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Nuclear depletion and cytoplasmic aggregation of the RNA-binding protein
TDP-43 are cellular hallmarks of amyotrophic lateral sclerosis (ALS). TDP-43
nuclear loss causes de-repression of cryptic exons, yet cryptic alternative
polyadenylation (APA) events have been largely overlooked. In this study, we
developed abioinformatic pipeline to reliably identify alternative last exons,

3’ untranslated region (3’'UTR) extensions and intronic polyadenylation
APA event types, and we identified cryptic APA sites induced by TDP-43 loss
ininduced pluripotent stem cell (iPSC)-derived neurons. TDP-43 binding
sites are enriched at sites of these cryptic events, and TDP-43 can both
repress and enhance APA. All categories of cryptic APA were also identified
in ALS and frontotemporal dementia (FTD) postmortem brain tissue.

RNA sequencing (RNA-seq), thiol(SH)-linked alkylation for the metabolic
sequencing of RNA (SLAM-seq) and ribosome profiling (Ribo-seq) revealed
thatdistinct cryptic APA categories have different downstream effects
ontranscriptlevels and that cryptic 3’UTR extensions canincrease RNA
stability, leading to increased translation. Insummary, we demonstrate that
TDP-43 nuclear depletion induces cryptic APA, expanding the palette of
known consequences of TDP-43.

Cytoplasmic aggregates and nuclear depletion of TDP-43 are patho-
logical hallmarks of a spectrum of neurodegenerative diseases,
including over 97% of ALS cases', 45% of FTD cases” and over 50% of
Alzheimer’s disease cases’. Under normal conditions, TDP-43isapre-
dominantly nuclear protein with multiple roles in regulation of RNA
processing and metabolism, including alternative splicing, APA* " and
transport’. Considerable attention has been drawn to the ability of
TDP-43 to repress the inclusion of pre-mRNA sequences in mature
transcripts®: loss of nuclear TDP-43 leads to the inclusion of ‘cryptic’
exonsbothinvitroandin postmortemtissue’, contributing to disease

progression'®", Cryptic exons can lead to protein loss through RNA
degradation by nonsense-mediated decay™ or can be translated to
produce cryptic peptides™™.

Cleavage and polyadenylation defines the 3’ end of last exons and
subsequently mature transcripts®. Up to 70% of human protein-coding
and long non-coding RNA (IncRNA) genes can undergo polyadenyla-
tion at multiple locationsin the genebody (APA) and canbe subdivided
into three main categories of events: alternative last exons (ALEs),
3’UTR extensions (3’Ext) and ‘composite’ intronic polyadenylation
(IPA) events. In ALEs, the poly(A) usage is determined by an upstream
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alternative splice junction, which defines an alternative last exon. In
3’Ext events, APA sites are independent of splice junctions and occur
downstream of annotated distal 3’UTRs to affect 3’'UTR sequence and
length, which is implicated in the regulation of transcript stability,
localizationand translation'. Finally, in IPA events, APA occurs within
introns in the absence of upstream alternative splicing, giving rise
to transcripts with different protein-coding potential and can affect
full-length protein dosage'”*.

TDP-43-regulated cryptic APA has not been systematically
exploredinaneuronal context. Here we report widespread cryptic APA
upon TDP-43 depletion in cell models, including 3’Ext and IPA events
that were not previously detected with conventional splicing analyses.
A substantial number is expressed in postmortem ALS and ALS/FTD
tissue with TDP-43 loss, underlining their potential involvement in
pathogenic mechanisms and/or utility as biomarkers of TDP-43 pathol-
ogy. We focus on anovel class of 3’Ext APA and use metabolic labeling to
demonstrate that such cryptic 3’Ext is associated with increased RNA
stability, can localize to the cytoplasm and s translated, leading to an
increasein protein levels.

Our data, therefore, identify anovel consequence for cryptic RNA
processing and show that, inaddition toleading to protein reduction or
the formation of altered proteins, this can also lead to overexpression
of normal proteins and anincrease in their function.

Results

Identification of cryptic APA events induced by TDP-43 loss
Although the role of TDP-43 in regulating APA and cryptic splicing
is well known, cryptic APA occurring upon TDP-43 loss of function
has yet to be explored. To comprehensively address this question, we
curated acompendium of publicly available and newly generated bulk
RNA-seq datasets with TDP-43 depletion (Supplementary Table 1).
We assembled a computational pipeline to identify novel last exons
from RNA-seq data, which defines last exon frames using StringTie"
and then filters and categorizes as spurious predicted 3’ ends lacking
the presence of reference poly(A) sites?® or aconserved poly(A) signal
hexamer? (Fig.1a). Isoform-level quantification was performed using
Salmon?®, and differential usage between experimental conditions was
assessed using DEXSeq®.

This approach allowed us to subdivide our events into three
main categories—ALEs, IPAs and 3’Ext (Fig. 1a)—overcoming the limi-
tations of comparable available tools that focus on specific event
categories® 5, APA events were widespread, and we defined cryptic
APA events as ones with less than10% mean usage in controls and more
than 10% usage change after TDP-43 knockdown. We identified 227
cryptic APAs to be present in at least one dataset (adjusted P < 0.05;
Fig.1b,SupplementaryFig.1and Supplementary Table2). Cryptic ALEs
(n=92) included previously identified cryptic exons such as STMN2,
ARHGAP32 and RSF1 (Fig. 1b and Supplementary Fig. 2). In total, 108
F'UTR cryptics wereidentified, of which 86 are novel 3UTR extensions

(3Ext; for example, TLX1; Fig.1c),and 20 were 3UTR shortening events
at loci with novel 3’Exts (3’shortening). Twenty IPA events were also
detected, including CNPY3, which wasidentified withanindependent
bioinformatics approachand experimentally validated”. The remain-
ing nine events could not be uniquely assigned to ALEs or IPAs based
onannotation and are defined as ‘complex’. Multiple non-cryptic APA
events were also detected and arereported in Supplementary Table 3.

We experimentally validated strong activation of cryptic APA
and confirmed the expression of multiple predicted PASs by per-
forming 3’ rapid amplification of cDNA ends (3’RACE) in i3Neurons
(Extended DataFig.1) and inspecting poly(A)-tail ligation-dependent,
oligo-dT primer-free i3Neuron direct RNA nanopore sequencing®
(Supplementary Fig. 3a—-c). We further evaluated global cryp-
tic polyadenylation site (PAS) precision by pooling across TDP-43
depletion RNA-seq samples poly(A)-tail-containing reads (PATRs;
Supplementary Fig. 3d), which allows independent defining of
PASs®. Cryptic and expression-matched annotated PASs were simi-
larly identified, further supporting the novel cryptic APA events
(Supplementary Fig. 3e). Finally, the commonly used tool DaPars2
(ref. 31), when provided with the predicted 3'Ext coordinates, repro-
duced cryptic3’Ext activation (Supplementary Fig. 4). These findings
collectively support the validity of our cryptic APA discovery pipeline.

Out of 227 cryptic APAs detected by our analysis across datasets,
most (138) satisfied cryptic expression criteria (<10% mean usage
in controls and >10% usage change after TDP-43 knockdown) when
considering the median across datasets. Fifty-one APAs were, instead,
consistently below 10% usage threshold in controls but did not suf-
ficiently increase after TDP-43 depletion to meet the cryptic criteria
definition across datasets. Twenty-eight APAs showed, instead, a sig-
nificantincrease upon TDP-43 loss across datasets but had more than
10% median usage in controls, therefore placing them outside the
cryptic criteria but demonstrating consistent regulation by TDP-43
(Supplementary Fig. 5). Altogether, these data highlight awidespread
presence of cryptic APA upon TDP-43 loss.

TDP-43 bindingboth represses and enhances poly(A) site choice
Next, we investigated TDP-43 binding patterns around cryptic APAs
using TDP-43 individual-nucleotide resolution UV crosslinking and
immunoprecipitation (iCLIP) data generated in SH-SY5Y cells'. We
focused on ALEs and 3’Ext events as the low number of IPA and 3’short-
eningevents (n=20inboth cases) did not allow reliable binding profile
inferences. TDP-43 binding was enriched around the splice acceptor of
cryptic ALEs, as previously described in cryptic splice junctions, and
downstream of the cryptic PAS of ALEs (Fig. 1d), supporting TDP-43
actingasarepressor of both splicing and polyadenylation. Intriguingly,
TDP-43 binding was also enriched immediately downstream of the
annotated proximal PAS of 3’Ext events (Fig. 1e), supporting arole for
TDP-43 in enhancing poly(A) usage, consistent with previous reports
of TDP-43 binding with respect to regulated PAS’.

Fig.1| TDP-43 depletioninduces cryptic APA ina compendium of in vitro
TDP-43 datasets. a, Computational pipeline inferring differential last exon

(LE) usage from bulk RNA-seq. Putative novel last exons (orange) are identified
by comparing StringTie' assembled transcripts (condition mean TPM > 1)
toreference transcripts (purple). Putative last exons with a PAS <100 nt from
PolyASite” PAS or containing a conserved poly(A) signal hexamer? (final 100 nt)
are quantified with annotated last exons using Salmon?* and assessed for
differential usage using DEXSeq*. b, APA upon TDP-43 knockdown (TDP43KD).
Points: PAS with adjusted P < 0.05in >1 dataset (median values when >1 dataset).
Cryptic PAS (orange): adjusted P < 0.05, mean control (Ctrl) usage <10% and
TDP43KD-CTRL usage >10%. ¢, Cryptic APA RNA-seq coverage traces in control
(gray) and TDP-43 knockdown (gold) i3Neuron. ALE: ARHGAP32.1PA: ANKRD27.
3’Ext: TLX1. Dashed lines: landmarks assessed for TDP-43 binding (d,e). All events
arevisualized in sense orientation. d, TDP-43 binding around ALE boundaries.
Exonstart: first nucleotide of the last exon. Top, mean SH-SYSY TDP-43 iCLIP peak

coverage (n =2) +1s.e.m. (shaded interval) of positions relative to landmarks
incryptic (orange, n = 92) versus background (black, n = 929) ALEs. Two-sided
Fisher’s exact test in the plotting window (exon start P= 0.005, PAS P= 0.019).
Bottom, mean YG-containing hexamer coverage (Supplementary Fig. 3a)
+1s.e.m. (shadedinterval). e, TDP-43 binding maps around 3’Ext alternative PAS.
Top, asind (top) for cryptic (orange, n = 86) and background (black, n =798)
3’Exts. Proximal P=0.031, distal P= 0.003. Bottom, as ind (bottom) for e (top).
f, ELKI fluorescent reporter. CDS: mGreenLantern coding sequence. ELK1
3’'UTR, proximal 3’'UTR and the first 800 bp of cryptic 3'Ext. SV40, SV40 PAS.

g, Nanopore sequencing traces of the reporter in TDP-43 knockdown SK-N-BE(2)
cells. h, Reporter distal PAS usage upon increasing TDP-43 knockdown (low: 30,
medium: 60, high: 1,000 ng mI™ doxycycline). Bars denote mean PAS usage fold
change versus controls. n =3 per variant. —-96%: four variants; —20% and —24%: two
variants; remaining: one variant.
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iCLIP data, typically generated in control cells, are not sensitive
in detecting binding to cryptic 3’Ext regions, as these events can be
detected only at very low levels with physiological TDP-43 presence.
We, therefore, sought to corroborate our findings by adapting PEKA*
to infer de novo hexamer enrichment relative to cryptic landmarks.
Previously defined hexamers enriched around TDP-43 iCLIP binding
sites® (Supplementary Fig. 6a) were overrepresented among the most
enriched hexamers proximal to all cryptic landmarks, with the strong-
estsignal overall observed atboth the 3’ splice site (3’ss) and PAS of ALE
events (Supplementary Fig. 6b). To assess the concordance with iCLIP
binding profiles, we visualized the positional coverage of the hexamer
group most strongly associated with TDP-43 binding®. For ALEs, we
observed anotable peakimmediately upstream of splice acceptors and
astrong peak downstream of PAS (Fig. 1d), although previous reports
of splice-site-dependent STMN2 cryptic ALE repression® suggest that
thebinding at PAS may have secondary effects. Enriched signal was also
observed immediately downstream of the distal PAS of 3’Exts (Fig. 1e).

Toexperimentally validate the direct relationship between TDP-43
binding and cryptic PAS usage, we generated a reporter for the ELK1
3’Ext APA (Fig. 1f). Nanopore sequencing showed a strong upregulation
of the distal cryptic PAS upon TDP-43 knockdown in neuronal cells
(Fig. 1g), confirming similar behavior to endogenous ELK1. We then
focused on150 base pairs downstream of the constitutive poly(A) site,
whereiCLIP datashow TDP-43 binding to occur, and generated a series
of constructs where we removed or increased UG content to disrupt or
enhance TDP-43 binding (Fig. 1f). Under normal TDP-43 levels, cryptic
PAS usage was enhanced by UG depletion, whereas it was reduced by
UGdinucleotide contentincrease (Extended Data Fig. 2a,b). Increasing
levels of TDP-43 knockdown enhanced cryptic PAS usage in constructs
with normal, increased or moderately disrupted UGs, whereas con-
structs with severe UG depletion did not respond to TDP-43 depletion,
confirming a direct regulation by TDP-43 (Fig. 1h).

