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TDP-43 loss induces cryptic polyadenylation 
in ALS/FTD
 

Sam Bryce-Smith    1, Anna-Leigh Brown1,85, Max Z. Y. J. Chien    1,2,85, 
Dario Dattilo1,2,85, Puja R. Mehta    1,85, Francesca Mattedi    1, 
Simone Barattucci    1, Alla Mikheenko1, Matteo Zanovello1, Flaminia Pellegrini1, 
Sara Emad El-Agamy1, Matthew Yome1, Sarah E. Hill3, Yue A. Qi    3, Kai Sun1, 
Eugeni Ryadnov1, Yixuan Wan1, NYGC ALS Consortium*, 
Jose Norberto S. Vargas1, Nicol Birsa    1, Towfique Raj    4,5,6,7, 
Jack Humphrey    4,5,6,7, Matthew Keuss    1, Oscar G. Wilkins1,2, Michael Ward    3, 
Maria Secrier    8   & Pietro Fratta    1,2 

Nuclear depletion and cytoplasmic aggregation of the RNA-binding protein 
TDP-43 are cellular hallmarks of amyotrophic lateral sclerosis (ALS). TDP-43 
nuclear loss causes de-repression of cryptic exons, yet cryptic alternative 
polyadenylation (APA) events have been largely overlooked. In this study, we 
developed a bioinformatic pipeline to reliably identify alternative last exons, 
3’ untranslated region (3’UTR) extensions and intronic polyadenylation 
APA event types, and we identified cryptic APA sites induced by TDP-43 loss 
in induced pluripotent stem cell (iPSC)-derived neurons. TDP-43 binding 
sites are enriched at sites of these cryptic events, and TDP-43 can both 
repress and enhance APA. All categories of cryptic APA were also identified 
in ALS and frontotemporal dementia (FTD) postmortem brain tissue. 
RNA sequencing (RNA-seq), thiol(SH)-linked alkylation for the metabolic 
sequencing of RNA (SLAM-seq) and ribosome profiling (Ribo-seq) revealed 
that distinct cryptic APA categories have different downstream effects 
on transcript levels and that cryptic 3’UTR extensions can increase RNA 
stability, leading to increased translation. In summary, we demonstrate that 
TDP-43 nuclear depletion induces cryptic APA, expanding the palette of 
known consequences of TDP-43.

Cytoplasmic aggregates and nuclear depletion of TDP-43 are patho
logical hallmarks of a spectrum of neurodegenerative diseases, 
including over 97% of ALS cases1, 45% of FTD cases2 and over 50% of 
Alzheimer’s disease cases3. Under normal conditions, TDP-43 is a pre-
dominantly nuclear protein with multiple roles in regulation of RNA 
processing and metabolism, including alternative splicing, APA4–6 and 
transport7. Considerable attention has been drawn to the ability of 
TDP-43 to repress the inclusion of pre-mRNA sequences in mature 
transcripts8: loss of nuclear TDP-43 leads to the inclusion of ‘cryptic’ 
exons both in vitro and in postmortem tissue9, contributing to disease 

progression10,11. Cryptic exons can lead to protein loss through RNA 
degradation by nonsense-mediated decay12 or can be translated to 
produce cryptic peptides13,14.

Cleavage and polyadenylation defines the 3′ end of last exons and 
subsequently mature transcripts15. Up to 70% of human protein-coding 
and long non-coding RNA (lncRNA) genes can undergo polyadenyla-
tion at multiple locations in the gene body (APA) and can be subdivided 
into three main categories of events: alternative last exons (ALEs), 
3’UTR extensions (3’Ext) and ‘composite’ intronic polyadenylation 
(IPA) events. In ALEs, the poly(A) usage is determined by an upstream 
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(3’Ext; for example, TLX1; Fig. 1c), and 20 were 3’UTR shortening events 
at loci with novel 3’Exts (3’shortening). Twenty IPA events were also 
detected, including CNPY3, which was identified with an independent 
bioinformatics approach and experimentally validated29. The remain-
ing nine events could not be uniquely assigned to ALEs or IPAs based 
on annotation and are defined as ‘complex’. Multiple non-cryptic APA 
events were also detected and are reported in Supplementary Table 3.

We experimentally validated strong activation of cryptic APA 
and confirmed the expression of multiple predicted PASs by per-
forming 3’ rapid amplification of cDNA ends (3’RACE) in i3Neurons 
(Extended Data Fig. 1) and inspecting poly(A)-tail ligation-dependent, 
oligo-dT primer-free i3Neuron direct RNA nanopore sequencing13 
(Supplementary Fig. 3a−c). We further evaluated global cryp-
tic polyadenylation site (PAS) precision by pooling across TDP-43 
depletion RNA-seq samples poly(A)-tail-containing reads (PATRs; 
Supplementary Fig. 3d), which allows independent defining of 
PASs30. Cryptic and expression-matched annotated PASs were simi-
larly identified, further supporting the novel cryptic APA events 
(Supplementary Fig. 3e). Finally, the commonly used tool DaPars2 
(ref. 31), when provided with the predicted 3’Ext coordinates, repro-
duced cryptic 3’Ext activation (Supplementary Fig. 4). These findings 
collectively support the validity of our cryptic APA discovery pipeline.

Out of 227 cryptic APAs detected by our analysis across datasets, 
most (138) satisfied cryptic expression criteria (<10% mean usage 
in controls and >10% usage change after TDP-43 knockdown) when 
considering the median across datasets. Fifty-one APAs were, instead, 
consistently below 10% usage threshold in controls but did not suf-
ficiently increase after TDP-43 depletion to meet the cryptic criteria 
definition across datasets. Twenty-eight APAs showed, instead, a sig-
nificant increase upon TDP-43 loss across datasets but had more than 
10% median usage in controls, therefore placing them outside the 
cryptic criteria but demonstrating consistent regulation by TDP-43 
(Supplementary Fig. 5). Altogether, these data highlight a widespread 
presence of cryptic APA upon TDP-43 loss.

TDP-43 binding both represses and enhances poly(A) site choice
Next, we investigated TDP-43 binding patterns around cryptic APAs 
using TDP-43 individual-nucleotide resolution UV crosslinking and 
immunoprecipitation (iCLIP) data generated in SH-SY5Y cells10. We 
focused on ALEs and 3’Ext events as the low number of IPA and 3’short-
ening events (n = 20 in both cases) did not allow reliable binding profile 
inferences. TDP-43 binding was enriched around the splice acceptor of 
cryptic ALEs, as previously described in cryptic splice junctions, and 
downstream of the cryptic PAS of ALEs (Fig. 1d), supporting TDP-43 
acting as a repressor of both splicing and polyadenylation. Intriguingly, 
TDP-43 binding was also enriched immediately downstream of the 
annotated proximal PAS of 3’Ext events (Fig. 1e), supporting a role for 
TDP-43 in enhancing poly(A) usage, consistent with previous reports 
of TDP-43 binding with respect to regulated PAS5.

alternative splice junction, which defines an alternative last exon. In 
3’Ext events, APA sites are independent of splice junctions and occur 
downstream of annotated distal 3’UTRs to affect 3’UTR sequence and 
length, which is implicated in the regulation of transcript stability, 
localization and translation16. Finally, in IPA events, APA occurs within 
introns in the absence of upstream alternative splicing, giving rise 
to transcripts with different protein-coding potential and can affect 
full-length protein dosage17,18.

TDP-43-regulated cryptic APA has not been systematically 
explored in a neuronal context. Here we report widespread cryptic APA 
upon TDP-43 depletion in cell models, including 3’Ext and IPA events 
that were not previously detected with conventional splicing analyses. 
A substantial number is expressed in postmortem ALS and ALS/FTD 
tissue with TDP-43 loss, underlining their potential involvement in 
pathogenic mechanisms and/or utility as biomarkers of TDP-43 pathol-
ogy. We focus on a novel class of 3’Ext APA and use metabolic labeling to 
demonstrate that such cryptic 3’Ext is associated with increased RNA 
stability, can localize to the cytoplasm and is translated, leading to an 
increase in protein levels.

Our data, therefore, identify a novel consequence for cryptic RNA 
processing and show that, in addition to leading to protein reduction or 
the formation of altered proteins, this can also lead to overexpression 
of normal proteins and an increase in their function.

Results
Identification of cryptic APA events induced by TDP-43 loss
Although the role of TDP-43 in regulating APA and cryptic splicing 
is well known, cryptic APA occurring upon TDP-43 loss of function 
has yet to be explored. To comprehensively address this question, we 
curated a compendium of publicly available and newly generated bulk 
RNA-seq datasets with TDP-43 depletion (Supplementary Table 1). 
We assembled a computational pipeline to identify novel last exons 
from RNA-seq data, which defines last exon frames using StringTie19 
and then filters and categorizes as spurious predicted 3’ ends lacking 
the presence of reference poly(A) sites20 or a conserved poly(A) signal 
hexamer21 (Fig. 1a). Isoform-level quantification was performed using 
Salmon22, and differential usage between experimental conditions was 
assessed using DEXSeq23.

This approach allowed us to subdivide our events into three 
main categories—ALEs, IPAs and 3’Ext (Fig. 1a)—overcoming the limi-
tations of comparable available tools that focus on specific event 
categories24–28. APA events were widespread, and we defined cryptic 
APA events as ones with less than 10% mean usage in controls and more 
than 10% usage change after TDP-43 knockdown. We identified 227 
cryptic APAs to be present in at least one dataset (adjusted P < 0.05; 
Fig. 1b, Supplementary Fig. 1 and Supplementary Table 2). Cryptic ALEs 
(n = 92) included previously identified cryptic exons such as STMN2, 
ARHGAP32 and RSF1 (Fig. 1b and Supplementary Fig. 2). In total, 108 
3’UTR cryptics were identified, of which 86 are novel 3’UTR extensions 

Fig. 1 | TDP-43 depletion induces cryptic APA in a compendium of in vitro 
TDP-43 datasets. a, Computational pipeline inferring differential last exon 
(LE) usage from bulk RNA-seq. Putative novel last exons (orange) are identified 
by comparing StringTie19 assembled transcripts (condition mean TPM > 1) 
to reference transcripts (purple). Putative last exons with a PAS <100 nt from 
PolyASite20 PAS or containing a conserved poly(A) signal hexamer21 (final 100 nt)  
are quantified with annotated last exons using Salmon22 and assessed for 
differential usage using DEXSeq23. b, APA upon TDP-43 knockdown (TDP43KD). 
Points: PAS with adjusted P < 0.05 in ≥1 dataset (median values when >1 dataset). 
Cryptic PAS (orange): adjusted P < 0.05, mean control (Ctrl) usage <10% and 
TDP43KD–CTRL usage >10%. c, Cryptic APA RNA-seq coverage traces in control 
(gray) and TDP-43 knockdown (gold) i3Neuron. ALE: ARHGAP32. IPA: ANKRD27. 
3’Ext: TLX1. Dashed lines: landmarks assessed for TDP-43 binding (d,e). All events 
are visualized in sense orientation. d, TDP-43 binding around ALE boundaries. 
Exon start: first nucleotide of the last exon. Top, mean SH-SY5Y TDP-43 iCLIP peak 

coverage (n = 2) ±1 s.e.m. (shaded interval) of positions relative to landmarks 
in cryptic (orange, n = 92) versus background (black, n = 929) ALEs. Two-sided 
Fisher’s exact test in the plotting window (exon start P = 0.005, PAS P = 0.019). 
Bottom, mean YG-containing hexamer coverage (Supplementary Fig. 3a) 
±1 s.e.m. (shaded interval). e, TDP-43 binding maps around 3’Ext alternative PAS. 
Top, as in d (top) for cryptic (orange, n = 86) and background (black, n = 798) 
3’Exts. Proximal P = 0.031, distal P = 0.003. Bottom, as in d (bottom) for e (top).  
f, ELK1 fluorescent reporter. CDS: mGreenLantern coding sequence. ELK1  
3’UTR, proximal 3’UTR and the first 800 bp of cryptic 3’Ext. SV40, SV40 PAS.  
g, Nanopore sequencing traces of the reporter in TDP-43 knockdown SK-N-BE(2) 
cells. h, Reporter distal PAS usage upon increasing TDP-43 knockdown (low: 30, 
medium: 60, high: 1,000 ng ml−1 doxycycline). Bars denote mean PAS usage fold 
change versus controls. n = 3 per variant. −96%: four variants; −20% and −24%: two 
variants; remaining: one variant.
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iCLIP data, typically generated in control cells, are not sensitive 
in detecting binding to cryptic 3’Ext regions, as these events can be 
detected only at very low levels with physiological TDP-43 presence. 
We, therefore, sought to corroborate our findings by adapting PEKA32 
to infer de novo hexamer enrichment relative to cryptic landmarks. 
Previously defined hexamers enriched around TDP-43 iCLIP binding 
sites6 (Supplementary Fig. 6a) were overrepresented among the most 
enriched hexamers proximal to all cryptic landmarks, with the strong-
est signal overall observed at both the 3’ splice site (3’ss) and PAS of ALE 
events (Supplementary Fig. 6b). To assess the concordance with iCLIP 
binding profiles, we visualized the positional coverage of the hexamer 
group most strongly associated with TDP-43 binding6. For ALEs, we 
observed a notable peak immediately upstream of splice acceptors and 
a strong peak downstream of PAS (Fig. 1d), although previous reports 
of splice-site-dependent STMN2 cryptic ALE repression33 suggest that 
the binding at PAS may have secondary effects. Enriched signal was also 
observed immediately downstream of the distal PAS of 3’Exts (Fig. 1e).

