2412.04163v2 [cs.CR] 22 May 2025

arXiv

On the Lack of Robustness of Binary Function Similarity

Systems

Gianluca Capozzi', Tong Tang?, Jie Wan?, Zigi Yang??3, Daniele Cono D’Elia!, Giuseppe Antonio Di Lunal,

Lorenzo Cavallaro*, and Leonardo Querzoni®

1Sapienza University of Rome, Italy, {capozzi,delia,diluna,querzoni}@diag.uniromal.it
2The State Key Laboratory of Blockchain and Data Security, Zhejiang University, China, {tong.tang, wanjie,
yangziqi}@zju.edu.cn
3Hangzhou High-Tech Zone (Binjiang) Institute of Blockchain and Data Security, China
4University College London, UK, 1.cavallaro@ucl.ac.uk

Abstract

Binary function similarity, which often relies on learning-based algorithms to identify what functions
in a pool are most similar to a given query function, is a sought-after topic in different communities,
including machine learning, software engineering, and security. Its importance stems from the impact
it has in facilitating several crucial tasks, from reverse engineering and malware analysis to automated
vulnerability detection. Whereas recent work cast light around performance on this long-studied problem,
the research landscape remains largely lackluster in understanding the resiliency of the state-of-the-art
machine learning models against adversarial attacks. As security requires to reason about adversaries, in
this work we assess the robustness of such models through a simple yet effective black-box greedy attack,
which modifies the topology and the content of the control flow of the attacked functions. We demonstrate
that this attack is successful in compromising all the models, achieving average attack success rates of
57.06% and 95.81% depending on the problem settings (targeted and untargeted attacks). Our findings
are insightful: top performance on clean data does not necessarily relate to top robustness properties,
which explicitly highlights performance-robustness trade-offs one should consider when deploying such

models, calling for further research.

Keywords: Adversarial machine learning, binary analysis, binary function similarity

1 Introduction

A fruitful and long-standing research trend involves
applying Deep Neural Networks (DNNs) to solve bi-
nary analysis problems. These solutions typically pro-
vide end-to-end capabilities for handling complex tasks
across entire binaries (prototypical examples include
malware/benign classification solutions). More re-
cently, the focus has narrowed to specific binary analysis
challenges that could immediately assist a reverse engi-
neer, such as decompiling binary functions [3], identi-
fying the signature and boundaries of a function [2,30],
and detecting the toolchain used to generate a specific
binary [32].

The binary function similarity problem

Among these tasks, one that has been predominately
studied involves identifying when two binary functions
are obtained from the same source code compiled with
different compilers or optimization flags. This is known
in the literature as the binary function similarity prob-
lem [I,13,18,23]. This problem plays a key role in
several security-sensitive scenarios [31,33,46], and is es-
pecially effective in detecting previously analyzed func-
tions using a reference database. This includes chal-
lenges such as identifying known library functions in

statically linked stripped binaries, recognizing specific
malware functionalities (e.g., by recognizing a partic-
ular crypto routine, or clustering malware into fami-
lies and lineage trees), detecting known vulnerabilities
in binaries and firmware, and identifying copyright in-
fringement cases in compiled binaries.

All binary function similarity models take a pair of
functions as input and output a similarity score, that
ranges from a minimum to a maximum value. Even
if the models are trained using the strict definition of
similarity described above, it has been observed that
high similarity scores are also given to functions derived
from source codes that are different but semantically
similar. This characteristic is indeed desirable as it can
be used to cluster semantically similar functions.

The gold standard for testing binary function similar-
ity solutions uses them in the function search prob-
lem [16, 40, 44], where a query function fg is used to
order a pool of functions P according to their similar-
ity score from fg, where P can contain one or more
functions f, similar to fg. The problem is correctly
solved when f, is among the top-K similar functions in
the order induced by the similarity score.

Given its central importance, the binary function
similarity problem has become a hot topic of research
with various solutions, mainly based on DNNs, pro-

posed in the last four years [3,16,17,28,29,33,38,40,41,

,46]. To bring order to the plethora of proposed sys-
tems tested with varying performance measures, a 2022
paper by Marcelli et al. [31] evaluated several solutions
using a common dataset. This step represented the first
attempt to systematize a still-growing and fascinating
field (since 2022, other binary similarity models have
been proposed [10,44]).

The missing piece of the puzzle: robustness

While [31] systematically evaluates many different sys-
tems under several aspects, it never assesses the robust-
ness of their underlying models.

A key weakness of machine learning solutions, espe-
cially those based on DNNs, is their performance when
processing adversarial examples [18]. Tt is well-known
that systems classifying media content (images, text,
video, or audio) can be fooled by crafted examples ob-
tained by modifying a benign one. Although the lit-
erature on adversarial examples is well-established for
these models [5,10,20,22,26], its investigation into sys-
tems that analyze binaries is still in the early stages,
with the majority of works focused on fooling malware
classifiers [14, 30, 39].

At the current state, it is unclear what would be the
resiliency of the binary similarity models benchmarked
in [31] against adversarial examples. Intuitively, the
ease of generating such examples for an adversary di-
rectly impacts the reliability of these systems. Hence,
an extensive evaluation of their robustness is necessary
to expose any inherent weaknesses undermining their
practical value.

Our robustness evaluation

In this paper, we aim to close this gap by investigat-
ing the robustness of binary function similarity mod-
els. We adopt a black-box approach, motivated by
the objective of testing the models against the weak-
est possible adversary. In keeping with this spirit, we
have decided to use a basic framework for our attack—a
greedy approach—which we have extended with a few
refinements: a black-box importance mechanism to de-
cide which part of the function to modify, and an
embedding-based mechanism for sequences of instruc-
tions to guide the content of certain transformations.

In this paper, we consider an attacker aiming to com-
promise a binary function similarity system used for
function search by reducing its ability to search for vari-
ants of a specific query function that they are altering.
The adversary can execute targeted and untargeted at-
tacks. In a targeted attack, given a query function fg
and a set V of functions that are semantically simi-
lar to each other, the attacker seeks to generate from
fo a semantically equivalent function f,q, maximizing
its similarity with the functions in V. The untargeted
attack is dual; here, given a query function fg and a
set V' of functions semantically equivalent to fq, the
attacker seeks to generate from fg a function f,q4, se-
mantically similar to fo that minimizes the similarity
with the functions in V.

We selected eight models, chosen from those used
in [31] and other more recent and promising ones, based
on criteria of scalability and diversity. That is, the mod-
els must be scalable and thus usable in real-world set-
tings, and they must cover a broad spectrum of poten-
tial characteristics of similarity models. These include,
for example, manual and automatic features, differ-
ent neural architectures (i.e., RNNs, feedforwards, and
GNNs), models trained with and without execution in-
formation and with or without obfuscated samples. The
diversity of models ensured during the selection process
makes the evaluation in our paper generalizable, as the
trends observed in our evaluation are likely to hold for
other models that share the structure of some of those
we tested.

The selected models have been tested against tar-
geted and untargeted attacks using the black-box
methodology described above, and their robustness has
been evaluated according to the primary metric of the
Attack Success Rate (ASR).

1.1 Contributions

In this paper, we assess the robustness of eight binary

function similarity models—Gemini [46], GMN [29],
ZEEK [411], BinFinder [10], SAFE [33], jTrans [14],
Trex [38], and PalmTree [28]— using a simple black-box

greedy attack. This attack leverages four semantics-
preserving transformations that alter the topology and
the content of the control flow graph of the attacked
query function.

This paper proposes the following contributions:

e Robustness analysis. We assess the robustness of
the examined models against targeted and untar-
geted attacks by using pools of various sizes and
different values for K, which represent the number
of functions returned by the model that are more
similar to the query function fg. We observed a
significant difference in the Attack Success Rate
(ASR) with targeted attacks being successful in
about 57.06% of cases, whereas untargeted attacks
in 95.81%.

e Transferability. We investigated whether an adver-
sarial example crafted for one model could be used
to attack another model. Our analysis shows that
targeted attacks do not transfer well. On the other
end, untargeted attacks generally transfer, with an
average ASR of 62.11%.

e Common model behaviors. We performed an in-
depth analysis on the structure of the adversarial
examples, to check whether they reveal useful in-
sights about the attacked models.

e Our artifacts are available at: https://github.com/
Sap4Sec/BCSD_Robustness.git

2 Threat Model

This work focuses on assessing the robustness of bi-
nary function similarity systems at inference time (i.e.,

https://github.com/Sap4Sec/BCSD_Robustness.git
https://github.com/Sap4Sec/BCSD_Robustness.git

we do not investigate their robustness against poison-
ing attacks). To this end, we assume a black-box at-
tacker [6,39], with no access to the target model or
training data. The attacker can perform an unlimited
number of queries to observe the similarity value pro-
duced by the model.

We emphasize that if the model does not provide the
similarity score but only categorical outputs, the attack
scenario shifts to a gray-box setting. However, the at-
tacker’s knowledge remains minimal, as they only need
the similarity score to execute the attack effectively.

(a)

—»—» fro s fx

BFS
P
(b) l
V adv
—— @f_]> — > A S Sk

BFS

Figure 1: Targeted attack. (a) Initially, the target
variants V = {fL,---, f2} are not among the top-K
most similar functions to fg in the pool P. (b) After
the attack, using f,4, as query brings all variants in V'
into the top-K.

(a)

g

—> — ool e

BFS
P
(b) o l
—_— G Loy @ —> i fx

BFS

Figure 2: Untargeted attack. (a) Initially, fo and its
variants V = {fL,---, fH} are among the top-K most
similar functions to fg in the pool P. (b) After the
attack, using fqq4, as query removes fg and its variants
from the top-K.

2.1 Targeted and Untargeted Attacks

Let sim be a similarity function that takes as input
two functions and returns a real number, the similarity
score between them. We define two binary functions as
semantically equivalent if they are two implementations
of the same abstract functionality. A set of functions is
a set of variants if all the functions are compiled from
the same source code.

An intriguing challenge within binary function sim-
ilarity systems consists of the One-to-Many (OM)

task [16,40,44] (or function search). In this task,
given a pool of functions P, a query function fg, and a
number K (where K < |P|), we have to identify in P
the K functions that, according to the attacked model,
are more similar to fo. These K functions are the top-
K for the query fq.

We consider two scenarios for an attacker interested
in attacking the function search task: targeted and
untargeted attacks.

In a targeted attack, the adversary is given a pool
of functions, P, a set of target variants, V' C P, and a
query function, fo. The adversary has to find a func-
tion fqqv semantically equivalent to fo. When faq4, is
used as a query over P, the top-K must include 7 target
functions from V (with ¢ < K).