Overall, our datasupportadirectrole for TDP-43 bindinginboth
enhancing and repressing PAS usage, therefore leading to cryptic APA
upon TDP-43 loss.

TDP-43 cryptic APA is detectable in postmortem

ALS/FTD tissues

We next investigated whether the cryptic APA detected in vitro
occurred also in postmortem central nervous system (CNS) tissue
samples affected by TDP-43 proteinopathy. We initially focused on
neuronal nucleisorted into TDP-43-positive and TDP-43-negative popu-
lations**. Fifty-four cryptic APA events were more highly expressed
in TDP-43-depleted nuclei. All APA event types were represented in
thislist (MEP_L_fig2; Fig.2a), with ALEs (20) and 3’Exts (28) represent-
ing the majority of enriched events. Our analysis confirmed previ-
ously reported cryptic ALEs with patient specificity, such as in STMN2
(ref. 35). Numerous 3’Exts also show enrichment in TDP-43-negative
nuclei in a similar magnitude to STMN2 (median increased usage of
69%), most notably ELK1(76%) and RBM27 (57%) (Fig.2a). Six IPA events

meet our enrichmentcriteria (Fig. 2a), including USP31, which was iden-
tified inatargeted assay of sporadic ALS motor cortex tissue*. However,
IPA events were generally more weakly enriched in TDP-43-depleted
nuclei compared to3’Ext and ALE events. We validated the occurrence
of cryptic APAs by performing 3’'RACE in FTD frontal cortex samples
(Fig.2band Supplementary Fig. 7). Altogether, this analysis shows that
cryptic APAis detectable in postmortem ALS/FTD CNS.

Next, we used the New York Genome Center (NYGC) ALS Consor-
tium RNA-seq dataset to assess cryptic APA in a larger cohort of CNS
cases with or without TDP-43 pathology (Supplementary Table 4).
Cryptic 3’Exts often demonstrated low basal expression in control
samples in our in vitro datasets, confounding the detection in post-
mortem bulk RNA-seq datasets, in which only a very small proportion
of cellsis expected to have TDP-43 pathology. IPA detectionis further
complicated by the fact that normal pre-mRNA reads also map to IPA
regions, creating significant noise in bulk RNA-seq. We, therefore,
focused on ALEs, where detection of the associated upstream cryptic
splice junctions provide direct evidence of expression. As cryptic
ALEs are expected to be dependent on nuclear TDP-43 depletion, we
defined criteria based on spliced read detection to identify cryptic
events with specific expressionintissues and disease subtypes where
TDP-43 pathology is present. Of 118 cryptic ALE junctions, 7 fulfilled
specificity criteria (Supplementary Table 5), in contrast to 56 out of 313
cryptic splicing events collated from i3Neurons with TDP-43 knock-
down” (Fig. 2c and Extended Data Fig. 3). STMN2 was most frequently
detected in tissues with expected TDP-43 proteinopathy, and several
other ALEs were among the most frequently detected specific cryptic
events, including SYNJ2 (third; Fig. 2d) and PHF2 (eighth; Fig. 2e).

Altogether, this suggests that cryptic APAs are detectable in
postmortem tissue affected by TDP-43 pathology, highlighting their
potential relevance in loss-of-function disease mechanisms and their
promising utility as biomarkers.

Cryptic APA events variably affect differential expression
Crypticsplicing eventsimpact expression, often leading to areduction
in transcript levels’ ™. We, therefore, assessed the effect of cryptic
APAs on their own transcripts in i3Neurons® (Supplementary Fig. 8a)
and found that the majority of events (86 out of 126) coincide with
asignificant change in expression, equally split between significant
upregulation and downregulation. When subdivided furtherinto cryp-
tic APA categories, no category showed a clear bias for upregulation
or downregulation (19 out of 34 3’Ext, 17 out of 37 ALE and 6 out of
10 IPA genes are downregulated). This suggests that cryptic APAs are
associated with differential expression but have variable effects on
transcript levels.

Cryptic 3’Ext events can lead to increased translation

and function

Regulation of both ALE and 3’Ext usage has been demonstrated to
impact protein abundance through distinct mechanisms***, but

Fig.2|Cryptic APAs are detected in postmortem ALS/FTD RNA-seq
datasets. a, Heatmap of cryptic last exon usage in postmortem FACS-seq
data®. Cells are colored according to the magnitude of sample-wise difference
inusage between TDP-43-depleted (TDPnegative) and TDP-43-positive
(TDPpositive) cells. Rows represent individual cryptic last exons from in vitro
that passed enrichment criteria (median sample-wise difference in usage
(TDPnegative — TDPpositive) > 5%) and are arranged in descending order of
the difference in usage within each event type. Columns represent individual
patients within the cohort. b, RT-qPCR analysis after 3’RACE for the indicated
3'UTRsin frontal cortex samples of control patients (n =4) and FTD (FTD-TDP,
n=4) cases with TDP-43 pathology. The RNA expression levels were normalized
against GAPDH mRNA and expressed as relative fold change with respect to one
control sample set to a value of 1. PHF2 and SIX3 genes (shown in Supplementary
Fig.3) were excluded owing to unspecific amplification of the cryptic isoforms

intissues. Dataare represented as box plots (lower, middle and upper quartiles),
and error bars span from the minimum to the maximum value. Two-sided
Student’s unpaired t-test (NS P> 0.05, *P < 0.05).1,long; s, short. STMN2 P=0.330
(canonical), 0.033 (ALE). SYN/2 P=0.847 (canonical), 0.031 (ALE). ARHGAP32
P=0.500 (canonical), 0.021(ALE s), 0.035 (ALEI). ELKI P= 0.056 (canonical),
0.013 (3’Ext). TLXI P=0.130 (canonical), 0.041 (3’Ext). All Pvalues are to 3 decimal
places (d.p.). ¢, Selectively expressed cryptic ALEs (orange) and splicing events®
(purple) in tissues and samples with TDP-43 proteinopathy in the NYGC ALS
Consortium dataset. Events are considered detected if at least two junction

reads were detected in asample. d, Detection of spliced reads for the cryptic ALE
in PHF2 across samples in the NYGC ALS Consortium dataset. Color indicates
whether disease subtype and region is expected (orange) or not expected (green)
to have TDP-43 pathology and cryptic spliced read expression. e, As in d but for
cryptic ALE in SYNJ2.NS, not significant.
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differential RNA abundance does not necessarily imply a coordinated
changein proteinlevels. To assess whether changes in gene expression
were also reflected in translation levels, we performed differential
translation analysis of Ribo-seq data generated from i3Neurons with
TDP-43 depletion®.

Spliced reads
o w o ©

o w o ©

o w o ©

Only a minority of cryptic APA-containing genes (26 out
of 126) showed significant changes in overall translation levels
(Supplementary Table 6), of which 24 are concordantly altered in
both Ribo-seq and RNA-seq abundance upon TDP-43 knockdown,
including previously reported STMN2 (refs. 39,40) (Fig. 3a,b).
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Fig. 3| Cryptic 3’ UTR extensions in transcription factor RNAslead to
increased RNA and protein levels by increased RNA stability and cytoplasmic
RNA levels. a, RNA-seq differential expression volcano plot (TDP-43 knockdown
versus control i3Neurons). Cryptic 3’Ext (orange), ALE (blue) and IPA (green)
containing genes with increased translation (Fig. 3b) are colored and labeled.
yaxis 50, -log,,-adjusted P (Padj) > 50. b, Ribo-seq differential expression
volcano plot (TDP43KD versus CTRL i3Neurons). Colors: cryptic 3’Ext (orange),
ALE (blue) or IPA (green) containing genes. y axis 10, -log,,-adjusted P> 10.

¢, ELK1 protein levels in Halo-TDP-43 i3Neurons®. Top, ELK1 western blot showing
increased ELK1 protein expression upon TDP-43 knockdown (n =4 independent
differentiations). Bottom, tubulin-normalized ELK1band intensities (c, top)

in control and TDP43KD Halo-TDP-43 i3Neurons. d, ELK1 transcription factor
activity. Top, ELK1 cryptic 3’Ext RNA-seq coverage traces in control (black)

and TDP-43 knockout (KO) (gold) HeLa cells*. Bottom, GSEA enrichment plot
for ChIP-seq-defined ELK1 target genes in TDP-43 knockout HeLa cells. Green
line denotes GSEA enrichment statistic; red lines denote maximum valuein
upregulated (left) and downregulated (right) genes; black lines denote ELK1

target genes (n = 353). NESis relative to mean score of identically sized, randomly
sampled gene sets. e, Decay curve for RNA produced before 4SU labeling (old) in
control (gray, 4 hn =1, others n =2) and knockdown (orange, all n = 2) i3Neurons.
Curves denote fitted estimate of old RNA levels. Points denote old RNA
abundance estimates. Error bars denote upper and lower 95% credible interval.
Inset text shows the gene-level GrandR-estimated half-lives. f, Representative
images for FISH probes targeting the annotated (ELK1 total, green) 3UTR and
cryptic 3’UTR-specific (ELK1 cryptic, magenta) ELKI sequences in control (top
row) and TDP-43 knockdown (bottom row) i3Neurons. Scale bars, 10 pm.

g, Extranuclear FISH signals for the ELKI total and cryptic probes. Points denote
foci counts (n =10 images). Blue bars denote mean count. Two-sided, one-sample
t-test after within-replicate control normalization (n = 3, *P < 0.05, total P= 0.009,
crypticP=0.012 (3d.p)). h, ELK1 canonical and cryptic (3’Ext) isoform 3’RACE
and RT-qPCR of the cytoplasmic fraction of TDP-43-depleted SH-SY5Y cells. Bars
denote mean fold change versus control cells +s.d. (n = 3 biological replicates).
Two-sided Student’s unpaired t-test (**P=0.009, **P=7.535x107%).
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Notably, the differentially translated subset appeared to stratify by
APA category: whereas ALEs are downregulated, all four significant
3’Exts, which also showed increased RNA abundance (Fig. 3a), had sig-
nificantly increased translation (Fig. 3b). Gene set enrichment analysis
(GSEA)*"*2 confirmed that cryptic ALE and 3’Ext genes are significantly
associated with decreased translation (normalized enrichment score
(NES) -2.09, adjusted P=2.31x10"°) and increased translation (NES
1.54, adjusted P=0.03), respectively, whereas IPA genes show no sig-
nificant association in either direction (NES -1.09, adjusted P=0.36)
(Supplementary Fig. 8b).

Interestingly, the three 3’Ext-containing genes that were most
upregulated at both RNA and translation levels (Fig. 3a,b) encode
for three transcription factors: ELK1, SIX3 and TLX1. The regula-
tion of these 3’Ext events is reproducible across in vitro datasets
(SupplementaryFig.1). As ELKI increase was previously associated with
neuronal toxicity*>™* and its levels are consistently higher in mature
neurons, compared to SIX3 and TLX1, which are associated with neu-
ronal development*®*’, we decided to focus our investigations on ELK1.
We tested whether the increase in Ribo-seq also corresponded to an
upregulation of steady-state protein, and westernblots confirmed a sig-
nificantincrease in ELK1 protein expression upon TDP-43 knockdownin
i3Neurons (Fig. 3c). We next asked whether the activity of ELK1, which
functionsasatranscription factorinthe ternary complex factor (TCF)
family*®, could be altered in the context of TDP-43 loss. We assessed
whether ELK1 target genes defined by chromatinimmunoprecipitation
followed by high-throughput sequencing (ChIP-seq) in HeLa cells were
also affected in TDP-43 knockout HeLa cells*, in which the cryptic 3'Ext
isrobustly upregulated (Fig.3d). Using GSEA, we observed a significant
changein ELK1target gene expression upon TDP-43 knockout (Fig. 3d).
This suggests that cryptic 3’Exts can lead to change in function in the
context of TDP-43 loss.

