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Abstract—Internal Permanent Magnet Synchronous Machines
(IPMs) are widely used and typically optimized to meet specific
performance requirements. Parameters such as base speed, max-
imum torque, and maximum speed commonly define the torque-
speed characteristic of a given design. This study introduces
a novel machine learning approach for statistically estimating
the torque-speed characteristics of IPMs using Gaussian Pro-
cess Regression (GPR), which models predictions as random
variables. By leveraging uncertainty quantification, the study
explores sampling strategies that enable the construction of a
high-precision meta-model with minimal error and uncertainty.
The proposed adaptive sampling strategy, combined with GPR,
accurately estimates torque-speed characteristics and associated
losses across the design space for the first time. This new method
uses only a limited number of Finite Element Method (FEM)-
based simulations, showing high accuracy with 12 FEM-based
simulations. The results demonstrate good agreement with full
FEM evaluations and experimental measurements, validating the
effectiveness of the proposed method.

Index Terms—Gaussian Process Regression, Torque-Speed
Characteristics, Internal Permanent Magnet Synchronous Ma-
chine, Experimental Verification, FEM.

I. INTRODUCTION

The design of Internal Permanent Magnet Synchronous Ma-
chines (IPMs) typically involves meeting multiple performance
metrics across a range of operating points. The design space
often spans several dimensions, including both continuous
variables and discrete decisions, such as the number of poles,
the number of slots per pole, and the phase number. This
combination of high-dimensional inputs, multiple outputs, and
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diverse objectives necessitates a large number of evaluations,
not only across different designs, but also multiple evaluations
of the same design. As a result, relying solely on Finite
Element Method (FEM)-based simulations becomes both time-
consuming and computationally impractical [1].

To address this challenge, meta-models can be developed to
enable evaluation of IPM performance with significantly re-
duced computational effort. These meta-models may be based
on regression techniques [2], physical governing equations [3],
or artificial neural networks [4]. Alternatively, Gaussian Pro-
cess Regression (GPR) has emerged as a powerful approach
for meta-modeling due to its efficient use of the data [1]. It
has been applied in various contexts, ranging from general
meta-modeling tasks [5] to fill-factor maximization [6].

However, the data used to build the aforementioned meta-
models impacts their performance and data efficiency. The
selection of these data points can either be predetermined
(referred to as static) or be based on the meta-model’s per-
formance during the training process (referred to as adaptive).
In this regard, GPR offers the ability to quantify prediction
uncertainty [7], which is often used to guide adaptive sampling
strategies to improve model performance. This study proposes
a novel adaptive sampling strategy based on uncertainty quan-
tification. The developed meta-model, built using the proposed
sampling strategy, aims to accurately compute performance
metrics at selected operating points while minimizing the
number of FEM-based evaluations required. In typical GPR-
based approaches, uncertainty is computed directly on the
meta-model outputs. However, the proposed method treats
GPR predictions as random variables and applies uncertainty
propagation rules to estimate uncertainty in key performance
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Fig. 1: IPM motor with ultra-high specific torque serves as
the benchmark for this analysis. Shown in (a) is the prototype
developed during the initial phase of Formula E. (b) illustrates
the magnetic field distribution within the motor’s cross-section,
highlighting flux lines and regions where flux density exceeds
2 T, indicating significant magnetic saturation.

metrics, specifically, torque and loss components. Thus, fo-
cusing on reducing uncertainty at the most relevant operating
points selected by the optimization problem and goals.

The torque-speed characteristics obtained using the pro-
posed adaptive sampling strategy are compared against those
derived from standard techniques, including Posterior Standard
Deviation, quasi-random sampling heuristics, and full FEM-
based evaluations. The torque-speed curves are computed
using Maximum Torque per Ampere (MTPA) [8] and field
weakening [9] operating points, along with predictions of asso-
ciated loss components. Furthermore, the results are validated
against experimental measurements.

Section II introduces the spoke-type IPM used as the bench-
mark in this study. Section III then outlines the implementation
of Gaussian Process Regression (GPR) and its foundational
concepts. Section IV presents the proposed adaptive sampling
strategy in detail, highlighting its differences from standard
approaches. Finally, Section V discusses the results, comparing
the proposed strategy with alternative sampling techniques and
experimentally validating its performance.

II. BENCHMARK IPM MOTOR

This study uses an IPM prototype motor as a reference
model. Originally developed for the first generation of Formula
E vehicles, the motor was later refined, with further details
available in [10] and [11]. The motor features a spoke-type
rotor with 16 poles and a three-phase winding composed
of concentrated coils distributed across 18 stator teeth, as
illustrated in Fig. 1. It is capable of delivering up to 110 Nm
of torque, reaching speeds of 12,000 rpm, and handling 325
Arms, powered by a 650 V DC bus [11]. For this analysis, a
base speed of 3,500 rpm was selected. Notably, the motor
design achieves a record-high specific torque and exhibits
significant magnetic saturation, making it a suitable candidate
for investigating nonlinear magnetic behavior.