A typical targeted attack occurs when the attacker
wants to create an adversarial version f,q4, of a specific
malicious function fg. This malicious function must
resemble a certain benign function in P or one of its
variants. Consequently, when the defender uses the bi-
nary function similarity system, a set of benign variants
will be ranked among the top-K functions most similar
to fadv-

In a untargeted attack, the adversary is given a
pool of functions, P, a query function, fo € P, and
all its variants V in P. The adversary has to find a
function f,q, semantically equivalent to fg such that,
when f,4, is used as query over P, at least i variants
are not in the top-K (with ¢ < |V]).

A practical untargeted attack occurs when the at-
tacker seeks to introduce a known vulnerable function,
fq, into a firmware. Their goal is to create a function,
fadv, that is semantically equivalent to fg but as dis-
similar as possible to all its variants, including fq itself.
As a result, when a binary function similarity system is
used for vulnerability detection by the defender, none
of the variants of fg and fq itself will be ranked among
the top-K functions of P most similar to fuq,-

We present a visual representation of a targeted at-
tack in Figure 1 and an untargeted attack in Figure 2.

3 Attack Overview

In this section, we present the black-box procedure we
utilize to assess the robustness of the models under con-
sideration. We first describe the objective function the
attacker seeks to solve and the optimization strategy
adopted for generating adversarial examples. Then, we
introduce the semantics-preserving techniques for ma-
nipulating binary functions we embody in our attack.

3.1 Multi-Objective Optimization

In the following, we refer to the targeted attack case.
The same rationale, with the necessary minor adjust-
ments, holds for the untargeted case.

In the context of a targeted attack, given a query
function fq, and set V' C P of target variants, the goal
of the attacker consists of generating an adversarial ex-
ample f,q, starting from fg that maximizes the simi-
larity between f,4, and all the target variants f, € V.

This translates into the following multi-objective func-
tion on an undefined number of variables (one for each
variant):

max(sim(fado, fi)s - - - 5iM(fadv, F2))

adv

(1)

We solve this multi-objective problem by reducing
it to the following max-min problem that takes into
account also the perturbation size:

A- |l€n(.fQ) — len(.fadv)|

len(fo) @

max min sim(fedv, fo) —

adv v
where:

e Jen(-) takes a binary function as input and returns
its length in terms of the number of instructions;

e) determines how much the size of the perturbation
should penalize the produced adversarial example.
In the following, we refer to A as the penalty fac-
tor.

Informally, with this max-min problem, we maximize
the minimum similarity between f,4, and the variants
inV.

However, we highlight that differently from the com-
puter vision scenario [20], the perturbation size does not
present a significant concern within our threat model.
Indeed, as elucidated in [39], an adversarial binary code
must exhibit both validity and realism. Consequently,
our set of transformations must alter f,q4, so that it
will still look plausible when manually analyzed, which
doesn’t imply minimizing the modification size.

3.1.1 Greedy Optimizer

To solve the max-min problem, we use an e-greedy
gradient-free optimizer to iteratively modify fo toward
the desired similarity outcome. That is, maximize the
similarity between the adversarial example f,4, and the
least similar variant in P.

At each iteration, starting from the output f!, of
the previous iteration (or the original function for the
first iteration), we generate multiple candidate adver-
sarial examples. This is done by applying semantics-
preserving transformations from a predefined set TR
to specific locations within f!, = identified in the set
POS. Specifically, we create a fixed number of candi-
dates by considering all possible pairs (tr, pos), where
tr € TR and pos € POS. Notably, a single transfor-
mation can generate multiple candidates when applied
to a given location. The next section details the spe-
cific semantics-preserving transformations used in this
process.

For each candidate, we compute the objective func-
tion in Equation 2; then, we select the adversarial exam-
ple fqqv for the next iteration using an e-greedy proce-
dure over the generated candidates. Specifically, with
probability 1 — &, we select the candidate that maxi-
mizes the objective function, and with probability e,
we choose a suboptimal one. At the end of the itera-
tive procedure, we select as the final f,4, the one that

produced the highest value for the objective function
among all f,4, generated at the end of each iteration.
This is then used as a query over P.

A certain semantics-preserving transformation can
only be applied to a specific set of positions inside the
original function we want to mutate (for example, we
cannot swap instructions having a dependency). How-
ever, we have to further restrict this set to keep our
attack computationally feasible. We do this by identify-
ing the positions where transformations are more likely
to greatly impact the similarity function. Here, each
position is an assembly instruction within the function
being modified. Specifically, the importance of instruc-
tion i € f/,, is the absolute variation of the similarity
value of f!, ~and its least similar function f, € V mea-
sured when removing i:

IM; = |5im(f(/zdv7fv)75im(f(/zdv\iafv)|a (3)

where f!, '\ i is the function f,, without instruction
i.

After computing the importance score for each in-
struction ¢ € f!, . the ones with the highest value will
be candidates for applying semantics-preserving pertur-

bations.

3.2 Semantics-Preserving Transforma-
tions

As noted in [39], an adversarial function f,q4,, generated
from a binary function fg must satisfy problem-space
constraints, including preserving its semantics.

Figure 3 illustrates the semantics-preserving transfor-
mation techniques we embodied in our attack strategy.
Some of these were initially discussed in [9], together
with a categorization based on whether they modify
or not the control-flow graph (CFG). Among these
transformations, we embed in our attack strategy: In-
struction Reordering (IR), Node Split (NS), and Dead
Branch Addition (DBA). Specifically, IR reorders con-
secutive data-independent instructions within the func-
tion, ensuring that the swap preserves the semantics.
NS splits an existing CFG node into three separate
nodes using unconditional jumps, without altering the
semantics of the function. Finally, DBA introduces
dead code— specifically, a strand (i.e., a sequence of
data-dependent assembly instructions [3])— into a new
basic block that is guarded by an always-false branch.

Additionally, we introduce a new transformation
called Strand Addition (SA), which inserts a strand
into an existing CFG node. The strands under con-
sideration contain neither control flow nor memory-
modifying instructions. Furthermore, using liveness
analysis, we identify all registers and flags used within
the strand, saving their contents at the beginning and
restoring them at the end, to ensure that the function’s
semantics remain unaltered.

We select the strand to add to the function by enu-
merating a set of candidates sampled from a large
dataset of available strands. Rather than defining a
fixed set of strands, we rely on an embedding space to

IR

BLK2 BLK2

BLKO BLKO

NS

BLKO

BLK1 BLK1

xor rdx, rdx
sub rbx, 1
add rdx, 4 -
mov [rbx], rdx
jmp BLK3

BLK1 xor rdx, rdx
sub rbx, 1

add rdx, 4

mov [rbx], rdx
jmp BLK3

mov rax, 5
add rbx, rex

mov rcx, 10
cmp rax, rbx mov [rbx], rax

add rbx, rcx
mov rax, 5
cmp rax, rbx
jnz BLK1

BLK2

xor rdx, rdx
‘7

mov rax, 5
add rbx, rex
cmp rax, rbx
3jnz BLK1

mov rex, 10
mov [rbx], rax
jmp BLK3

mov rcx, 10
|->|mov [rbx], rax
jmp BLKS

jnz BLK1 jmp BLK3
BLK3

ret 4——_____J

BLK3
|—»~—1

BLK3

BLK5 l

BLK4

sub rbx, 1 mov [rbx], rdx
mai bl
jmp BLK4 Jmp
DBA SA
BLKO BLK1 BLK3 BLKO BLK1
mov rax, 5 mov rex, 10 mov rdx, 0 mov rax, 5 mov rex, 10
add rbx, rex mov [rbx], rax mov rex, rax add rbx, rex push rdx
cmp rax, rbx "lcmp rax, oOxdeadbeet [[and rax, rax cmp rax, rbx push rcx
jnz BLK1 je BLK3 ret jnz BLK1 push rax
mov rdx, 0
mov rex, rax
BLK2 l BLK2 l and rax, rdx
xor rdx, rdx xor rdx, rdx pop rax
. BLK4 i
sub rbx, 1 sub rbx, 1 BLK3 pop rex
i R T e O e DU g
mov [rbx], rdx mov [rbx], rdx mov [rbx], rax
jmp BLK3 jmp BLK3 jmp BLK3

Figure 3: Semantics-preserving transformations embodied in the attack.

establish a set of candidates that is dynamically up-
dated at the end of each iteration within the optimiza-
tion procedure. We initialize this set using strands uni-
formly sampled from our large dataset. At the end of
each optimizer iteration, we update part of the set with
strands selected from the closest neighbors (using the
embedding space) of those representing the top greedy
actions from the previous iteration (specifically from
the SA category), while the remaining portion is filled
with new random strands.

We define the embedding space using a strand em-
bedding model to transform strands into vectors. These
vectors are grouped according to the semantics of the
strands, allowing us to establish a notion of proximity
between them. We choose BinBert [3] as the model
for generating strand embeddings because it has been
specifically fine-tuned for strands similarity detection.

We provide a detailed pseudocode of our attack strat-
egy in Appendix A.

4 Target Systems

In this section, we illustrate the binary function simi-
larity models we attacked. Based on [31], we select the
different solutions according to the following selection
criteria:

e Scalability. To demonstrate the potential vulner-
abilities of models in a real-world scenario, we eval-
uate approaches that are not slow at inference time.

e Diversity of proposed approach. Binary func-
tion similarity solutions span multiple research
communities (i.e., system security, programming
languages, machine learning) and multiple ap-
proaches. Moreover, within each community, di-
verse techniques have emerged; for instance, the
machine learning community explores various ar-
chitectures like GNNs, RNNs, and Transformers.
Therefore, we select a range of models that not only
cover different architectural structures but have
also been proposed by different research commu-
nities.

We now briefly describe the targeted models.

4.1 Graph Neural Network (GNN):
Gemini and GMN

Gemini (2017) [46] is built on a graph neural network
derived from the Structure2Vec [12] model and trained
using a Siamese architecture. It converts an ACFG
(a control flow graph with manual block-level features)
into an embedding vector, which is generated by aggre-
gating the embedding vectors of the individual nodes
within the ACFG. Given two binary functions, their
similarity is determined by the cosine similarity of their
ACFG embedding vectors.

Graph Matching Network (GMN) (2019) [29] con-
sists of a graph neural network that calculates the
similarity between two functions by representing them
through their CFGs. Unlike standard GNN solutions
(i.e., Gemini [16]), where the embedding vector for a
node captures properties from its neighborhood only,
GMN also searches for possible matches across the two
input graphs. In particular, GMN computes the dis-
tance between the inputs by trying to match their
nodes.

4.2 Intermediate Representation (IR)
and Neural Network (NN): Zeek

Zeek [11] uses an intermediate representation to cap-
ture the semantics of the input functions. Specifically,
starting from the CFG of a function, it first decomposes
each basic block into strands and converts the assembly
code in each strand to a normalized intermediate rep-
resentation (i.e., VEX-IR). Subsequently, it generates
a hash value for each block, which is then indexed in
a vector to represent the function. Finally, it uses two
fully connected hidden layers to detect the similarity
between vectors derived from semantically equivalent
code sections.

