists of a downsampling block preceded and succeeded by a convolu-
tional block. A decoder block consists of an upsampling block followed by a concatenation
in the feature dimension from the skip connection in the feature dimension and is also
preceded and succeeded by a convolutional block. The U-Net is composed of an initial
convolutional block, 6 encoder blocks, 6 decoder blocks, and a final convolutional block.
Relevant hyperparameters obtained by hand-tuning are listed in Table 8.2. The final hard
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Figure 8.5: Example of masking used to make infill input-target training data. A crop of the
x-z projection of the 3D data is shown. The grey shaded region is a mask produced by randomly
shifting the inactive volumes displayed as blue shaded regions.
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Figure 8.6: Schematic of U-Net architecture implemented with Minkowski Engine. The width
and height of the blocks are indicative of the tensor’s feature and spatial dimension respectively.

hyperbolic tangent non-linearity maps negative values to zero to facilitate the prediction
of a masked voxel as empty.

Convolutions in the network that do not change the spatial dimension use the input
coordinates as the output coordinates, Cout = Cin in (8.2.2). The strided convolutions of
the encoder have new downsampled output coordinates, |Cout| < |Cin|, that are automat-
ically generated by Minkowski Engine. The transposed convolutions of the decoder have
output coordinates explicitly set to the coordinates of the corresponding sparse tensor
at the encoder. This coordinate sharing is shown in Figure 8.6. As a consequence, the
network cannot generate new coordinates and so any coordinates in ND-LAr’s inactive
regions that are relevant to the infill must be included in the input to the network. The
method for doing this is discussed in the next section. Although it is possible for the
transposed convolution to generate new coordinates [158], it was found to be challenging
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Table 8.2: Infill U-Net hyperparameters.

Hyperparameter Value

No. encoder/decoder layers 6
Max feature dimension 512
Normalisation Instance
Non-linearity Exp. linear unit [157]
Upsampling/downsampling conv. stride 2
Conv. Kernel size 3
Initial/final conv. kernel size 5
Final non-linearity Hard tanh w/ min. val. 0

to limit the number of coordinates generated, and so the GPU memory requirement, by
successive upsampling.

8.2.4 Training and Sampling

For each training epoch, a new randomly shifted mask of the inactive volumes is used
for each event to make a unique input and target for the infill task. The random shift is
constrained such that the mask is at least two mask widths from the detector’s inactive
volumes. This is to ensure the context necessary for the infill is not disrupted by missing
response at the original inactive regions.

As noted in § 8.2.3, the upsampling convolutions of the network cannot generate new
coordinates. Any coordinates in the masked region of the output must be explicitly in-
cluded as coordinates, with zero associated ADC in the feature matrix, in the input.
Including the coordinates of the entire masked volume is untenable as a masked volume
corresponding to a single gap between drift volumes or at an anode is composed of O(106)
voxels. Instead, candidate coordinates in the masked volumes are generated using a series
of reflections to extend the detector response from the regions neighbouring the masked
volumes into the masked volumes. This is done by finding reflection targets, unmasked
coordinates within one mask width of the start or end of a masked region. A reflec-
tion target (x, y, z) undergoes a parity transformation through each unmasked coordinate
(x′, y′, z′) adjacent to the masked region being considered and within a maximum distance
to the reflection target,

(x, y, z) → (2x′ − x, 2y′ − y, 2z′ − z). (8.2.3)

These transformed coordinates lie within the masked region and are the candidate infill
coordinates. A small smearing is applied to them in each direction. The transformations
extend tracks into the masked region in all possible directions given by combinations of
coordinates adjacent to and in the vicinity of the masked region. Some examples of the
resulting candidate coordinates are shown in Figure 8.7.
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Figure 8.7: Examples of candidate coordinates (green shading) generated in the masked re-
gions. The candidate coordinates are inputted to the infill network as voxels with zero ADC
alongside the unmasked ND-LAr response. Shown are crops of the x-z projection of the 3D
events.

0.0 0.2 0.4 0.6 0.8 1.0
Candidate Coord. Completeness

0

500

1000

1500

2000

N
o.

 E
ve

nt
s

Figure 8.8: Fraction of active coordinates in masked volumes where a candidate coordinate is
generated via reflections of the unmasked coordinates.