To experimentally validate the direct relationship between TDP-43 
binding and cryptic PAS usage, we generated a reporter for the ELK1 
3’Ext APA (Fig. 1f). Nanopore sequencing showed a strong upregulation 
of the distal cryptic PAS upon TDP-43 knockdown in neuronal cells 
(Fig. 1g), confirming similar behavior to endogenous ELK1. We then 
focused on 150 base pairs downstream of the constitutive poly(A) site, 
where iCLIP data show TDP-43 binding to occur, and generated a series 
of constructs where we removed or increased UG content to disrupt or 
enhance TDP-43 binding (Fig. 1f). Under normal TDP-43 levels, cryptic 
PAS usage was enhanced by UG depletion, whereas it was reduced by 
UG dinucleotide content increase (Extended Data Fig. 2a,b). Increasing 
levels of TDP-43 knockdown enhanced cryptic PAS usage in constructs 
with normal, increased or moderately disrupted UGs, whereas con-
structs with severe UG depletion did not respond to TDP-43 depletion, 
confirming a direct regulation by TDP-43 (Fig. 1h).

Overall, our data support a direct role for TDP-43 binding in both 
enhancing and repressing PAS usage, therefore leading to cryptic APA 
upon TDP-43 loss.

TDP-43 cryptic APA is detectable in postmortem  
ALS/FTD tissues
We next investigated whether the cryptic APA detected in vitro 
occurred also in postmortem central nervous system (CNS) tissue 
samples affected by TDP-43 proteinopathy. We initially focused on 
neuronal nuclei sorted into TDP-43-positive and TDP-43-negative popu-
lations34. Fifty-four cryptic APA events were more highly expressed 
in TDP-43-depleted nuclei. All APA event types were represented in 
this list (MEP_L_fig2; Fig. 2a), with ALEs (20) and 3’Exts (28) represent-
ing the majority of enriched events. Our analysis confirmed previ-
ously reported cryptic ALEs with patient specificity, such as in STMN2  
(ref. 35). Numerous 3’Exts also show enrichment in TDP-43-negative 
nuclei in a similar magnitude to STMN2 (median increased usage of 
69%), most notably ELK1 (76%) and RBM27 (57%) (Fig. 2a). Six IPA events 

meet our enrichment criteria (Fig. 2a), including USP31, which was iden-
tified in a targeted assay of sporadic ALS motor cortex tissue36. However, 
IPA events were generally more weakly enriched in TDP-43-depleted 
nuclei compared to 3’Ext and ALE events. We validated the occurrence 
of cryptic APAs by performing 3’RACE in FTD frontal cortex samples 
(Fig. 2b and Supplementary Fig. 7). Altogether, this analysis shows that 
cryptic APA is detectable in postmortem ALS/FTD CNS.

Next, we used the New York Genome Center (NYGC) ALS Consor-
tium RNA-seq dataset to assess cryptic APA in a larger cohort of CNS 
cases with or without TDP-43 pathology (Supplementary Table 4). 
Cryptic 3’Exts often demonstrated low basal expression in control 
samples in our in vitro datasets, confounding the detection in post-
mortem bulk RNA-seq datasets, in which only a very small proportion 
of cells is expected to have TDP-43 pathology. IPA detection is further 
complicated by the fact that normal pre-mRNA reads also map to IPA 
regions, creating significant noise in bulk RNA-seq. We, therefore, 
focused on ALEs, where detection of the associated upstream cryptic 
splice junctions provide direct evidence of expression. As cryptic 
ALEs are expected to be dependent on nuclear TDP-43 depletion, we 
defined criteria based on spliced read detection to identify cryptic 
events with specific expression in tissues and disease subtypes where 
TDP-43 pathology is present. Of 118 cryptic ALE junctions, 7 fulfilled 
specificity criteria (Supplementary Table 5), in contrast to 56 out of 313 
cryptic splicing events collated from i3Neurons with TDP-43 knock-
down13 (Fig. 2c and Extended Data Fig. 3). STMN2 was most frequently 
detected in tissues with expected TDP-43 proteinopathy, and several 
other ALEs were among the most frequently detected specific cryptic 
events, including SYNJ2 (third; Fig. 2d) and PHF2 (eighth; Fig. 2e).

Altogether, this suggests that cryptic APAs are detectable in 
postmortem tissue affected by TDP-43 pathology, highlighting their 
potential relevance in loss-of-function disease mechanisms and their 
promising utility as biomarkers.

Cryptic APA events variably affect differential expression
Cryptic splicing events impact expression, often leading to a reduction 
in transcript levels9–11. We, therefore, assessed the effect of cryptic 
APAs on their own transcripts in i3Neurons13 (Supplementary Fig. 8a) 
and found that the majority of events (86 out of 126) coincide with 
a significant change in expression, equally split between significant 
upregulation and downregulation. When subdivided further into cryp-
tic APA categories, no category showed a clear bias for upregulation 
or downregulation (19 out of 34 3’Ext, 17 out of 37 ALE and 6 out of 
10 IPA genes are downregulated). This suggests that cryptic APAs are 
associated with differential expression but have variable effects on 
transcript levels.

Cryptic 3’Ext events can lead to increased translation  
and function
Regulation of both ALE and 3’Ext usage has been demonstrated to 
impact protein abundance through distinct mechanisms37,38, but 

Fig. 2 | Cryptic APAs are detected in postmortem ALS/FTD RNA-seq 
datasets. a, Heatmap of cryptic last exon usage in postmortem FACS-seq 
data34. Cells are colored according to the magnitude of sample-wise difference 
in usage between TDP-43-depleted (TDPnegative) and TDP-43-positive 
(TDPpositive) cells. Rows represent individual cryptic last exons from in vitro 
that passed enrichment criteria (median sample-wise difference in usage 
(TDPnegative − TDPpositive) > 5%) and are arranged in descending order of 
the difference in usage within each event type. Columns represent individual 
patients within the cohort. b, RT−qPCR analysis after 3’RACE for the indicated 
3’UTRs in frontal cortex samples of control patients (n = 4) and FTD (FTD-TDP, 
n = 4) cases with TDP-43 pathology. The RNA expression levels were normalized 
against GAPDH mRNA and expressed as relative fold change with respect to one 
control sample set to a value of 1. PHF2 and SIX3 genes (shown in Supplementary 
Fig. 3) were excluded owing to unspecific amplification of the cryptic isoforms 

in tissues. Data are represented as box plots (lower, middle and upper quartiles), 
and error bars span from the minimum to the maximum value. Two-sided 
Studentʼs unpaired t-test (NS P > 0.05, *P < 0.05). l, long; s, short. STMN2 P = 0.330 
(canonical), 0.033 (ALE). SYNJ2 P = 0.847 (canonical), 0.031 (ALE). ARHGAP32 
P = 0.500 (canonical), 0.021 (ALE s), 0.035 (ALE l). ELK1 P = 0.056 (canonical), 
0.013 (3’Ext). TLX1 P = 0.130 (canonical), 0.041 (3’Ext). All P values are to 3 decimal 
places (d.p.). c, Selectively expressed cryptic ALEs (orange) and splicing events13 
(purple) in tissues and samples with TDP-43 proteinopathy in the NYGC ALS 
Consortium dataset. Events are considered detected if at least two junction 
reads were detected in a sample. d, Detection of spliced reads for the cryptic ALE 
in PHF2 across samples in the NYGC ALS Consortium dataset. Color indicates 
whether disease subtype and region is expected (orange) or not expected (green) 
to have TDP-43 pathology and cryptic spliced read expression. e, As in d but for 
cryptic ALE in SYNJ2. NS, not significant.
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differential RNA abundance does not necessarily imply a coordinated 
change in protein levels. To assess whether changes in gene expression 
were also reflected in translation levels, we performed differential 
translation analysis of Ribo-seq data generated from i3Neurons with 
TDP-43 depletion13.

Only a minority of cryptic APA-containing genes (26 out 
of 126) showed significant changes in overall translation levels 
(Supplementary Table 6), of which 24 are concordantly altered in 
both Ribo-seq and RNA-seq abundance upon TDP-43 knockdown, 
including previously reported STMN2 (refs. 39,40) (Fig. 3a,b).  
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Fig. 3 | Cryptic 3’ UTR extensions in transcription factor RNAs lead to 
increased RNA and protein levels by increased RNA stability and cytoplasmic 
RNA levels. a, RNA-seq differential expression volcano plot (TDP-43 knockdown 
versus control i3Neurons). Cryptic 3’Ext (orange), ALE (blue) and IPA (green) 
containing genes with increased translation (Fig. 3b) are colored and labeled.  
y axis 50, −log10-adjusted P (Padj) ≥ 50. b, Ribo-seq differential expression  
volcano plot (TDP43KD versus CTRL i3Neurons). Colors: cryptic 3’Ext (orange), 
ALE (blue) or IPA (green) containing genes. y axis 10, −log10-adjusted P ≥ 10.  
c, ELK1 protein levels in Halo-TDP-43 i3Neurons61. Top, ELK1 western blot showing 
increased ELK1 protein expression upon TDP-43 knockdown (n = 4 independent 
differentiations). Bottom, tubulin-normalized ELK1 band intensities (c, top) 
in control and TDP43KD Halo-TDP-43 i3Neurons. d, ELK1 transcription factor 
activity. Top, ELK1 cryptic 3’Ext RNA-seq coverage traces in control (black) 
and TDP-43 knockout (KO) (gold) HeLa cells49. Bottom, GSEA enrichment plot 
for ChIP–seq-defined ELK1 target genes in TDP-43 knockout HeLa cells. Green 
line denotes GSEA enrichment statistic; red lines denote maximum value in 
upregulated (left) and downregulated (right) genes; black lines denote ELK1 

target genes (n = 353). NES is relative to mean score of identically sized, randomly 
sampled gene sets. e, Decay curve for RNA produced before 4SU labeling (old) in 
control (gray, 4 h n = 1, others n = 2) and knockdown (orange, all n = 2) i3Neurons. 
Curves denote fitted estimate of old RNA levels. Points denote old RNA 
abundance estimates. Error bars denote upper and lower 95% credible interval. 
Inset text shows the gene-level GrandR-estimated half-lives. f, Representative 
images for FISH probes targeting the annotated (ELK1 total, green) 3’UTR and 
cryptic 3’UTR-specific (ELK1 cryptic, magenta) ELK1 sequences in control (top 
row) and TDP-43 knockdown (bottom row) i3Neurons. Scale bars, 10 µm.  
g, Extranuclear FISH signals for the ELK1 total and cryptic probes. Points denote 
foci counts (n = 10 images). Blue bars denote mean count. Two-sided, one-sample 
t-test after within-replicate control normalization (n = 3, *P < 0.05, total P = 0.009, 
cryptic P = 0.012 (3 d.p)). h, ELK1 canonical and cryptic (3’Ext) isoform 3’RACE 
and RT−qPCR of the cytoplasmic fraction of TDP-43-depleted SH-SY5Y cells. Bars 
denote mean fold change versus control cells ± s.d. (n = 3 biological replicates). 
Two-sided Studentʼs unpaired t-test (**P = 0.009, ***P = 7.535 × 10−8).
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Notably, the differentially translated subset appeared to stratify by 
APA category: whereas ALEs are downregulated, all four significant 
3’Exts, which also showed increased RNA abundance (Fig. 3a), had sig-
nificantly increased translation (Fig. 3b). Gene set enrichment analysis 
(GSEA)41,42 confirmed that cryptic ALE and 3’Ext genes are significantly 
associated with decreased translation (normalized enrichment score 
(NES) −2.09, adjusted P = 2.31 × 10−6) and increased translation (NES 
1.54, adjusted P = 0.03), respectively, whereas IPA genes show no sig-
nificant association in either direction (NES −1.09, adjusted P = 0.36) 
(Supplementary Fig. 8b).

Interestingly, the three 3’Ext-containing genes that were most 
upregulated at both RNA and translation levels (Fig. 3a,b) encode 
for three transcription factors: ELK1, SIX3 and TLX1. The regula-
tion of these 3’Ext events is reproducible across in vitro datasets 
(Supplementary Fig. 1). As ELK1 increase was previously associated with 
neuronal toxicity43–45 and its levels are consistently higher in mature 
neurons, compared to SIX3 and TLX1, which are associated with neu-
ronal development46,47, we decided to focus our investigations on ELK1. 
We tested whether the increase in Ribo-seq also corresponded to an 
upregulation of steady-state protein, and western blots confirmed a sig-
nificant increase in ELK1 protein expression upon TDP-43 knockdown in 
i3Neurons (Fig. 3c). We next asked whether the activity of ELK1, which 
functions as a transcription factor in the ternary complex factor (TCF) 
family48, could be altered in the context of TDP-43 loss. We assessed 
whether ELK1 target genes defined by chromatin immunoprecipitation 
followed by high-throughput sequencing (ChIP–seq) in HeLa cells were 
also affected in TDP-43 knockout HeLa cells49, in which the cryptic 3’Ext 
is robustly upregulated (Fig. 3d). Using GSEA, we observed a significant 
change in ELK1 target gene expression upon TDP-43 knockout (Fig. 3d). 
This suggests that cryptic 3’Exts can lead to change in function in the 
context of TDP-43 loss.