Transcription factors with cryptic 3’Ext events have increased
RNA stability
Weinvestigated the mechanisms by which cryptic 3’UTRs could mediate
increased translationlevels of ELK1, SIX3and TLX1. We revisited differ-
ential splicing analysis of i3Neuron RNA-seq datasets'"* and confirmed
that cryptic 3’Exts are the only differential RNA processing events occur-
ring in these three transcription factor RNAs upon TDP-43 depletion.
Asalternative 3'UTRs have been linked to differences in RNA stability*°,
wereasoned thatincreased RNA stability could account for changesin
overallRNA abundance and translation levels. To investigate changes
in RNA stability in i3Neurons with TDP-43 depletion, we performed
SLAM-seq’’, which allows the detection of newly synthesized RNAs
throughincorporation of a uridine analogue (4SU). Different lengths
of 4SUtreatment allow the estimation of gene-level RNA half-lives. We
observed increased half-lives in cryptic 3’Ext-containing genes ELK1,
TLXIand SIX3 (Fig. 3e). To confirm that the 3’Ext half-life change was due
tothe cryptic APA event, we performed anisoform-specific analysis for
ELKIincontroli3Neurons, where the distal (cryptic) 3’Extis sufficiently
expressed to be analyzed and not prevalent enough to confound the
evaluation of the proximal (shared) isoform. We observed elevated
ELK13 Exthalf-life relative to the proximal PAS (Supplementary Fig. 9a).
Altogether, this suggests that increased RNA abundance and transla-
tion of cryptic 3’Ext genes are mediated by increased RNA stability.
Given that translation depends on extranuclear localization of
mRNAs, we tested whether cryptic 3’Ext transcriptslocalize to the cyto-
plasmand contribute to the increased translation levels’™ . Focusing
onthe ELK1 cryptic 3’Ext, we designed probes to recognize the common
proximal sequence and the distal sequence specific to the 3’Ext and
performed fluorescenceinsitu hybridization (FISH) ini3Neurons where
we could detect both probes in the nuclei, cytoplasm and neurites
(Fig. 3f). Consistent with RNA-seq, we observed a significantincrease
in total foci for both the total and cryptic-specific probes upon TDP-
43 knockdown (Fig. 3g and Supplementary Fig. 9b,c). To specifically

discriminate and quantify proximal and distal ELK1 APA subcellular
localization, we performed 3’'RACE on SH-SYS5Y cells after nuclear
cytoplasmic fractionation. We found that both isoforms are predomi-
nantly localized to the cytoplasm and that, upon TDP-43 knockdown,
the proximal canonical APA is reduced, whereas the cryptic 3’Ext is
increased (Fig. 3h and Extended Data Fig. 4). Finally, we evaluated
ELK1isoform-specific ribosome recruitment using fractionation and
sequencing (Frac-seq) data from neural progenitor cells**. We found
ELK1 cryptic 3’Ext to be relatively enriched in ribosome-associated
fractions, supporting a preferential engagement of the cryptic 3'Ext
withthe translation machinery (Supplementary Fig. 9d). Overall, these
findings show that ELK1 cryptic 3’Ext hasincreased RNA stability, local-
izestothe cytoplasmand neuritesandistranslated, driving theincrease
in ELK1 protein.

Discussion

Defining TDP-43 RNA targets s critical to understanding the molecu-
lar consequences of nuclear TDP-43 depletion. Thus far, efforts have
mainly focused on the consequences of altered splicing and have
successfully identified key targets that are being pursued as therapeu-
tic targets and potential biomarkers for TDP-43 pathology'®"'*3*4°,
Although TDP-43 is involved in multiple aspects of RNA processing,
including polyadenylation* ¢, this has been largely understudied due
tothelack of effective tools to address these questions. Furthermore,
although splicing analyses were able to identify ALE events (for exam-
ple, STMN2) because of the upstream novel splice junction, they would
not detect novel IPA and 3’Ext events. Here, we developed a pipeline
to detect and quantify novel APA events from total RNA-seq and apply
it to a wide range of neuronal TDP-43 loss-of-function datasets to
define cryptic APAs, anovel category of cryptic RNA processing events
of potential relevance to ALS/FTD. iCLIP and TDP-43 binding motif
analyses support a direct regulation of these events by TDP-43, in
which TDP-43 loss can both weaken conventional poly(A) sites and
de-repress cryptic APA. Similar to splicing, where TDP-43 can both
repress or enhance exon inclusion, TDP-43 can, therefore, have a
dual action ontranscript termination. Notably, for disease relevance,
and similar to cryptic splicing, numerous cryptic APA events can be
detected in postmortem tissue and are specifically expressed upon
TDP-43 pathology.

We then moved to investigate the impact of cryptic APAs on RNA
levels and translation and found that IPAs and ALEs either had no impact
or induced a reduction of transcript levels in RNA-seq and Ribo-seq
analyses—in line with previous observations on known cryptic ALEs
such as STMN2 (refs. 39,40). Recent work demonstrated that cryptic
exon-containing transcripts can be translated and produce cryptic
peptides that could serve as biomarkers of TDP-43 pathology™*. As
cryptic ALE and IPA events are mostly predicted to be insensitive to
nonsense-mediated decay, and are located often within the coding
sequence, they are likely to give rise to cryptic peptides; for example,
cryptic ALE RSFIencodesa cryptic peptide thatis detected in the cer-
ebrospinal fluid of patients with ALS™. Previous work identified cryptic
ALEs, as their novel splice junction canbe detected by numeroussplice
detection packages'>*>¥". Conversely, IPAs have been more difficult to
identify, and further work should consider whether these cryptic IPA
events can be detected in patient brains and biofluids as an indirect
measure of TDP-43 pathology.

Surprisingly, 3’Ext events in the three transcription factor-
encoding genes ELK1, SIX3and TLX1were associated with transcript
upregulation andincreased translation and protein levels. We found
this to be associated with anincrease in RNA stability. Thus, in con-
trast to the conventional model of TDP-43-regulated cryptic splicing
leading to reduced protein levels or to altered proteins containing
cryptic peptides, cryptic 3’Ext can be associated with increased
protein levels, outlining a novel consequence of TDP-43 cryptic
RNA processing.
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ELK1, SIX3 and TLXI 3’Ext are reliably induced upon TDP-43
depletion across our in vitro datasets, suggesting that they are not
cell-type-specific, sensitive TDP-43 targets. These three transcrip-
tion factors have been studied in the neuronal context, although S/X3
and TLX1 are primarily expressed in the developmental stage*®*. Our
work, therefore, focused on E£LK1, and we were able to validate the
cryptic 3’Ext in patient brains both by 3’RACE and by analysis of publicly
available data, whereas detection of increased protein levels is more
challenging due to ELK1 being expressed ubiquitously and TDP-43
pathology occurring in only in a minority of cells. We were also able
to use HeLa cell data to show that TDP-43 loss can induce changes in
ELKItarget genes. ELKI promotes axonal outgrowth**andisincreased
in Huntington’s disease models where it can have a neuroprotective
role*. ELKI overexpression has also been linked with neurotoxicity
throughinteraction with components of the mitochondrial permeabil-
ity—transition pore complex**, and dendrite-specific overexpression
of ELKI mRNA induced cell death in a transcription-dependent and
translation-dependent manner*, supporting a potential contribu-
tion of this cryptic APA to pathogenesis. Further work is needed to
investigate the functional relevance of increased ELK1, SIX3 and TLX1
expression in models of TDP-43 proteinopathy.

We focused on identifying cryptic APA events, as their extreme
expression changes upon TDP-43 loss render them favorable therapeu-
ticand biomarker targets. Asreported in theaccompanying manuscript
by Zengetal.®®, the authorsinvestigated APA dysregulation more gen-
erally upon TDP-43 loss and show that itis widespread (inaccordance
with our findings in Fig.1b), can occur in ALS/FTD-related genes®® and
canlead to change in function?, underscoring the potential relevance
of APAin disease pathogenesis. We note that several targets (for exam-
ple, CNPY3, ELKI and ARHGAP32) are commonly identified across the
studies despite diverging methodological approaches, underlying the
consistency of our observations. Notably, similar to our findings for
ELK1,SIX3and TLX1,both Zengetal.®® and Arnold et al.”’ also found that
APAs canlead to upregulation of normal protein levels, consolidating
this as ageneral consequence of TDP-43 loss. Our studies collectively
demonstratethat dysregulated APAis ageneral consequence of nuclear
TDP-43 loss in ALS/FTD. Beyond mRNA and protein levels, APA can
impact RNA localization and local translation, and targeted work will
benecessary to comprehensively identify and detect these alterations.

In summary, we provide a compendium of cryptic APA events
determined by TDP-43 loss as aresource for studying RNA dysregula-
tionand identifying novel biomarkersin ALS. Our work also shows that
cryptic RNA processing can lead to an increase in protein expression
and function, expanding the molecular consequences of TDP-43 loss
and pathology, withimplications for disease pathogenesis and thera-
peutic target identification.
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Methods
Asummary table mapping cellular models to their respective analyses
is provided in Supplementary Table 9.

CRISPR interference knockdown in human iPSCs and
differentiation and culture of i3Neurons

CRISPR interference (CRISPRi) knockdown experiments were per-
formed in the WTC11 iPSC line harboring stable TO-NGN2 and in
dCas9-BFP-KRAB cassettes at safe harbor loci®®. CRISPRi knockdown
of TDP-43 in iPSCs was achieved using single guide RNA (sgRNA) tar-
geting the transcription start site of TARDBP (or non-targeting control
sgRNA)™, delivered by lentiviral transduction. sgRNA sequences were
as follows: non-targeting control GTCCACCCTTATCTAGGCTA and
TARDBP GGGAAGTCAGCCGTGAGACC.iPSCs were differentiated into
cortical-like i3Neurons as described previously'>®* and fixed 9 days
after re-plating for RNA-FISH.

For RNA-seq experiments (‘Humphrey i3 cortical’), i3Neurons
were induced as previously described® with the addition of SMAD
and WNT inhibitors®* (SB431542 10 uM; LDN-193189 100 nM; XAV939
2 pM, all from Cambridge Bioscience). After induction, cells were cul-
tured in BrainPhys Media (STEMCELL Technologies) with 20 ng mI™
BDNF (PeproTech), 20 ng mI™ GDNF (PeproTech), 1x N2 supplement
(Thermo Fisher Scientific), 1x B27 supplement (Thermo Fisher Scien-
tific),200 nM ascorbic acid (Sigma-Aldrich), 1 mM dibutyryl cyclic-AMP
(Sigma-Aldrich) and 1 pg ml™ laminin (Thermo Fisher Scientific), as
previously described®, and harvested 30 days after differentiation. The
‘Zanovelloi3 Cortical’ samples were generated as previously described
for the dual TDP-43/UPF1knockdown experiments'®, Only the TDP-43/
Control and Control/Control transfection conditions were used for
RNA-seq. See the ‘RNA-seq’ section for library preparation details.

AniPSCline withan N-terminal HaloTag onboth endogenous cop-
ies of TDP-43 (Halo-TDP-43 i3Neurons) was generated by CRISPR-Cas12
gene editing®. The parental cell line used was the WTC11 cell line with
integrated dCas9-Krab and NGN2 cassettes as mentioned previously®.
The homology-directed repair (HDR) template used was Addgene
plasmid 178131. Editing was done with Cas12 CRISPR RNA (crRNA)
(Integrated DNA Technologies) with GGAAAAGTAAAAGATGTCTGAAT
asthetargeting sequence. Recombinant Cas12 (Cpflultra; Integrated
DNA Technologies) was electroporated with HDR template and Cas12
crRNA using the P3 Primary Cell 4-D Nucleofector Kit (Amaxa, V4XP-
3024).iPSCs were then single-cell plated, and positive colonies were
selected with HaloTag TMR dye (Promega) and verified by polymerase
chainreaction (PCR) of genomic DNA.

For proteolysis-targeting chimera (PROTAC)-mediated knock-
down of Halo-TDP-43, i3Neurons were treated with HaloPROTAC-E®®
(30 nM) ondaysinvitro14 (DIV14) and harvested on DIV28. This proto-
colallowstoavoidincurringin maturation alterations caused by loss of
TDP-43, asthisoccurs atalater step; we, therefore, used this approach
to validate ELK1 protein increase as transcription factor levels can be
sensitive to maturation stages.

FISH

Cortical-like i3Neurons were cultured on 13-mm glass coverslips and
fixed in 4% paraformaldehyde (PFA)/sucrose on day 9. RNA-FISH was
performed using the QuantiGene ViewRNA ISH Cell Assay Kit (Invitro-
gen, QVC0001), according to the manufacturer’sinstructions. Protease
was used at 1:1,000 dilution. Two probe sets were used to detect the
canonical ELKI transcript (TYPE 4 probe, 488-nm) or specifically the
distal 3UTR cryptic extension (TYPE1probe, 550-nm). Confocal images
were acquired with an LSM 980 laser scanning confocal microscope
with Airyscan 2 (Zeiss), using a x40 oilimmersion objective.

For each biological replicate, 10 images were acquired for the
control and TDP-43 knockdown conditions. For each image, foci for
both probes were counted within the 106.07-pm x 106.07-um field of
view on FlJI/ImageJ using the maximum intensity z-projection function

to flatten the 2-pm-thick z stack. The ‘Find Maxima’ function using
the same prominence setting between conditions was performed to
quantify total numbers of RNA foci. To separately count nuclear and
cytoplasmic foci, the Cell Counter plugin was used. For each probe
and field of view, the total number of foci was divided by the number
of DAPI-stained nuclei to give the average number of foci per cell. To
calculate the nuclear:extranuclear ratio for the ‘Total ELKT probe, the
number of nuclear foci was divided by the number of extranuclear foci
ineach field of view. For each probe and condition, the mean number
offociper celland the nuclear:extranuclear ratio were calculated from
the 10 images and normalized, for each biological replicate, to the
respective control condition. Statistical significance was evaluated
usingaonesample t-test with alog transformation and the Benjamini—
Hochberg false discovery rate procedure, testing the null hypothesis
thatmean =log(1).