Based on this prototype, eight geometric parameters were
selected for inclusion in the design space. The specific value
ranges for these parameters are presented in Table I, where ksi
is the quotient between the stator inner and outer diameter;

TABLE I: Details on Geometric Variables

Variables Maximum Minimum Prototype
ksi [-] 0.75 0.6 0.704
hg [mm] 2.5 0.7 1
kwt [-] 0.75 0.45 0.662
khpm [-] 0.95 0.55 0.775
kwpm

[-] 0.6 0.2 0.388
kwbr

[-] 0.65 0.35 0.5
dbr [mm] 3 1.5 2.5
hy [mm] 15 7 10.7

hg , the air gap length; kwt , the quotient between the stator
teeth width and its maximum; khpm , the quotient between the
PMs’ height and the maximum for PMs’ height; kwpm

, the
quotient between the PMs width with the rotor pole; kwbr

, the
proportion of the rotor slot opening in relation to the PMs’
width; dbr, the distance between the rotor’s surface and the
PMs’ top; and hy , the distance between the top of the stator
slot and the outer stator diameter.

III. GAUSSIAN PROCESS REGRESSION AND ADAPTIVE
SAMPLING STRATEGIES

A Gaussian Process (GP) is a probabilistic model defined by
a collection of random variables, each of which follows a mul-
tivariate normal distribution. This framework is particularly
effective for regression tasks, as it enables the GP to be trained
using observed data to make predictions [7]. Mathematically,
a GP can be represented as:

f(x) ∼ GP(m(x), k(x,x′)), (1)

where m(x) is the mean function; and k(x,x′), the covariance
function. The mean function m(x) is defined as linear:

m(x) =Wx+B, (2)

where W and B are constants learned during training.
Following the definition of GP , an evaluation based on it

and an input x′ = [id, iq, ωe], where id = −Iphsin(γ), iq =
Iphcos(γ), Iph is the phase current and ωe is the electrical
speed, can be described by a Gaussian distribution. Resulting
in:

ψd(x
′) ∼ N (µd, σ

2
d), (3)

ψq(x
′) ∼ N (µq, σ

2
q ), (4)

for the flux linkage maps prediction. Similarly, for losses:

Lcopper(x
′) ∼ N (µcp, σ

2
cp), (5)

Lcore(x
′) ∼ N (µco, σ

2
co), (6)

Lsolid(x
′) ∼ N (µs, σ

2
s), (7)



Fig. 2: Illustration of the meta-model structure with the blue
elements indicating the novel adaptive sampling strategy. The
green indicates the traditional approach to adaptive sampling
when using GPR. The FEA simulations and other auxiliary
steps are identified in gray. The pink is representative of GPR
predictions and the computations using them. The torque-
speed characteristic is the output of this meta-model.

where Lcopper are stator winding copper losses component;
Lcore, core losses component; and Lsolid, the eddy losses in
the permanent magnets (PMs) component.

Adaptive sampling strategies leverage the GP’s predictive
uncertainty to guide the sampling process. When used in
optimization contexts, such strategies ideally balance explo-
ration and exploitation of the output domain. However, in
this study, the GP is employed to explore the output domain
without selecting specific inputs, so the focus is solely on
exploration-oriented sampling strategies. Within this category,
both Upper Confidence Bound (UCB) [12] and Posterior
Standard Deviation (PSD) [7] are well-known approaches.

These two strategies differ in the information used to
guide sampling. UCB depends on the predicted mean and the
associated uncertainty, allowing it to shift toward exploitation
when uncertainty is low. In contrast, PSD relies exclusively
on uncertainty, making it purely exploratory. For this study,
the objective is to reduce uncertainty across the entire out-
put domain, described in equations (3)–(7), thus being an
exploratory problem. Therefore, the novel adaptive sampling
strategy introduced in Section IV is based on PSD.

In addition to the sampling strategy employed, the GP’s
mean functions were optimized independently for each input
dimension. The covariance function k(x,x′) that yielded the
best results was the Matérn 5/2 kernel. Since the training data
was generated using FEM-based simulations [13], it is consid-
ered noise-free, and no inter-task transfer effects are present
[14]. The initial dataset was constructed using a quasi-random

Fig. 3: For the alternative geometry: Torque error comparison
between the predictions by the GP trained using the proposed
adaptive sampling strategy, by the GP trained using standard
PSD and by the GP trained using simple sampling.

sampling heuristic — Latin Hypercube Sampling (LHS) —
combined with boundary sampling to ensure coverage of the
design space. This initialization, illustrated in Fig. 2, provides
a robust foundation for subsequent adaptive refinement.