As demonstrated in Figure 8.8, the majority of the masked detector response is in-
cluded in the candidate coordinates. Detector response outside the candidate coordinates,
and so not possible to reconstruct with the infill network, is by definition activity without
a clear signature in the unmasked volumes. This method of generating candidate coordi-
nates typically produces O(104) coordinates, two to three orders of magnitude lower than
including entire masked volumes in the input tensor, which can be included in the input
to the infill network without exceeding memory limitations.

An important consideration when constructing a loss function for training is the spar-
sity of the detector response in the drift direction z. Successive data packets associated
with a continuous charge deposition are separated by a few voxels in the z-direction due
to the self-triggering. A composite loss function is designed to accommodate the difficulty
in reliably predicting the correct specific infill voxel from the unmasked detector response.
A convolution with kernel size 1×1×3 is applied to the target image to produced smeared
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features that are denoted with a prime. This is used to define two loss terms,

Lvoxel = 1
|Cmask,0|

∑
i∈Cmask,0

(
fpred

i − f target
i

)2
, (8.2.4)

Lsum = 1
(|Cmask,1|)2

 ∑
i∈Cmask,1

fpred
i −

∑
i∈Cmask,1

f target
i

2

, (8.2.5)

where fi is the ADC at coordinate i and, with Cmask being the set of all masked coordinates,
the coordinate sets used in the summations are Cmask,0 = {i ∈ Cmask|f ′ target

i = 0} and
Cmask,1 = {i ∈ Cmask|f ′ target

i 6= 0}. The loss function is then L = Lvoxel + αLsum where α
is a hyperparameter that is set to 2 after tuning. This loss is designed to smear out any
voxel-to-voxel variations and prioritise the aggregate properties of the predicted tracks.

Models are trained on 20,000 events until the validation loss indicates convergence.
The stochastic gradient descent optimiser with momentum is used and training is per-
formed with a batch size of 12. Using the datasets in the order presented in Table 8.1,
a model is trained with the dummy_fixzfixy dataset and the learnt weights are used to
initialise training with the succeeding dummy_fixz dataset. These learnt weights are used
to initialise training with the succeeding dummy dataset and so on until until training with
the nu dataset yields the final model.

To use the trained model for infill of the inactive volumes, the model is sampled
with no shift being applied to the inactive volume mask, i.e. the masked volume is the
inactive volume. The predicted voxel response in the masked volume is mapped back to
3D detector coordinates and concatenated with the original active volume response. The
result is an infilled 3D ND-LAr detector response.

8.2.5 Results

Examples of the infill with the mask positioned at the inactive volumes for each stage
of training with datasets of increasing complexity are shown in Figure 8.9. The infill
generally has good accuracy on clear and isolated tracks. In regions with showers and
overlapping activity, there are many false positive voxels in the infill.

The purity and completeness of the model at each successive training stage with
a different dataset is shown in Table 8.3. These metrics consider the predicted voxel
occupied if the ADC is non-zero and likewise for the target voxel. Completeness is the
fraction of true occupied voxels the model predicts and purity is the fraction of predicted
occupied voxels that are present in the truth. The final model has a reasonably high
completeness and a low purity. As illustrated in Figure 8.9, the low purity is due to the
infill not reproducing the sparsity of the detector response packets in the z-direction as
well as many false positive predictions in regions of high activity, as in Figure 8.9h.

The summed ADC at the masked volumes for the predicted and target image is com-
pared in Figure 8.10. The total predicted ADC in the masked volumes is several times
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Figure 8.9: Examples of predicted inactive volume infill for each stage of training used to
produce the final neutrino event infill model. Shown are crops of the x-z projection of the 3D
events.
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Table 8.3: Voxel occupancy purity and completeness for models at each stage of training.

Model Mean Purity Mean Completeness

dummy_fixzfixy 55.26% 93.07%
dummy_fixz 43.76% 81.50%
dummy 16.38% 79.38%
single_mu 21.01% 71.87%
multi_mu 4.47% 82.15%
multi_mu_pi 6.35% 62.10%

nu 14.08% 74.76%

larger than the target ADC. Although much better than the simple baseline infill, the
infill is inaccurate in this regard.

