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Abstract—This paper proposes a decentralized priority-based
control strategy, employing a Null-Space Behavioral (NSB) ap-
proach, to improve the search and rescue (SAR) capabilities
of multi-drone systems in post-disaster scenarios. The method
ensures scalability and coordination among swarms of UAVs
operating in complex 3D environments. Each UAV autonomously
adapts its behavior according to a predefined task hierarchy
within a fully decentralized architecture designed to maintain
efficiency as swarm size increases. The search strategy is struc-
tured in three phases: In the first phase, a simultaneous patrol
is performed using pre-planned trajectories to cover a large
area; in the second phase, the detection mode is activated
when a target enters one drone’s field of view, followed by an
inspection maneuver; and finally, in the third phase after precise
localization, the drone alerts the teammates, who converge on the
target by performing a dedicated task and position themselves
around it to initiate a coordinated identification.

Index Terms—Coordinated Control, UAVs Swarm, Null Space
Behavioral Approach, SAR Missions

I. INTRODUCTION

Recent years have seen a marked increase in the fre-
quency of natural disasters, resulting in severe damage to
infrastructure and human lives [1], [2]. Urban Search and
Rescue (USAR) operations represent the emergency response
resulting from the occurrence of such catastrophic events in
urban environments [3]. A significant example is represented
by the World Trade Center (WTC) disaster [4], [5] which
marked the first documented use of mobile robots for USAR
operations. The WTC disaster highlighted the unique capabil-
ities of robots in assisting USAR operations, particularly in
accessing confined or dangerous areas that would put human
rescuers at risk [6]–[9]. Robotic platforms, when equipped
with cameras, thermal imaging cameras or hazardous materials
detectors, can provide rescue workers with a clear overview
of the hazards posed by the disaster environment without
posing a danger to human life. For these and other reasons,
rescue robotics has been recognized by the National Research
Council study ”Making the Nation Safer: The Role of Science
and Technology in Countering Terrorism” [10] as a critical
technology.

In this context, Unmanned Aerial Vehicles (UAVs), com-
monly known as drones, have emerged as highly effective tools
for Search and Rescue (SAR) missions, particularly for rapid
scanning of vast disaster areas and for identifying and locating

victims [11], [12] . This is crucial for the recovery of survivors
in the shortest possible time following natural disasters such as
earthquakes, floods or avalanches. Unlike traditional manual
SAR operations, which face challenges in identifying human
presence and can be time-consuming, UAVs equipped with
multimodal sensors, such as high-quality cameras and thermal
imaging cameras, can provide aerial imagery to efficiently
identify people in need of assistance. The use of a team of
multiple UAVs offers an efficient approach to SAR, facilitating
coordination, greater scalability, and broader coverage for
performing tasks in the shortest possible time, while maxi-
mizing the number of survivors rescued. Techniques such as
the Layered Search and Rescue (LSAR) algorithm have been
proposed for multi-UAV collaboration in SARs, demonstrating
improved performance in terms of percentage of survivors
rescued and faster rescue times by focusing on the center of the
disaster [12]. This problem is often traced back to the problem
of multi-robot task allocation (MRTA), or more specifically,
multi-UAV task allocation (MUTA), which involves complex
coordination challenges. Real-time path planning solutions
using cooperative UAVs for SAR missions are also being
explored, employing techniques such as optimization for par-
ticle swarms within a Model Predictive Control framework
to optimize search patterns and maximize the probability of
success [13].

Recent advances in Computer Vision (CV) and Machine
Learning (ML), particularly Convolutional Neural Networks
(CNN) and Deep Learning (DL), are significantly improving
the accuracy of human detection from aerial imagery of
UAVs for SAR operations [11]. Technologies such as You
Only Look Once (YOLO) models, including YOLOv5, are
being integrated into UAV systems for real-time monitoring
and automatic detection of stranded humans, enabling rescue
centers to automatically receive their positions [11], [14].

In addition, intelligent search systems are being developed
for autonomous UAVs that can locate and approach people
in distress by detecting changes in signal strength, employing
genetics-based tracking algorithms for improved tracking ac-
curacy, even in disaster areas where communication with base
stations may be disrupted [15].

In line with new trends in the automation of mobile robotic
platforms, the authors’ goal is to develop a multi-robot system



(MRS) for post-disaster SAR operations, with a focus on
the search and location of missing persons. A solution used
successfully to coordinate the movements of drone swarms in
SAR operations following disasters is the use of a Null-Space
Behavioral (NSB) approach [16].