IV. NOVEL ADAPTIVE SAMPLING STRATEGY

The comparison between the standard PSD approach and
the novel adaptive sampling strategy proposed in this study
is illustrated in Fig. 2. In the standard PSD, the sampling
process is guided by the uncertainty of the GP outputs, which
in this study are the flux linkage and loss components. Given
sufficient computational resources, this approach can generate
comprehensive maps with low uncertainty and high accuracy.
However, control algorithms for electric machines, such as
Maximum Torque per Ampere (MTPA) and field weakening,
are designed to operate IPMs efficiently at specific working
points. As a result, not all combinations of ωe, id, and iq are
equally relevant or likely to be used in practice.

The idea of restricting the flux linkage domain to regions of
interest has previously been proposed as a basis for building
meta-models using regression techniques [2]. However, that
study did not address how MTPA and field weakening trajec-
tories are computed, and the method was applied to a single
machine design. In contrast, this work explicitly incorporates
the calculation of MTPA and field weakening trajectories,
discussed in this section and evaluated across multiple IPM
designs in Section V. This broader scope enhances the gener-
alization and practical relevance of the proposed method.

The proposed adaptive sampling strategy, like PSD, uses
uncertainty to guide the sampling process. However, instead of
focusing on the uncertainty of the direct GP outputs, it propa-
gates this uncertainty through the governing physical equations
to estimate uncertainty in the key performance metric: the
torque-speed characteristic. This allows the sampling to be
more targeted and aligned with the actual design objectives.
The torque expression based on flux linkages is given by:



Fig. 4: For the prototype geometry: Left (a): Variance of ψd from the GP trained using the proposed adaptive sampling strategy.
Middle (b): Variance of ψd from the GP trained using standard PSD. Right (c): Variance of ψd from the GP trained using
simple sampling.

Fig. 5: For the prototype geometry: Left (a): Variance of ψq from the GP trained using the proposed adaptive sampling strategy.
Middle (b): Variance of ψq from the GP trained using standard PSD. Right (c): Variance of ψq from the GP trained using
simple sampling.

Fig. 6: For the prototype geometry: Left (a): Torque prediction (solid line) by the GP trained using the proposed adaptive
sampling strategy. Middle (b): Torque prediction (solid line) by the GP trained using standard PSD. Right (c): Torque prediction
(solid line) by the GP trained using simple sampling.

Te = 1.5p[ψdiq − ψqid], (8)

and, in combination with equations (3) and (4), torque can be
defined as a random variable:

Te ∼ N (µt, σ
2
t )

∼ N (1.5p(µdiq − µqid), (1.5p)
2(σ2

di
2
q + σ2

q i
2
d)),

(9)

where p is the number of pole pairs. As a result, the proposed
adaptive sampling strategy focuses specifically on minimizing

σ2
t , rather than the individual uncertainties σ2

d, σ2
q , σ2

cp, σ2
co,

or σ2
s as in the standard PSD approach.

This focus on the uncertainty of a key performance metric,
rather than intermediate variables, enables more targeted and
efficient sampling. Additionally, it allows for a reduction in
the input domain x′ = [id, iq, ωe], concentrating efforts on the
most relevant regions for a given application. By focusing on
selected areas of the input space, the meta-model can achieve
higher accuracy without requiring a larger dataset.

In this study, the regions of interest are defined by the MTPA



Fig. 7: For the prototype geometry: Left (a): Copper losses prediction (solid line) by the GP trained using the proposed adaptive
sampling strategy. Middle (b): Copper losses prediction (solid line) by the GP trained using standard PSD. Right (c): Copper
losses prediction (solid line) by the GP trained using simple sampling.

Fig. 8: For the prototype geometry: Left (a): Core losses prediction (solid line) by the GP trained using the proposed adaptive
sampling strategy. Middle (b): Core losses prediction (solid line) by the GP trained using standard PSD. Right (c): Core losses
prediction (solid line) by the GP trained using simple sampling.

and field weakening operating points. The meta-model uses
the initial sampling data to estimate which combinations of
ωe, id, and iq correspond to these points. It then computes
the torque uncertainty for each of these combinations using
equation (9). The adaptive sampling strategy selects the input
combination within the region of interest that yields the highest
torque uncertainty, evaluates it using FEM, and incorporates
the result into the dataset to retrain the GPR.