The performance of the infill in isolation is fairly poor. However, it does still accom-
plish the goal of ensuring contiguous detector response across the inactive volumes. It is
hoped that in the next stage of predicting the FD response from the infilled ND response,
the impure infill will be sufficient.

8.3 Near-Far Image Translation
Following the infill of the ND-LAr detector response, the response translation is completed
by transforming the ND event into the FD coordinate system and predicting the equivalent
FD response. The prediction of a FD response given a ND response is treated as an
image-to-image translation between two domains of distinct detector technology. The
development of a model to perform the style-transfer between the near and far is discussed
in this section.

8.3.1 Data Preparation

As outlined in § 8.1, the response-pairs discussed in Chapter 6 are used to create training
data. Before projecting the ND-LAr response to the wire and time tick coordinates of
the FD in the pair making procedure, the infill network is used to predict the detector
response in the inactive volumes. This predicted detector response is projected alongside
the original active volume response. With this amendment, the response-pairs are used to
generate datasets of 50,000 near-far images corresponding to the response at a single APA
for each of the U, V, and Z wire planes. The images are kept at their original resolution
of 480 × 4492 for the collection plane Z and 800 × 4492 for the induction planes U and V.
Unlike the TDR simulation used for the reconstruction translation dataset, the response
pairs use a more recent version of FD software that utilises a 2D field response in the
detector simulation.

Each pixel of the FD image has a single channel, the ADC. The ND image is prepared
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Figure 8.10: Fractional residual of the summed ADC in separate masked volumes for predicted
and target. Shown for masked volumes associated with adjacent drift volumes in the x-direction
(top) and with the anode in the z-direction (bottom). The baseline is to set the value of all
candidate masked coordinates to the mean value of the unmasked detector response.

with multiple channels:

Ch. 1. ADC.

Ch. 2. ND drift distance. This encodes drift electron attenuation and diffusion effects in
the ND.

Ch. 3. FD drift distance. This encodes drift electron attenuation and diffusion effects in
the FD.

Ch. 4. Shortest distance from the centroid of the ND packet to the wire it is projected
to. This encodes some of the effect of downsampling to the lower resolution FD
coordinate system.

Ch. 5. Flag for if the ND packet is a prediction of the infill network.

Ch. 6. Count of distinct ND packets that are projected onto the same pixel.

Since the ND has a slightly higher spatial resolution than the FD, multiple ND packets
will sometimes be projected onto the same pixel. In these cases, the ADC channel is the
sum of the constituent ND packets and channels 2 to 5 are the ADC weighted average
of the constituent ND packets. An example image illustrating each channel is shown in
Figure 8.11.
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Figure 8.11: Each channel for a cropped example ND image from the Z plane dataset.

8.3.2 Architecture

A model for the response translation is developed that is loosely based on two important
works in the field of paired image-to-image translation [159, 160]. The model architecture
consists of a deep residual convolutional network (ResNet) [161] sandwiched between en-
coder and decoder convolutional layers. This is illustrated in Figure 8.13. The encoder
and decoder blocks, which use the same strided and transposed convolutions discussed in
§ 8.2.3 for downsampling and upsampling respectively, provide the network with a mod-
erate receptive field while the ResNet blocks are the main feature extracting component.
This architecture is chosen over the U-Net architecture used for the infill network since
it is not desirable to have a large receptive field that grants each pixel the full spatial
context of the interaction for predicting the FD response. Only the region local to the
each pixel is required to encode the difference between electronics response between the
two detectors.

Relevant hyperparameters for the model obtained by hand-tuning are listed in Ta-
ble 8.4. The final non-linearity uses a hyperbolic tangent function that is clamped such
that the predicted pedestal subtracted FD 12-bit ADC is within its allowed range as
shown in Figure 8.12.

8.3.3 Training

To control the impact on the training loss of large regions of the FD images that are
electronics noise only, a signal mask is applied to the predicted and target images as part
of the loss function calculation. The signal mask is defined as the non-zero pixels of the
ND image after a convolution with a kernel of size 8 × 60 for the collection plane dataset
and 8×100 for the induction plane datasets. This is a conservative definition of the signal
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Table 8.4: Response translation network hyperparameters.