Western blots

Halo-TDP-43 i3Neurons were homogenized in lysis buffer (25 mM
Tris-HCI, 150 mM NacCl, 1% NP-40, 1% glycerol, 2 mM EDTA, 0.1% SDS,
protease inhibitor (cOmplete EDTA-free protease inhibitor cocktail;
Roche) and phosphatase inhibitor (PhoSTOP; Roche)). Samples were
loaded on a NuPAGE 4-12% Bis-Tris protein gel (Invitrogen), which
was runin NuPAGE MOPS buffer. Proteins were transferred onto PVDF
blotting membrane (Amersham) through wet transfer for 1 hour and
30 minutes at 200 mA in transfer buffer (25 mM Tris, 192 mM glycine
and 20% methanol). The membrane was blocked in 5% milk in TBST
(20 mM Tris, 150 mM NaCl and 0.1% Tween 20) and incubated over-
night with primary antibodies diluted in 5% milk in TBST (anti-ELK1
(Abcam, ab32106) 1:500, anti-TDP-43 (Abcam, ab104223) 1:2,000
and anti-tubulin (Sigma-Aldrich, MAB1637) 1:5,000). After 1-hour
incubation with horseradish peroxidase (HRP)-conjugated second-
ary antibodies diluted in 5% milk in TBST (anti-mouse HRP (Bio-Rad,
1706516) 1:10,000 and anti-rabbit HRP (Bio-Rad, 1706515) 1:10,000),
the membrane was developed using Immobilon Classico HRP substrate
(Sigma-Aldrich) and the Bio-Rad ChemiDoc system.

Cellfractionation

For the fractionation experiments, SH-SY5SY cells were treated for
10 days with 25 ng ml™ doxycycline hyclate (Sigma-Aldrich) to induce
the short hairpin RNA (shRNA) against TDP-43. After 10 days, cells were
trypsinized, pelleted and resuspended in 1x PBS. Before re-pelletting
them, afractionfor each sample was saved for protein analysis to assess
TDP-43 depletion. The other fraction was used for the subcellular frac-
tionation with the Ambion PARIS Kit (Life Technologies), according to
the manufacturer’s instructions. RNA from the nuclear and cytosolic
fractions was extracted with the Direct-zol kit (Zymo Research) with
on-column DNase I treatment. For each experimental condition, 2 pug
of cytoplasmic RNA and anequal volume of nuclear RNA fraction were
reverse transcribed with the RevertAid First Strand cDNA Synthesis Kit
(Thermo Fisher Scientific) according to the manufacturer’s instruc-
tions and analyzed by RT-qPCR with PowerUp SYBR Green Master
Mix (Thermo Fisher Scientific). DNA amplification was monitored on
aQuantStudio 5Real-Time PCR system (Applied Biosystems). GAPDH
and pre-GAPDH transcripts were used as cytosolic and nuclear controls,
respectively. The oligonucleotides used for the analyses are reported
inSupplementary Table 9.

3'RACE

For each condition, equal amounts of total RNA were reverse tran-
scribed in a 20-pl reaction with the RevertAid First Strand cDNA Syn-
thesisKit (Thermo Fisher Scientific), according to the manufacturer’s
instructions, using1 pl of 50 pM oligo dT-anchor RT primer. cDNAs were
diluted to 1 ng pl™, and the expression of each target was evaluated
through RT-qPCR with PowerUp SYBR Green Master Mix (Thermo
Fisher Scientific) using a gene-specific forward primer and the PCR
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universal reverse primer. DNA amplification was monitored on the
QuantStudio 5 Real-Time PCR system (Applied Biosystems). Unless
otherwise specified in the figure legend, relative RNA quantity was
calculated as the fold change (272%") with respect to the experimental
control sample set as1and normalized over GAPDH, used as an endog-
enous control. The oligonucleotides used for the analyses are reported
inSupplementary Table 8.

ELK13'UTR APAreporter library

For the initial test, we cloned the ELK1 proximal 3’'UTR and the first
800 bp of ELK1 cryptic 3’Ext into the region downstream of the
mGreenLantern coding sequence in a dual-fluorescent (mScarlet and
mGreenLantern), dual-promoter reporter plasmid. We then transfected
two groups of SK-N-BE(2) cells with our construct: one treated with
1,000 ng ml™ doxycycline and one untreated, and each group had trip-
licates. This cell line contains the SMARTvector, which enables TDP-43
knockdown upon doxycycline treatment. One day after transfection,
we combined triplicates together for RNA extraction and performed
3’RACE to generate DNA samples. Subsequently, we submitted these
samples for nanopore sequencing and analyzed the sequencing data to
assess APA site usage. First, we used minimap2 version 2.28 (ref. 67) to
perform alignment. Subsequently, we determined the polyadenylation
site for each read by locating the sequence of 10 consecutive aden-
osines and their corresponding position in the alignment reference.

For the subsequent UG replacement experiment, we constructed
aplasmid library. This cloning included three steps. (1) We inserted a
restriction site between the mGreenLatern coding sequence and ELK1
3’UTR within the construct. (2) We digested the construct with Afel
(New England Biolabs, R0652) and Accl (New England Biolabs, R0161),
whose cutting sites are located at proximal 3’'UTR and cryptic 3'Ext,
respectively. Next, using Gibson assembly®®, we assembled the digested
plasmid backbone with the inserts (described below) to produce the
library. Plasmids with different inserts were referred to as variants. (3)
We used the restriction site inserted in the first step to incorporate a
15-mer randombarcode into each variant. After this, each variantin the
library corresponded to one or more unique barcodes, which could be
used to identify inserts during sequencing data analysis.

Eachinsert consisted of three distinct fragments: the first frag-
ment comprised the last 192 bp of ELK1 proximal 3’UTR, whereas the
second and third fragments comprised the first 350 bp of ELK1 cryptic
3’Ext. Moreover, the first and last 28 bp of each fragment were con-
served to enable Gibson assembly with adjacent fragments and the
plasmid backbone. Toemphasise the importance of the first 150 bp of
cryptic 3’Extwithinthe second fragment, we focused onitin our results.

Before transfection, we conducted nanopore sequencing to
identify each variant’s corresponding unique barcodes. We followed
the protocol described above to transfect the plasmid library into
SK-N-BE(2) cells with SMARTvector in four treatment groups (O,
30 ngml™, 60 ng ml™and 1,000 ng mI™ doxycycline). The protocol was
performedintriplicate for each variant, and replicates were not com-
bined before RNA extraction. After obtaining the nanopore sequenc-
ing results, we used a custom script to extract the barcode sequence
from each read to identify which insert the read should be aligned to.
Reads were aligned, and the APA site usage was determined by using
the method described above.

Variant design and analysis code are available at https://github.
com/MaxChien1996/replace_UG_in_first_800_bp_of ELK1 extended_3_
prime_UTR.

SH-SY5Y and SK-N-BE(2) TDP-43 knockdown for RNA-seq

SH-SY5Y and SK-N-BE(2) cells were transduced with a SMARTvector
lentivirus (V3IHSHEG_6494503) containing a doxycycline-inducible
shRNA cassette for TDP-43. Transduced cells were selected with
puromycin (1 pg ml™) for 1 week, before being plated as single cells
and expanded to obtain a clonal population. Cells were grown in

DMEM/F12 + GlutaMAX (Thermo Fisher Scientific) supplemented
with10% FBS (Thermo Fisher Scientific) and 1% penicillin-streptomycin
(Thermo Fisher Scientific). For induction of shRNA against TDP-43,
cells were treated with the following amounts of doxycycline hyclate
(Sigma-Aldrich) and collected after 10 days:

For experiments in SH-SY5Y cells (curves), 75 ng ml™
For experiments in SH-SYS5Y cells (cycloheximide), 25 ng ml™
For experimentsin SK-N-BE(2) cells, 1,000 ng mi™*

RNA-seq

Strand-specific, poly(A)-enriched sequencing libraries for the
‘Humphrey i3 cortical’ dataset were prepared using the KAPA mRNA
Hyper Prep Kit. One hundred total nanograms of RNA was used as
input material for poly(A)-positive mRNA capture. Fragmentation was
performed for 6 minutes at 85 °C to obtain a target fragment size of
300-400 bp, and 13 cycles of PCR amplification were performed. The
resulting libraries were sequenced 2 x 150 bp on an Illumina NextSeq
2000 machine.

RNA was extracted from i3Neurons (‘Zanovello i3 Cortical’) and
SH-SY5Y and SK-N-BE(2) cells using the RNeasy Mini Kit (Qiagen) fol-
lowing the manufacturer’s protocol including the on-column DNA
digestion step. RNA concentrations were measured by NanoDrop,
and 1,000 ng of RNA was used for reverse transcription. Samples
undergoing RNA-seq were furthermore assessed for RNA quality ona
TapeStation 4200 (Agilent), resulting in an RNA integrity number (RIN)
higher than 9.4 for all samples. Sequencing libraries were prepared
with poly(A) enrichment using the TruSeq Stranded mRNA Prep Kit
(Ilumina) and sequenced on anIllumina HiSeq 2500 or NovaSeq 6000
machine at UCL Genomics with the following specifics:

SH-SY5Y cells: 2 x 100 bp, depth >40 million per sample
SK-N-BE(2) and ‘Zanovello i3 Cortical’ cells: 2 x 150 bp, depth >40
million per sample

RNA-seq data processing

‘Humphrey i3 Cortical’ samples were processed as previously
described®® using the RAPiD-nf Nextflow pipeline. In brief, adapt-
ers were trimmed from raw reads using Trimmomatic’® version
0.36, and reads were aligned to the GRCh38 genome build using
gene models from GENCODE version 30 (ref. 71) with STAR” ver-
sion 2.7.2a. The RAPiD-nf pipeline is available at https://github.com/
CommonMindConsortium/RAPiD-nf/.

The ‘Brown’ SH-SY-5Y, SK-N-BE(2) and i3Neuron datasets were pro-
cessed as previously described™. Unless otherwise stated, all short-read
RNA-seq datasets were processed using the following pipeline. Raw
reads in FASTQ format were quality trimmed for a minimum Phred
score of 10 and otherwise default parameters using fastp’ (version
0.20.1). Quality trimmed reads were aligned to the GRCh38 genome
build using gene models from GENCODE version 40 (ref. 71) with STAR™
(version 2.7.8a). Quality trimmed reads are used as input for any tools
thatrequire FASTQfilesasinput (for example, PAPA and Salmon). Our
alignment pipeline is implemented in Snakemake™ and is available
at https://github.com/frattalab/rna_seq_snakemake.

SLAM-seq
SLAM-seq was performed on cortical-like i3Neurons following proto-
cols adapted from Herzog et al.”. Samples were treated with 100 uM
4SUonday7for0,1,4,8,12and 24 hours beforeimmediate wash with
PBS. Each timepoint had two replicates for both control and TDP-43
knockdown, excluding 4 hours where one of the control replicates did
not pass RNA quality controls and so was not submitted for sequencing.
RNAwas extracted using the Qiagen RNAisolation and purification
kit. RNA concentration was estimated using a NanoDrop Microvol-
ume Spectrophotometer (Thermo Fisher Scientific). After ensuring
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an adequate amount of RNA in each sample, iodoacetamide (IAA)
treatment was applied to each, facilitating the thiol modification of
incorporated 4SU.

Sequencinglibraries were prepared with the KAPA RiboErase RNA
HyperKitandsequenced (2 x 250 bp) on an Illlumina NovaSeq SP. Using
the ‘rna_seq_snakemake’ alignment pipeline (https://github.com/
frattalab/rna_seq_snakemake), raw FASTQ files were quality trimmed
using fastp”® with the parameter ‘qualified_quality_phred: 10’ and
aligned without soft clipping to the GRCh38 genome build using STAR"
(version 2.7.0f) with gene models from GENCODE version 34 (ref. 71).
GRAND-SLAM (version 2.0.7b) was runon the aligned data using gene
models from GENCODE version 34 (ref. 71) using the “-trim5p 10 -trim3p
10’ parameter to ignore mismatches at the ends of reads. The output
files containing the estimated new-to-total RNA ratios (NTRs) of each
gene were used to estimate the half-life of each gene using the recom-
mended workflow in grandR”™.