V. RESULTS AND DISCUSSION

The performance of the GP trained with the proposed
adaptive sampling strategy is evaluated based on its ability
to compute torque-speed characteristics and predict losses at
those points. Its performance is compared to a GP trained with
standard PSD and another trained with only initial sampling,
as described in Section III. Each GP was trained with twelve
FEM-based simulations.

To start, it was demonstrated that the proposed approach
to adaptive sampling yielded good results for several machine
designs in the domain, the torque estimation error presented
in Fig. 3 is the result of a similar analysis done for the random
machine design with the following geometric dimensions: ksi
= 0.650, hg = 0.800, kwt

= 0.564, khpm
= 0.875, kwpm

=
0.388, kwbr

= 0.400, dbr = 2.00 and hy = 12.4. The high
accuracy of the torque estimation with the proposed adaptive

sampling strategy is achieved because it does not rely on any
prior knowledge of the IPM being analyzed.

The goal of the proposed adaptive sampling strategy is to
guide the sampling process toward the area of interest. The
MTPA and field weakening operating points (i.e., the area of
interest) are computed based on each GP’s estimation of ψd

and ψq , and are illustrated in Fig. 4 and Fig. 5. These figures
clearly show that the lines representing the area of interest
pass through regions of lower variance, σ2

d and σ2
q , when the

GP is trained using the proposed adaptive sampling strategy.
The sampling points selected by this strategy are also densely
concentrated around the area of interest.

Re-examining the MTPA and field weakening points com-
puted under each sampling scenario reveals significant differ-
ences in the identified working points. Consequently, the resul-
tant torque-speed characteristics are also significantly distinct,
as can be seen in Fig. 6. The GP trained using the proposed
adaptive sampling strategy presents an average error of 2.8%;
trained using PSD presents an average error of 10.7%; and
trained using simple sampling presents an average error of
6.8%. The uncertainty of the predictions of the GP trained
using the proposed adaptive sampling strategy is negligible,
which is not the case for the other training scenarios. These
results express the high performance of the proposed solution.

The prediction error of the torque-speed characteristics



Fig. 9: Torque with iq = Iph and id = 0A for different Iph.

presented in Fig. 6(a) and Fig. 3 demonstrates an extremely
low error value for the maximum torque prediction (<0.5%),
and an error less than 3% for more than 90% of the speed
range. Additionally, the average error for the estimation of
the torque-speed characteristic is reduced up to 80 % using
the proposed technique, requiring only three extra FEM-based
simulations, when compared with a previous solution [2].

The loss components are estimated at the torque-speed
characteristic working points, as defined in equations (5)–(7)
and illustrated in Fig. 2. As previously demonstrated, the GP
trained using the proposed adaptive sampling strategy yielded
lower errors in estimating the copper loss component (Fig. 7),
core loss component (Fig. 8), and solid loss component (not
shown due to space limitations). In addition to the reduced
error, the associated uncertainty was also lower. Thus, the
results suggest that the proposed sampling strategy can support
not only performance optimization but also more informed
design trade-offs involving energy efficiency.

The experimental measurements reported in [10] and [11]
are compared with FEM simulations and the meta-model out-
put generated using the proposed adaptive sampling strategy,
as shown in Fig. 9. It is important to note that this comparison
focuses on operating points where id = 0 A, consistent with
the conditions of the experimental measurements. Redefining
the region of interest required reconstructing the dataset and
retraining the GP , further demonstrating the flexibility of the
proposed approach in adapting to different working points of
interest. Nevertheless, Fig. 9 demonstrates that the meta-model
trained with the proposed strategy successfully predicts both
the experimental and FEM results, with an average error of
4.6%. However, at higher current levels, the model appears
to struggle with accurately capturing the effects of strong
magnetic saturation, with an error of 15.2%.

VI. CONCLUSION

This study proposes a novel adaptive sampling strategy
to be used in the construction of GP-based meta-models,
developed to achieve higher fidelity in the performance pa-
rameters for the working points of interest based on 12 FEM-
based simulations. The proposed adaptive sampling strategy
demonstrated improved performance in predicting torque-
speed characteristics and loss components when compared
with other well-established adaptive sampling strategies, such

as PSD. Additionally, the study showed that the method
applies to a wide range of IPM designs and working points
of interest, highlighting the flexibility and generality of the
approach. Furthermore, the results showed good agreement
with experimental measurements.

In comparison with previous data-efficient meta-modeling
strategies, the method achieved a significant reduction in
prediction error up to 80%, using only three additional FEM-
based simulations. Therefore, the proposed solution showed a
strong generalization capability across different IPM designs.
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