4.3 Fully Connected Neural Network:
BinFinder

BinFinder (2023) [410] employs a fully connected neu-
ral network trained using a Siamese architecture to gen-
erate function embeddings, which are then employed
for similarity calculation. It represents the input func-

tions through a set of static features that are claimed
to be robust to code obfuscation, compiler optimiza-
tion, and cross-compilation processes. These features
are first processed using different tokenizers; then, they
are transformed into one-hot vectors.

4.4 Recurrent Neural Network (RNN):
SAFE

SAFE (2022) [33] is a recurrent neural network-based
model trained using a Siamese architecture, that con-
verts the linear disassembly of the input functions into
embedding vectors. It first computes an embedding for
each assembly instruction using a model derived from
the word2vec [341] word embedding model. Then, using
a self-attentive component, it aggregates these vectors
into a final function embedding vector. Similar to Gem-
ini [46], the similarity between two functions consists of
the cosine distance between their corresponding embed-
dings.

4.5 Transformer: jTrans, Trex,
PalmTree
jTrans (2022) [44] is a BERT-based model [15] that

combines instruction semantics with CFG information
to infer the binary code representation. When con-
sidering an assembly instruction, jTrans treats each
mnemonic and operands as tokens and computes an
embedding for each of them. However, to make jTrans
better in capturing the control flow execution, jump in-
structions are modeled differently from other ISA in-
structions. The last layer of the model generates the
function’s embedding, which can then be used for sim-
ilarity calculation. jTrans has been pre-trained on two
tasks (i.e., Masked Language Model and Jump Target
Prediction) and then fine-tuned for Binary Similarity
Detection.

Trex (2023) [38] is a transfer-learning-based framework
that adopts a hierarchical Transformer [37] for learning
functions’ semantics via regular and forced execution
traces. The model is first pre-trained using a Masked
Language Modeling-like task. In particular, given a
function’s trace (which comprises both instructions and
values), some parts are randomly masked to be pre-
dicted during model training using the surrounding con-
text. Once pre-trained, the model is then fine-tuned
for function similarity detection, using functions’ static
code (instead of traces) as input to the model. Specifi-
cally, the function’s embedding is the output of a two-
layer MLP. This MLP takes as input the mean pooling
of the embeddings produced by the last self-attention
layer of the fine-tuned model.

PalmTree (2021) [28] is a BERT-based [15] pre-trained
assembly language model for generating general-
purpose instruction embeddings. Here, assembly in-
structions are treated as separate sentences composed
by basic tokens. In particular, each operand is decom-
posed into basic elements, normalizing strings and ad-
dresses with special tokens to avoid the OOV (Out-Of-
Vocabulary) problem. The model is pre-trained con-

sidering three tasks: Masked Language Model, Con-
text Window Prediction, and Def-Use Prediction. Since
PalmTree is an instruction embeddings model, to eval-
uate its performance on the function similarity task,
we follow the strategy used in [3], where an LSTM
aggregates the instruction embeddings produced by
PalmTree into a function embedding.

5 Datasets and Implementation

This section describes the datasets we use to evaluate
our approaches and implementation details.

5.1 Dataset

We test our approach by considering a codebase of bi-
nary functions extracted from 8 open-source projects
written in C language: binutils, curl, openssl, sqlite,
gsl, libconfig, ffmpeg, and postgresql. We compile the
programs for the amd64 architecture, considering two
compilers (i.e., gcc-9.4.0 and clang-12) and two op-
timization levels (namely, 00 and 03), obtaining 4 differ-
ent combinations. The collection we obtained reflects
real-world software, including binaries utilized in the
evaluation or training of the binary function similarity
systems examined in this work.

We extract the binary functions using Radare2 [35]
disassembler, excluding those that contain fewer than
6 assembly instructions or 2 CFG nodes, obtaining
127,534 functions. Our final codebase consists only of
the functions for which there are exactly four variants,
one for each combination of compiler and optimization
level.

Once obtained the codebase, we create pools of dif-
ferent sizes. A pool P of size S is composed of S/4
distinct functions uniformly sampled from the codebase
together with their variants. Our final targeted dataset
comprises 1,000 samples, each representing a query on
a certain pool on which the attack has to be carried
out. Specifically, each targeted sample contains: the
pool P; a set V C P of target variants; a query func-
tion fg (the one that will be modified by the attacker)
extracted randomly among our codebase of functions.
Note that fo € V.

For the untargeted case, we create a similar dataset
of 1,000 samples, each of which contains: the pool P; a
set V' C P of target variants; a query function fg € V
(the one that will be modified by the attacker).

5.2 Implementation Details

We implement our attack as a two-phase procedure;
the first one consists of disassembling the input func-
tions and building a high-level representation using
their CFGs; the latter consists of applying the trans-
formations to the aforementioned representations and
then feeding them in input to the target model. There-
fore, we remark that our attack is not done using binary
rewriting techniques but it is performed on this high-
level representation. However, we want to stress that all
our transformations are semantics-preserving by design,

as detailed in Section 3.2; furthermore, all these trans-
formations can be effectively applied as source code
modifications by first translating the C code of the func-
tion into assembly code (by compiling the .c file into
a .s file) and then by directly modifying the obtained
assembly code. In this way, the injection process will
not rely on binary rewriting techniques, which are more
prone to alter the semantics due to relocation issues.

We built our CFG extraction module upon the
Radare2' and angr [12] disassemblers.

Our testing pipeline has been coded in Python. We
consider the official implementation and settings for
each target model except for Gemini, GMN, and ZEEK
for which we use alternative implementations.?

6 Experimental Results

In this section, we provide the results of our experimen-
tal evaluation. We first define the performance metrics
we use, then we describe our choice of the attack hy-
perparameters and finally, we evaluate the resiliency of
binary similarity models by investigating the following
research questions:

RQ1: Do the models exhibit greater robustness
against targeted or untargeted attacks?

RQ2: Are the considered transformations able
to gemeralize across various categories of target
models? Do adversarial examples transfer across
models?

RQ3 Is it possible to deduce aspects of the model
through the distribution of applied transforma-
tions?

Successful Attacks

According to the definitions provided in Section 2.1, in
the targeted scenario, we deem an attack as success-
ful when at least ¢ variants in V' are among the top-K
results when f,4, is used as a query over P; contrarily,
in the untargeted case, an adversarial example is suc-
cessful when at least ¢ variants in V' are ranked outside
the top-K when f,4, is used as query over P.

As seen in Section 5.1, each attack considers a set
V' of exactly 4 variants, meaning ¢ < 4. The attack
becomes more challenging as ¢ increases. For instance,
when i = 1, a targeted attack is successful when just
one variant is ranked among the top-K. Conversely,
when i = 4, all variants must be in the top-K, making
the attack harder.

Also, the factor K affects the outcome of the attack,
specifically low values of K make the targeted attack
harder. For example, let’s assume i = 4; with K = 4
the attack succeeds only if the top-K set is exactly the
set of variants. When increasing K to 5, the attack is
successful even if one function of P not in V is in the
top-K. Conversely, increasing K makes the untargeted

Thttps://github.com/radareorg/radare2
2Due to unavailability of original implementations or incom-
patibility with our pipeline.

attack more challenging. For instance, when K = |P|—
4 the attack succeeds only when the top-K equals P\ V.

The size of P impacts the result of the attack. As
the pool size increases, a targeted attack becomes more
difficult because more functions could be ranked among
the top-K. Contrarily, in the untargeted case, the at-
tack becomes more difficult as the pool size decreases,
since fewer functions in P can be ranked within the
top-K.

Performance Metrics

We evaluate the robustness of the target models by us-
ing the Attack Success Rate (ASR) as the main met-
ric, which is the percentage of adversarial examples that
meet the success condition. We calculate the ASR. for
each value of i € {1,4} (ASR@Q1, ASR@2, ASRQ3,
ASR@/). Recall that in ASR@j4 we consider success-
ful the targeted attacks that bring at least ¢ variants
in top-K. In the untargeted case, the attacks have to
move at least ¢ variants outside top-K.

We also defined an aggregated ASR, namely wASR,
in which we decreasingly penalize the success of an ex-
periment depending on the number of variants satisfy-
ing the success condition. For example, if when using
fadv as query only one of the variants is among the top-
K, then this experiment will count for 0.25, if there are
two it will count for 0.50, and so on.

We use the percentage of query functions where the
success condition at i is met before executing the attack,
namely INIT@4 metrics for ¢ € {1,4} as reference.

In our untargeted attack experiments, we also com-
pute the standard recall@K before (Recall pre at-
tack) and after (Recall post attack) the attack. This
quantifies the model’s performance on clean data and
its degradation following untargeted attacks.

We further investigate the quality of our attack using
two other support metrics for each value of i € {1,4},
computed over the set of successful examples. The first
metric, M-Instrs@s, represents the number of new in-
structions in f,4, at the end of the attack. The sec-
ond metric, M-Nodes@?%, measures the number of new
nodes in f,4, at the end of the attack.

Parameters of the Attack

We run our attack for up to 30 iterations, exploring A
values of 0, 0.01, and 0.3 (see Section 3.1) to assess its
impact on our results. Given that the average length of
our query functions is approximately 100, we perturb
50 positions—about half of the total. As in [14], we use
pool sizes of 32,128,512, and 1000.

Due to the computational overhead of dynamically
updating the set of candidates (see Section 3.2), the
SA and DBA transformations are significantly slower
than the others. To keep our experiment durations rea-
sonable, we limit these transformations by testing 20
strands from a candidates’ set composed by 100 strands
with 50% of random strands.

https://github.com/radareorg/radare2

Table 1: Untargeted attack at K = 10 when considering pools with size 128 and 512 and setting A = 0. In

column AVG we report the average of the measures across all models.