Hyperparameter Value

Padding Reflection
Conv. kernel size 3
Dropout probability 0.5
Max feature dimension 512
Upsampling/downsampling conv. stride 2
Initial/final conv. kernel size 7
Final non-linearity Tanh clamped to 12-bit ADC
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Figure 8.12: Tanh functions clamped for the pedestal subtracted FD ADC ranges of the
collection plane and induction planes.

region for a single pixel. When such a mask is applied, all FD response induced by drift
electrons is kept along with a significant, but much reduced, contribution from regions of
electronics noise only. An example signal mask is shown in Figure 8.14.

Pixel-wise and wire-wise loss terms are defined as

Lpix = 1
Npix

∑
i,j

|yi,j − xi,j| , (8.3.1)

Lwire =



1
Nwire

∑
i

∣∣∣∑
j

yi,j −
∑

j

xi,j

∣∣∣ for Z dataset

1
2Nwire

(∑
i

∣∣∣∑
j

yi,j[xi,j < 0] −
∑

j

xi,j[xi,j < 0]
∣∣∣

+
∑

i

∣∣∣∑
j

yi,j[xi,j ≥ 0] −
∑

j

xi,j[xi,j ≥ 0]
∣∣∣) for U,V datasets

, (8.3.2)

where i and j are the non-zero wire and time tick indices of the signal mask, xi,j and yi,j

are the target and predicted ADC at a pixel respectively, Npix is the number of non-zero
pixels in the signal mask, and Nwire is the number of wires in the signal mask with at
least one non-zero pixel. The pixel-wise term is a mean absolute error (MAE) typical
of computer vision tasks while the wire-wise loss encourages the ADC aggregated over
a wire to be accurate. For the induction plane datasets, the wire-wise loss is split into
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Figure 8.13: Diagram of the ResNet architecture used for the prediction of FD response from
ND response. Layers with learnable parameters are shaded blue while fixed layers are shaded
yellow. The width of a layer is indicative of the size of the feature dimension at that point in
the network.
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Figure 8.14: An example ND image (left), the associated signal mask (middle), and the
associated FD image (right). Shown for a crop of near-far pair of the U plane dataset.

Table 8.5: MAE at the signal mask for each of the trained models over their corresponding
test datasets. The MAE of the target FD images with themselves using distinct random seeds
for simulating electronics noise is included for reference.

Model MAE at Signal Mask MAE due to Electronics Noise

U Plane 5.32 ± 0.71 4.91 ± 0.01
V Plane 5.22 ± 0.67 4.91 ± 0.01
Z Plane 6.26 ± 2.25 4.25 ± 0.01

components of positive and negative target ADC to account for the bipolar nature of the
signals. A loss function for training is constructed as L = Lpix + αLwire where α is a
hyperparameter that is set to 0.05 after tuning.

Models for each dataset are trained on 30,000 images until the validation loss indicates
convergence, taking approximately 50 epochs. The Adam optimizer [150] with weight
decay is used and training is performed with a batch size of 2, a limitation of the high
image resolutions.

8.3.4 Results

The predicted FD response for a ND event of each wire plane dataset is shown in Fig-
ure 8.15. Qualitatively, the networks are successful in performing the style-transfer to
the FD response. The predicted waveforms have the correct shape and are clearly condi-
tioned on the ND response. The single-wire responses in Figure 8.15b demonstrates that
the networks can further refine the infill by ignoring spurious infilled ND response.

Using test datasets of 20,000 paired images, the MAE at the non-zero pixels of the
signal mask over each of the trained models is shown in Table 8.5. Comparing them
to the MAE expected from different realisations of the electronics noise, these results
demonstrate an accurate prediction of the FD response at the individual pixel level.

The key metrics for the similarity of the predicted and target response come from
applying the reconstruction. The reconstructed quantities relevant to oscillation analyses
must match closely between the predicted and target FD responses for a ND event. This
is examined in the next section.
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Figure 8.15: Example of the model predicted and target response for each dataset.
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8.4 Validation with Reconstruction
With trained infill and response translation models, the response translation outlined in
Figure 8.1 can be implemented to generate predictions of the FD reconstruction. In this
section, these predictions are compared to target FD reconstruction.