For analyses on specific isoform stability, the reads were aligned
to a custom general transcription factor (GTF) containing all 3’UTR
isoforms quantified by PAPA (see the ‘Identification of cryptic last
exons with PAPA’ section) using the fastq2EZbakR pipeline (https://
github.com/isaacvock/fastq2EZbakR, version 0.2.0). Halflives for
thebinsaligningto the ELKIlong and short UTR were calculated using
the ‘EstimateFractions’ function from EZbakR” version 0.0.0.9000
to retrieve the fraction of old RNA. Decay constants and 95% confi-
dence intervals for each bin were calculated using a custom script
(‘isoform_specific_analysis.Rmd’ in the ‘tdp43-apa’ repository) using
weighted nonlinear regression. In brief, for each bin and condition,
fraction old RNA estimates were inversely weighted proportional
to the squared s.e. estimate, and nonlinear least-squares regression
was performed to model the fraction remaining as an exponential
decay function. We note that this method is used here to detect relative
changes in RNA half-lives between conditions and not to provide the
exact half-life estimates.

PAPA—pipeline to detect cryptic last exons

Although there are many tools for de novo alternative polyadenylation
detection within 3’'UTRs from RNA-seq data, all suffer from poor per-
formance with respect to matched 3’ end sequencing approaches’”’%,
These tools also cannot detect upstream poly(A) sites or define com-
plete last exon structure. Aptardi is a deep-learning-based approach
torefine predicted 3’ ends of reference or assembled transcriptomes”
but was excluded from a recent benchmarking study due to com-
pute times and resource requirements’®. TECtool (version 0.4) trains
amachine learning model on annotated last exons to classify novel
introniclast exons defined upstream of poly(A) sites from the PolyASite
atlas** but canonly define ALEs and only supports single-end RNA-seq
data, substantially impacting sensitivity. Inspired by findings that
general purpose transcript assemblers can sufficiently define indi-
vidual exons®*’and a previous workflow combining matched short-read
and 3’ enriched sequencing'®, our approach extracts last exons from
StringTie" assembled transcripts and filters based on proximity to 3’
end sequencing-derived poly(A) sites. Additionally, we rescue events
with poly(A) signal hexamers near the 3’ end, an important feature in
discriminating 3'UTRs from other transcriptomic regions® that canalso
mitigate incomplete coverage of cellular contexts and experimental
conditions by 3’ sequencing databases.

Pipeline setup

Transcript assemblies for individual samples were generated using
StringTie 2.1.7 (annotation-guided mode). Grouping by experimen-
tal condition, a redundant assembly was generated using GffCom-
pare® 0.11.2. Next, condition-wise, transcript-level mean transcripts
per million (TPMs) were calculated, assigning O TPM if absent in a
sample. Transcripts were filtered for >1 mean TPM to improve global
assembly accuracy®. Next, we extracted last exons from sample-wise

assembled transcripts and identified novel events that satisfy the
following criteria:

Predicted PAS does not overlap annotated exons.

ALEs—lastintronis contained within annotated introns with exactly
matching5’ss

IPAs—last exon overlaps annotated exon withamatching 5’ end (exact
forinternal exons, within 100 nucleotides (nt) for first exons due to
known imprecision of assembled transcript start sites)

3’Ext—overlaps annotated last exon with exactly matching 5’ ends
and extends the longest exon at the locus

IPA and 3’Ext—extends annotated exon by minimum distance (default
100 nt)

Filtered novel last exons were then merged by condition into sin-
gle GTFs to select a condition-wise representative prediction based
on 3’ end precision. Last exon 3’ ends within 100 nt of PolyASite 2.0
database®® PASs were retained and updated to database coordinates.
Alternatively, last exons containing any of the 18 poly(A) signal hexam-
ers”inthefinal 100 nt were retained, selecting the exons with hexamers
closest to the expected 21-nt upstream position.

We then combined the filtered novel and annotated last exons into
acombined transcriptome reference. We then defined ‘last exoniden-
tifiers’ based on overlapping regions. Overlapping last exons of each
gene were assigned acommonidentifier, with 3’Exts receiving aunique
identifier to the exons the annotated last exons they extend. Regions
overlapping annotated first or internal exons were removed to retain
only unique last exon sequences. Last exons with 3’ ends overlapping
annotated first/internal exons were excluded.

Transcript sequences were extracted using GffRead® 0.12.1 and
used to construct a decoy-aware transcriptome index using Salmon*
1.5.2 (GRCh38 genome build as decoys). Samples were subsequently
quantified using Salmon**1.5.2 (‘-gcBias’ and ‘-seqBias’ flags enabled).
TPM values were summed by the last exon identifier, and estimated
counts were generated with tximport® 1.26.0 (‘countsFromAbunda
nce=lengthScaledTPM’) for differential isoform usage testing with
DEXSeq*1.44.0. PAS usage was calculated by dividing last exon isoform
expression (TPM) by total gene isoform expression.

PAPA 0.2.0, available at https://github.com/frattalab/PAPA, is
implemented as a Snakemake” pipeline using PyRanges®* 0.0.115
for interval operations and pyfaidx® 0.6.2 and BioPython® 1.79 for
genomic sequence operations. Conda environments are used for
dependency management.

Identification of cryptic last exons with PAPA

We ran PAPA in ‘identification’ mode to predict novel last exons in the
i3Neuron, ‘Zanovello’ SH-SY5Y and SK-N-BE(2) datasets. We provided
GENCODE version 40 (ref. 71) annotations filtered for protein-coding
and IncRNA gene transcripts with a‘transcript supportlevel’ value <3
and without the ‘mRNA_end_NF’ tag®.

Predicted last exon GTF files were combined into a single GTF
using PAPA’s ‘combine_novel_last_exons.py’ script. All datasets were
then quantified and assessed for differential usage using a unified
transcriptome reference combining novel and annotated last exons
from the filtered GTF. Differential usage was performed using the
standard DEXSeq workflow, with the differentiation date added as a
covariate for the ‘Klim i3 motor’ dataset*°. We defined cryptic APAs
as DEXSeq adjusted P < 0.05, mean control usage < 10% and change in
mean usage >10% (TDP-43 knockdown, control). We further manually
curated cryptic IPAs, asmanualinspection suggested frequent artifacts
atregions of reduced coverage inintron retention loci.

Cryptic PAS validation using PATRs
TDP-43 knockdown samples from all in vitro datasets were used.
Soft-clipped alignments were extracted and 3’ ends inferred based on
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the strandedness of the RNA-seq protocol (reads with soft clips at both
ends were excluded from unstranded protocols). PATRs were defined
as soft-clipped regions >6-nt with >80% tail nucleotide content*°
(A for rightmost/plus strand; T for leftmost/minus strand) or 3-5-nt
overhangs with 100% tail content, with the 3’ most-aligned coordi-
nate defining the putative PAS.

PATRs were pooled across datasets and clustered using aniterative
approach approximating PolyASite’s algorithm®, PASs were extended
+12 ntand overlapped, selecting the position with highest read support
asrepresentative. Reads within12 nt of the representative coordinate
were collapsedinto a cluster, with the process repeated until all PATRs
were assigned.

For cryptic PAS validation, we generated 1,000 covariate-matched
annotated PAS samples by stratified sampling without replacement
using ‘matchRanges’ from nullranges® version 1.8.0. We matched for
expression (log,(median TPM +1)) and the number of unique PASs
(separated by >12 nt), assessing covariate balance using the ‘bal.tab’
method from cobalt® version 4.5.5.

We then computed distances between annotated/cryptic PASs
and nearest PATR clusters, assigning O for overlaps. We reported over-
lap if one or more PASs passed the distance threshold (10, 25, 50,100
and 200 nt). At each threshold, we computed agroup-wise fraction of
overlappingevents (5;) and computed two-sided empirical Pvalues to
assess whether cryptic and annotated PASs arose from the same dis-
tribution as follows:

N
1 FON .
P =5 2, 1P: = Rl 2 Pobs — )
i=1

where N=1,000 (total annotated samples), i = annotated distribution
mean p;, pops = Cryptic PAS p; and /() is anindicator function.

The PATR extraction pipeline, available at https://github.com/
SamBryce-Smith/bulk_polyatail_reads (version 0.1.0), isimplemented
using Snakemake’ version 7.32.4, Python 3.10.13, PyRanges® version
0.0.129, pysam version 0.22.0, pandas version 2.1.4, NumPy version
1.26.3, pyarrow version 15.0.0 and fastparquet version 2024.2.0. Cryptic
PAS validation scripts are available under the ‘preprocessing’ directory
at https://github.com/frattalab/tdp43-apa/.

DaPars2 comparison

Transcript models for ELK1, SIX3 and TLX1 were extracted from
National Center for Biotechnology Information RefSeq version 110
annotation.3’UTR and last exons were overlapped with 3’Extintervals.
If any overlap was detected, the 3’ end coordinate of the annotated
interval was updated to the 3’Ext 3’ end. Upstream transcript inter-
vals were otherwise unmodified. We then analyzed the ‘Seddighi i3
Cortical’ dataset with DaPars2 (ref. 31) using a Snakemake pipeline
developed for the APAeval project’® (available at https://github.com/
iRNA-COSI/APAeval). Two separate runs with the original or updated
transcript models were performed. BED files of predicted PASs and
their relative usages parsed from the DaPars2 output file were used
for downstream analysis, extracting the distal events to represent
cryptic 3’Ext predictions.

TDP-43iCLIP analysis

The SH-SY5Y TDP-43 iCLIP data (ArrayExpress: E-MTAB-11243) were
generated and processed as previously described'. iCLIP peaks from
the two independent replicates were merged into non-redundant
intervals for all subsequent analysis.

Cryptic events were defined as last exon isoforms passing cryptic
thresholdsinany invitro dataset. The probability of detecting TDP-43
binding events viaiCLIPisinfluenced by the abundance of target RNAs,
but, by pooling cryptic events across datasets, we cannot control for the
confoundinginfluence of RNA expression between groups. We, there-
fore, defined background events as isoforms that were assessed for

differential usage in all SH-SYSY datasets and had an adjusted P> 0.05
across all datasets, which biases against observing enriched binding
inthe crypticgroup.

For 3’Ext events, the most distal annotated poly(A) siteis selected
to represent the proximal site, and background events represent loci
with a predicted novel 3’'UTR extension. For other event categories,
background eventsinclude annotated and novel events. Our approach
to define a common last exon reference across datasets can result
in non-redundant intervals being predicted for the same last exon
isoform. We, therefore, implemented a collapsing strategy to define
asinglerepresentative interval for each event.

First, wefiltered for novel predictions matching a PolyASite refer-
ence PAS. If distinct reference PASs are reported for the same isoform,
the site predicted in the most independent datasets is selected as
representative. If distinct sites are detected in the same number of
independent datasets, the most proximal site is arbitrarily selected.
PolyASite PAS intervals represent clusters. If distinct 3’ end predic-
tions overlap with the same PAS cluster, the prediction closest to the
PolyASite representative coordinate is selected (most distal prediction
isarbitrarily selected in case of ties).

Ifnoisoforms matched a PolyASite PAS, we selected arepresenta-
tive prediction whose poly(A) signal motif minimizes the deviance from
the characteristic position 21 nt upstream of the PAS. In case of ties, the
most proximal prediction was arbitrarily selected. As distinct intervals
stillremained for background ALEs and IPAs after 3’ end collapsing, we
arbitrarily selected the most distal 3’ end for nine background IPAs and
the most proximal 5’ end for four background ALEs.

We constructed TDP-43 binding metaprofiles by extending
genomic landmarks by 500 nt in both directions and computing
per-position coverage by iCLIP peaks using BEDTools’ version 2.31.0.
We then calculated mean coverage (fraction of events with an overlap-
ping peak) ands.e. for each position relative to the landmark. We plot-
ted LOESS-smoothed (‘span’ = 0.1) coverage and confidence intervals
(1s.e.).

De novo motif enrichment analysis

To perform de novo motif enrichment, we adapted PEKA*?, which
identifies kmers with positional enrichment atiCLIP peaks relative to
background crosslink sites while normalizing to the general occurrence
in the surrounding genomic context. Therefore, we can substitute
iCLIP peaks and global crosslink sites for cryptic and background
landmarks, respectively, to identify positionally enriched kmers with
respect to cryptic landmarks. For all comparisons, we ran PEKA to
search for enriched 6-mers in the proximal window of interest set to
250 nt (the broad window in which iCLIP peaks were observed), and
the distal window was set to 500 nt (to maintain consistency with the
overall search space for iCLIP peaks). The ‘percentile’ flag was set to O
toswitch off thresholding of background regions based onread count,
andthe ‘relpos’ flag was set to O to consider all positionsin the proximal
window when calculating the enrichment score.