Transcription factors with cryptic 3’Ext events have increased 
RNA stability
We investigated the mechanisms by which cryptic 3’UTRs could mediate 
increased translation levels of ELK1, SIX3 and TLX1. We revisited differ-
ential splicing analysis of i3Neuron RNA-seq datasets10,13 and confirmed 
that cryptic 3’Exts are the only differential RNA processing events occur-
ring in these three transcription factor RNAs upon TDP-43 depletion. 
As alternative 3’UTRs have been linked to differences in RNA stability50, 
we reasoned that increased RNA stability could account for changes in 
overall RNA abundance and translation levels. To investigate changes 
in RNA stability in i3Neurons with TDP-43 depletion, we performed 
SLAM-seq51, which allows the detection of newly synthesized RNAs 
through incorporation of a uridine analogue (4SU). Different lengths 
of 4SU treatment allow the estimation of gene-level RNA half-lives. We 
observed increased half-lives in cryptic 3’Ext-containing genes ELK1, 
TLX1 and SIX3 (Fig. 3e). To confirm that the 3’Ext half-life change was due 
to the cryptic APA event, we performed an isoform-specific analysis for 
ELK1 in control i3Neurons, where the distal (cryptic) 3’Ext is sufficiently 
expressed to be analyzed and not prevalent enough to confound the 
evaluation of the proximal (shared) isoform. We observed elevated 
ELK1 3’Ext half-life relative to the proximal PAS (Supplementary Fig. 9a). 
Altogether, this suggests that increased RNA abundance and transla-
tion of cryptic 3’Ext genes are mediated by increased RNA stability.

Given that translation depends on extranuclear localization of 
mRNAs, we tested whether cryptic 3’Ext transcripts localize to the cyto-
plasm and contribute to the increased translation levels52–55. Focusing 
on the ELK1 cryptic 3’Ext, we designed probes to recognize the common 
proximal sequence and the distal sequence specific to the 3’Ext and 
performed fluorescence in situ hybridization (FISH) in i3Neurons where 
we could detect both probes in the nuclei, cytoplasm and neurites 
(Fig. 3f). Consistent with RNA-seq, we observed a significant increase 
in total foci for both the total and cryptic-specific probes upon TDP-
43 knockdown (Fig. 3g and Supplementary Fig. 9b,c). To specifically 

discriminate and quantify proximal and distal ELK1 APA subcellular 
localization, we performed 3’RACE on SH-SY5Y cells after nuclear 
cytoplasmic fractionation. We found that both isoforms are predomi-
nantly localized to the cytoplasm and that, upon TDP-43 knockdown, 
the proximal canonical APA is reduced, whereas the cryptic 3’Ext is 
increased (Fig. 3h and Extended Data Fig. 4). Finally, we evaluated 
ELK1 isoform-specific ribosome recruitment using fractionation and 
sequencing (Frac-seq) data from neural progenitor cells56. We found 
ELK1 cryptic 3’Ext to be relatively enriched in ribosome-associated 
fractions, supporting a preferential engagement of the cryptic 3’Ext 
with the translation machinery (Supplementary Fig. 9d). Overall, these 
findings show that ELK1 cryptic 3’Ext has increased RNA stability, local-
izes to the cytoplasm and neurites and is translated, driving the increase 
in ELK1 protein.

Discussion
Defining TDP-43 RNA targets is critical to understanding the molecu-
lar consequences of nuclear TDP-43 depletion. Thus far, efforts have 
mainly focused on the consequences of altered splicing and have 
successfully identified key targets that are being pursued as therapeu-
tic targets and potential biomarkers for TDP-43 pathology10,11,14,39,40. 
Although TDP-43 is involved in multiple aspects of RNA processing, 
including polyadenylation4–6, this has been largely understudied due 
to the lack of effective tools to address these questions. Furthermore, 
although splicing analyses were able to identify ALE events (for exam-
ple, STMN2) because of the upstream novel splice junction, they would 
not detect novel IPA and 3’Ext events. Here, we developed a pipeline 
to detect and quantify novel APA events from total RNA-seq and apply 
it to a wide range of neuronal TDP-43 loss-of-function datasets to 
define cryptic APAs, a novel category of cryptic RNA processing events 
of potential relevance to ALS/FTD. iCLIP and TDP-43 binding motif 
analyses support a direct regulation of these events by TDP-43, in 
which TDP-43 loss can both weaken conventional poly(A) sites and 
de-repress cryptic APA. Similar to splicing, where TDP-43 can both 
repress or enhance exon inclusion, TDP-43 can, therefore, have a 
dual action on transcript termination. Notably, for disease relevance, 
and similar to cryptic splicing, numerous cryptic APA events can be 
detected in postmortem tissue and are specifically expressed upon 
TDP-43 pathology.

We then moved to investigate the impact of cryptic APAs on RNA 
levels and translation and found that IPAs and ALEs either had no impact 
or induced a reduction of transcript levels in RNA-seq and Ribo-seq 
analyses—in line with previous observations on known cryptic ALEs 
such as STMN2 (refs. 39,40). Recent work demonstrated that cryptic 
exon-containing transcripts can be translated and produce cryptic 
peptides that could serve as biomarkers of TDP-43 pathology13,14. As 
cryptic ALE and IPA events are mostly predicted to be insensitive to 
nonsense-mediated decay, and are located often within the coding 
sequence, they are likely to give rise to cryptic peptides; for example, 
cryptic ALE RSF1 encodes a cryptic peptide that is detected in the cer-
ebrospinal fluid of patients with ALS13. Previous work identified cryptic 
ALEs, as their novel splice junction can be detected by numerous splice 
detection packages13,35,57. Conversely, IPAs have been more difficult to 
identify, and further work should consider whether these cryptic IPA 
events can be detected in patient brains and biofluids as an indirect 
measure of TDP-43 pathology.

Surprisingly, 3’Ext events in the three transcription factor- 
encoding genes ELK1, SIX3 and TLX1 were associated with transcript 
upregulation and increased translation and protein levels. We found 
this to be associated with an increase in RNA stability. Thus, in con-
trast to the conventional model of TDP-43-regulated cryptic splicing 
leading to reduced protein levels or to altered proteins containing 
cryptic peptides, cryptic 3’Ext can be associated with increased 
protein levels, outlining a novel consequence of TDP-43 cryptic 
RNA processing.
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ELK1, SIX3 and TLX1 3’Ext are reliably induced upon TDP-43 
depletion across our in vitro datasets, suggesting that they are not 
cell-type-specific, sensitive TDP-43 targets. These three transcrip-
tion factors have been studied in the neuronal context, although SIX3 
and TLX1 are primarily expressed in the developmental stage46,47. Our 
work, therefore, focused on ELK1, and we were able to validate the 
cryptic 3’Ext in patient brains both by 3’RACE and by analysis of publicly 
available data, whereas detection of increased protein levels is more 
challenging due to ELK1 being expressed ubiquitously and TDP-43 
pathology occurring in only in a minority of cells. We were also able 
to use HeLa cell data to show that TDP-43 loss can induce changes in 
ELK1 target genes. ELK1 promotes axonal outgrowth58 and is increased 
in Huntington’s disease models where it can have a neuroprotective 
role59. ELK1 overexpression has also been linked with neurotoxicity 
through interaction with components of the mitochondrial permeabil-
ity−transition pore complex44, and dendrite-specific overexpression 
of ELK1 mRNA induced cell death in a transcription-dependent and 
translation-dependent manner43, supporting a potential contribu-
tion of this cryptic APA to pathogenesis. Further work is needed to 
investigate the functional relevance of increased ELK1, SIX3 and TLX1 
expression in models of TDP-43 proteinopathy.

We focused on identifying cryptic APA events, as their extreme 
expression changes upon TDP-43 loss render them favorable therapeu-
tic and biomarker targets. As reported in the accompanying manuscript 
by Zeng et al.60, the authors investigated APA dysregulation more gen-
erally upon TDP-43 loss and show that it is widespread (in accordance 
with our findings in Fig. 1b), can occur in ALS/FTD-related genes60 and 
can lead to change in function29, underscoring the potential relevance 
of APA in disease pathogenesis. We note that several targets (for exam-
ple, CNPY3, ELK1 and ARHGAP32) are commonly identified across the 
studies despite diverging methodological approaches, underlying the 
consistency of our observations. Notably, similar to our findings for 
ELK1, SIX3 and TLX1, both Zeng et al.60 and Arnold et al.29 also found that 
APAs can lead to upregulation of normal protein levels, consolidating 
this as a general consequence of TDP-43 loss. Our studies collectively 
demonstrate that dysregulated APA is a general consequence of nuclear 
TDP-43 loss in ALS/FTD. Beyond mRNA and protein levels, APA can 
impact RNA localization and local translation, and targeted work will 
be necessary to comprehensively identify and detect these alterations.

In summary, we provide a compendium of cryptic APA events 
determined by TDP-43 loss as a resource for studying RNA dysregula-
tion and identifying novel biomarkers in ALS. Our work also shows that 
cryptic RNA processing can lead to an increase in protein expression 
and function, expanding the molecular consequences of TDP-43 loss 
and pathology, with implications for disease pathogenesis and thera-
peutic target identification.
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Methods
A summary table mapping cellular models to their respective analyses 
is provided in Supplementary Table 9.

CRISPR interference knockdown in human iPSCs and 
differentiation and culture of i3Neurons
CRISPR interference (CRISPRi) knockdown experiments were per-
formed in the WTC11 iPSC line harboring stable TO-NGN2 and in 
dCas9−BFP−KRAB cassettes at safe harbor loci62. CRISPRi knockdown 
of TDP-43 in iPSCs was achieved using single guide RNA (sgRNA) tar-
geting the transcription start site of TARDBP (or non-targeting control 
sgRNA)10, delivered by lentiviral transduction. sgRNA sequences were 
as follows: non-targeting control GTCCACCCTTATCTAGGCTA and 
TARDBP GGGAAGTCAGCCGTGAGACC. iPSCs were differentiated into 
cortical-like i3Neurons as described previously10,63 and fixed 9 days 
after re-plating for RNA-FISH.

For RNA-seq experiments (‘Humphrey i3 cortical’), i3Neurons 
were induced as previously described63 with the addition of SMAD 
and WNT inhibitors64 (SB431542 10 µM; LDN-193189 100 nM; XAV939 
2 µM, all from Cambridge Bioscience). After induction, cells were cul-
tured in BrainPhys Media (STEMCELL Technologies) with 20 ng ml−1 
BDNF (PeproTech), 20 ng ml−1 GDNF (PeproTech), 1× N2 supplement 
(Thermo Fisher Scientific), 1× B27 supplement (Thermo Fisher Scien-
tific), 200 nM ascorbic acid (Sigma-Aldrich), 1 mM dibutyryl cyclic-AMP 
(Sigma-Aldrich) and 1 µg ml−1 laminin (Thermo Fisher Scientific), as 
previously described65, and harvested 30 days after differentiation. The 
‘Zanovello i3 Cortical’ samples were generated as previously described 
for the dual TDP-43/UPF1 knockdown experiments10. Only the TDP-43/
Control and Control/Control transfection conditions were used for 
RNA-seq. See the ‘RNA-seq’ section for library preparation details.

An iPSC line with an N-terminal HaloTag on both endogenous cop-
ies of TDP-43 (Halo-TDP-43 i3Neurons) was generated by CRISPR−Cas12 
gene editing61. The parental cell line used was the WTC11 cell line with 
integrated dCas9−Krab and NGN2 cassettes as mentioned previously62. 
The homology-directed repair (HDR) template used was Addgene 
plasmid 178131. Editing was done with Cas12 CRISPR RNA (crRNA) 
(Integrated DNA Technologies) with GGAAAAGTAAAAGATGTCTGAAT 
as the targeting sequence. Recombinant Cas12 (Cpf1 ultra; Integrated 
DNA Technologies) was electroporated with HDR template and Cas12 
crRNA using the P3 Primary Cell 4-D Nucleofector Kit (Amaxa, V4XP-
3024). iPSCs were then single-cell plated, and positive colonies were 
selected with HaloTag TMR dye (Promega) and verified by polymerase 
chain reaction (PCR) of genomic DNA.

For proteolysis-targeting chimera (PROTAC)-mediated knock-
down of Halo-TDP-43, i3Neurons were treated with HaloPROTAC-E66 
(30 nM) on days in vitro 14 (DIV14) and harvested on DIV28. This proto-
col allows to avoid incurring in maturation alterations caused by loss of 
TDP-43, as this occurs at a later step; we, therefore, used this approach 
to validate ELK1 protein increase as transcription factor levels can be 
sensitive to maturation stages.

FISH
Cortical-like i3Neurons were cultured on 13-mm glass coverslips and 
fixed in 4% paraformaldehyde (PFA)/sucrose on day 9. RNA-FISH was 
performed using the QuantiGene ViewRNA ISH Cell Assay Kit (Invitro-
gen, QVC0001), according to the manufacturer’s instructions. Protease 
was used at 1:1,000 dilution. Two probe sets were used to detect the 
canonical ELK1 transcript (TYPE 4 probe, 488-nm) or specifically the 
distal 3’UTR cryptic extension (TYPE 1 probe, 550-nm). Confocal images 
were acquired with an LSM 980 laser scanning confocal microscope 
with Airyscan 2 (Zeiss), using a ×40 oil immersion objective.