8.4.1 Generating Samples

Following the steps outlined in § 6.1, a sample of on-axis FHC ND beam neutrino inter-
actions is generated up to the stage of ND-LAr detector simulation. The infill network is
applied to the 3D detector response and the output is transformed and projected to the
FD wire and tick coordinate system as outlined in § 8.1. The relevant response translation
model is applied to each readout plane of each APA of the projection to produce a pre-
diction of the full FD response to the neutrino interaction contained in ND-LAr. These
predicted images are converted to the software object that encodes the electronics response
at each wire of the FD. Signal processing and the subsequent reconstruction chain is then
applied. The resulting reconstructed quantities are the predicted FD reconstruction.

To generate the target FD reconstruction, the deposited energy in the LArBath geom-
etry for each ND neutrino interaction is placed in the FD using the same 3D transforma-
tions applied to the associated ND-LAr detector response. Since muons reconstructed in
ND-GAr/TMS are not currently included in the response translation, a mask is applied
to remove energy depositions at the FD that are outside of ND-LAr in the associated ND
event. The detector simulation, signal processing, and reconstruction chain is then applied
to the energy depositions in the FD to produce the target FD reconstruction. Masking out
the energy deposits not contained in ND-LAr means that a perfect response translation
will yield predicted FD reconstruction that is equal to the target FD reconstruction up
to small variations due to electronics noise.

A sample of ∼200,000 prediction-target FD reconstruction pairs is generated. Due to
the mask applied in the generation of the FD target prediction, these may be compared
without requiring the application of any ND containment cuts.

8.4.2 Results

The predicted reconstructed neutrino energy is compared to the target in Figure 8.16. The
response translation produces an accurate prediction of the reconstructed neutrino energy
with little bias. A comparison of the residuals (Figure 8.16c) with the equivalent result
from the reconstruction translation (Figure 7.7) demonstrates the advantage of the much
larger phase space of the ND event used in the response translation approach. There
is very little ambiguity in the FD response prediction which facilitates accurate event-
level predictions. An accurate event-level prediction ensures a close match between the
predicted and target reconstructed energy distributions with minimal dependence on the
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Figure 8.16: Distributions and residuals of predicted and target FD reconstructed neutrino
energy. The distributions in (b) are weighted to a FD oscillated spectrum for NuFIT 4.0 oscil-
lation parameters [139]. The oscillated distributions look unusual due to the removal of energy
depositions outside ND-LAr discussed in § 8.4.1.

underlying true neutrino energy distribution of the training dataset. This is demonstrated
in Figure 8.16b.

The hadronic and leptonic components of the reconstructed neutrino energy are shown
in Figure 8.17. The reconstructed hadronic energy demonstrates that the calorimetric
information of the predicted FD response is accurate. To obtain the leptonic energy,
hits are clustered in each plane and matched between them to form reconstructed tracks.
The muon track is identified and its energy estimated by range or MCS. The results for
the reconstructed leptonic energy show that the predicted FD response is of a sufficient
quality and is consistent across the three planes so that this process may proceed and
produce an accurate reconstructed energy for the muon.

Figure 8.18 compares the predicted CVN νµ score with the target. There is a clear shift
towards lower scores in the prediction. Although many events have accurate predicted
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Figure 8.17: Distributions (left column) and residuals (right column) of predicted and target
FD reconstructed leptonic (top row) and hadronic (bottom row) energy.
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Figure 8.18: Distributions (left) and residuals (right) of predicted and target FD CVN νµ

score.

scores, this would result in a significant number of events being incorrectly predicted
to not be classified as muon neutrino interactions at the FD. Despite the predicted FD
response being similar enough to the target to accurately reconstruct particle tracks, there
is a discrepancy that results in a deviation of the CVN score.

The CVN is a CNN that operates on images of the hits from each plane. Properties of
the hits in each plane are examined in Figure 8.19. In the Z plane, the predicted unipolar
response produces accurate hits. Since only the Z plane is used for calorimetry, this is
consistent with the reconstructed energies in Figures 8.16 and 8.17. For the U and V
planes, the predicted bipolar responses produce significantly more hits than in the case of
the target response. The origin of this is not clear from the test results presented in § 8.4.2.
The hits are formed by fitting the waveforms to detector response after deconvolution, as
discussed in § 4.2.2, where a subtle discrepancy in the shape of induction plane signal may
have a significant effect. Such a discrepancy in the predicted bipolar induction response
is likely the cause of the additional hits which in turn activate learnt features of the CVN
that reduce the νµ score.