Preferred TDP-43 binding 6-mers were extracted from
Halleger etal.’. Inbrief, the 6-mers were defined using PEKA as the top
20 most enriched kmers around intronic iCLIP crosslinks across all
wild-type, A326P, G294A, G335A, M337P and Q331K and a 316del346
GFP-TDP-43 in HEK293 cells. The 20 were subsequently separated
into the following three groups based on a gradient of enrichment in
wild-type and G335A TDP-43 withrespect to A326 and 316del346 vari-
ants and their consensus sequence:

YG-containing [UG]n 6-mers: UGUGUG, GUGUGU, UGUGCG,
UGCGUG, CGUGUG, GUGUGC

YA-containing [UG]n 6-mers: AUGUGU, GUAUGU, GUGUAU, UGU-
GUA, UGUAUG, UGCAUG

AA-containing [UG]n 6-mers: GUGUGA, AAUGAA, GAAUGA, UGAAUG,
AUGAAU, GUGAAU, GAAUGU, UUGAAU
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where ‘Y’ corresponds to a pyrimidine nucleotide. To assess their over-
representation amongenriched 6-mersrelative to crypticlandmarks,
we performed aone-sided GSEA using fgsea* version1.24.0 with default
settings for each cryptic landmark. The three 6-mer groups and the
union of all three groups were provided as input pathways, and kmers
wereranked by their PEKA score. After independent runs for each land-
mark, Benjamini—-Hochberg adjusted P values were calculated with
respect to all tested landmarks and 6-mer sets and used to evaluate
statistical significance.

To generate maps of coverage of specific kmers, we used cv_cover-
age” version 1.1.0 (https://github.com/ulelab/cv_coverage) to scan for
occurrences of the YG-containing [UG]n 6-mers in a 500-nt window
around cryptic and background landmarks, disabling weighting the
occurrence by cDNA count. For coverage plots, the percentage occur-
rences of each 6-mer were summed separately for the cryptic and
background regions. The percentage occurrences were converted to
mean coverages and visualized as described for iCLIP maps.

The adapted PEKA code is available at the ‘output_mods’ branch
of the following forked copy of the PEKA repository: https://github.
com/SamBryce-Smith/peka. A Snakemake pipeline to run PEKA and
cv_coverage is available in the ‘motifs/peka_snakemake’ directory of
the ‘tdp43-apa’ repository.

Postmortem RNA-seq analysis—FACS-seq data processing
Sequenced reads from FACS-sorted frontal cortex neuronal nuclei**
were processed as described in Brown et al.’’. The dataare available in
the Gene Expression Omnibus (GEO) at GSE126543.

Quantification of cryptic last exons in postmortem
FACS-seqdata

Nuclear RNA-seq libraries contain both nascent and processed RNA.
We, therefore, constructed decoy transcript models that reflect
alternative processing decisions at ALE and IPA loci (for example,
intron retention) to limit the confounding effect of nascent RNAs on
transcript quantification®.

First, we extracted cryptic ALE and IPA coordinates from the uni-
fied transcript reference used to quantify cell culture datasets. We
then generated decoy transcript models separately for each event
type. For IPA events, the unique cryptic IPA region was extended to
incorporate the adjacent upstream annotated internal exon. Then, a
‘spliced’ decoy transcript that traverses the annotated internal exon
tothe downstream annotated internal exon was generated, alongside
an ‘intron retention’ decoy transcript that contains the same pairs of
internal exons merged with the intervening intron. For ALEs, a ‘retained
intron’ decoy transcript was generated that corresponds to the com-
pleteintronicregioninwhichthe ALEis contained. No decoy transcript
models were generated for 3’Ext, 3’'shortening and ‘complex’ events
or for ALEs that are the most distal annotated isoform of their gene.
Decoy transcript and gene identifiers were appended with suffixes
to differentiate from cryptic APAs and annotated transcripts. Finally,
the decoy transcripts and cryptic APAs were returned to the unified
transcript reference to generate a decoy-augmented last exon refer-
ence for quantification.

The decoy-augmented reference was quantified with Salmon ver-
sion 1.8.0 (ref. 22) using the ‘salmon’ sub-pipeline available at https://
github.com/frattalab/rna_seq_single_steps. As with PAPA, samples
are quantified against a decoy-aware transcriptome index with full
genome sequence (GRCh38 build) used as decoys’” and the ‘-gcBias’
and ‘-seqBias’ flags enabled.

Calculation of percent poly(A) usage (PPAU) was performed
using acopy of the ‘tx_to_polyA_quant.R’script from the PAPA reposi-
tory. Sample-wise differences in PPAU were calculated by subtracting
PPAU in the TDP-43-positive population from the TDP-43-negative
population (that is, a positive difference indicates enrichment in the
TDP-43-depleted population). Cryptic APAs withamedian sample-wise

enrichment of more than 5% were considered as enriched. Scripts to
construct decoy transcripts and analyze quantifications are available
under the ‘postmortem’ subdirectory at https://github.com/frattalab/
tdp43-apa.

NYGC RNA-seq data

The sequencing libraries were generated*”* and processed” as pre-
viously described. Samples were classified into disease subtypes as
previously described”. In brief, FTD subtypes were classified by pathol-
ogy according to the presence of TDP-43 inclusions (FTLD-TDP), FUS
or Tau aggregates. Patients with ALS were subcategorized based on
presence (ALS-non-TDP) or absence (ALS-TDP) of reported SOD1 or
FUS mutations. The following samples were considered as regions
where TDP-43 pathology (and specific cryptic junction expression)
is expected: motor (ALS-TDP), frontal and temporal cortex samples
(FTLD-TDP and ALS-TDP) and cervical, lumbar and thoracic spinal cord
samples (ALS-TDP).

We opted to quantify ALE events using junction reads, which pro-
vide direct quantification of the occurrence of a splicing event. As of
version 0.2, PAPA does not directly report splice junctions associated
with ALE events. However, as the filtering criteria applied by PAPA
require putative ALE events to have a terminal splice junction with a
direct matchtoanannotated 5’ss, itis possible to infer splice junctions
from reference annotation using just the reported last exon coordi-
nates. For ALEs fully contained within annotated introns, the splice
junction is defined from the intron start to the start of the ALE. If last
exonsaredistaltothe annotated gene, thenthe closest upstream anno-
tatedintronis found. The splicejunctionis subsequently defined as the
regionfromtheintronstarttothestartofthe ALE. Finally, for annotated
ALEs, all annotated introns that terminate at the ALE are reported
as splice junctions for the event. The above steps are implemented
in a custom script, ‘last_exons_to_sj.py’, available at the ‘tdp43-apa’
GitHubrepository.

Splice junctions for cryptic ALEs and cryptic splice junctions
identified in cortical-like i3Neurons® were quantified across the NYGC
RNA-seq cohort by extracting counts for provided junctions fromthe
“SJ.out.tab’ files produced by STAR”. The code is implemented in the
‘bedops_parse_star_junctions’ version 0.1.0 Snakemake pipeline and
is available at https://github.com/SamBryce-Smith/bedops_parse_
star_junctions.

We defined detection criteria to prioritize cryptic splice junctions
thatare specifically intissue types and samples with expected TDP-43
pathology. Junctions are considered expressed if at least two spliced
reads are detected in a sample. Junctions are considered selectively
expressed if expressed in at most 0.5% of all samples where TDP-43
pathology is not expected and in at least 1% of samples where TDP-43
pathology is expected. We note that such criteria will exclude events
with enriched expressionin tissues withexpected TDP-43 proteinopa-
thy but that have basal expression in unknown cell types not repre-
sented inour invitrocompendium. Such events may still have relevance
inmechanisms of disease in specific cell types but are less suitable for
discriminating samples with TDP-43 proteinopathy.

Ribo-seqanalysis

i3Neuron Ribo-seq data were generated and processed as previously
described". Uniquely mapped reads were assigned to genes based on
the union of annotated ‘CDS’ entries in the GENCODE version 34 stand-
ard annotation released using featureCounts® version 2.0.1. Differen-
tial expression between TDP-43 knockdown and control was performed
using DESeq2 (ref. 95) version 1.38.3, and differentially translated
genes were defined based on aBenjamini—-Hochberg adjusted Pvalue
threshold of 0.05. Any last exon passing our cryptic criteriain at least
one of the i3 Neuron datasets (Brown i3 cortical, Seddighi i3 cortical,
Humphrey i3 cortical) was considered for intersection with differen-
tially translated genes.
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GSEA was performed using fgsea*” version 1.24.0 with default
settings. Cryptic 3’Ext, IPA and ALE containing genes were provided
asinput pathways, and moderated fold changes were calculated with
the ‘IfcShrink’ function from the DESeq2 package using the default
apeglm’ method as the shrinkage estimator to rank genes. A threshold
of 0.05 Benjamini-Hochberg adjusted P value was used to determine
statistical significance.

Read counting was performed using the ‘feature_counts’
sub-pipeline available at https://github.com/frattalab/rna_seq_sin-
gle_steps. Custom scripts used to perform differential expression
and pathway analysis are available at https://github.com/frattalab/
tdp43-apa.

For cross-referencing with differential RNA expression, we used
differential expression analysis from cortical-likei3Neurons performed
as previously described®. Cryptic last exon-containing genes were
highlighted if they passed the statistical significance threshold in the
Ribo-seq differential expression analysis.

Analysis of ELK1 transcription factor activity

ELK1target genesinHeLa cells were accessed from the ChIP-Atlas® on
15November 2023. We used the ‘Target genes’ module to obtain a list
oftarget genes that have a ChIP-seq peak within 1 kb of transcription
start sites. Theresultinglist contained two HeLa datasets (GSM608163
and GSM935326) and was filtered to target genes identified in both
datasets. Given areported redundancy of function between ELK1 and
other members of the TCF family® (ELK3 and, particularly, ELK4), we
also attempted to define aunique set of ELK1target genes. ELK4 target
genes in HeLA cells were accessed from ChIP-Atlas on 29 November
2023 using the same parameters. The resulting list contained three
HeLadatasets (GSM608161, GSM608162 and GSM935351), and we again
filtered for target genesidentified in all datasets. ELK3 HeLa ChIP-seq
data were not available through ChiIP-Atlas at the time of publication
and were not considered for further redundancy. ELK3 RNA levels
are 10x lower than ELK3 and ELK4 in HeLa TDP-43 knockout cells*, so
we anticipate that this is unlikely to affect our conclusions. ELK1 and
ELK4 target gene lists were intersected to define common and unique
target genes for each transcription factor. Final target gene lists used
arereported in Supplementary Table 5.

RNA-seq data from Hela cells with TDP-43 knockout*’ were
accessed from GSE136366. The data were processed and differen-
tial expression was performed as previously described™. Genes were
ranked by DESeq2’s test statistic (log, transformed fold change divided
by the s.e. of the fold change) after removing genes with differential
splicingupon TDP-43 knockout, where we can expect to attribute any
changes in gene expression to TDP-43 loss of function. Differentially
spliced genes were defined using MAJIQ®’, considering any genes with
aprobability greater than 0.95 as differentially spliced. The target gene
sets described above were used as input pathways to fgsea* version
1.24.0 using default settings.

Subcellular Frac-seq analysis

The neural progenitor cell short-read Frac-seq data®® were down-
loaded from the GEO at accession number GSE244655. RNA-seq qual-
ity control and processing was performed as previously described
(see ‘RNA-seq data processing’ section). The PAPA index was used to
quantify ELK1 isoform expression with Salmon version 1.8.0, using
the ‘salmon’ sub-pipeline available at https://github.com/frattalab/
rna_seq_single_steps. TPM values for the ELK13’Ext were pooled across
ribosome-associated fractions (monosome, light polysome and heavy
polysome), and PPAU was recalculated for each fraction and repli-
cate. All ELK1 3’Ext PPAU values were then normalized to the cytosol
PPAU within each replicate for subsequent visualization. Statistical
significance was evaluated using a two-sided one-sample ¢-test after
log transforming the PPAU ratios, testing the null hypothesis that the
meanis equal to log(1).

Statistics and reproducibility

Our study design involved multiple stages. First, we used transcriptome-
wide hypothesis testing of high-throughput RNA-seq datasets to iden-
tify a panel of TDP-43-sensitive cryptic polyadenylation events. We
performed this screen in neuronal cell models, where we could reli-
ably deplete TDP-43 levels to mimic nuclear loss in disease. We then
screened this panelin specialized and bulk postmortemtissue datasets
to highlight events whose expression patterns were consistent with
disease and TDP-43 pathology status. Finally, we performed targeted
experimental assays to validate observations from high-throughput
sequencing and to investigate the molecular consequences of specific
cryptic polyadenylation events.

Sample sizes for postmortem tissue analysis (Fig. 2b) were deter-
mined by the availability of samples at the time of analysis. Sample
size for the NYGC ALS Consortium was determined by the number of
available samples at the time of analysis (corresponding to a subset
of'the 21 February 2023 data freeze) as data collection s still ongoing.
Samplesizesfor novel omics datasets and experimental validation were
determined based on previous studies succeeding with similar aims to
identify novel isoforms, perform targeted validation and assess their
downstream effects on RNA and protein expression™.

Allstatistical tests were performed two-sided. One-sample t-tests
were performed using log-transformed ratios of within-replicate,
control-normalized values (mean count for FISH experiments and
percent PAS usage for Frac-seq). Log transformation is a standard
transformation to bring a distribution closer to anormal distribution,
butthe assumption of normally distributed transformed data was not
formally tested. For Student’s unpaired ¢-test (3’RACE experiments),
equal variances were assumed, and the data distribution was assumed
tobe normal, but this was not formally tested. Unless otherwise stated,
the Benjamini-Hochberg multiple-testing correction method was used
to compute ‘adjusted’ Pvalues.