For each biological replicate, 10 images were acquired for the 
control and TDP-43 knockdown conditions. For each image, foci for 
both probes were counted within the 106.07-µm × 106.07-µm field of 
view on FIJI/ImageJ using the maximum intensity z-projection function 

to flatten the 2-µm-thick z stack. The ‘Find Maxima’ function using 
the same prominence setting between conditions was performed to 
quantify total numbers of RNA foci. To separately count nuclear and 
cytoplasmic foci, the Cell Counter plugin was used. For each probe 
and field of view, the total number of foci was divided by the number 
of DAPI-stained nuclei to give the average number of foci per cell. To 
calculate the nuclear:extranuclear ratio for the ‘Total ELK1’ probe, the 
number of nuclear foci was divided by the number of extranuclear foci 
in each field of view. For each probe and condition, the mean number 
of foci per cell and the nuclear:extranuclear ratio were calculated from 
the 10 images and normalized, for each biological replicate, to the 
respective control condition. Statistical significance was evaluated 
using a one sample t-test with a log transformation and the Benjamini− 
Hochberg false discovery rate procedure, testing the null hypothesis 
that mean = log(1).

Western blots
Halo-TDP-43 i3Neurons were homogenized in lysis buffer (25 mM 
Tris-HCl, 150 mM NaCl, 1% NP-40, 1% glycerol, 2 mM EDTA, 0.1% SDS, 
protease inhibitor (cOmplete EDTA-free protease inhibitor cocktail; 
Roche) and phosphatase inhibitor (PhoSTOP; Roche)). Samples were 
loaded on a NuPAGE 4−12% Bis-Tris protein gel (Invitrogen), which 
was run in NuPAGE MOPS buffer. Proteins were transferred onto PVDF 
blotting membrane (Amersham) through wet transfer for 1 hour and 
30 minutes at 200 mA in transfer buffer (25 mM Tris, 192 mM glycine 
and 20% methanol). The membrane was blocked in 5% milk in TBST 
(20 mM Tris, 150 mM NaCl and 0.1% Tween 20) and incubated over-
night with primary antibodies diluted in 5% milk in TBST (anti-ELK1 
(Abcam, ab32106) 1:500, anti-TDP-43 (Abcam, ab104223) 1:2,000 
and anti-tubulin (Sigma-Aldrich, MAB1637) 1:5,000). After 1-hour 
incubation with horseradish peroxidase (HRP)-conjugated second-
ary antibodies diluted in 5% milk in TBST (anti-mouse HRP (Bio-Rad, 
1706516) 1:10,000 and anti-rabbit HRP (Bio-Rad, 1706515) 1:10,000), 
the membrane was developed using Immobilon Classico HRP substrate 
(Sigma-Aldrich) and the Bio-Rad ChemiDoc system.

Cell fractionation
For the fractionation experiments, SH-SY5Y cells were treated for 
10 days with 25 ng ml−1 doxycycline hyclate (Sigma-Aldrich) to induce 
the short hairpin RNA (shRNA) against TDP-43. After 10 days, cells were 
trypsinized, pelleted and resuspended in 1× PBS. Before re-pelletting 
them, a fraction for each sample was saved for protein analysis to assess 
TDP-43 depletion. The other fraction was used for the subcellular frac-
tionation with the Ambion PARIS Kit (Life Technologies), according to 
the manufacturer’s instructions. RNA from the nuclear and cytosolic 
fractions was extracted with the Direct-zol kit (Zymo Research) with 
on-column DNase I treatment. For each experimental condition, 2 μg 
of cytoplasmic RNA and an equal volume of nuclear RNA fraction were 
reverse transcribed with the RevertAid First Strand cDNA Synthesis Kit 
(Thermo Fisher Scientific) according to the manufacturer’s instruc-
tions and analyzed by RT−qPCR with PowerUp SYBR Green Master 
Mix (Thermo Fisher Scientific). DNA amplification was monitored on 
a QuantStudio 5 Real-Time PCR system (Applied Biosystems). GAPDH 
and pre-GAPDH transcripts were used as cytosolic and nuclear controls, 
respectively. The oligonucleotides used for the analyses are reported 
in Supplementary Table 9.

3’RACE
For each condition, equal amounts of total RNA were reverse tran-
scribed in a 20-µl reaction with the RevertAid First Strand cDNA Syn-
thesis Kit (Thermo Fisher Scientific), according to the manufacturer’s 
instructions, using 1 µl of 50 µM oligo dT-anchor RT primer. cDNAs were 
diluted to 1 ng µl−1, and the expression of each target was evaluated 
through RT−qPCR with PowerUp SYBR Green Master Mix (Thermo 
Fisher Scientific) using a gene-specific forward primer and the PCR 
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universal reverse primer. DNA amplification was monitored on the 
QuantStudio 5 Real-Time PCR system (Applied Biosystems). Unless 
otherwise specified in the figure legend, relative RNA quantity was 
calculated as the fold change (2−ΔΔCt) with respect to the experimental 
control sample set as 1 and normalized over GAPDH, used as an endog-
enous control. The oligonucleotides used for the analyses are reported 
in Supplementary Table 8.

ELK1 3′UTR APA reporter library
For the initial test, we cloned the ELK1 proximal 3’UTR and the first 
800 bp of ELK1 cryptic 3’Ext into the region downstream of the 
mGreenLantern coding sequence in a dual-fluorescent (mScarlet and 
mGreenLantern), dual-promoter reporter plasmid. We then transfected 
two groups of SK-N-BE(2) cells with our construct: one treated with 
1,000 ng ml−1 doxycycline and one untreated, and each group had trip-
licates. This cell line contains the SMARTvector, which enables TDP-43 
knockdown upon doxycycline treatment. One day after transfection, 
we combined triplicates together for RNA extraction and performed 
3’RACE to generate DNA samples. Subsequently, we submitted these 
samples for nanopore sequencing and analyzed the sequencing data to 
assess APA site usage. First, we used minimap2 version 2.28 (ref. 67) to 
perform alignment. Subsequently, we determined the polyadenylation 
site for each read by locating the sequence of 10 consecutive aden-
osines and their corresponding position in the alignment reference.

For the subsequent UG replacement experiment, we constructed 
a plasmid library. This cloning included three steps. (1) We inserted a 
restriction site between the mGreenLatern coding sequence and ELK1 
3’UTR within the construct. (2) We digested the construct with AfeI 
(New England Biolabs, R0652) and AccI (New England Biolabs, R0161), 
whose cutting sites are located at proximal 3’UTR and cryptic 3’Ext, 
respectively. Next, using Gibson assembly68, we assembled the digested 
plasmid backbone with the inserts (described below) to produce the 
library. Plasmids with different inserts were referred to as variants. (3) 
We used the restriction site inserted in the first step to incorporate a 
15-mer random barcode into each variant. After this, each variant in the 
library corresponded to one or more unique barcodes, which could be 
used to identify inserts during sequencing data analysis.

Each insert consisted of three distinct fragments: the first frag-
ment comprised the last 192 bp of ELK1 proximal 3’UTR, whereas the 
second and third fragments comprised the first 350 bp of ELK1 cryptic 
3’Ext. Moreover, the first and last 28 bp of each fragment were con-
served to enable Gibson assembly with adjacent fragments and the 
plasmid backbone. To emphasise the importance of the first 150 bp of 
cryptic 3’Ext within the second fragment, we focused on it in our results.

Before transfection, we conducted nanopore sequencing to 
identify each variant’s corresponding unique barcodes. We followed 
the protocol described above to transfect the plasmid library into 
SK-N-BE(2) cells with SMARTvector in four treatment groups (0, 
30 ng ml−1, 60 ng ml−1 and 1,000 ng ml−1 doxycycline). The protocol was 
performed in triplicate for each variant, and replicates were not com-
bined before RNA extraction. After obtaining the nanopore sequenc-
ing results, we used a custom script to extract the barcode sequence 
from each read to identify which insert the read should be aligned to. 
Reads were aligned, and the APA site usage was determined by using 
the method described above.

Variant design and analysis code are available at https://github. 
com/MaxChien1996/replace_UG_in_first_800_bp_of_ELK1_extended_3_ 
prime_UTR.

SH-SY5Y and SK-N-BE(2) TDP-43 knockdown for RNA-seq
SH-SY5Y and SK-N-BE(2) cells were transduced with a SMARTvector 
lentivirus (V3IHSHEG_6494503) containing a doxycycline-inducible 
shRNA cassette for TDP-43. Transduced cells were selected with 
puromycin (1 μg ml−1) for 1 week, before being plated as single cells  
and expanded to obtain a clonal population. Cells were grown in 

DMEM/F12 + GlutaMAX (Thermo Fisher Scientific) supplemented 
with 10% FBS (Thermo Fisher Scientific) and 1% penicillin−streptomycin 
(Thermo Fisher Scientific). For induction of shRNA against TDP-43, 
cells were treated with the following amounts of doxycycline hyclate 
(Sigma-Aldrich) and collected after 10 days:

For experiments in SH-SY5Y cells (curves), 75 ng ml−1

For experiments in SH-SY5Y cells (cycloheximide), 25 ng ml−1

For experiments in SK-N-BE(2) cells, 1,000 ng ml−1

RNA-seq
Strand-specific, poly(A)-enriched sequencing libraries for the  
‘Humphrey i3 cortical’ dataset were prepared using the KAPA mRNA 
Hyper Prep Kit. One hundred total nanograms of RNA was used as 
input material for poly(A)-positive mRNA capture. Fragmentation was 
performed for 6 minutes at 85 °C to obtain a target fragment size of 
300−400 bp, and 13 cycles of PCR amplification were performed. The 
resulting libraries were sequenced 2 × 150 bp on an Illumina NextSeq 
2000 machine.

RNA was extracted from i3Neurons (‘Zanovello i3 Cortical’) and 
SH-SY5Y and SK-N-BE(2) cells using the RNeasy Mini Kit (Qiagen) fol-
lowing the manufacturer’s protocol including the on-column DNA 
digestion step. RNA concentrations were measured by NanoDrop, 
and 1,000 ng of RNA was used for reverse transcription. Samples 
undergoing RNA-seq were furthermore assessed for RNA quality on a 
TapeStation 4200 (Agilent), resulting in an RNA integrity number (RIN) 
higher than 9.4 for all samples. Sequencing libraries were prepared 
with poly(A) enrichment using the TruSeq Stranded mRNA Prep Kit 
(Illumina) and sequenced on an Illumina HiSeq 2500 or NovaSeq 6000 
machine at UCL Genomics with the following specifics:

SH-SY5Y cells: 2 × 100 bp, depth >40 million per sample
SK-N-BE(2) and ‘Zanovello i3 Cortical’ cells: 2 × 150 bp, depth >40 

million per sample

RNA-seq data processing
‘Humphrey i3 Cortical’ samples were processed as previously 
described69 using the RAPiD-nf Nextflow pipeline. In brief, adapt-
ers were trimmed from raw reads using Trimmomatic70 version 
0.36, and reads were aligned to the GRCh38 genome build using 
gene models from GENCODE version 30 (ref. 71) with STAR72 ver-
sion 2.7.2a. The RAPiD-nf pipeline is available at https://github.com/ 
CommonMindConsortium/RAPiD-nf/.

The ‘Brown’ SH-SY-5Y, SK-N-BE(2) and i3Neuron datasets were pro-
cessed as previously described10. Unless otherwise stated, all short-read 
RNA-seq datasets were processed using the following pipeline. Raw 
reads in FASTQ format were quality trimmed for a minimum Phred 
score of 10 and otherwise default parameters using fastp73 (version 
0.20.1). Quality trimmed reads were aligned to the GRCh38 genome 
build using gene models from GENCODE version 40 (ref. 71) with STAR72 
(version 2.7.8a). Quality trimmed reads are used as input for any tools 
that require FASTQ files as input (for example, PAPA and Salmon). Our 
alignment pipeline is implemented in Snakemake74 and is available 
at https://github.com/frattalab/rna_seq_snakemake.

SLAM-seq
SLAM-seq was performed on cortical-like i3Neurons following proto-
cols adapted from Herzog et al.51. Samples were treated with 100 µM 
4SU on day 7 for 0, 1, 4, 8, 12 and 24 hours before immediate wash with 
PBS. Each timepoint had two replicates for both control and TDP-43 
knockdown, excluding 4 hours where one of the control replicates did 
not pass RNA quality controls and so was not submitted for sequencing.

RNA was extracted using the Qiagen RNA isolation and purification 
kit. RNA concentration was estimated using a NanoDrop Microvol-
ume Spectrophotometer (Thermo Fisher Scientific). After ensuring 
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an adequate amount of RNA in each sample, iodoacetamide (IAA) 
treatment was applied to each, facilitating the thiol modification of 
incorporated 4SU.

Sequencing libraries were prepared with the KAPA RiboErase RNA 
Hyper Kit and sequenced (2 × 250 bp) on an Illumina NovaSeq SP. Using 
the ‘rna_seq_snakemake’ alignment pipeline (https://github.com/ 
frattalab/rna_seq_snakemake), raw FASTQ files were quality trimmed 
using fastp73 with the parameter ‘qualified_quality_phred: 10’ and 
aligned without soft clipping to the GRCh38 genome build using STAR72 
(version 2.7.0f) with gene models from GENCODE version 34 (ref. 71). 
GRAND-SLAM (version 2.0.7b) was run on the aligned data using gene 
models from GENCODE version 34 (ref. 71) using the ‘-trim5p 10 -trim3p 
10’ parameter to ignore mismatches at the ends of reads. The output 
files containing the estimated new-to-total RNA ratios (NTRs) of each 
gene were used to estimate the half-life of each gene using the recom-
mended workflow in grandR75.