Overall, the product of the infill and response translation networks is a predicted
FD response that yields accurate reconstructed energies for each event. The predicted
response at the Z plane closely resembles the FD simulation. The induction plane re-
sponses, while superficially resembling FD simulation, are not sufficiently accurate under
the signal processing which leads to discrepancies in the CVN outputs.

8.5 Cross Section Systematics
Incorporating the response translation into the PRISM oscillation analysis is not currently
possible due to the lack of a prescription for a muon reconstructed in ND-GAr/TMS and
the requirement of ND-LAr detector response. Instead, a toy study into the effect of inter-
action model uncertainties on a detector effects extrapolation performed with the response
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Figure 8.19: Residuals of predicted and target total number of hits (left) and sum of all hit
integrals (right) in each plane.

translation, as opposed to the current unfolding and smearing procedure is conducted.
The study, discussed in this section, considers a single extrapolated ND spectrum under
cross section systematic shifts to quantify the impact of a response translation on the
overall aim of reducing the interaction model dependence of a detector effects correction.

8.5.1 Monte Carlo Data

To study the effect of the response translation in isolation, ND and FD MC that only differ
by detector resolution are generated. The geometry used for FD simulation is restricted
to a bounding box with ND-LAr dimensions such that the current response translation
may predict the entire FD response.

A sample of on-axis FHC ND beam neutrino interactions is generated to obtain both
ND-LAr detector response and parametrised reconstruction. The detector response is
translated to the FD and reconstructed to provide a prediction of the reconstructed neu-
trino energy at the FD. This is saved alongside the ND event in the analysis file.

To generate a FD sample with the same flux, each GENIE neutrino interaction vertex,
defining the final state particles and their kinematics, from the ND sample is placed in the
fiducial volume of the FD. A bounding box with ND-LAr dimensions is placed relative
to each FD interaction vertex at the same distances as the associated ND interaction
vertex is to the edges of ND-LAr. An Earth’s curvature correction rotation is applied
to each FD neutrino interaction vertex and its bounding box. The neutrino interactions
in the FD are then propagated through the LAr and any energy depositions outside of
the bounding box are removed. The detector simulation and reconstruction are applied
to the remaining energy depositions. This procedure yields the FD reconstruction of an
incident neutrino that may have been “seen” by only ND-LAr. The resulting reconstructed
neutrino energy is added to the analysis file in the same entry as the associated ND
event. Each analysis file entry therefore encodes: the true neutrino interaction, the ND
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Figure 8.20: Selected reconstructed neutrino energy event rate ND, true FD, and translated
FD spectra.

parametrised reconstruction, the translated FD reconstructed neutrino energy obtained
from the response translation, and the true FD reconstructed neutrino energy obtained
from resimulating the interaction in the FD.

The reconstructed and true neutrino energies, Eν
rec and Eν

true, are used as analysis
variables. The CC νµ ND selection criteria, described in § 5.2.1, is applied to yield con-
tained and selected ND events and their associated true and translated FD Eν

rec. The MC
sample generated has ∼80,000 selected events. Their reconstructed spectra are shown in
Figure 8.20.

8.5.2 Extrapolating to the Far Detector

Extrapolating the ND spectrum to the FD in this contrived setup requires only a cor-
rection for the detector effects. The response translation provides this by binning the
events of the ND spectrum in translated Eν

rec. This is compared to the standard detector
effects correction described in § 5.3. For the standard detector effects correction, smearing
matrices for both detectors are constructed. These are shown in Figure 8.21. Since no
selection efficiency correction needs to be performed, the sum over their reconstructed
energy bins is normalised to unity. The ND smearing matrix is unfolded using Tikhonov
regularisation, this is shown in Figure 8.22. Extrapolation to the FD is the consecutive
application of the unfolded ND smearing matrix and the FD smearing matrix to the ND
Eν

rec spectrum. The extrapolation via both the response translation and the smearing is
shown in Figure 8.23.