Based on this concept, this paper presents a priority-based
decentralized control strategy, employing a Null-Space Behav-
ioral (NSB) approach, to improve the search and rescue (SAR)
capabilities of multi-drone systems in post-disaster scenarios.
The step forward from the reference work, is to integrate an
additional identification phase after target location, allowing
the swarm to perform cooperative inspection and classification
maneuvers. This improvement increases mission completeness
and aligns more closely with real-world SAR requirements.
The proposal consists of a decentralized, priority-based control
strategy that employs a NSB approach and enables coordinated
and scalable control of UAV swarms in which each drone
adjusts its behavior based on a task hierarchy in a fully de-
centralized architecture. The search strategy considers several
phases. In a first phase the simultaneous patrolling by UAVs
using pre-planned trajectories is performed. A second phase
is activated when a target ends up within the cone of view of
the drone, which performs an inspection maneuver over the
target. Finally, a third phase is carried out when a drone has
a clear view of the target, identifying its position.

A. Outline

The document is organized as follows. Sect. II introduces
the Null Space Behavioral Approach, while Sect. III reports
the mathematical formulation of the tasks selected for appli-
cation and the mathematical detail of the generation of control
actions. Sect. IV presents the description of the state machine-
based algorithm. Finally, to evaluate the actual behavior of the
vehicles in Search and Rescue (SAR) mission scenarios, Sect.
V presents the results of numerical tests performed on the
MATLAB environment considering a case study with a patrol
scenario involving three UAVs.

PROBLEM FORMULATION AND PROPOSAL

Consider a swarm of Nd flying vehicles, hereinafter labeled
as drones, with hover capabilities in a three dimensional space
domain Ψ ∈ R3. With the goal of searching for survivors of
natural disasters, the rescue mission of the Nd units that make
up the swarm has been divided into three main phases. In
Phase 1, all the UAVs simultaneously patrol different parts
of a large area to search for possible survivors. Subsequently,
if a suspected survivor is detected by a drone, Phase 2 is
activated and the drone gets closer to the potential localized
target. Finally in Phase 3, to ensure the dispatch of rescue in
the case of actual finding only, drones from neighboring areas,
within a predetermined distance, are called out to perform
simultaneous identification, and assessment of the target, while
avoiding collisions between units. During each of these phases
the object tracking convolutional neural network algorithm
[14] is used for faster detection of human beings.

A. Phase 1 - Patrolling
In the patrolling phase the vast area being searched is

divided into smaller zones, each of them assigned to a drone
of the swarm. These zones are characterized by the following
preliminary assumptions:

i) The domain Ψ is partitioned into Nd disjoint sub-regions,
one for each drone, so as to ensure that the region of flight
results:

Ψ =

Nd⋃
i=1

Ψi, (1)

where Ψi ⊂ Ψ denotes the operational region assigned
to the i-th drone.

ii) The sub-regions composing the flight domain are pairwise
disjoint such that the following relation applies:

Ψi ∩Ψj = ∅ ∀i ̸= j, i, j ∈ {1, . . . , Nd}, (2)

with i and j two different drones.
iii) For each sub-region, a trajectory is defined to perform

the patrolling.

T = [w(t0) · · ·w(tk) · · ·w(tϵ)]
T , (3)

defined as a succession of desired waypoints w(t) =
{x(t) y(t) z(t) ψ(t)}, it’s assigned to be followed by
the drone to perform the patrolling.

B. Phase 2 - Detection
During Phase 1, the drone constantly monitors its sur-

roundings by means of an on-board camera, which is oriented
with the same direction. If an object is detected within the
field of view of the above-mentioned camera for a relevant
number of successive instants, the system abandons the patrol
trajectory in favor of a target inspection maneuver. At this
point, to reduce the risk of false positives and increase the
reliability of detection, in this Phase 2, the drone performs
an orbital inspection maneuver around the detected object.
This maneuver consists of a circular flight at low angular
velocity. The goal is to obtain multiple observations from
different angles, improving the quality and comprehensiveness
of available visual information. Only at the end of this phase,
the object of interest can be subjected to a more advanced
identification and assessment phase.

C. Phase 3 - Identification
After the Detection Phase, once the possible presence of

a survivor is identified within the camera’s field of view, the
detector drone transmits a signal to other agents operating in
nearby regions. This communication includes the estimated
position of the target inferred from the detection event. Upon
receipt of this information, the remaining drones activate
a coordinated response strategy: each drone heads to the
circular path around the target, and thanks to the activation
of the appropriate tasks, a mutual distance and avoidance of
overlapping fields of view are ensured. This configuration not
only ensures spatial coverage and redundancy, but also allows
the group to maintain visual contact with the target from
multiple angles.