For analyses on specific isoform stability, the reads were aligned 
to a custom general transcription factor (GTF) containing all 3’UTR 
isoforms quantified by PAPA (see the ‘Identification of cryptic last 
exons with PAPA’ section) using the fastq2EZbakR pipeline (https:// 
github.com/isaacvock/fastq2EZbakR, version 0.2.0). Half-lives for 
the bins aligning to the ELK1 long and short UTR were calculated using 
the ‘EstimateFractions’ function from EZbakR76 version 0.0.0.9000 
to retrieve the fraction of old RNA. Decay constants and 95% confi-
dence intervals for each bin were calculated using a custom script 
(‘isoform_specific_analysis.Rmd’ in the ‘tdp43-apa’ repository) using 
weighted nonlinear regression. In brief, for each bin and condition, 
fraction old RNA estimates were inversely weighted proportional 
to the squared s.e. estimate, and nonlinear least-squares regression 
was performed to model the fraction remaining as an exponential 
decay function. We note that this method is used here to detect relative 
changes in RNA half-lives between conditions and not to provide the 
exact half-life estimates.

PAPA—pipeline to detect cryptic last exons
Although there are many tools for de novo alternative polyadenylation 
detection within 3’UTRs from RNA-seq data, all suffer from poor per-
formance with respect to matched 3’ end sequencing approaches77,78. 
These tools also cannot detect upstream poly(A) sites or define com-
plete last exon structure. Aptardi is a deep-learning-based approach 
to refine predicted 3’ ends of reference or assembled transcriptomes79 
but was excluded from a recent benchmarking study due to com-
pute times and resource requirements78. TECtool (version 0.4) trains 
a machine learning model on annotated last exons to classify novel 
intronic last exons defined upstream of poly(A) sites from the PolyASite 
atlas24 but can only define ALEs and only supports single-end RNA-seq 
data, substantially impacting sensitivity. Inspired by findings that 
general purpose transcript assemblers can sufficiently define indi-
vidual exons80 and a previous workflow combining matched short-read 
and 3’ enriched sequencing18, our approach extracts last exons from 
StringTie19 assembled transcripts and filters based on proximity to 3’ 
end sequencing-derived poly(A) sites. Additionally, we rescue events 
with poly(A) signal hexamers near the 3’ end, an important feature in 
discriminating 3’UTRs from other transcriptomic regions28 that can also 
mitigate incomplete coverage of cellular contexts and experimental 
conditions by 3’ sequencing databases.

Pipeline setup
Transcript assemblies for individual samples were generated using 
StringTie 2.1.7 (annotation-guided mode). Grouping by experimen-
tal condition, a redundant assembly was generated using GffCom-
pare81 0.11.2. Next, condition-wise, transcript-level mean transcripts 
per million (TPMs) were calculated, assigning 0 TPM if absent in a 
sample. Transcripts were filtered for >1 mean TPM to improve global 
assembly accuracy82. Next, we extracted last exons from sample-wise 

assembled transcripts and identified novel events that satisfy the 
following criteria:

Predicted PAS does not overlap annotated exons.
ALEs—last intron is contained within annotated introns with exactly 

matching 5’ss
IPAs—last exon overlaps annotated exon with a matching 5’ end (exact 

for internal exons, within 100 nucleotides (nt) for first exons due to 
known imprecision of assembled transcript start sites)

3’Ext—overlaps annotated last exon with exactly matching 5’ ends 
and extends the longest exon at the locus

IPA and 3’Ext—extends annotated exon by minimum distance (default 
100 nt)

Filtered novel last exons were then merged by condition into sin-
gle GTFs to select a condition-wise representative prediction based 
on 3’ end precision. Last exon 3’ ends within 100 nt of PolyASite 2.0 
database20 PASs were retained and updated to database coordinates. 
Alternatively, last exons containing any of the 18 poly(A) signal hexam-
ers21 in the final 100 nt were retained, selecting the exons with hexamers 
closest to the expected 21-nt upstream position.

We then combined the filtered novel and annotated last exons into 
a combined transcriptome reference. We then defined ‘last exon iden-
tifiers’ based on overlapping regions. Overlapping last exons of each 
gene were assigned a common identifier, with 3’Exts receiving a unique 
identifier to the exons the annotated last exons they extend. Regions 
overlapping annotated first or internal exons were removed to retain 
only unique last exon sequences. Last exons with 3’ ends overlapping 
annotated first/internal exons were excluded.

Transcript sequences were extracted using GffRead81 0.12.1 and 
used to construct a decoy-aware transcriptome index using Salmon22 
1.5.2 (GRCh38 genome build as decoys). Samples were subsequently 
quantified using Salmon22 1.5.2 (‘–gcBias’ and ‘–seqBias’ flags enabled). 
TPM values were summed by the last exon identifier, and estimated 
counts were generated with tximport83 1.26.0 (‘countsFromAbunda
nce=lengthScaledTPM’) for differential isoform usage testing with 
DEXSeq23 1.44.0. PAS usage was calculated by dividing last exon isoform 
expression (TPM) by total gene isoform expression.

PAPA 0.2.0, available at https://github.com/frattalab/PAPA, is 
implemented as a Snakemake74 pipeline using PyRanges84 0.0.115 
for interval operations and pyfaidx85 0.6.2 and BioPython86 1.79 for 
genomic sequence operations. Conda environments are used for 
dependency management.

Identification of cryptic last exons with PAPA
We ran PAPA in ‘identification’ mode to predict novel last exons in the 
i3Neuron, ‘Zanovello’ SH-SY5Y and SK-N-BE(2) datasets. We provided 
GENCODE version 40 (ref. 71) annotations filtered for protein-coding 
and lncRNA gene transcripts with a ‘transcript support level’ value ≤ 3 
and without the ‘mRNA_end_NF’ tag87.

Predicted last exon GTF files were combined into a single GTF 
using PAPA’s ‘combine_novel_last_exons.py’ script. All datasets were 
then quantified and assessed for differential usage using a unified 
transcriptome reference combining novel and annotated last exons 
from the filtered GTF. Differential usage was performed using the 
standard DEXSeq workflow, with the differentiation date added as a 
covariate for the ‘Klim i3 motor’ dataset40. We defined cryptic APAs 
as DEXSeq adjusted P < 0.05, mean control usage < 10% and change in 
mean usage > 10% (TDP-43 knockdown, control). We further manually 
curated cryptic IPAs, as manual inspection suggested frequent artifacts 
at regions of reduced coverage in intron retention loci.

Cryptic PAS validation using PATRs
TDP-43 knockdown samples from all in vitro datasets were used. 
Soft-clipped alignments were extracted and 3’ ends inferred based on 

http://www.nature.com/natureneuroscience
https://github.com/frattalab/rna_seq_snakemake
https://github.com/frattalab/rna_seq_snakemake
https://github.com/isaacvock/fastq2EZbakR
https://github.com/isaacvock/fastq2EZbakR
https://github.com/frattalab/PAPA


Nature Neuroscience

Article https://doi.org/10.1038/s41593-025-02050-w

the strandedness of the RNA-seq protocol (reads with soft clips at both 
ends were excluded from unstranded protocols). PATRs were defined 
as soft-clipped regions ≥6-nt with ≥80% tail nucleotide content30  
(A for rightmost/plus strand; T for leftmost/minus strand) or 3−5-nt 
overhangs with 100% tail content, with the 3’ most-aligned coordi-
nate defining the putative PAS.

PATRs were pooled across datasets and clustered using an iterative 
approach approximating PolyASite’s algorithm20. PASs were extended 
±12 nt and overlapped, selecting the position with highest read support 
as representative. Reads within 12 nt of the representative coordinate 
were collapsed into a cluster, with the process repeated until all PATRs 
were assigned.

For cryptic PAS validation, we generated 1,000 covariate-matched 
annotated PAS samples by stratified sampling without replacement 
using ‘matchRanges’ from nullranges88 version 1.8.0. We matched for 
expression (log2(median TPM + 1)) and the number of unique PASs 
(separated by ≥12 nt), assessing covariate balance using the ‘bal.tab’ 
method from cobalt89 version 4.5.5.

We then computed distances between annotated/cryptic PASs 
and nearest PATR clusters, assigning 0 for overlaps. We reported over-
lap if one or more PASs passed the distance threshold (10, 25, 50, 100 
and 200 nt). At each threshold, we computed a group-wise fraction of 
overlapping events ( p̂i) and computed two-sided empirical P values to 
assess whether cryptic and annotated PASs arose from the same dis-
tribution as follows:

p = 1
N

N
∑
i=1

I(| ̂pi − μ̂| ≥ |p̂obs − μ̂|)

where N = 1,000 (total annotated samples), μ̂ = annotated distribution 
mean p̂i, p̂obs = cryptic PAS p̂i and I(.) is an indicator function.

The PATR extraction pipeline, available at https://github.com/ 
SamBryce-Smith/bulk_polyatail_reads (version 0.1.0), is implemented 
using Snakemake76 version 7.32.4, Python 3.10.13, PyRanges86 version 
0.0.129, pysam version 0.22.0, pandas version 2.1.4, NumPy version 
1.26.3, pyarrow version 15.0.0 and fastparquet version 2024.2.0. Cryptic 
PAS validation scripts are available under the ‘preprocessing’ directory 
at https://github.com/frattalab/tdp43-apa/.

DaPars2 comparison
Transcript models for ELK1, SIX3 and TLX1 were extracted from 
National Center for Biotechnology Information RefSeq version 110 
annotation. 3’UTR and last exons were overlapped with 3’Ext intervals. 
If any overlap was detected, the 3’ end coordinate of the annotated 
interval was updated to the 3’Ext 3’ end. Upstream transcript inter-
vals were otherwise unmodified. We then analyzed the ‘Seddighi i3 
Cortical’ dataset with DaPars2 (ref. 31) using a Snakemake pipeline 
developed for the APAeval project78 (available at https://github.com/
iRNA-COSI/APAeval). Two separate runs with the original or updated 
transcript models were performed. BED files of predicted PASs and 
their relative usages parsed from the DaPars2 output file were used 
for downstream analysis, extracting the distal events to represent 
cryptic 3’Ext predictions.

TDP-43 iCLIP analysis
The SH-SY5Y TDP-43 iCLIP data (ArrayExpress: E-MTAB-11243) were 
generated and processed as previously described10. iCLIP peaks from 
the two independent replicates were merged into non-redundant 
intervals for all subsequent analysis.

Cryptic events were defined as last exon isoforms passing cryptic 
thresholds in any in vitro dataset. The probability of detecting TDP-43 
binding events via iCLIP is influenced by the abundance of target RNAs, 
but, by pooling cryptic events across datasets, we cannot control for the 
confounding influence of RNA expression between groups. We, there-
fore, defined background events as isoforms that were assessed for 

differential usage in all SH-SY5Y datasets and had an adjusted P > 0.05 
across all datasets, which biases against observing enriched binding 
in the cryptic group.

For 3’Ext events, the most distal annotated poly(A) site is selected 
to represent the proximal site, and background events represent loci 
with a predicted novel 3’UTR extension. For other event categories, 
background events include annotated and novel events. Our approach 
to define a common last exon reference across datasets can result 
in non-redundant intervals being predicted for the same last exon 
isoform. We, therefore, implemented a collapsing strategy to define 
a single representative interval for each event.

First, we filtered for novel predictions matching a PolyASite refer-
ence PAS. If distinct reference PASs are reported for the same isoform, 
the site predicted in the most independent datasets is selected as 
representative. If distinct sites are detected in the same number of 
independent datasets, the most proximal site is arbitrarily selected. 
PolyASite PAS intervals represent clusters. If distinct 3’ end predic-
tions overlap with the same PAS cluster, the prediction closest to the 
PolyASite representative coordinate is selected (most distal prediction 
is arbitrarily selected in case of ties).

If no isoforms matched a PolyASite PAS, we selected a representa-
tive prediction whose poly(A) signal motif minimizes the deviance from 
the characteristic position 21 nt upstream of the PAS. In case of ties, the 
most proximal prediction was arbitrarily selected. As distinct intervals 
still remained for background ALEs and IPAs after 3’ end collapsing, we 
arbitrarily selected the most distal 3’ end for nine background IPAs and 
the most proximal 5’ end for four background ALEs.

We constructed TDP-43 binding metaprofiles by extending 
genomic landmarks by 500 nt in both directions and computing 
per-position coverage by iCLIP peaks using BEDTools90 version 2.31.0. 
We then calculated mean coverage (fraction of events with an overlap-
ping peak) and s.e. for each position relative to the landmark. We plot-
ted LOESS-smoothed (‘span’ = 0.1) coverage and confidence intervals 
(±1 s.e.).

De novo motif enrichment analysis
To perform de novo motif enrichment, we adapted PEKA32, which 
identifies kmers with positional enrichment at iCLIP peaks relative to 
background crosslink sites while normalizing to the general occurrence 
in the surrounding genomic context. Therefore, we can substitute 
iCLIP peaks and global crosslink sites for cryptic and background 
landmarks, respectively, to identify positionally enriched kmers with 
respect to cryptic landmarks. For all comparisons, we ran PEKA to 
search for enriched 6-mers in the proximal window of interest set to 
250 nt (the broad window in which iCLIP peaks were observed), and 
the distal window was set to 500 nt (to maintain consistency with the 
overall search space for iCLIP peaks). The ‘percentile’ flag was set to 0 
to switch off thresholding of background regions based on read count, 
and the ‘relpos’ flag was set to 0 to consider all positions in the proximal 
window when calculating the enrichment score.