Models

Gemini GMN ZEEK BinFinder SAFE jTrans Trex PalmTree AVG
|P| 128 512 128 512 128 512 128 512 128 512 128 512 128 512 128 512 128 512
Recall pre attack 0.71 0.56 0.94 0.86 0.73 0.51 0.91 0.83 0.94 0.84 0.81 0.67 0.95 0.89 0.90 0.79 0.86 0.74
Recall post attack 0.07 0.04 0.03 0.01 0.05 0.02 0.06 0.04 0.02 0 0.04 0.01 0.04 0.02 0.03 0.01 0.04 0.02
wASR 92.99 96.27 | 97.30 99.0 | 95.23 98.12 | 93.80 96.33 | 98.30 99.58 96.0 99.15 | 96.17 98.43 | 96.69 99.37 | 9581 98.28
INIT 63.63 82.87 16.10 36.40 61.76 84.70 24.40 39.40 19.40 42.60 51.10 73.20 12.82 29.22 27.66 53.15 34.61 55.19
o1 ASR 96.69 98.10 | 99.30 99.70 | 98.06 99.09 | 95.80 97.80 | 99.20 100.0 | 99.40 100.0 | 97.61 99.30 98.0 99.90 | 98.01 99.23
M-Instrs 235.07 234.18 | 214.44 215.0 | 201.77 202.11 | 226.76 227.07 | 237.61 236.85 | 133.19 133.06 | 195.51 193.39 | 524.32 522.24 | 246.08 245.49
M-Nodes 26.98 26.95 16.90 16.94 25.68 25.83 41.73 41.80 13.68 13.66 16.74 16.73 10.99 10.88 16.69 16.80 21.17 21.20
INIT 38.48 64.33 5.90 16.10 35.73 72.26 9.90 21.20 4.90 17.40 24.20 48.40 4.97 12.82 10.62 28.63 16.84 35.14
@2 ASR 95.39 9749 | 98.80 99.30 | 97.26 98.86 | 94.70 96.90 | 98.80 99.90 | 99.20 100.0 | 97.22 98.81 97.90 99.40 | 97.41 98.83
M-Instrs 236.42 234.41 | 214.09 214.44 | 201.71 202.06 | 226.78 226.96 | 238.13 236.93 | 133.35 133.06 | 195.75 194.03 | 524.57 522.88 | 246.35 245.60
M-Nodes 27.12 27.0 16.87 16.92 25.61 25.81 41.67 41.79 13.69 13.66 16.75 16.73 11.01 10.91 16.67 16.79 21.17 21.20
INIT 13.23 27.15 0.80 3.40 9.02 34.02 3.0 6.80 1.50 3.50 1.40 12.0 0.89 2.49 1.20 3.90 3.88 16.66
@3 ASR 91.58 95.39 97.0 9880 | 94.52 97.60 | 93.10 95.90 | 97.40 99.30 | 94.80 99.10 | 9583 98.11 95.89 99.20 | 95.07 97.92
M-Instrs 239.26 237.11 | 212.59 213.98 | 202.82 202.18 | 226.88 226.92 | 239.68 237.66 | 135.64 133.94 | 197.18 195.07 | 523.93 523.35 | 247.18 246.28
M-Nodes 27.28 27.11 16.93 16.88 25.26 25.62 41.59 41.72 13.69 13.68 16.96 16.84 11.05 10.97 16.71 16.75 21.18 21.20
INIT 1.20 3.01 0 0 0 3.08 0 0 0 0 0 0 0 0 0 0 0.15 0.76
04 ASR 88.28 94.09 | 94.10 9820 | 91.10 96.92 | 91.60 94.70 | 97.40 99.10 | 90.60 97.50 | 94.04 97.51 94.99 99.0 | 92.76 97.13
M-Instrs 241.56 239.12 | 212.66 214.32 | 114.09 202.45 | 226.61 226.92 | 239.68 237.94 | 137.80 135.35 | 199.09 195.80 | 525.71 523.85 | 248.23 246.97
M-Nodes 27.73 27.28 17.18 16.92 5.52 25.52 41.52 41.66 13.70 13.68 17.22 17.0 11.17 11.01 16.76 16.75 21.30 21.23
6.1 RQ1: Targeted vs Untargeted At- wASR maintains an average consistently above 80%,

tacks

In this section, we investigate the robustness of the con-
sidered models when subject to targeted and untar-
geted attacks. For brevity, we report in the tables and
the plots only the results corresponding to the 128 and
512 pools and to A = 0, which is the worst case accord-
ing to the modification size. Furthermore, we discuss
only the results @4, corresponding to the more difficult
setup, and the wASR. For the complete results, see
Appendix B.

UNTARGETED TARGETED
100 4
80 1
= 60 -
<
H
40 A
4| 20
T T ™ T T T T T T T T T T
25 50 75 100 125 5 10 15 20 25 30 35 40 45 50
K K

— GEMINI
— GMN

—— ZEEK
BINFINDER

—— SAFE
—— JTRANS

— TREX
PALMTREE

—— avg

Figure 4: wASR while varying the K value and con-
sidering |P| = 128. The dotted curve represents the
average values across the different models.

6.1.1 Untargeted Attacks

Table 1 presents the results for the untargeted attack
scenario.

For |P| = 128, we observe an average INIT@/ of
0.15%, indicating that the success condition is virtually
never met without the attack. After applying the at-
tack and querying the pool with the generated f,q,, we
achieve an average ASR@/ of 92.76%, meaning that
in over 9 out of 10 cases, all variants in V are pushed
outside the Top-10. Furthermore, when considering the
wASR, the attack succeeds in 95.81% of cases.

Figure 4 shows the average wASR for K values rang-
ing from 4 to 128. For small K values (< 25), the
average wASR remains well above 90% but decreases
sharply as the search depth increases, consistent with
observations in Section 6. However, see Figure 5, the

indicating that a larger difference between K and the
pool size significantly benefits the attacker. Notably,
when the binary function similarity model is used to
detect vulnerable or malicious functions, the pool likely
contains thousands of functions, making untargeted at-
tacks significantly easier.

The recall@ 10 metric further underscores the mod-
els’ vulnerability to untargeted attacks. Specifically, for
a pool of 128 functions, the recall@10 decreases from
an initial average of 0.86 to 0.04 after running the at-
tack.

6.1.2 Targeted Attacks

Table 2 presents the attack results for the targeted
scenario. With a pool of 128 functions, the average
INITQ4 is 1.44%, indicating that variants in V are
ranked in the Top-10 for their corresponding fg in less
than 2% of cases. The average ASR@Q/ is 39.88%,
meaning that when querying with f,4,, all variants in
V are ranked in the Top-10 nearly 40% of the time. The
wASR is 57.06%.

UNTARGETED TARGETED

100 175
90

80

WASR

704

60

50 T T T T T T T T — T T T
25 50 75 100 125 150 175 200 5 10 15 20 25 30 35 40 45 50
K K

—— GEMINI
— GMN

—— ZEEK
BINFINDER

— SAFE
—— JTRANS

— TREX
PALMTREE

avg

Figure 5: wASR while varying the K value and con-
sidering |P| = 512. The dotted curve represents the
average values across the different models.

Figure 4 illustrates the average wASR for targeted
attacks across K € [4,50] when querying a pool of 128
functions, showing a rapid increase to values exceed-
ing 40%. Figure 5 depicts similar trends with a pool
of 512 functions; however, the wASR increases more
gradually compared to |P| = 128. As reported in Ap-
pendix B, model robustness further increases with a

Table 2: Targeted attack at K = 10 when considering pools with size 128 and 512 and setting A = 0. In column
AVG we report the average of the measures across all models.

Models

Gemini GMN ZEEK BinFinder SAFE jTrans Trex PalmTree AVG
|P| 128 512 128 512 128 512 128 512 128 512 128 512 128 512 128 512 128 512
wASR 48.25 25.10 64.68 40.15 26.07 9.34 88.95 71.37 64.80 40.02 45.25 23.35 54.85 30.48 63.60 30.24 57.06 33.76
INIT 17.20 5.70 15.80 3.90 15.0 347 12.12 3.11 13.90 4.0 23.90 4.80 12.10 3.30 14.97 4.11 15.62 4.05
o1 ASR 71.90 45.10 78.60 59.80 43.16 19.49 94.39 80.96 80.30 59.10 80.20 49.10 68.80 44.60 78.04 47.19 74.42 50.67
M-Instrs | 173.62 170.18 | 214.53 210.35 94.86 101.21 | 155.21 154.78 | 123.74 128.05 77.29 84.46 | 112.70 112.76 | 193.41 182.05 | 143.17 142.98
M-Nodes 13.83 15.23 18.87 18.35 11.18 10.80 33.28 33.0 15.72 15.72 11.95 12.66 11.44 11.36 18.28 18.62 16.82 16.97
INIT 9.40 2.30 8.10 1.90 6.53 0.71 7.82 1.80 8.60 1.40 8.30 0.80 8.20 1.60 7.98 1.40 8.12 1.49
@2 ASR 57.0 2920 | 71.10 4730 | 31.94 1133 | 91.68 75.55 | 71.40 46.30 | 58.90 28.0 | 60.40 3440 | 70.06 34.97 | 64.06 38.38
M-Instrs | 173.68 173.84 | 213.81 214.23 96.81 108.93 | 155.94 156.73 | 126.32 128.05 84.68 94.18 | 112.83 114.63 | 192.08 173.26 | 144.52 145.67
M-Nodes 14.68 16.26 18.63 18.68 10.35 11.50 33.40 33.46 15.89 15.72 12.65 13.61 11.30 11.13 18.09 18.08 16.87 17.30
INIT 2.70 0.50 3.30 0.40 1.84 0 4.91 0.80 3.10 0.3 1.30 0.1 4.10 0.50 2.89 0.10 3.02 0.34
@3 ASR 38.0 15.70 60.40 32.30 18.57 4.29 87.37 67.33 60.10 32.30 27.30 10.40 49.50 24.10 57.58 22.14 49.85 26.07
M-Instrs | 177.87 181.08 | 214.63 224.91 | 93.72 108.83 | 157.19 159.0 | 129.75 131.05 | 96.62 105.67 | 115.36 114.20 | 189.60 175.48 | 146.84 150.01
M-Nodes 15.76 17.45 18.92 19.17 10.26 11.14 33.67 33.88 15.84 15.88 13.86 15.56 11.34 11.20 18.15 19.18 17.23 17.93
INIT 0.90 0.20 1.60 0 0.31 0 3.21 0.40 1.40 0 0.30 0.10 2.60 0.30 1.20 0 1.44 0.13
@4 ASR 26.10 10.40 48.60 21.20 10.61 2.24 82.36 61.62 47.40 22.40 14.60 5.9 40.70 18.80 48.70 16.63 39.88 19.90
M-Instrs | 190.36 192.19 | 219.14 239.85 | 104.95 124.5 | 159.24 160.23 | 136.29 140.71 | 109.49 118.15 | 116.21 117.37 | 192.21 176.20 | 153.49 158.65
M-Nodes 16.57 18.25 19.48 19.49 10.99 13.45 34.19 34.12 16.05 16.40 14.71 16.24 11.42 11.53 18.37 19.39 17.72 18.60

pool of 1000 functions, yielding an average wASR. of
25.25%.

6.1.3 Impacts of the Modification Size

We study how the modification size impacts models ro-
bustness by varying the A parameter in the Equation 2.
We analyzed three models selected to be representative
of all DNN architectures (specifically, Gemini, SAFE,
and jTrans) with A values of 0, 0.01, and 0.3. The com-
plete results are reported in Appendix B.