II. PRELIMINARIES FOR NULL SPACE BEHAVIORAL
APPROACH

In this paper each UAV is assumed to have on-board
control loops that regulate its attitude and altitude. Under this
assumption it is supposed that the UAVs composing the swarm
can be modeled as material points, therefore the following
kinematic model is defined

ṗi(t) = ui(t), (4)

being pi(t) =
[
x(t) y(t) z(t) ψ(t)

]
the pose vector, and

ui(t) =
[
vx(t) vy(t) vz(t) ω(t)

]
the control velocity vector of

the i-th drone at time t. The full mission can be accomplished
by using M tasks. The m-th task, with m = 1, · · · ,M ,
pertaining to the i-th drone is associated with a cost parameter
ηm,i, function of the vehicle pose pi as follows:

ηm,i(t) = fm(pi(t)) ≥ 0 (5)

with fm : R3 → R a continuously differentiable vector valued
function.

Assuming that the behavior is is performed if eq. (5) is
reduced over time, i.e., η̇m,i(t) ≤ 0, ∀ t ≥ 0.

A. Null Space Behavioral Approach Control Scheme

The aim of this contribution is to design a decentralized
control solution scalable to a large number of drones, modeled
as in eq. (4), that allows to implement the different behaviors
to fulfill the prescribed mission described in I. This solution
is obtained according to a priority logic. In particular, for
each drone, we assume that a Supervisor assigns a priority
index from 1 to M , function of the drone pose, to each of the
implemented behaviors. Consider the following relationship

η̇m,i(t) =
∂fm
∂pi

ṗi(t) = Jm,i(pi(t)) · um,i(t), (6)

where Jm,i(pi(t)) is the Jacobian matrix of fm. For each
behavior, let um,i(t) be an appropriate feedback control action
such that η̇m,i(t) ≤ 0. Each drone must be able to compute
an overall control action ui(t) based on u1,i, · · · ,uM,i that
ensures that the highest priority behavior is fully satisfied
while the lower priority behaviors are best served [17].

In this work, to guarantee this result, we adopt a Null-
Space-Based (NSB) approach, originally introduced in [18],
as follows:

ui(t) = u1,i(t)+

M∑
m=2

(
m−1∏
l=1

(
I − J†

l,i(pi(t))Jl,i(pi(t))
))

um,i(t)

(7)
being um,i(t) the control action of the i-th unit of the swarm
with respect to the m-th task, with m = 1, · · · ,M . J†

l,i

denotes the peusdo-inverse matrix of Jl,i, and I is the identity
matrix. Specifically, for each behavior m ≥ 2, the control
action um,i(t) is projected into the null space of the Jacobians
Jl,i, with l = 1, . . . ,m−1, to ensure that it does not interfere
with the fulfillment of higher-priority tasks. This hierarchical
structure, illustrated in Fig. 1, allows the execution of multiple

behaviors while preserving strict satisfaction of those with
highest priority.
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Fig. 1. NSB control scheme. Case M = 4. Based on pi(t), the Supervisor
assigns priorities. In this case, priority 2 to TASKA, priority 4 to TASKB,
priority 1 to TASKC and priority 3 to TASKD. Based on the priority
assignment, the control action is calculated according to the NSB projection.

III. TASKS MATHEMATICAL FORMULATION

To accomplish the mission, the controller of each vehicle
incorporates two behaviors, each tasked with different func-
tions:

A) Guided Navigation Task : It is the task dedicated
to the motion of drones. In particularly, it is used to
tracking planned trajectories for patrolling sub-regions
in the Patrolling Phase of the mission, to perform the
circular maneuver during the Detection Phase, and to
reach the target in the Identification Phase;

B) Collision-Avoidance Task: It is the task employed to
guarantee a safety distance between the UAV during the
Identification Phase;

A. Guided Navigation Task

Let E be an inertial reference frame. The following relation
is considered:

ηGN,i(t) = ∥w(t)− pi(t)∥22, (8)

where w(t) is the desired position at time t, it results that

η̇GN,i(t) = JGN,i (pi(t)) · [ẇ(t)− uGN,i(t)] (9)

with
JGN,i (pi(t)) = 2 [w(t)− pi(t)]

T
. (10)

The goal is to make η̇GN,i(t) ≤ 0. To this end, the following
control action can be used

uGN,i(t) = ẇ(t) + ·KGN (w(t)− pi(t)) (11)

being KGN a appropriate proportional control matrix imple-
menting a feedback control law that guarantees the asymptotic
stability of the task: when the single task is enabled, the robot
asymptotically converges to w(t).