Preferred TDP-43 binding 6-mers were extracted from  
Halleger et al.6. In brief, the 6-mers were defined using PEKA as the top 
20 most enriched kmers around intronic iCLIP crosslinks across all 
wild-type, A326P, G294A, G335A, M337P and Q331K and a 316del346 
GFP−TDP-43 in HEK293 cells. The 20 were subsequently separated 
into the following three groups based on a gradient of enrichment in 
wild-type and G335A TDP-43 with respect to A326 and 316del346 vari-
ants and their consensus sequence:

YG-containing [UG]n 6-mers: UGUGUG, GUGUGU, UGUGCG, 
UGCGUG, CGUGUG, GUGUGC

YA-containing [UG]n 6-mers: AUGUGU, GUAUGU, GUGUAU, UGU-
GUA, UGUAUG, UGCAUG

AA-containing [UG]n 6-mers: GUGUGA, AAUGAA, GAAUGA, UGAAUG, 
AUGAAU, GUGAAU, GAAUGU, UUGAAU
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where ‘Y’ corresponds to a pyrimidine nucleotide. To assess their over-
representation among enriched 6-mers relative to cryptic landmarks, 
we performed a one-sided GSEA using fgsea42 version 1.24.0 with default 
settings for each cryptic landmark. The three 6-mer groups and the 
union of all three groups were provided as input pathways, and kmers 
were ranked by their PEKA score. After independent runs for each land-
mark, Benjamini−Hochberg adjusted P values were calculated with 
respect to all tested landmarks and 6-mer sets and used to evaluate 
statistical significance.

To generate maps of coverage of specific kmers, we used cv_cover-
age91 version 1.1.0 (https://github.com/ulelab/cv_coverage) to scan for 
occurrences of the YG-containing [UG]n 6-mers in a 500-nt window 
around cryptic and background landmarks, disabling weighting the 
occurrence by cDNA count. For coverage plots, the percentage occur-
rences of each 6-mer were summed separately for the cryptic and 
background regions. The percentage occurrences were converted to 
mean coverages and visualized as described for iCLIP maps.

The adapted PEKA code is available at the ‘output_mods’ branch 
of the following forked copy of the PEKA repository: https://github.
com/SamBryce-Smith/peka. A Snakemake pipeline to run PEKA and 
cv_coverage is available in the ‘motifs/peka_snakemake’ directory of 
the ‘tdp43-apa’ repository.

Postmortem RNA-seq analysis—FACS-seq data processing
Sequenced reads from FACS-sorted frontal cortex neuronal nuclei34 
were processed as described in Brown et al.10. The data are available in 
the Gene Expression Omnibus (GEO) at GSE126543.

Quantification of cryptic last exons in postmortem  
FACS-seq data
Nuclear RNA-seq libraries contain both nascent and processed RNA. 
We, therefore, constructed decoy transcript models that reflect 
alternative processing decisions at ALE and IPA loci (for example, 
intron retention) to limit the confounding effect of nascent RNAs on 
transcript quantification22.

First, we extracted cryptic ALE and IPA coordinates from the uni-
fied transcript reference used to quantify cell culture datasets. We 
then generated decoy transcript models separately for each event 
type. For IPA events, the unique cryptic IPA region was extended to 
incorporate the adjacent upstream annotated internal exon. Then, a 
‘spliced’ decoy transcript that traverses the annotated internal exon 
to the downstream annotated internal exon was generated, alongside 
an ‘intron retention’ decoy transcript that contains the same pairs of 
internal exons merged with the intervening intron. For ALEs, a ‘retained 
intron’ decoy transcript was generated that corresponds to the com-
plete intronic region in which the ALE is contained. No decoy transcript 
models were generated for 3’Ext, 3’shortening and ‘complex’ events 
or for ALEs that are the most distal annotated isoform of their gene. 
Decoy transcript and gene identifiers were appended with suffixes 
to differentiate from cryptic APAs and annotated transcripts. Finally, 
the decoy transcripts and cryptic APAs were returned to the unified 
transcript reference to generate a decoy-augmented last exon refer-
ence for quantification.

The decoy-augmented reference was quantified with Salmon ver-
sion 1.8.0 (ref. 22) using the ‘salmon’ sub-pipeline available at https:// 
github.com/frattalab/rna_seq_single_steps. As with PAPA, samples 
are quantified against a decoy-aware transcriptome index with full 
genome sequence (GRCh38 build) used as decoys92 and the ‘–gcBias’ 
and ‘–seqBias’ flags enabled.

Calculation of percent poly(A) usage (PPAU) was performed 
using a copy of the ‘tx_to_polyA_quant.R’ script from the PAPA reposi-
tory. Sample-wise differences in PPAU were calculated by subtracting 
PPAU in the TDP-43-positive population from the TDP-43-negative 
population (that is, a positive difference indicates enrichment in the 
TDP-43-depleted population). Cryptic APAs with a median sample-wise 

enrichment of more than 5% were considered as enriched. Scripts to 
construct decoy transcripts and analyze quantifications are available 
under the ‘postmortem’ subdirectory at https://github.com/frattalab/ 
tdp43-apa.

NYGC RNA-seq data
The sequencing libraries were generated35,93 and processed13 as pre-
viously described. Samples were classified into disease subtypes as 
previously described13. In brief, FTD subtypes were classified by pathol-
ogy according to the presence of TDP-43 inclusions (FTLD-TDP), FUS 
or Tau aggregates. Patients with ALS were subcategorized based on 
presence (ALS-non-TDP) or absence (ALS-TDP) of reported SOD1 or 
FUS mutations. The following samples were considered as regions 
where TDP-43 pathology (and specific cryptic junction expression) 
is expected: motor (ALS-TDP), frontal and temporal cortex samples 
(FTLD-TDP and ALS-TDP) and cervical, lumbar and thoracic spinal cord 
samples (ALS-TDP).

We opted to quantify ALE events using junction reads, which pro-
vide direct quantification of the occurrence of a splicing event. As of 
version 0.2, PAPA does not directly report splice junctions associated 
with ALE events. However, as the filtering criteria applied by PAPA 
require putative ALE events to have a terminal splice junction with a 
direct match to an annotated 5’ss, it is possible to infer splice junctions 
from reference annotation using just the reported last exon coordi-
nates. For ALEs fully contained within annotated introns, the splice 
junction is defined from the intron start to the start of the ALE. If last 
exons are distal to the annotated gene, then the closest upstream anno-
tated intron is found. The splice junction is subsequently defined as the 
region from the intron start to the start of the ALE. Finally, for annotated 
ALEs, all annotated introns that terminate at the ALE are reported 
as splice junctions for the event. The above steps are implemented 
in a custom script, ‘last_exons_to_sj.py’, available at the ‘tdp43-apa’ 
GitHub repository.

Splice junctions for cryptic ALEs and cryptic splice junctions 
identified in cortical-like i3Neurons13 were quantified across the NYGC 
RNA-seq cohort by extracting counts for provided junctions from the 
‘.SJ.out.tab’ files produced by STAR72. The code is implemented in the 
‘bedops_parse_star_junctions’ version 0.1.0 Snakemake pipeline and 
is available at https://github.com/SamBryce-Smith/bedops_parse_ 
star_junctions.

We defined detection criteria to prioritize cryptic splice junctions 
that are specifically in tissue types and samples with expected TDP-43 
pathology. Junctions are considered expressed if at least two spliced 
reads are detected in a sample. Junctions are considered selectively 
expressed if expressed in at most 0.5% of all samples where TDP-43 
pathology is not expected and in at least 1% of samples where TDP-43 
pathology is expected. We note that such criteria will exclude events 
with enriched expression in tissues with expected TDP-43 proteinopa-
thy but that have basal expression in unknown cell types not repre-
sented in our in vitro compendium. Such events may still have relevance 
in mechanisms of disease in specific cell types but are less suitable for 
discriminating samples with TDP-43 proteinopathy.

Ribo-seq analysis
i3Neuron Ribo-seq data were generated and processed as previously 
described13. Uniquely mapped reads were assigned to genes based on 
the union of annotated ‘CDS’ entries in the GENCODE version 34 stand-
ard annotation released using featureCounts94 version 2.0.1. Differen-
tial expression between TDP-43 knockdown and control was performed 
using DESeq2 (ref. 95) version 1.38.3, and differentially translated 
genes were defined based on a Benjamini−Hochberg adjusted P value 
threshold of 0.05. Any last exon passing our cryptic criteria in at least 
one of the i3 Neuron datasets (Brown i3 cortical, Seddighi i3 cortical, 
Humphrey i3 cortical) was considered for intersection with differen-
tially translated genes.
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GSEA was performed using fgsea42 version 1.24.0 with default 
settings. Cryptic 3’Ext, IPA and ALE containing genes were provided 
as input pathways, and moderated fold changes were calculated with 
the ‘lfcShrink’ function from the DESeq2 package using the default 
apeglm96 method as the shrinkage estimator to rank genes. A threshold 
of 0.05 Benjamini−Hochberg adjusted P value was used to determine 
statistical significance.

Read counting was performed using the ‘feature_counts’ 
sub-pipeline available at https://github.com/frattalab/rna_seq_sin-
gle_steps. Custom scripts used to perform differential expression 
and pathway analysis are available at https://github.com/frattalab/ 
tdp43-apa.

For cross-referencing with differential RNA expression, we used 
differential expression analysis from cortical-like i3Neurons performed 
as previously described13. Cryptic last exon-containing genes were 
highlighted if they passed the statistical significance threshold in the 
Ribo-seq differential expression analysis.

Analysis of ELK1 transcription factor activity
ELK1 target genes in HeLa cells were accessed from the ChIP-Atlas97 on 
15 November 2023. We used the ‘Target genes’ module to obtain a list 
of target genes that have a ChIP–seq peak within ±1 kb of transcription 
start sites. The resulting list contained two HeLa datasets (GSM608163 
and GSM935326) and was filtered to target genes identified in both 
datasets. Given a reported redundancy of function between ELK1 and 
other members of the TCF family98 (ELK3 and, particularly, ELK4), we 
also attempted to define a unique set of ELK1 target genes. ELK4 target 
genes in HeLA cells were accessed from ChIP-Atlas on 29 November 
2023 using the same parameters. The resulting list contained three 
HeLa datasets (GSM608161, GSM608162 and GSM935351), and we again 
filtered for target genes identified in all datasets. ELK3 HeLa ChIP–seq 
data were not available through ChIP-Atlas at the time of publication 
and were not considered for further redundancy. ELK3 RNA levels 
are 10× lower than ELK3 and ELK4 in HeLa TDP-43 knockout cells49, so 
we anticipate that this is unlikely to affect our conclusions. ELK1 and 
ELK4 target gene lists were intersected to define common and unique 
target genes for each transcription factor. Final target gene lists used 
are reported in Supplementary Table 5.

RNA-seq data from HeLa cells with TDP-43 knockout49 were 
accessed from GSE136366. The data were processed and differen-
tial expression was performed as previously described10. Genes were 
ranked by DESeq2’s test statistic (log2 transformed fold change divided 
by the s.e. of the fold change) after removing genes with differential 
splicing upon TDP-43 knockout, where we can expect to attribute any 
changes in gene expression to TDP-43 loss of function. Differentially 
spliced genes were defined using MAJIQ99, considering any genes with 
a probability greater than 0.95 as differentially spliced. The target gene 
sets described above were used as input pathways to fgsea42 version 
1.24.0 using default settings.

Subcellular Frac-seq analysis
The neural progenitor cell short-read Frac-seq data56 were down-
loaded from the GEO at accession number GSE244655. RNA-seq qual-
ity control and processing was performed as previously described 
(see ‘RNA-seq data processing’ section). The PAPA index was used to 
quantify ELK1 isoform expression with Salmon version 1.8.0, using 
the ‘salmon’ sub-pipeline available at https://github.com/frattalab/
rna_seq_single_steps. TPM values for the ELK1 3’Ext were pooled across 
ribosome-associated fractions (monosome, light polysome and heavy 
polysome), and PPAU was recalculated for each fraction and repli-
cate. All ELK1 3’Ext PPAU values were then normalized to the cytosol 
PPAU within each replicate for subsequent visualization. Statistical 
significance was evaluated using a two-sided one-sample t-test after 
log transforming the PPAU ratios, testing the null hypothesis that the 
mean is equal to log(1).

Statistics and reproducibility
Our study design involved multiple stages. First, we used transcriptome- 
wide hypothesis testing of high-throughput RNA-seq datasets to iden-
tify a panel of TDP-43-sensitive cryptic polyadenylation events. We 
performed this screen in neuronal cell models, where we could reli-
ably deplete TDP-43 levels to mimic nuclear loss in disease. We then 
screened this panel in specialized and bulk postmortem tissue datasets 
to highlight events whose expression patterns were consistent with 
disease and TDP-43 pathology status. Finally, we performed targeted 
experimental assays to validate observations from high-throughput 
sequencing and to investigate the molecular consequences of specific 
cryptic polyadenylation events.

Sample sizes for postmortem tissue analysis (Fig. 2b) were deter-
mined by the availability of samples at the time of analysis. Sample 
size for the NYGC ALS Consortium was determined by the number of 
available samples at the time of analysis (corresponding to a subset 
of the 21 February 2023 data freeze) as data collection is still ongoing. 
Sample sizes for novel omics datasets and experimental validation were 
determined based on previous studies succeeding with similar aims to 
identify novel isoforms, perform targeted validation and assess their 
downstream effects on RNA and protein expression10.