As shown in Figure 6, increasing A leads to a sig-
nificant decrease in the average wASR in both untar-
geted and targeted scenarios. In the untargeted case,
the wASR goes from 95.76% at A = 0 to 77.39% at
A = 0.01, and to 24.59% at A = 0.3. Correspondingly,
the average number of modifications, M-Instrs@4, de-
creases from 206.34 at A = 0 to 32.26 at A = 0.01,
and to 20.26 at A = 0.3. In the targeted case, the av-
erage WASR goes from 52.77% at A = 0 to 27.74%
at A = 0.01, and to 9.94% at A = 0.3, while the M-
Instrs@4 decreases from 145.38 at A = 0 to 19.10 at
A =0.01, and to 6.19 at A = 0.3.

UNTARGETED TARGETED

100

WASR

T v\
100 125

T
25 50 75

— T T T T
5 10 15 20 25 30 35 40 45 50
K

—— GEMINI_O
SAFE_O

JTRANS_0
avg_0

—— GEMINI_0.01
SAFE_0.01

JTRANS_0.01
== avg_0.01

— GEMINI03
SAFE_0.3

—— JTRANS_0.3
—= avg 03

Figure 6: wASR while varying the K value, consider-
ing |P| = 128 and A € {0,0.01,0.3}. For each value of
A, we show the wASR together with the average on
three models differing in architecture. We represent in

the results corresponding to A = 0, in red the
results corresponding to A = 0.1, and in blue the ones
for A =0.3.

Key takeaway. All models are more suscep-
tible to untargeted attacks than targeted ones.
Specifically, the average wASR is 95.81% vs
57.06% when querying a pool of 128 functions,
and 98.28% vs 33.76% when querying a pool of
512 functions.

6.2 RQ2: Generalizability and Trans-
ferability

In this section, we discuss the generalizability of our ap-
proach, showing how the considered metrics vary across
different models. We investigate whether the generated
adversarial examples can be transferred across diverse
models, to demonstrate the variation in the attack suc-
cess rate when adversarial examples intended for one
model are presented to a different model.

6.2.1 Generalizability

Our black-box transformations alter both the CFG and
instruction sequence of a function. A key point is
whether they are sufficient to attack all examined mod-
els.

In the untargeted setting with |P| = 128, Figure 4
shows similar performance across most models at var-
ious levels of K, especially for K < 25, as confirmed
in Table 1. Here, Gemini is the most robust model
(WASR =92.99%), while SAFE is the weakest (WASR
= 98.30%).

As visible in Figure 5, this trend holds for larger
pools. As K increases, ZEEK and jTrans stand out
as the most robust models, with SAFE remaining the
weakest. Even at K = 100, ZEEK is fooled in over 80%
of cases, suggesting that blacklist defenses implemented
by binary function similarity models can be bypassed in
practice (e.g., a vulnerable function ranked beyond the
top 100 may be ignored). We speculate that SAFE is
more vulnerable due to its reliance on pre-trained em-
beddings of preprocessed instructions, making it sensi-
tive to transformations like SA and DBA.

Interestingly, Table 1 shows that both ZEEK and
Gemini have some of the lowest Recall pre attack

Table 3: Transferability matrix for the untargeted attack case, considering |P| = 128 and K = 10. In the rows,
we indicate the model for which the adversarial examples were created, and in the columns, the model on which
the examples are tested. Each value represents the wASR.

Gemini GMN ZEEK BinFinder SAFE jTrans Trex PalmTree | TSR
Gemini [] 70.67 82.34 23.55 44.69 42.66 35.70 71.92 | 53.08
GMN 68.30 |} 85.02 20.30 50.78 50.98 4777 67.17 | 55.76
ZEEK 71.59 76.13 n 20.08 62.40 56.58 60.39 70.91 | 59.73
BinFinder 79.90 80.15 85.65 n 60.68 61.18 58.77 68.19 | 70.65
SAFE 61.02 62.38 84.38 24.22 n 72.12 79.57 68.77 | 64.64
jTrans 63.60 57.38 77.38 20.15 65.05 u 60.60 59.43 | 57.66
Trex 58.02 57.99 82.36 19.96 76.95 67.69 u 71.44 | 62.06
PalmTree 71.39 77.15 87.27 31.41 83.74 74.15 88.33 W | 73.35
VR 67.69 68.84 83.49 22.81 63.47 60.77 61.59 68.26 [

[random [67.81£0.06 55.68+£0.73 79.92+0.15 17.87+£0.97 45.94+0.30 49.69+£0.80 31.66+£1.02 53.16£0.32 [50.22]

values among the models, yet their Recall post at-
tack values are among the highest, meaning they are
more robust against our attack. In contrast, models
with top performance on clean data, like GMN, SAFE,
and Trex, are the ones exhibiting less robustness, as
they show lower Recall post attack values.

As visible in Table 2 and in Figure 4, the perfor-
mance at K = 10 in the targeted scenario is com-
parable across the majority of the models, except for
BinFinder, which is the least robust model, and ZEEK
which is the most robust one. BinFinder learns function
semantics considering features like VEX-IR instructions
and constants, which are heavily impacted by SA and
DBA. All the other models exhibit consistent robust-
ness, with jTrans being the most robust and SAFE the
least, showing a wASR. of 45.25% and 64.80% respec-
tively. Overall, the models relying on an instructions-
based representation (such as BinFinder and SAFE)
seem to be less robust against our attack. As visible
in Figure 5, this same analysis holds when increasing
the pool size to 512.

Key takeaway. In the untargeted case, the per-
formance at various levels of K is comparable
across most models, with SAFE being the least
robust and ZEEK the most robust model. While
in the targeted case, ZEEK is the most robust
model and BinFinder the least robust.

Top performance on clean data does not corre-
spond to greater robustness. Models showing
greater Recall pre attack, often exhibit lower
Recall post attack, whereas those with poorer
clean data performance, tend to have higher Re-
call post attack.

6.2.2 Transferability

Our attack strategy employs a greedy optimizer that
iteratively applies transformations based on feedback
from the target model. An intriguing aspect to explore
is whether an adversarial example generated against one
model can be leveraged to target all the other models
under analysis. We define this property as the Transfer-
ability Success Rate (TSR). Furthermore, we want to
investigate how models react against adversarial exam-
ples designed for other models. We define this property
as the Vulnerability Rate (VR).

To evaluate these two properties, we compare using

10

a simple baseline that applies a sequence of random
transformations to the query function fg. The random
baseline is run for the same number of iterations as the
greedy procedure, and the experiment is repeated three
times. Note that this baseline can be used to compare a
random application of transformations against our op-
timizer, see the difference between these results and the
one in Section 6.1.

Table 3 presents the results in terms of wASR. of
the transferability experiment in the untargeted case,
together with the average wA SR and the standard de-
viation for the random baseline. Table 4 presents the
results for the transferability experiment in the targeted
scenario.

Transferability Success Rate

When considering the untargeted scenario, the TSR
values indicate that adversarial examples generated
against PalmTree and BinFinder are the most trans-
ferable to other models, with TSR values of 73.35%
and 70.65% respectively. We attribute these results to
the transformations applied when attacking PalmTree
and BinFinder. In these cases, SA and DBA are the
most used transformations. These two modify most of
the features considered by the target models (namely,
the content and the topology of the CFG). We will
further discuss this aspect in the next section where
we will peruse the frequency of transformations applied
against each model. Finally, all the transferred exam-
ples demonstrate higher effectiveness when compared to
the random baseline, with an average TSR of 62.12%
vs 50.22% respectively.

In the targeted scenario, the TSR results show that
adversarial examples transfer less effectively compared
to those from the untargeted case. This is expected,
given that targeted attacks are generally less effective
than untargeted ones, as discussed in Section 6.1. Nev-
ertheless, the transferred examples outperform those
produced by the random baseline. Finally, similar to
the untargeted case, adversarial examples generated
against PalmTree remain the most effective, with a
TSR of 10.95%.

Vulnerability Rate

Interestingly, the VR results show that BinFinder
stands out as the most robust model, with a lower VR
of 22.81%. We believe that adversarial examples tar-
geting BinFinder must possess unique features that are

Table 4: Transferability matrix for the targeted attack case, considering |P| = 128 and K = 10. In the rows, we
indicate the model for which the adversarial examples were created, and in the columns, the model on which the

examples are tested. Each value represents the wASR.

Gemini GMN ZEEK BinFinder SAFE jTrans Trex PalmTree | TSR
Gemini [] 10.80 10.05 7.62 9.03 10.10 8.08 8.04 | 9.10
GMN 10.80] 9.57 7.83 11.72 11.05 7.92 10.30 | 9.88
ZEEK 6.35 7.78 u 6.93 10.49 11.50 6.68 6.56 | 8.04
BinFinder 5.61 5.96 9.52 u 9.57 10.02 7.79 6.38 | 7.84
SAFE 8.65 9.93 10.47 8.10] 12.0 12.28 9.92 | 10.19
jTrans 8.20 8.88 8.85 7.52 12.3 u 10.50 8.47 | 9.25
Trex 7.70 9.53 8.97 7.47 16.70 13.60 u 11.14 | 10.73
PalmTree 10.20 13.38 7.31 9.49 11.72 11.40 13.18 W | 10.95
VR 8.22 9.47 9.25 7.85 11.65 11.38 9.49 8.69 []

[random [6.65+0.11 6.73£022 8.67+024 7.26+0.03 857+0.09 9894010 6.38£0.32 6.09+0.08 [7.53 |

not present in those generated against other models.
We will further discuss this insight in the next section.
Surprisingly, ZEEK is the least robust model against
transferred adversarial examples, with a VR value of
83.49%. Generally, transferred examples are more ef-
fective than those generated using the random baseline,
except Gemini, where the corresponding VR value is
comparable to the wASR achieved with the random
baseline.

In the targeted scenario, all models perform similarly,
with BinFinder being the most robust (VR of 7.85%)
and SAFE the least (VR of 11.65%). Despite these
low values, transferred examples still outperform the
random baseline.

Key takeaway. The transferability of adver-
sarial examples across models is more effective
in the untargeted context than in the targeted
scenario. Additionally, the distribution of ap-
plied transformations directly affects the success
of transferring an adversarial example to another
model.

6.3 RQ3: Common Model Behaviors

In this section, we discuss whether or not an adversarial
example can reveal common behaviors that the model
applies when analyzing binary functions.

6.3.1 Distribution of Applied Transformations

Figure 7 shows the distribution of applied transforma-
tions across the various models together with the results
in average in the untargeted scenario when querying a
pool of 128 functions. The results are calculated by con-
sidering, for each model, only the adversarial examples
that succeed according to the ASR@/ metric.

Looking at the average results, it is evident that SA
and DBA are the transformations that most contribute
to the success of adversarial examples, being applied in
83.28% of the time. In contrast, IR, an in-place trans-
formation that neither alters the CFG nor introduces
new instructions, is the least applied.

Our attack procedure can identify key aspects of the
target model, particularly the target architecture and
the function representation strategy.