B. Collision Avoidance Task

Consider the generic i-th unit of the swarm, with i =
1, · · · , Nd. For each vehicle l, with l ̸= i, compute the
distance from i. Assuming a minimum safety distance σCA,
the collision avoidance behavior is activated if

∥pl(t)− pi(t)∥2 ≤ σCA (12)

where | · |2 indicates the Euclidean norm.
Let be

ηCA,i(t) =
(
∥pl(t)− pi(t)∥22

)
(13)

It results that

η̇CA,i(t) = JCA,i (pi(t)) · [ṗl(t)− uCA,i(t)] , (14)

being

JCA,i (pi(t)) = 2
(
∥pl(t)− pi(t)∥22

)
· (pl(t)− pi(t))

T (15)

To achieve η̇CA,i(t) ≤ 0, the following control action can
is used

uCA,i(t) = ṗl(t)− χCA ·KCA · (pl(t)− pi(t)) , (16)

being KCA an appropriate proportional control matrix which
guarantees an increase in distance eq. (12).

IV. ALGORITHM

The proposed multi-phase behavior is governed by a finite
state machine, in which each state corresponds to a specific
mission phase. Transitions are triggered by predefined condi-
tions, such as target detection or achievement of the desired
configuration. This framework involves a number of operations
executed offline on a ground station and a fully decentralized
online control phase implemented on each UAV.
-Offline Operations
Given the operational scenario Ψ, the offline phase focuses on
pre-processing the data required for real-time execution. The
following steps are performed:

1) Trajectory Planning: For each UAV and sub-region, the
corresponding patrolling trajectory T is defined using an
ad hoc developed trajectory planner.

2) Data Distribution: The formation parameters are stored
in the on-board memory of each UAV to be used during
the online phase.

The control strategy is decentralized and executed indepen-
dently by each UAV under the following assumptions:

• Each UAV knows its own position pi(t) in the global
reference frame E.

• The positions of all other UAVs pl(t) for l ̸= i are
accessible.

-Online Operations
The control procedure executed by the i-th UAV varies de-
pending on the current phase of the mission and consists of
the following steps.

1) Task Selection Based on Mission Phase – The active
tasks depend on the operational phase. In particular, three
phases are identified:

• Phase 1 - Patrolling: the active task is the Guided
Navigation Task with highest priority assigned. It is
used to perform the trajectory tracking of the patrol
trajectory, using the reference w(t), as defined in eq.
(11). As soon as a potential target is detected at position
p(t), Phase 2 is enabled.

• Phase 2 - Detection: the active task is the Guided
Navigation Task with highest priority assigned. It is
used to perform the trajectory tracking of the circular
trajectory, using the reference w(t), which represents
the circular path around the position detected in Phase
1, as defined in eq. (11).

• Phase 3 - Identification: Both the Guided Navigation
Task and the Collision Avoidance Task are activated.
Priorities are dynamically assigned depending on inter-
UAV distances and objective fulfillment.

2) Collision Check: At each time step, if there exists at
least one UAV l ̸= i such that ∥pl(t) − pi(t)∥2 ≤ σCA,
then the Supervisor raises the priority of the Collision
Avoidance task to the highest level.

Remark - In the case where several units are at a distance
less than the threshold σCA, it will be necessary to
replicate this behavior for each of the possible couples.
The resulting actions will be ordered by priority function
of the distance between the units.

3) Control Action Synthesis: The control input is computed
according to eq. (7), ensuring strict compliance with the
highest priority task and optimal fulfillment of lower-
priority tasks.

This decentralized scheme guarantees conflict-free behavior
arbitration, allowing the UAVs to react in real-time to dynamic
changes in the environment and team configuration while
respecting mission priorities. For more details, see Fig. 2.

V. NUMERICAL RESULTS

To evaluate the effectiveness of the proposed strategy for
coordinated control of the UAVs swarm, several simulations
were carried out in the MATLAB environment modeling a
swarm of drones operating in a bounded 3D environment.