All statistical tests were performed two-sided. One-sample t-tests 
were performed using log-transformed ratios of within-replicate, 
control-normalized values (mean count for FISH experiments and 
percent PAS usage for Frac-seq). Log transformation is a standard 
transformation to bring a distribution closer to a normal distribution, 
but the assumption of normally distributed transformed data was not 
formally tested. For Student’s unpaired t-test (3’RACE experiments), 
equal variances were assumed, and the data distribution was assumed 
to be normal, but this was not formally tested. Unless otherwise stated, 
the Benjamini−Hochberg multiple-testing correction method was used 
to compute ‘adjusted’ P values.

Randomization was not used in this study, as most of the analyses 
(experimental and omics-based) were carried out in cell lines that are 
inherently homogenous. Randomization was not applicable in post-
mortem analyses as the variable of interest (disease status and expected 
TDP-43 pathology) is an observed variable, and no intervention was 
performed. No data were excluded from analysis. FISH images were 
analyzed blinded to TDP-43 depletion status. For all other experiments, 
the investigators were not blinded to experimental condition or disease 
status during experimentation and analysis.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
This study analyzes existing and newly generated datasets. All exist-
ing datasets are publicly available from the accessions reported 
below. ‘Brown’ i3Neuron, SH-SY5Y and SK-N-BE(2) datasets are avail-
able through the European Nucleotide Archive (ENA) under acces-
sion PRJEB42763. The SH-SY5Y TDP-43 iCLIP data are available at the 
ENA under accession PRJEB49480 or at ArrayExpress under acces-
sion E-MTAB-11243. ‘Seddighi’ i3Neuron RNA-seq, i3Neuron nanopore 
direct RNA-seq and i3Neuron Ribo-seq data can be accessed at the 
Alzheimer’s Disease Workbench: https://fair.addi.ad-datainitiative. 
org/#/data/datasets/mis_spliced_transcripts_generate_de_novo_ 
proteins_in_tdp_43_related_als_ftd_00005. The HeLa TDP-43 knock-
out (GSE136366), the FACS-sorted frontal cortex neuronal nuclei 
(GSE126543) and the ‘Klim’ iPSC-derived motor neurons (GSE12156) 
can be accessed at the GEO. Raw ChIP–seq data for ELK1 (GSM608163 
and GSM935326) and ELK4 (GSM608161, GSM608162 and GSM935351) 
in HeLa cells can also be accessed through the GEO or in processed 
format as used in this study via ChIP-Atlas (https://chip-atlas.org/). 
The short-read neural progenitor cell Frac-seq data56 were downloaded 
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from the GEO at accession GSE244655. RNA-seq data generated by 
the NYGC ALS Consortium and used in this study can be accessed 
through the GEO (GSE137810, GSE124439, GSE116622 and GSE153960). 
To request immediate access to new and ongoing data generated by the 
NYGC ALS Consortium and for samples provided through the Target 
ALS Postmortem Core, a genetic data request form can be completed 
at ALSData@nygenome.org.

All sequencing datasets generated in this study have been deposited 
at the GEO: ‘Zanovello i3Neuron’ (GSE296710), ‘Humphrey i3Neu-
ron’ (GSE296714), ‘Zanovello SH-SY5Y CHX’ (GSE296713), ‘Zanovello 
SH-SY5Y curve’ (GSE296712), ‘Zanovello SK-N-BE(2) curve’ (GSE296711) 
and i3Neuron SLAM-seq (GSE296716). An archive of minimal pro-
cessed data required to reproduce analysis and figures presented 
in this paper is available from Zenodo100 (https://doi.org/10.5281/
zenodo.15538002). Source data are provided with this paper.

Code availability
All visualization and statistical testing were performed in R101 version 
4.3.2 using ggplot2 (ref. 102) version 3.4.4, ggpubr103 version 0.6.0, 
ggprism104 version 1.0.4 and ggrepel105 version 0.9.4 packages. Pre-
processing for visualization and generation of supplementary tables 
was performed using tidyverse106 version 2.0.0, writexl107 1.4.2 and 
data.table108 version 1.14. Unless otherwise stated, analyses requir-
ing genomic interval operations or queries with bioinformatics data 
formats were performed in Python 3.10.11 using PyRanges84 0.0.127, 
pandas109 version 2.0.2 and NumPy110 version 1.23.

All custom analysis code can be accessed at GitHub with specific ver-
sions archived at Zenodo. Alternative repositories for specific analyses 
are reported below and in the relevant Methods sections. Analysis and 
visualization code, along with conda111 and renv112 environments for 
dependency management, can be accessed at https://github.com/ 
frattalab/tdp43-apa (https://doi.org/10.5281/zenodo.15210472). The 
‘salmon’ ‘feature_counts’ pipelines are available at https://github. 
com/frattalab/rna_seq_single_steps (https://doi.org/10.5281/zenodo. 
15210438). The splice junction counting pipeline is available at 
https://github.com/SamBryce-Smith/bedops_parse_star_junctions 
(https://doi.org/10.5281/zenodo.15209898). The PAPA Snakemake 
pipeline is available at https://github.com/frattalab/PAPA (https:// 
doi.org/10.5281/zenodo.15210362). The poly(A)-tail-containing read 
extraction Snakemake pipeline is available at https://github.com/ 
SamBryce-Smith/bulk_polyatail_reads (https://doi.org/10.5281/ 
zenodo.15210306). The code for ELK1 3’UTR reporter design and analy-
sis is available at https://github.com/MaxChien1996/replace_UG_in_ 
first_800_bp_of_ELK1_extended_3_prime_UTR (https://doi.org/10.5281/ 
zenodo.15413618). The Snakemake RNA-seq processing and align-
ment pipeline is available at https://github.com/frattalab/rna_seq_ 
snakemake (https://doi.org/10.5281/zenodo.15463283).
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Extended Data Fig. 1 | 3’ RACE validation of cryptic APAs in i3Neurons.  
RT-qPCR analysis after 3’RACE for the indicated 3’UTRs upon TDP-43 depletion 
(“TDP-43 KD”) in i3Neurons. The RNA expression levels were normalized against 
GAPDH mRNA and expressed as relative fold change with respect to the control 
condition (“Control”) set to a value of 1. Data are represented as the mean of the 
fold change ± standard deviation. n=4 biological replicates. Statistical analyses 
were performed using two-sided, Student unpaired t-test (n.s. p>0.05, * p<0.05, 
** p<0.01, **** p<0.0001). ALE: alternative last exon (s short, l long), 3’Ext: 3’UTR 

extension, IPA: intronic polyadenylation. Exact p-values are reported in the  
form (canonical, ALE/IPA/3’Ext/ALE short, ALE long). STMN2 (p = 2.804×10⁻⁸,  
3.280×10⁻⁵). SYNJ2 (p = 7.577×10⁻⁵, 6.916×10⁻⁶). ARGHAP32 (p = 1.536×10⁻⁴,  
6.094×10⁻¹⁰, 2.018×10⁻⁴). PHF2 (p = 6.727×10⁻⁴, 1.680×10⁻⁴, 9.785×10⁻⁵).  
ELK1 (p = 8.711×10⁻¹⁰, 2.295×10⁻⁶). TLX1 (p = 1.271×10⁻⁴, 6.779×10⁻⁶). SIX3  
(p = 3.248×10⁻³, 3.711×10⁻³). SIN3B (p = 1.735×10⁻¹, 3.490×10⁻⁴). CNPY3  
(p = 8.970×10⁻⁴, 5.032×10⁻⁸).

http://www.nature.com/natureneuroscience
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Extended Data Fig. 2 | ELK1 3’-UTR APA reporter library. A). ELK1 Cryptic 
PAS usage in control (‘CTRL’) conditions in a series of reporters with varying 
changes in UG content (x-axis, %). Original reporter (0); reporters with increasing 
amounts of UG deletion (20, 24, 32, 48, 56, 60, 96); the reporter where UG content 

is increased (92). B). Cryptic PAS usage in control and severe TDP-43 knockdown 
conditions for the original reporter (0), the reporter with increased UG content 
(92) and the reporter with the most UG deletion (96).

http://www.nature.com/natureneuroscience
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Extended Data Fig. 3 | Consistency of enriched/selective ALEs between FACS-
seq and NYGC datasets. A). Overlap between ALEs passing enrichment threshold 
in the ‘Liu’ FACS-seq data34 (Fig. 2a) and splice junctions of ALEs passing selective 
detection thresholds in the New York Genome Centre (NYGC) ALS Consortium 
dataset (Fig. 2b). Cryptic ALEs in each intersection group are labelled directly 
underneath the event count. B). Heatmap of PAS usage in post-mortem FACS-seq 
data34 for NYGC-specific ALEs. Cells are labelled with and coloured in proportion 
to the magnitude of the sample-wise difference in PAS usage between TDP-43 

depleted (TDPnegative) and TDP-43 positive (TDPpositive) nuclei. Rows are 
arranged in descending order of the median sample-wise difference in usage 
(TDPnegative - TDPpositive). Columns represent individual patients within 
the cohort. C). Detection statistics for FACS-seq specific ALEs in the NYGC ALS 
Consortium. ALEs are sorted in descending order of the detection enrichment 
ratio and bars are coloured according to expected presence (gold, ‘True’) or 
absence (grey, ‘False’) of TDP-43 proteinopathy. ALEs are considered detected if 
at least 2 junction reads were present in a sample.

http://www.nature.com/natureneuroscience
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Extended Data Fig. 4 | Subcellular fractionation of SH-SY5Y upon TDP-43 
depletion. A). Western blots to evaluate the decrease of TDP-43 protein upon 
its depletion in SH-SY5Y cell line; Tubulin was used as loading control. For 
each experimental condition, two technical replicates were loaded on the gel. 
n=3 biological replicates. B). Bar-plots showing the percentage in the nuclear 
and cytoplasmic fractions in SH-SY5Y cell line for selected targets in control 
condition (“Ctrl”) or upon TDP-43 depletion (“TDP-43 KD”) detected through 
qRT-PCR analysis. GAPDH and pre-GAPDH were used as cytoplasmic and nuclear 
controls, respectively, for cell fractionation. STMN2 Cryptic, a well-reported 
cryptic exon, shows predominant cytoplasmic localization. The relative 
RNA distribution in the bars is represented as mean ± standard deviation. 
n=3 biological replicates. Statistical analyses were performed using Student 
unpaired t-test (n.s. p>0.05, * p<0.05, ** p<0.01, **** p<0.0001). GAPDH p-value  

(3 d.p.): 0.865, pre-GAPDH p: 0.936, STMN2 Cryptic p: 0.516. C). RT-qPCR 
analysis after 3’RACE on the nuclear fraction of SH-SY5Y cell line upon TDP-43 
depletion (“TDP-43 KD”). The levels of ELK1 canonical (“Canonical”) and cryptic 
(“3’Ext”) isoforms are expressed as relative fold change with respect to the 
control condition (“Control”) set to a value of 1. Data are represented as the mean 
of the fold change ± standard deviation. n=3 biological replicates. Statistical 
analyses were performed using Student unpaired t-test (* p<0.05). 3’Ext:  
3’UTR extension. ELK1 Canonical p-value (3 d.p.): 0.023, ELK1 3’Ext p: 0.041.  
D). Bar-plots showing the percentage in the nuclear and cytoplasmic fractions 
in SH-SY5Y cell line upon TDP-43 depletion for ELK1 canonical (“Canonical”) and 
cryptic (“3’Ext”) isoforms, as detected through qRT-PCR analysis. The relative 
RNA distribution in the bars is represented as mean ± standard deviation. n=3 
biological replicates. 3’Ext: 3’UTR extension.

http://www.nature.com/natureneuroscience
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 

in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection No specialised software was used for data collection

Data analysis The following software and annotation versions were used for the preprocessing of the 'Humphrey i3 Cortical' dataset: 

Trimmomatic 0.36 

STAR 2.7.2a 

GRCh38 genome build 

Gencode v30 transcript annotations 

 

The pipeline is deposited on GitHub at https://github.com/CommonMindConsortium/RAPiD-nf/ 

 

For processing of all other 'standard' RNA-seq datasets, the following software and annotation files were used: 

fastp 0.20.1 

STAR 2.7.8a 

GRCh38 genome build 

Gencode v40 transcript annotations 

 

The pipeline is deposited on GitHub and Zenodo (https://github.com/frattalab/rna_seq_snakemake , https://doi.org/10.5281/

zenodo.15463283) 

 

For SLAM-seq processing and analysis: 

fastp 0.20.1 
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STAR v.2.7.0f 

GRCh38 genome build 

Gencode v40 annotations 

GRAND-SLAM 2.0.7b 

fastq2EZbakR 0.2.0 

EZbakR 0.0.0.9000  

grandR 0.2.2 

 

For the PAPA pipeline: 

StringTie 2.1.7 

Gffcompare 0.11.2 

PolyASite 2.0 

Gffread 0.12.1 

Salmon 1.5.2 

Tximport v1.26.0 

DEXSeq v1.44.0 

R 4.2.2 

Snakemake 6.7.0 

PyRanges 0.0.115 

Pyfaidx 0.6.2 

Python 3.8.10 

 

Version 0.2.0 was used for the manuscript. The pipeline is available on GitHub and is archived at Zenodo (https://github.com/frattalab/PAPA , 

https://doi.org/10.5281/zenodo.15210362). 

 

The poly(A)-tail containing read (PATR) extraction and clustering pipeline ('bulk_polyatail_reads'): 

Nullranges 1.8.0 

Cobalt 4.5.5 

Snakemake 7.32.4 

Python 3.10.13 

pyranges 0.0.129 

Pysam 0.22.0 

Pandas 2.1.4 

Numpy 1.26.3 

Pyarrow 15.0.0 

Fastparquet 2024.2.0 

 

Version 0.1.0 was used for the manuscript. The pipeline is available on GitHub and is archived at Zenodo (https://github.com/SamBryce-

Smith/bulk_polyatail_reads , https://doi.org/10.5281/zenodo.15210306). 