As shown in Figure 7, neither Gemini nor GMN are
affected by IR. This is reasonable, as both models uti-

11

35.6

48.43 42.03 51.72 . 15.14

7.43

SA 50.51 44.24 23.68 |54.37

54.49 . 46.02

DBA 15.99 20.14 37.26

B 15.96 3.21 0.0 14.04 13.67 7.74 9.49

0.03

0.83 0.01 1.82 7.23

)

Figure 7: Distribution of applied transformations in the
untargeted scenario, with K = 10, A\ = 0 and querying
a pool P of 128 functions. The AVG column shows the
average distribution across the various models.

lize a GNN architecture that does not consider the posi-
tion of the single instructions. In contrast, our strategy
primarily focuses on transformations that either insert
new nodes or new instructions. Specifically, when tar-
geting Gemini, DBA is the most common choice, as it
introduces both new instructions and new nodes into
the CFG.

When moving to models that use instruction-based
function representations (i.e., ZEEK and BinFinder),
SA and DBA become the most frequently applied
transformations. This is due to both techniques adding
new strands to the function’s body.

SAFE along with jTrans and Trex, utilize architec-
tures that consider the position of instructions within
a function. As a result, IR is chosen more often com-
pared to its usage in the previously mentioned models.
It is interesting to note that the distribution of percent-
ages against jTrans is more balanced. This reflects the
fact that jTrans accounts for both the instructions and
their positions within the function, as well as the CFG
nodes, with jump instructions being modeled differently
from other instructions.

Although PalmTree is built on an LSTM architecture
similar to SAFE, SA is chosen significantly more often
in this case (70.29% vs 54.37%), whereas IR is rarely
applied, unlike when attacking SAFE. We believe this
is due to the more sophisticated instruction embedding
technique implemented by PalmTree, which causes our
attack to focus more on transformations that insert new
instructions rather than the ones manipulating the CFG
or swapping existing instructions.

Table 5: Untargeted and Targeted attack at K = 10 with transformations applied individually, considering
|P| = 128 and A = 0. The A% value represents the percentage improvement in terms of wASR achieved by
considering all transformations (ALL) compared to applying each transformation in isolation.

Models
Gemini | SAFE | jTrans I AVG |
ALL] IR NS DBA SA [[ALL[IR NS DBA SA [ALL| IR NS DBA SA [ALL| IR NS DBA SA |
Recall post attack | 0.07 | 0.71 032 007 007 || 0.02] 093 079 027 001] 004] 08 057 022 002] 004] 0.8 056 019 003
UNTARGETED wASR 9299 | 30.08 6824 9297 9216 || 9830 | 7.58 3035 7347 98.72 | 96.0 | 1467 4334 7829 97.63 || 95.76 | 1744 47.31 8839 96.17
A% M| 6765 2662 002 089 W | 9229 69.13 2526 -043 M| 8472 4331 1845 -1.70 W | 8179 5060 770 -0.43
TARGETED wASR 4825 | 7.61 1323 3848 2816 || 64.80 | 752 11.95 2957 5045 || 4525 | 7.73 1249 2876 3359 [5277 | 7.62 1256 3227 37.40
A% W | 8423 7258 2025 4164 W | 8840 8156 54.37 2215 W | 8292 7240 3644 2577 W | 8556 7620 38.85 20.17

We emphasize that SA and DBA are universal trans-
formations capable of modifying nearly all the features
considered by the target models. This is evidenced not
only by the previously discussed percentages but also
by the intrinsic nature of these two transformations,
which add new nodes and instructions to the modified
function. Consequently, this explains why the adver-
sarial examples generated against PalmTree and Bin-
Finder transfer most effectively to the other models,
as demonstrated by the TSR results discussed in the
previous section.

Key takeaway. The architecture of the tar-
get model and its function representation strat-
egy significantly affect the type of transforma-
tion selected by our attack strategy. Specifi-
cally, transformations affecting the CFG are pre-
dominant when attacking models considering the
CFG, while transformations inserting new in-
structions or altering their order are predominant
when targeting models that do not consider the
CFG topology.

6.3.2 Transformations in Isolation

We now analyze the impact of individual transforma-
tions, focusing on three representative models—Gemini,
SAFE, and jTrans —selected from the considered DNN
architectures. For this evaluation, we run our greedy
optimization strategy disabling all transformations but
the one tested. To ensure a fair comparison, the num-
ber of candidates per iteration tested in this evaluation
matches the number of candidates for the correspond-
ing transformation in the main approach. For example,
if transformation IR has 50 candidates per iteration
in the main approach, the same number is used when
evaluating IR alone.

Table 5 presents the results for the untargeted and
targeted attacks performed considering the transfor-
mations in isolation. These confirm the findings from
Section 6.3.1. Specifically, in the untargeted scenario,
DBA and SA, the most frequent transformations for
Gemini SAFE, and jTrans respectively, are also the
most effective when used in isolation to target these
models. The A% measure, which represents the per-
centage improvement in wASR when combining trans-
formations compared to applying each transformation
individually, is —0.43 on SAFE and —1.70 on jTrans.
This means that when considering SA alone, we can ob-
tain results comparable to the main approach in terms
of wASR. The results in the targeted scenario confirm

the effectiveness of DBA and SA in attacking the con-
sidered models. However, as indicated by the A% val-
ues, the transformations alone are insufficient to achieve
the same results as when they are combined.

6.3.3 Efficiency Analysis

We analyze our attack’s efficiency by comparing the
average time needed to generate adversarial examples
using different transformations, both individually and
combined.

We observed that the execution time remains con-
sistent between targeted and untargeted attacks since
both run for a fixed number of iterations. Therefore,
we focus only on the untargeted case. The main time
factors in our attack are identifying perturbation po-
sitions, the number of candidate adversarial examples
tested per iteration, and the overhead from binary func-
tion similarity calculations.

When using all transformations, the average execu-
tion time on Gemini, SAFE, and jTrans is 25.55 4+ 2.67
minutes, indicating comparable generation time across
models, with the procedure being more efficient against
Gemini (taking 21.82 minutes in average) and least ef-
ficient against SAFE (taking 27.91 minutes in average).
Specifically, one iteration takes on average 50.12 £+ 6.03
seconds.

When applied in isolation, transformations exhibit
varying execution times. IR is the most efficient, taking
1.77 £ 0.39 minutes on average overall and 3.15 £ 1.42
seconds per iteration, while DBA is the least efficient,
taking 17.17 + 4.65 minutes overall and 34.07 £ 9.80
seconds per iteration.

6.3.4 Qualitative Analysis

Figure 8 presents a comparison between the CFGs of
the original query function fg (shown in Figure 8(a))
and its adversarial versions generated after an untar-
geted attack with A = 0 on three models: Gemini
(Figure 8(b)), SAFE (Figure 8(c)), and jTrans (Fig-
ure 8(d)).

The sequence of transformations applied to generate
the adversarial example in Figure 8(b) demonstrates
that Gemini considers both the CFG topology and the
individual instructions, as noted in the previous Sec-
tion. A manual analysis of the adversarial example
shows that the greedy optimizer typically first alters the
topology with a combination of DBA and NS trans-
formations, followed by adding new instructions using
SA.

12

,,,,,,,,,,

(c) faav against SAFE

(d) faqv against jTrans

Figure 8: CFGs of the three binary functions in case of untargeted attack with A = 0 against Gemini, SAFE,
and jTrans. (a) shows the CFG of fg, while (b), (c), and (d) show the CFGs of the adversarial fuq, targeting

Gemini, SAFE, and jTrans respectively. The red rectangle marks the function’s entry point;
, and brown blocks indicate the use of SA, NS, and DBA, respectively.

)

Dotted rectangles highlight how

instructions from a block in fq are distributed across multiple blocks in f,q4, after the attack.

The adversarial example in Figure 8(c) shows that,
when attacking SAFE, most modifications are focused
around the prologue of fg. Specifically, the function’s
entry point is modified twice: first, by adding new in-
structions through the SA transformation, and then by
splitting the final portion of the block with NS. Inter-
estingly, one of the neighbors of the entry point is also
modified using NS. This aligns with what has been ob-
served in [15], which shows that SAFE usually focuses
its analysis on functions’ prologue.

Figure 8(d) shows the adversarial function f,q4, gen-
erated from fo when targeting jTrans. As noted in
the previous section, the distribution of the different
transformations is relatively balanced. Like SAFE, the
attack strategy focuses on the entry point, applying sev-
eral transformations that add both new nodes and in-
structions.

The analysis of single nodes reveals how the greedy
procedure tailors its modifications based on the tar-
get model. For the node shown in gray, when target-
ing Gemini, the modification involves adding a strand
and splitting the final part using NS. In contrast, for
SAFE, the original instructions are spread across five
new nodes, including a dead branch with additional in-
structions, created through a combination of NS and
DBA. When attacking jTrans, the approach resembles
the one used for SAFE, but applies NS more frequently.
This last observation is expected because, as outlined in
the previous section, jTrans indirectly accounts for the
CFG of a function by modeling jump instructions differ-
ently than other types of instructions. The node in blue
remains mostly unchanged when targeting SAFE but
undergoes similar modifications when targeting both
Gemini and jTrans.

13

Key takeaway. The qualitative analysis con-
firms the findings from the distribution of applied
transformations. Moreover, it uncovers hidden
aspects of the target models, such as the ten-
dency of certain models to concentrate on the
prologue of functions.

6.4 Non-ML Approaches

In this section, we assess the robustness of non-ML
methods for comparing binary functions. For this eval-
uation, we consider:

e GSIZE. A simple approach that compares two
functions based on the number of basic blocks.

GEDIT. A simple approach that compares the
CFGs of two functions using an approximated la-
beled edit distance measure [19] (i.e., the number
of changes in terms of nodes and edges edits to
transform a source CFG into a target one).

Catalog1?. This approach uses fuzzy hashing, di-
rectly leveraging raw binary information. Specif-
ically, it applies MinHash [7] to encode groups of
four consecutive function bytes into a fixed-size sig-
nature, on which similarity is computed using Jac-
card.

We excluded other approaches, such as PSS [4] and
BinDiff [18], which operate at the program level rather
than the function level, as they fall outside the scope of
our threat model.

Table 6 presents the results for the untargeted
and targeted attacks against the three considered ap-
proaches. For the untargeted scenario, it is evident

Shttps://www.xorpd.net /pages/fcatalog.html

https://www.xorpd.net/pages/fcatalog.html

Table 6: Untargeted and Targeted attacks against non-
ML approaches, considering K = 10, |P| = 128, and
A=0.