The extrapolation via the translation requires a MC correction to match the true FD
spectrum well. An additive MC correction is included as shown in Figure 8.24. For a
fair comparison, a similar, but much smaller, MC correction is added to the standard
extrapolation procedure as well.
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Figure 8.21: ND and FD smearing matrices.
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Figure 8.22: ND smearing matrix unfolded with Tikhonov regularisation (τ = 0.1).
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Figure 8.23: ND spectra extrapolated to the FD using the response translation and the stan-
dard smearing procedure.
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Figure 8.24: Response translation extrapolation with a MC correction.

8.5.3 Effect of Cross Section Systematics

To compare the response translation with the method of unfolding and smearing, the effect
of cross section systematics on the extrapolated spectra is considered. Should a detector
resolution correction be entirely independent of the interaction model, the extrapolated
spectrum will match the FD spectrum under any shift in the interaction model as both
spectra are composed of the same neutrino-argon interactions. Any discrepancy between
the two that is introduced by a shift in the interaction model is attributed to the detector
resolution correction.

Systematic uncertainties in the interaction model are expressed as event weights for
various cross section dials. Each dial represents a systematic uncertainty and provides
a set of ±1σ, ±2σ, and ±3σ weights for each event based on properties of its neutrino-
nucleus interaction. The effect of a shift in a given dial is the application of these weights
to the events that comprise a spectrum. The cross section dials provided by the GENIE
generator and the DUNE collaboration are implemented in the CAFAna framework [162].
There are a total of 54 dials that are broadly categorised as: quasielastic (QELike),
resonance production (RES), deep inelastic scattering (DIS), final state interactions (FSI),
and neutral current (NC).

The effect of each cross section dial on the extrapolation is evaluated separately by
applying the reweighting to shift both the ND and FD Eν

rec spectrum. For the translation,
the translated FD Eν

rec spectrum is composed of a prediction for each ND event and so
undergoes the same event reweighting. The nominal additive MC correction, as it appears
in Figure 8.24, is then applied to yield the shifted extrapolated spectrum associated with
the cross section dial. To obtain the shifted extrapolated spectrum for the standard
extrapolation procedure, the nominal unfolding and smearing matrix, as they appear
in Figure 8.22 and 8.21b respectively, are applied to the reweighted ND Eν

rec spectrum
followed by the addition of the small MC correction. Since the extrapolated spectra
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are made to match the FD spectrum perfectly in the nominal case via the additive MC
correction, any fractional difference between the two after reweighting is induced by the
cross section dial and is a measure of the interaction model dependence introduced by the
detector resolution correction.

The fractional difference in each Eν
rec bin induced by all cross section dials added

in quadrature is shown in Figure 8.25. The extrapolation using the response transla-
tion deviates under cross section systematics much less than the standard extrapolation
procedure. There is a significant reduction in the impact from DIS dials, a moderate
reduction from RES and NC dials, and negligible change in the impact from FSI and QE-
Like dials. This demonstrates that, even with a moderate MC correction, the response
translation yields a significant reduction in the interaction model dependence of the de-
tector resolution correction. This reduction is a consequence of the data-driven aspect of
the response translation. The predicted FD response is unique for each ND event and
encompasses the full neutrino interaction, meaning that the predicted FD responses that
comprise the extrapolated spectrum will share the same interaction physics present in ND
measurements.

Interaction model dependence enters the response translation through error in the FD
response prediction which necessitates the inclusion of a correction derived purely from
MC. In Figure 8.25, this results in significant contributions from FSI and QELike dials
for the response translation. Further improvements to the accuracy of the predicted FD
response would reduce the magnitude of the MC correction and suppress these contribu-
tions.
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(a) Response translation, ±1σ
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(c) Response translation, ±2σ
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(d) Standard procedure, ±2σ
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(e) Response translation, ±3σ
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Figure 8.25: Fractional difference of extrapolated and FD spectrum for ±1σ, ±2σ, and ±3σ

shifts of all 54 cross section dials added in quadrature. Shown for the detector resolution
correction using the response translation and using the standard procedure of unfolding and
smearing. The total fractional difference is composed of the largest absolute fractional difference
of each plus-or-minus cross section dial shift.
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Conclusions and Outlook 9
This thesis presents two novel detector resolution corrections for the PRISM oscillation
analysis based on translating each ND event to the FD. The method for constructing a
PRISM FD prediction from off-axis ND measurements is discussed and the near-to-far
translation is motivated. A paired dataset of neutrino interactions at the ND and FD is
generated via careful manipulation of simulation to facilitate the training of ML models
for the translation. Models for the translation of the reconstructed quantities and of the
detector response are developed. Both are shown to be more robust to changes in the
interaction model than the standard method of detector resolution correction.