Randomization was not used in this study, as most of the analyses
(experimental and omics-based) were carried outin cell lines that are
inherently homogenous. Randomization was not applicable in post-
mortemanalyses as the variable of interest (disease status and expected
TDP-43 pathology) is an observed variable, and no intervention was
performed. No data were excluded from analysis. FISH images were
analyzedblinded to TDP-43 depletion status. For all other experiments,
theinvestigators were not blinded to experimental condition or disease
status during experimentation and analysis.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

This study analyzes existing and newly generated datasets. All exist-
ing datasets are publicly available from the accessions reported
below. ‘Brown’ i3Neuron, SH-SY5Y and SK-N-BE(2) datasets are avail-
able through the European Nucleotide Archive (ENA) under acces-
sion PRJEB42763. The SH-SY5Y TDP-43 iCLIP data are available at the
ENA under accession PRJEB49480 or at ArrayExpress under acces-
sion E-MTAB-11243. ‘Seddighi’i3Neuron RNA-seq, i3Neuron nanopore
direct RNA-seq and i3Neuron Ribo-seq data can be accessed at the
Alzheimer’s Disease Workbench: https://fair.addi.ad-datainitiative.
org/#/data/datasets/mis_spliced_transcripts_generate_de_novo_
proteins_in_tdp 43 related_als_ftd_ 00005. The HeLa TDP-43 knock-
out (GSE136366), the FACS-sorted frontal cortex neuronal nuclei
(GSE126543) and the ‘Klim’ iPSC-derived motor neurons (GSE12156)
canbeaccessed at the GEO. Raw ChIP-seq data for ELK1 (GSM608163
and GSM935326) and ELK4 (GSM608161, GSM608162 and GSM935351)
in HeLa cells can also be accessed through the GEO or in processed
format as used in this study via ChIP-Atlas (https://chip-atlas.org/).
Theshort-read neural progenitor cell Frac-seq data*® were downloaded
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from the GEO at accession GSE244655. RNA-seq data generated by
the NYGC ALS Consortium and used in this study can be accessed
throughthe GEO (GSE137810, GSE124439, GSE116622 and GSE153960).
Torequestimmediate access to new and ongoing datagenerated by the
NYGC ALS Consortium and for samples provided through the Target
ALS Postmortem Core, agenetic datarequest form canbe completed
at ALSData@nygenome.org.

Allsequencing datasets generated in this study have been deposited
at the GEO: ‘Zanovello i3Neuron’ (GSE296710), ‘Humphrey i3Neu-
ron’ (GSE296714), ‘Zanovello SH-SY5SY CHX’' (GSE296713), ‘Zanovello
SH-SY5Y curve’ (GSE296712), ‘Zanovello SK-N-BE(2) curve’ (GSE296711)
and i3Neuron SLAM-seq (GSE296716). An archive of minimal pro-
cessed data required to reproduce analysis and figures presented
in this paper is available from Zenodo'*° (https://doi.org/10.5281/
zenodo.15538002). Source data are provided with this paper.

Code availability

Allvisualization and statistical testing were performed in R'”' version
4.3.2 using ggplot2 (ref. 102) version 3.4.4, ggpubr'®® version 0.6.0,
ggprism'® version 1.0.4 and ggrepel'® version 0.9.4 packages. Pre-
processing for visualization and generation of supplementary tables
was performed using tidyverse'® version 2.0.0, writexI'” 1.4.2 and
data.table'*® version 1.14. Unless otherwise stated, analyses requir-
ing genomic interval operations or queries with bioinformatics data
formats were performed in Python 3.10.11 using PyRanges®* 0.0.127,
pandas'® version 2.0.2 and NumPy"° version 1.23.

All custom analysis code can be accessed at GitHub with specific ver-
sionsarchived at Zenodo. Alternative repositories for specificanalyses
arereported below andinthe relevant Methods sections. Analysis and
visualization code, along with conda™ and renv'”? environments for
dependency management, can be accessed at https://github.com/
frattalab/tdp43-apa (https://doi.org/10.5281/zen0do0.15210472). The
‘salmon’ ‘feature_counts’ pipelines are available at https://github.
com/frattalab/rna_seq_single_steps (https://doi.org/10.5281/zenodo.
15210438). The splice junction counting pipeline is available at
https://github.com/SamBryce-Smith/bedops_parse_star_junctions
(https://doi.org/10.5281/zen0d0.15209898). The PAPA Snakemake
pipeline is available at https://github.com/frattalab/PAPA (https://
doi.org/10.5281/zen0do.15210362). The poly(A)-tail-containing read
extraction Snakemake pipeline is available at https://github.com/
SamBryce-Smith/bulk_polyatail_reads (https://doi.org/10.5281/
zeno0do.15210306). The code for ELK13'UTR reporter design and analy-
sis is available at https://github.com/MaxChien1996/replace_UG_in_
first 800_bp_of ELK1 extended_3_prime_UTR (https://doi.org/10.5281/
zenodo.15413618). The Snakemake RNA-seq processing and align-
ment pipeline is available at https://github.com/frattalab/rna_seq_
snakemake (https://doi.org/10.5281/zenodo.15463283).
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Extended DataFig. 1|3’ RACE validation of cryptic APAs ini3Neurons.
RT-qPCR analysis after 3’RACE for the indicated 3'UTRs upon TDP-43 depletion
(“TDP-43KD”) ini3Neurons. The RNA expression levels were normalized against
GAPDH mRNA and expressed as relative fold change with respect to the control
condition (“Control”) set to a value of 1. Data are represented as the mean of the
fold change + standard deviation. n=4 biological replicates. Statistical analyses
were performed using two-sided, Student unpaired t-test (n.s. p>0.05, * p<0.05,
**p<0.01, *** p<0.0001). ALE: alternative last exon (s short, | long), 3'Ext: 3’UTR

extension, IPA:intronic polyadenylation. Exact p-values are reported in the
form (canonical, ALE/IPA/3'Ext/ALE short, ALE long). STMN2 (p =2.804x1078,
3.280x107%).SYNJ2 (p=7.577x1075,6.916x10-%). ARGHAP32 (p =1.536x10"4,
6.094x10719,2.018x10°#). PHF2 (p = 6.727x1074,1.680x1074, 9.785x107%).
ELK1 (p=8.711x10719,2.295x1076). TLX1 (p =1.271x107#, 6.779x1079). SIX3
(p=3.248x1073,3.711x1073). SIN3B (p =1.735x10"1,3.490x10-%). CNPY3
(p=8.970%x1074,5.032x1078).
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conditions for the original reporter (0), the reporter with increased UG content
(92) and the reporter with the most UG deletion (96).
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NYGC Selective Liu Enriched
SERGEF STMN2 ACOT11 ADARB2 ARHGAP32
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Extended Data Fig. 3| Consistency of enriched/selective ALEs between FACS- depleted (TDPnegative) and TDP-43 positive (TDPpositive) nuclei. Rows are

seqand NYGCdatasets. A). Overlap between ALEs passing enrichment threshold  arranged in descending order of the median sample-wise difference in usage

in the ‘Liu’ FACS-seq data* (Fig. 2a) and splice junctions of ALEs passing selective (TDPnegative - TDPpositive). Columns represent individual patients within
detection thresholds in the New York Genome Centre (NYGC) ALS Consortium the cohort. C). Detection statistics for FACS-seq specific ALEs in the NYGC ALS
dataset (Fig. 2b). Cryptic ALEsin each intersection group are labelled directly Consortium. ALEs are sorted in descending order of the detection enrichment
underneath the event count. B). Heatmap of PAS usage in post-mortem FACS-seq ratio and bars are coloured according to expected presence (gold, ‘True’) or
data* for NYGC-specific ALEs. Cells are labelled with and coloured in proportion absence (grey, ‘False’) of TDP-43 proteinopathy. ALEs are considered detected if
to the magnitude of the sample-wise difference in PAS usage between TDP-43 atleast 2 junction reads were presentinasample.
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Extended DataFig. 4 | Subcellular fractionation of SH-SY5Y upon TDP-43
depletion. A). Western blots to evaluate the decrease of TDP-43 protein upon
its depletion in SH-SY5Y cell line; Tubulin was used as loading control. For
each experimental condition, two technical replicates were loaded on the gel.
n=3biological replicates. B). Bar-plots showing the percentage in the nuclear
and cytoplasmic fractions in SH-SY5Y cell line for selected targets in control
condition (“Ctrl”) or upon TDP-43 depletion (“TDP-43 KD”) detected through
qRT-PCR analysis. GAPDH and pre-GAPDH were used as cytoplasmic and nuclear
controls, respectively, for cell fractionation. STMN2 Cryptic, awell-reported
cryptic exon, shows predominant cytoplasmic localization. The relative

RNA distribution in the bars is represented as mean + standard deviation.
n=3biological replicates. Statistical analyses were performed using Student
unpaired t-test (n.s. p>0.05, * p<0.05, ** p<0.01, **** p<0.0001). GAPDH p-value

(3d.p.): 0.865, pre-GAPDH p: 0.936, STMN2 Cryptic p: 0.516. C). RT-qPCR
analysis after 3’RACE on the nuclear fraction of SH-SYSY cell line upon TDP-43
depletion (“TDP-43 KD”). The levels of ELK1 canonical (“Canonical”) and cryptic
(“3’Ext”) isoforms are expressed as relative fold change with respect to the
control condition (“Control”) set to a value of 1. Data are represented as the mean
ofthe fold change + standard deviation. n=3 biological replicates. Statistical
analyses were performed using Student unpaired t-test (* p<0.05). 3’Ext:

3'UTR extension. ELK1 Canonical p-value (3d.p.): 0.023, ELK13’Ext p: 0.041.

D). Bar-plots showing the percentage in the nuclear and cytoplasmic fractions
in SH-SY5Y cell line upon TDP-43 depletion for ELK1 canonical (“Canonical”) and
cryptic (“3’Ext”) isoforms, as detected through qRT-PCR analysis. The relative
RNA distributionin the barsis represented as mean + standard deviation. n=3
biological replicates. 3’Ext: 3’UTR extension.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
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The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  No specialised software was used for data collection

Data analysis The following software and annotation versions were used for the preprocessing of the 'Humphrey i3 Cortical' dataset:
Trimmomatic 0.36
STAR 2.7.2a
GRCh38 genome build
Gencode v30 transcript annotations

The pipeline is deposited on GitHub at https://github.com/CommonMindConsortium/RAPiD-nf/

For processing of all other 'standard' RNA-seq datasets, the following software and annotation files were used:
fastp 0.20.1

STAR 2.7.8a

GRCh38 genome build

Gencode v40 transcript annotations

The pipeline is deposited on GitHub and Zenodo (https://github.com/frattalab/rna_seq_snakemake , https://doi.org/10.5281/
zenodo.15463283)

For SLAM-seq processing and analysis:
fastp 0.20.1
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STAR v.2.7.0f

GRCh38 genome build
Gencode v40 annotations
GRAND-SLAM 2.0.7b
fastq2EZbakR 0.2.0
EZbakR 0.0.0.9000
grandR 0.2.2

For the PAPA pipeline:
StringTie 2.1.7
Gffcompare 0.11.2
PolyASite 2.0
Gffread 0.12.1
Salmon 1.5.2
Tximport v1.26.0
DEXSeq v1.44.0
R4.2.2
Snakemake 6.7.0
PyRanges 0.0.115
Pyfaidx 0.6.2
Python 3.8.10

>
QD
Y
(e
=
)
§o;
o)
=
o
=
_
D)
©
o)
=
S
Q@
wv
(e
=
S}
Q
<L

Version 0.2.0 was used for the manuscript. The pipeline is available on GitHub and is archived at Zenodo (https://github.com/frattalab/PAPA ,
https://doi.org/10.5281/zen0d0.15210362).

The poly(A)-tail containing read (PATR) extraction and clustering pipeline ('bulk_polyatail_reads'):
Nullranges 1.8.0
Cobalt 4.5.5
Snakemake 7.32.4
Python 3.10.13
pyranges 0.0.129
Pysam 0.22.0

Pandas 2.1.4

Numpy 1.26.3
Pyarrow 15.0.0
Fastparquet 2024.2.0

Version 0.1.0 was used for the manuscript. The pipeline is available on GitHub and is archived at Zenodo (https://github.com/SamBryce-
Smith/bulk_polyatail_reads, https://doi.org/10.5281/zen0d0.15210306).