‘ Untargeted ‘ Targeted ‘
| GSIZE | GEDIT [Catalogl [AVG | GSIZE | GEDIT | Catalogl [AVG |

wASR 82.77 81.59 40.02 | 68.13 27.17 18.65 42.85 | 29.56

Recall pre attack 0.58 0.49 0.69 0.59] L} L}]
Recall post attack 0.17 0.18 0.60 | 0.32 |] n n |]
INIT 79.92 84.85 64.79 | 76.52 18.05 26.41 46.22 | 30.23

o1 ASR 91.41 87.96 53.52 | 77.63 | 47.16 25.80 73.71 | 48.89
M-Instrs 108.08 4.26 94.87 | 69.07 35.91 11.68 55.64 | 34.41
M-Nodes 40.60 2.0 5.60 | 16.07 14.16 3.23 1.94 6.44

INIT 62.34 77.83 44.57 | 61.58 10.07 17.47 22.41 | 16.65

@2 ASR 87.31 86.66 50.0 | 74.66 33.40 18.98 52.29 | 34.89
M-Instrs 111.79 4.25 95.82 | 70.62 44.65 15.67 63.32 | 41.21
M-Nodes 41.93 0 5.55 | 15.83 17.50 4.30 224 | 8.01

INIT 25.17 43.33 15.29 | 27.93 3.19 13.55 12.05 9.60

@3 ASR 80.22 81.95 36.82 | 66.33 17.45 15.36 28.49 | 20.43
M-Instrs 117.77 4.27 102.15 | 74.73 61.18 19.19 67.59 | 49.32
M-Nodes 43.94 2.0 5.15 | 17.03 23.90 5.26 2.57 | 10.58

INIT 0 0 0 0 1.40 12.15 8.86 7.47

@4 ASR 72.13 69.81 19.72 | 53.89 10.67 14.46 16.93 | 14.02
M-Instrs 127.10 4.27 109.67 | 80.35 75.16 20.39 75.81 | 57.12
M-Nodes 47.23 2.0 5.07 | 18.10 29.18 5.59 2.76 | 12.51

that graph-based approaches are not robust against
our strategy, with a wASR of 82.77% for GSIZE and
81.59% for GEDIT. When moving to Catalogl, this
presents better robustness compared to the other con-
sidered approaches, with a wASR of 40.02%. In
the targeted scenario, all the considered approaches
exhibit greater robustness to our attack compared
to DNN-based solutions. Specifically, the average
wASR against non-ML methods is 29.56% (compared
to 57.06% for DNN-based solutions), with Catalogl be-
ing the least robust (42.85%) and GEDIT the most ro-
bust (18.65%).

The previous results highlight the better robustness
of non-ML approaches compared to DNN-based ones
against our attack. However, it is worth noting that
non-ML solutions present lower Recall pre attack val-
ues, showing poor performance on clean data.

The poor attack performance in the targeted case
against GSIZE and GEDIT is due to the fact that our
transformations cannot remove nodes from the CFG.
As a result, when the target function has fewer nodes
than the query, the attack fails. This also highlights
a significant limitation of these similarity methods, as
they struggle to assign high similarity scores to func-
tions that are semantically similar but topologically dif-
ferent.

Regarding Catalogl, its robustness in the targeted
case is comparable to that of DNN-based systems; how-
ever, it shows remarkable robustness in the untargeted
case. Probably the set of our transformations is unable
to effectively modify the representation used by Cata-
logl. The results @1, where INIT@1 is higher than
ASR@1, highlight that, for certain queries fq, at least
one of the variants initially ranked outside the top-K is
ranked in the top-K of f,4,. This implies that Catalogl
fails to assign high similarity scores to semantically sim-
ilar functions and that our attack indirectly improves
the performance of the system on a limited number of
clean data.

7 Related Works

In this section, we first discuss techniques for generat-
ing adversarial examples against image classifiers and
NLP models; then, we move to approaches targeting

models for source code analysis. Finally, we discuss at-
tacks against malware detectors and models for binary
analysis.

7.1 Attacking Image Classifiers and
NLP Models

Adversarial attacks were first introduced against mod-
els for image classification, with early works [5,10,20,43]
providing white-box, gradient-based methods that add
minimal perturbations to fool models with high con-
fidence. Chen et al. [11] propose various black-box
decision-based attacks against image classifiers involv-
ing the estimation of gradient direction.

Jia et al. [22] attack reading comprehension models
by introducing sentences that can deceive the target
models while maintaining the original semantics of the
paragraph. More recently, the solutions in [25,27] pro-
posed to attack NLP models by finding replacements
of words composing the input sequence, using BERT-
based strategies.

7.2 Attacking Models for Source Code
Analysis

Methods for attacking models for source code analysis
are mainly based on applying semantics-preserving per-
turbations at the source code level, thus having limited
applicability in the binary function similarity context.

Yefet et al. [17] propose a white-box approach that,
using a gradient-driven method, iteratively changes the
names of variables defined within a function in all their
occurrences, until a misclassification occurs. Differ-
ently, Zhang et al. [19] target code clone detectors using
semantics-preserving transformations, combined using
common optimization heuristics, alongside a reinforce-
ment learning-based approach for searching clones that
could evade the detection.

7.3 Attacking Models for Binary Code
Analysis

The solution proposed by Pierazzi et al. [39] targets An-
droid malware classifiers and is based on software trans-
plantation. Here, benign snippets of code that can trig-
ger the classifier features are injected into the malware
sample to cause a misclassification using a gradient-
guided approach. Moreover, the snippets are injected
into portions of code that are never executed, to guar-
antee the preservation of the semantics.

Lucas et al. [30] attack malware classifiers based on
raw bytes. Their solution is based on combining differ-
ent semantics-preserving perturbations both in a black-
box and a white-box context. The proposed transfor-
mations are a subset of ours, as they include IR and
NS; however, while these transformations show clear
effectiveness when targeting malware classifiers (and
also commercial solutions), they may show poor perfor-
mance when targeting binary function similarity mod-
els; indeed, it is evident from our results that a crucial
point in attacking binary similarity models is the need

14

of inserting new instructions into the function being
modified.

FuncFooler [21] is a recent unpublished work target-
ing binary function similarity models in the context of
function search. It consists of an instruction-insertion
strategy to modify a binary function at a set of fixed
locations determined in advance; to guarantee seman-
tics preservation, possible side effects are corrected a
posteriori. The set of possible instructions is computed
considering the instructions of the functions in the pool.
Differently from our approach, FuncFooler explores only
one class of transformations (which can be considered
a subset of SA where a single instruction is inserted at
each step), without altering the topology of the CFG.
Furthermore, it only studies untargeted attacks.

Capozzi et al. [9] is a recent unpublished work propos-
ing two solutions targeting a subset of the binary func-
tion similarity models we considered. Their black-box
approach consists of a greedy solution, feasible both in a
targeted and untargeted context, that iteratively inserts
new instructions into dead branches, whose locations
are fixed in advance. Differently from FuncFooler [21],
the set of possible instructions is dynamically updated
using a heuristic based on instruction embeddings. The
proposed white-box attack substitutes the aforemen-
tioned heuristic with a gradient-guided instruction in-
sertion strategy. We highlight that [9] relies on a set of
transformations that is strictly a subset of ours (as [9]
uses only DBA with a single instruction added) and it
tests its approach only against three models (namely,
Gemini, SAFE, and GMN).

PELICAN [50] is a novel white-box attack that lever-
ages natural backdoors of attacked models to identify
instructions that, once inserted into functions, can in-
duce misclassification. This attack has been tested
against models for different binary analysis tasks, in-
cluding function naming, compiler provenance, and bi-
nary function similarity. In the context of the latter,
the proposed methodology has only been tested against
three models—specifically, Gemini, SAFE, and Trex.

We emphasize that the last two solutions differ sig-
nificantly from our work. Firstly, they do not address
the function search task. Specifically, Capozzi et al. [9]
target the similarity function implemented by the tar-
get model, whereas PELICAN [50] focuses on attack-
ing the loss function implemented by the target model.
Another key difference lies in the use of variants of the
query function during the optimization process, which
is not the case in either of the other two approaches.

8 Discussion

We now discuss the practical impacts of our study and
the limitations of our evaluation setting.

8.1 Practical Impacts

As outlined in Section 1, binary function similarity sys-
tems play a crucial role in various security-sensitive
scenarios, including vulnerability detection, plagiarism
identification, and malware analysis. These systems

help automate the process of comparing binary func-
tions, making it easier to identify code reuse, detect se-
curity flaws, and uncover malicious behaviors. In prac-
tical scenarios, such systems are integrated into tools
used by reverse engineers. Notable examples include
plugins such as YARASAFE? and BinaryAI°. These
plugins facilitate the use of traditional reverse engineer-
ing tools by providing automated capabilities that can
reduce manual effort.

Our threat model represents a practical scenario
where a remotely deployed binary function similarity
system operates as a black-box model, providing only
similarity scores. While this represents a worst-case as-
sumption for the attacker, our findings reveal that these
systems remain vulnerable to our attack, which is rela-
tively simple to implement in practical contexts. This
applies to both targeted (e.g., disguising malicious code
as benign) and untargeted (e.g., hiding vulnerable or
plagiarized functions) attacks, posing serious threats in
real-world scenarios, even for models explicitly designed
to handle obfuscated functions, such as BinFinder [40]
and Trex [38].

8.2 Limitations

We examine the limitations of our work, focusing on
the dataset and transformations used. Our dataset
is smaller than benchmarks like BinaryCorp [44],
BinKit [24], and those used by Marcelli et al. [31]. How-
ever, these benchmarks are typically used to evaluate
the performance of binary function similarity systems
on clean data. Due to the computational cost of gen-
erating adversarial examples (see Section 6.3.3), using
such large datasets is impractical in our scenario. How-
ever, the number of open-source projects used to gener-
ate our codebase aligns with standard practices in the
field, as prior studies [29,] typically extract
functions from 1 to 10 projects.

As most binary function similarity systems are
trained on ELF amd64 functions compiled from C code,
we limited our evaluation to this setting. However, our
attack is architecture-agnostic and can be extended to
other ISAs by adapting the transformations. We expect
our findings to generalize, as the attack does not depend
on ISA-specific traits. Furthermore, variations in source
code languages may alter assembly representations, and
if models are not trained on such binaries, their perfor-
mance may degrade, potentially increasing the ASR.
With respect to compilers, binary function similarity
systems are typically trained considering multiple com-
pilers as well as different versions of the same compiler.
While our dataset accounts for the first aspect, we did
not explore the latter. However, [31] observed a slight
performance drop on clean data when comparing func-
tions compiled with different versions of the same com-
piler, suggesting that the ASR would likely increase in
such scenarios.

Finally, our set of transformations may have little
to no effect against symbolic execution-based methods.

))

15

4https://github.com /lucamassarelli/yarasafe
Shttps://github.com/binaryai/plugins

https://github.com/lucamassarelli/yarasafe
https://github.com/binaryai/plugins

However, these methods are often impractical due to
their inefficiency; indeed, comparing binary functions
using symbolic execution may lead to path explosion,
making it impractical in real-world scenarios.

9 Conclusions and Future Works

In this paper, we presented the first large-scale analysis
of the robustness of binary function similarity models
against adversarial attacks highlighting the need for a
trade-off between performance and robustness.