 

DaPars2 comparison: 

NCBI RefSeq v110 transcripts 

APAeval commit ID d7831b6 (https://github.com/iRNA-COSI/APAeval) 

DaPars2 commit ID 23d89d1 (https://github.com/3UTR/DaPars2) 

 

ELK1 3'UTR reporter: 

minimap 2.28 

python 3.6.13 (general), 3.9.19 (SpliceAI) 

pysam 0.21.0 

SpliceAI 1.3.1 

keras 2.12.0 

dnaio 0.7.1 

 

Version 1.0 was used for the manuscript. The analysis code  is available on GitHub and is archived at Zenodo (https://github.com/

MaxChien1996/replace_UG_in_first_800_bp_of_ELK1_extended_3_prime_UTR , https://doi.org/10.5281/zenodo.15413618) 

 

the 'salmon' and 'feature_counts' subpipelines: 

salmon 1.8.0 

featureCounts v.2.0.1 

 

The pipelines are deposited at GitHub and Zenodo (https://github.com/frattalab/rna_seq_single_steps , https://doi.org/10.5281/

zenodo.15210438) 

 

The splice-junction read quantification pipeline: 

bedops 2.4.39 

bedtools 2.30.0 

python 3.8.6 

 

v0.1.0 was used in the manuscript. The code is deposited on GitHub and Zenodo (https://github.com/SamBryce-Smith/

bedops_parse_star_junctions , https://doi.org/10.5281/zenodo.15209898). 

 

The remaining custom analysis code is deposited in the 'tdp43-apa' GitHub repository and is archived at Zenodo (https://github.com/

frattalab/tdp43-apa , https://doi.org/10.5281/zenodo.15210472). This code uses the following software: 

R 4.3.2 

ggplot2 3.4.4 

ggpubr 0.6.0 
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ggprism 1.0.4 

ggrepel 0.94 

tidyverse 2.0.0 

writexl 1.4.2 

data.table 1.14 

Python 3.10.11 

PyRanges 0.0.127 

pandas 2.0.2 

numpy 1.23 

snakemake 7.26.0 

bedtools 2.31.0 

PEKA (forked copy commit ID f934395, 'output_mods' branch at https://github.com/SamBryce-Smith/peka) 

cv_coverage 1.1.0 

DESeq2 1.38.3 

fgsea 1.24.0 

MAJIQ 2.4 

nullranges 1.8.0 

cobalt 4.5.5 

ImageJ v1.54f was used for fluorescent in-situ hybridisation image analysis and foci quantification.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A description of any restrictions on data availability 

- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

This study analyses existing and newly generated datasets. All existing datasets are publicly available from the accessions reported below. 'Brown' i3Neuron, SH-

SY5Y and SK-N-BE(2) datasets are available through the European Nucleotide Archive (ENA) under accession PRJEB42763. The SH-SY5Y TDP-43 iCLIP data is available 

at ENA under accession PRJEB49480 or ArrayExpress under accession E-MTAB-11243. ‘Seddighi’ i3Neuron RNA-seq, i3Neuron Nanopore direct RNA-seq and 

i3Neuron Ribo-seq data can be accessed at Alzheimer’s Disease Workbench (ADWB): https://fair.addi.ad-datainitiative.org/#/data/datasets/

mis_spliced_transcripts_generate_de_novo_proteins_in_tdp_43_related_als_ftd_00005. The HeLa TDP-43 Knockout (GSE136366), FACS-sorted frontal cortex 

neuronal nuclei (GSE126543) and the ‘Klim’ iPSC-derived motor neurons (GSE12156) can be accessed via Gene Expression Omnibus (GEO). Raw ChIP-seq data for 

ELK1 (GSM608163, GSM935326) and ELK4 (GSM608161, GSM608162, GSM935351) in HeLa cells can also be accessed through GEO or in processed format as used 

in this study via ChIP-atlas (https://chip-atlas.org/). The short-read neural progenitor cell Frac-seq data was downloaded from the GEO at accession number 

GSE244655.  

 

RNA-seq data generated by the NYGC ALS Consortium and used in this study can be accessed through the GEO database (GSE137810, GSE124439, GSE116622, 

GSE153960). To request immediate access to new and ongoing data generated by the NYGC ALS Consortium and for samples provided through the Target ALS 

Postmortem Core, complete a genetic data request form at ALSData@nygenome.org. 

 

All sequencing datasets generated in this study have been deposited at the GEO database: ‘Zanovello i3Neuron’ (GSE296710), ‘Humphrey i3Neuron’ (GSE296714), 

‘Zanovello SH-SY5Y CHX’ (GSE296713), ‘Zanovello SH-SY5Y curve’ (GSE296712), ‘Zanovello SK-N-BE(2) curve’ (GSE296711) and i3Neuron SLAM-seq (GSE296716). An 

archive of minimal processed data required to reproduce analysis and figures presented in this manuscript is available from Zenodo (https://doi.org/10.5281/

zenodo.15538002). 

 

The following genome sequence and transcriptome annotation versions were used: 

GRCh38 genome build - https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_000001405.26/ 

Gencode v30 (Humphrey i3 Cortical, v34 (SLAM-seq) and v40 (all others) transcript annotations - https://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/ 

PolyASite 2.0 - https://www.polyasite.unibas.ch/download/atlas/2.0/GRCh38.96/atlas.clusters.2.0.GRCh38.96.bed.gz

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 

and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Sex was collected for all individuals in the NYGC ALS Consortium dataset and was verified using the RNA-seq expression of the 

sex-specific marker genes XIST and UTY. Analysis of selective expression in post-mortem tissue (Fig 2) was performed without 

considering sex, because the analysis discriminates between samples with and without inferred TDP-43 pathology which is 

not determined by sex.

Reporting on race, ethnicity, or 

other socially relevant 

groupings

None used because no socially constructed categorization variables were recorded in the provided NYGC ALS Consortium 

metadata.

Population characteristics 1682 tissue samples from 446 unique participants (203 female). 

Control – 104 individuals (50 female), median age 65 (interquartile range 19.5) 
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ALS – 279 individuals (127 female), median age 66 (interquartile range 12) 

FTD – 63 individuals (26 female), median age 67 (interquartile range 10)

Recruitment In NYGC ALS Consortium the recruitment and contribution of postmortem samples and clinical information was performed by 

Consortium members using their recruitment criteria and strategy

Ethics oversight The NYGC ALS Consortium samples presented in this work were acquired through various institutional review board (IRB) 

protocols from member sites and the Target ALS postmortem tissue core and transferred to the NYGC in accordance with all 

applicable foreign, domestic, federal, state, and local laws and regulations for processing, sequencing, and analysis. The 

Biomedical Research Alliance of New York (BRANY) IRB serves as the central ethics oversight body for NYGC ALS Consortium. 

Ethical approval was given. Informed consent has been obtained from all participants.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size NYGC ALS consortium sample size was not pre-determined as data collection is still ongoing. Sample size was determined by the number of 

available RNA-seq samples at time of analysis, which corresponded to a subset of the 2023-02-21 data freeze. Overall sample sizes are 

reported in 'Population Characteristics' section above and split by TDP-43 pathology status in Supplementary Table 4. 

Sample sizes for novel cell-line RNA-seq datasets and experimental validation were not determined by formal power analysis. Instead, sample 

sizes were determined based on prior studies similarly aiming to identify novel isoforms, perform targeted validation and assess their 

downstream effects on RNA and protein expression. Examples of such prior studies include “TDP-43 loss and ALS-risk SNPs drive mis-splicing 

and depletion of UNC13A”. 

Sample sizes for novel RNA-seq experiments (CTRL = Control, KD = TDP-43 knockdown): 

'Zanovello SH-SY-5Y CHX' - 4 CTRL, 4 KD 

'Zanovello SH-SY-5Y Curve' - 3 CTRL, 3 KD 

'Zanovello SK-N-BE(2) Curve' - 3 CTRL, 3 KD 

'Zanovello i3 Cortical' - 4 CTRL, 4 KD 

'Seddighi i3 Cortical' - 12 CTRL, 6 KD 

'Humphrey i3 Cortical' - 6 CTRL, 6 KD 

Sample sizes for novel and previously published RNA-seq datasets ('Brown SH-SY5Y', 'Brown SK-N-BE(2)', 'Brown i3 Cortical', 'Klim i3 Motor') 

are further described in Supplementary Table 1. 

 

Sample sizes for non-RNAseq experiments were not determined using formal statistical methods. Sample sizes for 3'RACE-based cryptic APA 

validation in post-mortem tissue was determined by sample availability at the time of analysis. For all other targeted experimental assays, 

sample sizes were based on technical feasibility and previous studies investigating changes induced by novel RNA isoforms, such as “TDP-43 

loss and ALS-risk SNPs drive mis-splicing and depletion of UNC13A”. Sample sizes are as follows: 

- Halo-i3Neuron ELK1 Western blot (Fig. 3C) - 4 CTRL, 4 KD 

- i3Neuron 3'RACE validation (Extended Data Fig. 1) - 4 CTRL, 4 KD 

- ELK1 3'UTR reporter library (Fig 1H, Extended Data Fig 2)) - n = 3 for each variant and experimental condition (doxycycline concentration) 

- Frontal cortex tissue cryptic APA 3'RACE (Fig. 2B, Supplementary Fig 7) - 4 CTRL, 4 FTD-TDP 

- ELK1 FISH in i3Neurons (Fig. 3G, Supplementary Fig. 9B,C) - 3 CTRL, 3 KD 

- Sub-cellular fractionation in SH-SY5Y cells (Fig. 3H, Extended Data Fig 4) - 3 CTRL, 3 KD 

Data exclusions None reported.

Replication All RNA-seq, SLAM-seq and Ribo-seq experiments involved multiple biological replicates in each condition, and statistical analyses that model 

variability between replicates were used to model average effect sizes and to prioritise targets with differences between experimental 

conditions. ELK1 protein upregulation was reported in i3Neuron models with different mechanisms and developmental timing of TDP-43 loss, 

and reproduced across 4 independent differentiations (Fig 3C).  

ELK1 cryptic 3'Ext RNA upregulation in the extra-nuclear compartment was confirmed by independent assays in different cellular models (FISH 

= i3Neurons, biochemical fractionation combined with 3'RACE = SH-SY5Y). Each assay was performed using independent differentiations and 

the relative patterns between the experimental condition were consistent across all replicates. All attempts at replication were successful.

Randomization The majority of analyses in this study was carried out in cell lines, which do not require randomization due to their inherent homogeneity. The 

omics data were generated in a high throughput manner and intended for generic analyses of changes in context of TDP-43 depletion. Where 

novel targets were highlighted via transcriptome-wide analysis, orthogonal biochemical assays were performed to validate these initial 

observations.

Blinding Fluorescent in-situ hybridisation images were analysed blinded to TDP-43 depletion status. All other investigations were performed unblinded 

to experimental condition or disease status. In these cases, blinding is not applicable because the data generation/quantification are 

automated procedures that do not involve subjective interpretation.
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Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Antibodies

Antibodies used anti-ELK1 (Abcam ab32106) 1:500 

anti-TDP-43 (Abcam, ab104223) 1:2000 

anti-tubulin (Sigma-Aldrich, MAB1637) 1:5000 

anti-mouse HRP (BioRad, 1706516) 1:10000 

anti-rabbit HRP (BioRad, 1706515) 1:10000)

Validation anti-ELK1 (Abcam ab32106) has been validated in ELK1 knockout HeLa cells and cited in 46 publications 

anti-TDP-43 (Abcam, ab104223) has been validated in TDP-43 knockout HAP1 cells and cited in 18 publications 

anti-tubulin (Sigma-Aldrich, MAB1637) has been validated in mouse brain tissue lysates (positive control) and non-neuronal tissue 

(negative control. Cited in 413 publications. 

anti-mouse HRP (BioRad, 1706516) has been used in > 1000 citations. 

anti-rabbit HRP (BioRad, 1706515) according to the manufacturer’s website has been double-affinity purified with human IgG 

adsorbed.

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) All iPS-derived cortical neurons (i3Neurons) used in this study are from the WTC11 line, which was derived from a healthy 

human male participant. All policies of the NIH Intramural Research Program for the registration and use of this iPS cell line 

were followed. SH-SY5Y cells were obtained from ATCC. SK-N-BE(2) cells were obtained from the International Centre for 

Genetic Engineering and Biotechnology in Trieste, Italy.

Authentication WTC11 iPS cell line was validated to have a normal male karyotype. SK-N-BE(2) and SH-SY5Y cell lines were validated by Cell 

Services at The Francis Crick Institute. 

Mycoplasma contamination WTC11 iPS cell line was confirmed to be mycoplasma free based on the Lonza MycoAlert mycoplasma testing kit. SH-SY-5Y 

and SK-N-BE(2) cells were confirmed to be mycoplasma free using the PHOENIXDX® MYCOPLASMA MIX qPCR kit by 

Procomcure Biotech

Commonly misidentified lines
(See ICLAC register)

No commonly misidentified cell lines were used in this study.

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches, 

gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the 

number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe 

the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor 

was applied.

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If 

plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Authentication Describe any authentication procedures for each seed stock used or novel genotype generated. Describe any experiments used to 

assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism, 

off-target gene editing) were examined.

Plants
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