A framework for paired dataset generation is developed that simulates single neutrino
interactions up to the last point of similarity between the two detectors and subsequently
applies the separate detector simulation and reconstruction chains. This framework is
used to generate samples suitable for training translation models for the FHC disappear-
ance analysis channel. These samples are shown to closely match standard ND and FD
simulation.

Development of the paired dataset is ongoing with current efforts towards using the
framework to produce a RHC disappearance sample and extending the framework to
produce appearance samples by resimulating the ND muon as an electron in the FD,
a method that is shown to be a valid approach in principle. An assumption of the
paired dataset generation is that charged particle propagation in both detectors can be
approximated using a monolithic LAr volume. Any additional energy lost to materials
denser than LAr in inactive volumes enclosed by the active volume is treated as negligible.
There is ongoing work to understand the validity of this assumption and formulate an
event-level correction to the ND energy depositions where this approximation is most
tenuous.

A transformer is trained on the paired dataset to predict FD analysis variables given
the ND reconstruction of each event. This model predicts a conditional probability dis-
tribution as a Gaussian mixture which it subsequently samples from. The predicted
distributions of FD reconstruction matches the truth closely and the conditioning on ND
variables is reproduced accurately. The reconstruction translation is implemented in the
PRISM oscillation analysis as the detector resolution correction used to generate the pre-
dicted FD spectrum. The resulting oscillation parameter sensitivities for a fit with cross
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section systematic uncertainties demonstrate a reduction in interaction model dependence
for the translation compared to the standard correction and yield a marginal sensitivity
improvement.

The clearest path to improving the performance of the reconstruction translation is
to retrain with a substantially larger training dataset. To facilitate this, work is currently
underway to apply ND selection cuts during the paired dataset generation to avoid running
FD simulation for events that will not be used in the training. The translation may also
be improved by training with a dataset of neutrino interactions with a uniform true
energy spectrum. This should reduce any dependence on the underlying true neutrino
energy distribution to yield improved performance for the set of oscillation hypotheses
and systematic shifts it is applied to. In addition, as DUNE’s ND reconstruction chain
matures, a study into the appropriate set of input ND variables from full reconstruction,
as opposed to the parametrised reconstruction currently available, will be required.

A near-to-far translation of the detector electronics responses is developed utilising
computer vision. A sparse tensor network is trained on masked ND-LAr simulation to
infill detector response in the inactive volumes. The infilled ND-LAr response is then
projected into the FD readout coordinate system and translated to the equivalent FD
response by a model trained using the paired dataset. The style transfer to the FD is
successful, producing realistic FD waveforms that are well-conditioned on the ND input
and have inactive regions appropriately infilled. When the translated response is passed
to reconstruction, the reconstructed neutrino energy is accurate while the CVN score is
not. This is understood to be because the predicted induction plane responses lack the
structure expected by the deconvolution performed as part of the signal processing. The
prediction of the reconstructed neutrino energy from the response translation is used to
extrapolate a ND spectrum to the FD. The behaviour of this spectrum under cross section
systematic shifts is compared to a spectrum extrapolated with the standard PRISM de-
tector resolution correction. The study shows a significant reduction in interaction model
dependence when using the response translation.

Before attempting to integrate the response translation in the PRISM analysis, the
predictions of the responses should be improved with emphasis on the induction planes.
This may be accomplished by employing recent advances in image-to-image tasks based
on diffusion [163, 164]. In addition, it may be beneficial to predict the response after
signal processing where the waveforms are unipolar in all readout planes.

In summary, this thesis describes the design and implementation of a technique that
reduces the interaction model dependence of the PRISM oscillation analysis and in turn
contributes to addressing the challenge of systematic uncertainties in DUNE’s precision
oscillation measurement programme. The reconstruction translation is shown to be per-
formant when integrated into the analysis and is undergoing active development with the
aim of enhancing the robustness and sensitivity of the full four channel analysis. A model
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predicting the FD electronics response given a ND interaction is developed to demonstrate
the potential of the more ambitious response translation.
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