The area considered for each sub-region Ψi measures ap-
proximately 200 × 100 = 20000m2. The area was initially
discretized with a virtual grid Φ used to perform the Patrolling
Phase. The desired altitude for patrolling was set to 20m.
During the Patrolling Phase, each drone successfully covered
its assigned subregion, following the predefined trajectory
and keeping the recognition algorithm active. We assume
that no multiple targets are present in the same inspection
area, and no targets are present in neighboring areas. At the
time of detection, the transition from Patrolling Phase to
the Detection Phase was activated and the detector drone
performed as expected the circular inspection maneuver at
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Fig. 2. Algorithm flowchart.

the prescribed altitude and rotational speed ω = 5deg/s,
acquiring multi angle views of the potential target. Once
the detection was validated, the Identification Phase was
activated. The detector drone transmitted the estimated target
position information to the swarm. Meanwhile, the remaining
drones began their approach to the target. During this phase,
collision avoidance was effectively ensured by activating the
Collision Avoidance Task when the distances between drones
fell below the predefined threshold σCA = 10m.

The considered case presents a swarm consisting of Nd = 3
UAVs. In this case study, the random position of the target was
found to be equal to xT = 26.4166m and yT = 72.2725m.
The camera orientation was set in line with the direction of
the drone during the Patrolling Phase, while for the Detection
Phase and Identification Phase it was set in the direction
of the target. A FOV of 90deg was used throughout the
simulation. The results obtained are shown in Figs. 3-5.

In Fig. 3 the poses of the three drones during the whole
simulation, focusing on the area patrolled by UAV #1, are
shown. During the Patrolling Phase the UAV#1 follows the
planned trajectory for complete coverage of the area. After
an initial detection, the Detection Phase is activated and
UAV#1 performs the orbital maneuver around the possible
target, using the estimated position of the target as its center. It
then enters in the Identification Phase. The other two drones
begin to converge toward the target to perform the multi-angle
measurements and make the actual identification.

Fig. 4 shows the mutual distances recorded between the
drones during the Identification Phase of the mission.

Finally, the control variables for the three drones during the
mission performance are shown in Fig. 5.

Fig. 3. Patrolling sub-area assigned to UAV #1: pose of UAV#1, UAV#2,
and UAV#3. The dashed black line represents the planned patrol trajectory,
while the solid blue line represents the trajectory executed by UAV#1. After
a first detection the UAV#1 makes a turn around the possible target, and
subsequently, the other drones start to approach. The trajectories for UAV#2
and UAV#3 are represented by the green and orange solid lines, respectively.
The light blue cones represent the sensor field of view, while the detected
survivor is indicated by the green parallelepiped. The gray area on the X-Y
plane represents the surveilled surface.
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Fig. 4. Mutual distances recorded between UAV#1, UAV#2 and UAV#3
during the simulation. Each subplot shows the temporal evolution of the dis-
tance between a specific pair of drones: UAV#1-UAV#2 (top), UAV#1-UAV#3
(middle) and UAV#2-UAV#3 (bottom). The horizontal red line indicates the
predefined safety threshold σCA.

VI. CONCLUSIONS

In this paper is presented a priority-based decentralized
control strategy, employing a Null-Space Behavioral (NSB)
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Fig. 5. Temporal evolution of control inputs in longitudinal vx, lateral vy ,
vertical vz speeds, and angular velocity ω for the three drones UAV#1,
UAV#2, and UAV#3 represented by the solid blue, solid green, and solid
orange lines, respectively. The vertical lines indicate key moments in the
simulation: the solid black line marks the start of the Detection Phase, while
the dotted black line marks the start of the Identification Phase. The control
variables for UAV#2 and UAV#3 are only shown in relation to this phase in
which they are actually active.

approach, to improve the search and rescue (SAR) capabilities
of multi-drone systems in post-disaster scenarios. The solution
presented is scalable for the coordinated control of swarms of
UAVs operating in complex three-dimensional environments
with no-fly zones and obstacles. Each UAV dynamically adapts
its behavior according to a predefined task hierarchy. The
control architecture is fully decentralized and designed to
maintain performance and scalability as the number of UAVs
increases. The search strategy is divided into three phases:
(i) simultaneous patrolling along predefined trajectories for
efficient area coverage; (ii) target detection and inspection
when a subject enters a drone’s field of view; (iii) cooperative
identification, where the detecting UAV communicates the
exact target position and the swarm converges around it.
To demonstrate the effectiveness of the proposed solution,
tests were carried out on a MATLAB simulation environment
considering a swarm composed of three UAVs. The test
results demonstrated the collision avoidance and coordination
capabilities between the members of the swarm.
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