DaPars2 comparison:

NCBI RefSeq v110 transcripts

APAeval commit ID d7831b6 (https://github.com/iRNA-COSI/APAeval)
DaPars2 commit ID 23d89d1 (https://github.com/3UTR/DaPars2)

ELK1 3'UTR reporter:

minimap 2.28

python 3.6.13 (general), 3.9.19 (SpliceAl)
pysam 0.21.0

SpliceAl 1.3.1

keras 2.12.0

dnaio 0.7.1

Version 1.0 was used for the manuscript. The analysis code is available on GitHub and is archived at Zenodo (https://github.com/
MaxChien1996/replace_UG_in_first_800_bp_of _ELK1_extended_3_prime_UTR, https://doi.org/10.5281/zenod0.15413618)

the 'salmon' and 'feature_counts' subpipelines:
salmon 1.8.0
featureCounts v.2.0.1

The pipelines are deposited at GitHub and Zenodo (https://github.com/frattalab/rna_seq_single_steps, https://doi.org/10.5281/
zenodo.15210438)

The splice-junction read quantification pipeline:
bedops 2.4.39

bedtools 2.30.0

python 3.8.6

v0.1.0 was used in the manuscript. The code is deposited on GitHub and Zenodo (https://github.com/SamBryce-Smith/
bedops_parse_star_junctions , https://doi.org/10.5281/zenodo.15209898).

I
S
The remaining custom analysis code is deposited in the 'tdp43-apa' GitHub repository and is archived at Zenodo (https://github.com/ %
frattalab/tdp43-apa, https://doi.org/10.5281/zenod0.15210472). This code uses the following software: §
R4.3.2
ggplot2 3.4.4

ggpubr 0.6.0




ggprism 1.0.4

ggrepel 0.94

tidyverse 2.0.0

writex| 1.4.2

data.table 1.14

Python 3.10.11

PyRanges 0.0.127

pandas 2.0.2

numpy 1.23

snakemake 7.26.0

bedtools 2.31.0

PEKA (forked copy commit ID f934395, 'output_mods' branch at https://github.com/SamBryce-Smith/peka)
cv_coverage 1.1.0

DESeq2 1.38.3

fgsea 1.24.0

MAJIQ 2.4

nullranges 1.8.0

cobalt 4.5.5

ImagelJ v1.54f was used for fluorescent in-situ hybridisation image analysis and foci quantification.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability
- For clinical datasets or third party data, please ensure that the statement adheres to our policy

This study analyses existing and newly generated datasets. All existing datasets are publicly available from the accessions reported below. 'Brown' i3Neuron, SH-
SY5Y and SK-N-BE(2) datasets are available through the European Nucleotide Archive (ENA) under accession PRJIEB42763. The SH-SY5Y TDP-43 iCLIP data is available
at ENA under accession PRIEB49480 or ArrayExpress under accession E-MTAB-11243. ‘Seddighi’ i3Neuron RNA-seq, i3Neuron Nanopore direct RNA-seq and
i3Neuron Ribo-seq data can be accessed at Alzheimer’s Disease Workbench (ADWB): https://fair.addi.ad-datainitiative.org/#/data/datasets/
mis_spliced_transcripts_generate_de_novo_proteins_in_tdp_43_related_als_ftd_00005. The HelLa TDP-43 Knockout (GSE136366), FACS-sorted frontal cortex
neuronal nuclei (GSE126543) and the ‘Klim” iPSC-derived motor neurons (GSE12156) can be accessed via Gene Expression Omnibus (GEO). Raw ChIP-seq data for
ELK1 (GSM608163, GSM935326) and ELK4 (GSM608161, GSM608162, GSM935351) in Hela cells can also be accessed through GEO or in processed format as used
in this study via ChIP-atlas (https://chip-atlas.org/). The short-read neural progenitor cell Frac-seq data was downloaded from the GEO at accession number
GSE244655.

RNA-seq data generated by the NYGC ALS Consortium and used in this study can be accessed through the GEO database (GSE137810, GSE124439, GSE116622,
GSE153960). To request immediate access to new and ongoing data generated by the NYGC ALS Consortium and for samples provided through the Target ALS
Postmortem Core, complete a genetic data request form at ALSData@nygenome.org.

All sequencing datasets generated in this study have been deposited at the GEO database: ‘Zanovello i3Neuron’ (GSE296710), ‘Humphrey i3Neuron’ (GSE296714),
‘Zanovello SH-SY5Y CHX' (GSE296713), ‘Zanovello SH-SY5Y curve’ (GSE296712), ‘Zanovello SK-N-BE(2) curve’ (GSE296711) and i3Neuron SLAM-seq (GSE296716). An
archive of minimal processed data required to reproduce analysis and figures presented in this manuscript is available from Zenodo (https://doi.org/10.5281/
zenodo.15538002).

The following genome sequence and transcriptome annotation versions were used:

GRCh38 genome build - https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_000001405.26/

Gencode v30 (Humphrey i3 Cortical, v34 (SLAM-seq) and v40 (all others) transcript annotations - https://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/
PolyASite 2.0 - https://www.polyasite.unibas.ch/download/atlas/2.0/GRCh38.96/atlas.clusters.2.0.GRCh38.96.bed.gz

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Sex was collected for all individuals in the NYGC ALS Consortium dataset and was verified using the RNA-seq expression of the
sex-specific marker genes XIST and UTY. Analysis of selective expression in post-mortem tissue (Fig 2) was performed without
considering sex, because the analysis discriminates between samples with and without inferred TDP-43 pathology which is
not determined by sex.

Reporting on race, ethnicity, or None used because no socially constructed categorization variables were recorded in the provided NYGC ALS Consortium
other socially relevant metadata.
groupings

Population characteristics 1682 tissue samples from 446 unique participants (203 female).
Control — 104 individuals (50 female), median age 65 (interquartile range 19.5)
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Recruitment

Ethics oversight

ALS — 279 individuals (127 female), median age 66 (interquartile range 12)
FTD — 63 individuals (26 female), median age 67 (interquartile range 10)

In NYGC ALS Consortium the recruitment and contribution of postmortem samples and clinical information was performed by
Consortium members using their recruitment criteria and strategy

The NYGC ALS Consortium samples presented in this work were acquired through various institutional review board (IRB)
protocols from member sites and the Target ALS postmortem tissue core and transferred to the NYGC in accordance with all
applicable foreign, domestic, federal, state, and local laws and regulations for processing, sequencing, and analysis. The
Biomedical Research Alliance of New York (BRANY) IRB serves as the central ethics oversight body for NYGC ALS Consortium.
Ethical approval was given. Informed consent has been obtained from all participants.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size

Data exclusions

Replication

Randomization

Blinding

NYGC ALS consortium sample size was not pre-determined as data collection is still ongoing. Sample size was determined by the number of
available RNA-seq samples at time of analysis, which corresponded to a subset of the 2023-02-21 data freeze. Overall sample sizes are
reported in 'Population Characteristics' section above and split by TDP-43 pathology status in Supplementary Table 4.

Sample sizes for novel cell-line RNA-seq datasets and experimental validation were not determined by formal power analysis. Instead, sample
sizes were determined based on prior studies similarly aiming to identify novel isoforms, perform targeted validation and assess their
downstream effects on RNA and protein expression. Examples of such prior studies include “TDP-43 loss and ALS-risk SNPs drive mis-splicing
and depletion of UNC13A”.

Sample sizes for novel RNA-seq experiments (CTRL = Control, KD = TDP-43 knockdown):

'Zanovello SH-SY-5Y CHX' - 4 CTRL, 4 KD

'Zanovello SH-SY-5Y Curve' - 3 CTRL, 3 KD

'Zanovello SK-N-BE(2) Curve' - 3 CTRL, 3 KD

'Zanovello i3 Cortical' - 4 CTRL, 4 KD

'Seddighi i3 Cortical' - 12 CTRL, 6 KD

'Humphrey i3 Cortical' - 6 CTRL, 6 KD

Sample sizes for novel and previously published RNA-seq datasets ('Brown SH-SY5Y', 'Brown SK-N-BE(2)', '‘Brown i3 Cortical', 'Klim i3 Motor')
are further described in Supplementary Table 1.

Sample sizes for non-RNAseq experiments were not determined using formal statistical methods. Sample sizes for 3'RACE-based cryptic APA
validation in post-mortem tissue was determined by sample availability at the time of analysis. For all other targeted experimental assays,
sample sizes were based on technical feasibility and previous studies investigating changes induced by novel RNA isoforms, such as “TDP-43
loss and ALS-risk SNPs drive mis-splicing and depletion of UNC13A”. Sample sizes are as follows:

- Halo-i3Neuron ELK1 Western blot (Fig. 3C) - 4 CTRL, 4 KD

- i3Neuron 3'RACE validation (Extended Data Fig. 1) - 4 CTRL, 4 KD

- ELK1 3'UTR reporter library (Fig 1H, Extended Data Fig 2)) - n = 3 for each variant and experimental condition (doxycycline concentration)

- Frontal cortex tissue cryptic APA 3'RACE (Fig. 2B, Supplementary Fig 7) - 4 CTRL, 4 FTD-TDP

- ELK1 FISH in i3Neurons (Fig. 3G, Supplementary Fig. 98,C) - 3 CTRL, 3 KD

- Sub-cellular fractionation in SH-SY5Y cells (Fig. 3H, Extended Data Fig 4) - 3 CTRL, 3 KD

None reported.

All RNA-seq, SLAM-seq and Ribo-seq experiments involved multiple biological replicates in each condition, and statistical analyses that model
variability between replicates were used to model average effect sizes and to prioritise targets with differences between experimental
conditions. ELK1 protein upregulation was reported in i3Neuron models with different mechanisms and developmental timing of TDP-43 loss,
and reproduced across 4 independent differentiations (Fig 3C).

ELK1 cryptic 3'Ext RNA upregulation in the extra-nuclear compartment was confirmed by independent assays in different cellular models (FISH
=i3Neurons, biochemical fractionation combined with 3'RACE = SH-SY5Y). Each assay was performed using independent differentiations and
the relative patterns between the experimental condition were consistent across all replicates. All attempts at replication were successful.

The majority of analyses in this study was carried out in cell lines, which do not require randomization due to their inherent homogeneity. The
omics data were generated in a high throughput manner and intended for generic analyses of changes in context of TDP-43 depletion. Where
novel targets were highlighted via transcriptome-wide analysis, orthogonal biochemical assays were performed to validate these initial
observations.

Fluorescent in-situ hybridisation images were analysed blinded to TDP-43 depletion status. All other investigations were performed unblinded
to experimental condition or disease status. In these cases, blinding is not applicable because the data generation/quantification are
automated procedures that do not involve subjective interpretation.

>
QD
Y
(e
=
)
§o;
o)
=
o
=
_
D)
©
o)
=
S
Q@
wv
(e
=
S}
Q
<L

£zoz |udy




Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |Z| D ChlIP-seq
Eukaryotic cell lines |Z| D Flow cytometry
Palaeontology and archaeology |Z| D MRI-based neuroimaging

Animals and other organisms

Clinical data
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Plants

Antibodies

Antibodies used anti-ELK1 (Abcam ab32106) 1:500
anti-TDP-43 (Abcam, ab104223) 1:2000
anti-tubulin (Sigma-Aldrich, MAB1637) 1:5000
anti-mouse HRP (BioRad, 1706516) 1:10000
anti-rabbit HRP (BioRad, 1706515) 1:10000)

Validation anti-ELK1 (Abcam ab32106) has been validated in ELK1 knockout Hela cells and cited in 46 publications
anti-TDP-43 (Abcam, ab104223) has been validated in TDP-43 knockout HAP1 cells and cited in 18 publications
anti-tubulin (Sigma-Aldrich, MAB1637) has been validated in mouse brain tissue lysates (positive control) and non-neuronal tissue
(negative control. Cited in 413 publications.
anti-mouse HRP (BioRad, 1706516) has been used in > 1000 citations.
anti-rabbit HRP (BioRad, 1706515) according to the manufacturer’s website has been double-affinity purified with human IgG
adsorbed.

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) All iPS-derived cortical neurons (i3Neurons) used in this study are from the WTC11 line, which was derived from a healthy
human male participant. All policies of the NIH Intramural Research Program for the registration and use of this iPS cell line
were followed. SH-SY5Y cells were obtained from ATCC. SK-N-BE(2) cells were obtained from the International Centre for
Genetic Engineering and Biotechnology in Trieste, Italy.

Authentication WTC11 iPS cell line was validated to have a normal male karyotype. SK-N-BE(2) and SH-SY5Y cell lines were validated by Cell
Services at The Francis Crick Institute.

Mycoplasma contamination WTC11 iPS cell line was confirmed to be mycoplasma free based on the Lonza MycoAlert mycoplasma testing kit. SH-SY-5Y
and SK-N-BE(2) cells were confirmed to be mycoplasma free using the PHOENIXDX® MYCOPLASMA MIX gPCR kit by

Procomcure Biotech

Commonly misidentified lines  No commonly misidentified cell lines were used in this study.
(See ICLAC register)

Plants

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor

was applied. o )
Authentication Describe-any-authentication-procedures for-each seed stock used-or-novel-genotype generated.-Describe-any-experiments-used-to

assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.
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