We demonstrated that a simple greedy strategy, when
enriched with a wide set of transformations, can mount
untargeted attacks with very high success rates on all
considered models, particularly those showing top per-
formance on clean data. Conversely, models that ini-
tially perform poorly seem to be more resistant to ad-
versarial examples. On the targeted front, our attacks
performed slightly worse, but they were still successful
in more than half of the instances considered.

We investigated several additional aspects. First, we
showed that adversarial examples transfer across mod-
els, with a significantly higher success in the untargeted
case rather than the targeted. Secondly, we demon-
strated that the set of transformations we considered
was effective in modifying most of the key features con-
sidered by the target models, with two transformations
making a particularly strong contribution to the success
of the attack. Finally, manual analysis of adversarial
examples uncovered hidden behaviors in the models,
revealing that they focus their analysis on specific por-
tions of the functions.

Our research opens several new research avenues, par-
ticularly in the context of defense strategies. Rather
than focusing solely on adversarial training— which
may enhance model robustness against our attack
but does not guarantee protection against zero-day
threats— we argue that greater emphasis should be
placed on proposing inherently robust function repre-
sentation methods.

Acknowledgments

This work was partially supported by the Italian
MUR National Recovery and Resilience Plan funded
by the European Union — NextGenerationEU through
projects SERICS (PE00000014) and Rome Technopole
(ECS00000024).

References

[1] Saed Alrabaee, Paria Shirani, Lingyu Wang, and
Mourad Debbabi. Sigma: A semantic integrated
graph matching approach for identifying reused
functions in binary code. Digital Investigation,
12:561-S71, 2015.

Fiorella Artuso, Giuseppe Antonio Di Luna,
Luca Massarelli, and Leonardo Querzoni. In
nomine function: Naming functions in stripped

16

[10]

[11]

[12]

binaries with neural networks.
arXiw:1912.07946, 2019.

arXiv preprint

Fiorella Artuso, Marco Mormando, Giuseppe An-
tonio Di Luna, and Leonardo Querzoni. Binbert:
Binary code understanding with a fine-tunable and
execution-aware transformer. IFEFE Transactions
on Dependable and Secure Computing, pages 1-18,
2024.

Tristan Benoit, Jean-Yves Marion, and Sébastien
Bardin. Scalable program clone search through
spectral analysis. In Proceedings of the 31st ACM
Joint European Software Engineering Conference
and Symposium on the Foundations of Software
Engineering, (ESEC/FSE ’23), pages 808-820.
ACM, 2023.

Battista Biggio, Igino Corona, Davide Maiorca,
Blaine Nelson, Nedim Srndic, Pavel Laskov, Gior-
gio Giacinto, and Fabio Roli. Evasion Attacks
against Machine Learning at Test Time. In Pro-
ceedings of the Furopean Conference on Machine
Learning and Knowledge Discovery in Databases
(ECML-PKDD ’13), volume 8190, pages 387—402.
Springer, 2013.

Battista Biggio and Fabio Roli. Wild patterns: Ten
years after the rise of adversarial machine learning.
In Pattern Recognition, volume 84, pages 317-331,
2018.

Andrei Z Broder. On the resemblance and contain-
ment of documents. In Proceedings of the Compres-
sion and Complexity of SEQUENCES 1997 (Cat.
No. 97TB100171), pages 21-29. IEEE, 1997.

Ying Cao, Ruigang Liang, Kai Chen, and Peiwei
Hu. Boosting neural networks to decompile opti-
mized binaries. In Proceedings of the 38th Annual
Computer Security Applications Conference (AC-
SAC ’22), pages 508-518. ACM, 2022.

Gianluca Capozzi, Daniele Cono D’Elia,
Giuseppe Antonio Di Luna, and Leonardo
Querzoni. Adversarial attacks against binary sim-
ilarity systems. arXiv preprint arXiv:2303.11143,
2023.

Nicholas Carlini and David Wagner. Towards eval-
uating the robustness of neural networks. In Pro-
ceedings of the 38th IEEE Symposium on Security
and Privacy (SP ’17), pages 39-57. IEEE, 2017.

Jianbo Chen, Michael I. Jordan, and Martin J.
Wainwright. Hopskipjumpattack: A query-
efficient decision-based attack. In Proceeedings of
the 41st IEEE Symposium on Security and Privacy
(SP ’20), pages 1277-1294. TEEE, 2020.

Hanjun Dai, Bo Dai, and Le Song. Discrimina-
tive Embeddings of Latent Variable Models for
Structured Data. In Proceedings of the 33rd Inter-
national Conference on Machine Learning (ICML
’16), volume 48, pages 2702-2711, 2016.

[13]

[15]

[16]

[17]

[18]

[19]

[23]

Yaniv David, Nimrod Partush, and Eran Yahav.
Statistical similarity of binaries. In Proceedings of
the 37th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI
'16), pages 266—280, 2016.

Luca Demetrio, Battista Biggio, Giovanni Lago-
rio, Fabio Roli, and Alessandro Armando.
Functionality-preserving black-box optimization of
adversarial windows malware. IEEFE Transactions
on Information Forensics and Security, 16:3469—
3478, 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee,
and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language un-
derstanding. arXiv preprint arXiv:1810.04805,
2018.

Steven H.H. Ding, Benjamin C.M. Fung, and
Philippe Charland. Asm2Vec: Boosting static
representation robustness for binary clone search
against code obfuscation and compiler optimiza-
tion. In Proceedings of the 40th IEEE Symposium
on Security and Privacy (SP ’19), pages 472-489.
IEEE, 2019.

Yue Duan, Xuezixiang Li, Jinghan Wang, and
Heng Yin. Deepbindiff: Learning program-wide
code representations for binary diffing. In Proceed-
ings of the 27th Annual Network and Distributed
System Security Symposium NDSS ’20. The Inter-
net Society, 2020.

Thomas Dullien and Rolf Rolles. Graph-based
comparison of executable objects (English ver-
sion). In Proceedings of the Symposium sur la
sécurité des techmologies de linformation et des
communications (SSTIC ’05), page 3, 2005.

Andreas Fischer, Kaspar Riesen, and Horst Bunke.
Improved quadratic time approximation of graph
edit distance by combining hausdorff matching and
greedy assignment. Pattern Recognition Letters,
87:55-62, 2017.

Ian J Goodfellow, Jonathon Shlens, and Christian
Szegedy. Explaining and harnessing adversarial ex-
amples. arXiv preprint arXiw:1412.6572, 2014.

Lichen Jia, Bowen Tang, Chenggang Wu, Zhe
Wang, Zihan Jiang, Yuanming Lai, Yan Kang,
Ning Liu, and Jingfeng Zhang. Funcfooler: A
practical black-box attack against learning-based
binary code similarity detection methods. arXiv
preprint arXiw:2208.14191, 2022.

Robin Jia and Percy Liang. Adversarial Exam-
ples for Evaluating Reading Comprehension Sys-
tems. In Proceedings of the 22nd Conference on
Empirical Methods in Natural Language Process-
ing (EMNLP ’17), pages 2021-2031, 2017.

Wei Ming Khoo, Alan Mycroft, and Ross Ander-
son. Rendezvous: A search engine for binary code.

17

[26]

[28]

[29]

[30]

[31]

In Proceedings of the 10th Working Conference on
Mining Software Repositories (MSR ’13), pages
329-338, 2013.

Dongkwan Kim, Eunsoo Kim, Sang Kil Cha, Sooel
Son, and Yongdae Kim. Revisiting binary code
similarity analysis using interpretable feature en-
gineering and lessons learned. IEEE Transactions
on Software Engineering, 49(4):1661-1682, 2022.

Dianqgi Li, Yizhe Zhang, Hao Peng, Liqun Chen,
Chris Brockett, Ming-Ting Sun, and Bill Dolan.
Contextualized Perturbation for Textual Adver-
sarial Attack. In Proceedings of the Confer-
ence of the North American Chapter of the As-
sociation for Computational Linguistics: Human
Language Technologies (NAACL-HLT ’21), pages
5053-5069, 2021.

Juncheng Li, Shuhui Qu, Xinjian Li, Joseph Szur-
ley, J Zico Kolter, and Florian Metze. Adversarial
Music: Real world Audio Adversary against Wake-
word Detection System. In Proceedings of the
32nd Annual Conference on Neural Information
Processing Systems (NeurIPS ’19), pages 11908—
11918, 2019.

Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang
Xue, and Xipeng Qiu. BERT-ATTACK: adversar-
ial attack against BERT using BERT. In Proceed-
ings of the 25th Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP ’20),
pages 6193-6202, 2020.

Xuezixiang Li, Yu Qu, and Heng Yin. Palmtree:
Learning an assembly language model for instruc-
tion embedding. In Proceedings of the 28th ACM
SIGSAC Conference on Computer and Communi-
cations Security (CCS ’21), page 3236-3251, 2021.

Yujia Li, Chenjie Gu, Thomas Dullien, Oriol
Vinyals, and Pushmeet Kohli. Graph matching
networks for learning the similarity of graph struc-
tured objects. In Proceedings of the 36th Inter-
national Conference on Machine Learning (ICML
’19), pages 3835-3845, 2019.

Keane Lucas, Mahmood Sharif, Lujo Bauer,
Michael K Reiter, and Saurabh Shintre. Malware
Makeover: Breaking MI-based Static Analysis by
Modifying Executable Bytes. In Proceedings of
the 16th ACM Asia Conference on Computer and
Communications Security (AsiaCCS ’21), pages
744-758, 2021.

Andrea Marcelli, Mariano Graziano, Xabier
Ugarte-Pedrero, Yanick Fratantonio, Mohamad
Mansouri, and Davide Balzarotti. How Machine
Learning Is Solving the Binary Function Similar-
ity Problem. In Proceedings of the 31st USENIX
Security Symposium (SEC ’22), pages 2099-2116.
USENIX Association, 2022.

[32]

[34]

[40]

[41]

Luca Massarelli, Giuseppe Antonio Di Luna, Fabio
Petroni, Leonardo Querzoni, and Roberto Bal-
doni. Investigating graph embedding neural net-
works with unsupervised features extraction for bi-
nary analysis. In Proceedings of the 2nd Workshop
on Binary Analysis Research (BAR), pages 1-11,
2019.

Luca Massarelli, Giuseppe Antonio Di Luna, Fabio
Petroni, Leonardo Querzoni, and Roberto Bal-
doni. Function Representations for Binary Similar-
ity. IEEE Transactions on Dependable and Secure
Computing, 19(4):2259-2273, 2022.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S
Corrado, and Jeff Dean. Distributed Representa-
tions of Words and Phrases and their Composi-
tionality. In Proceedings of the 27th Annual Con-
ference on Neural Information Processing Systems

(NeurIPS ’13), pages 3111-3119, 2013.

Radare ORG. Radare2.
radareorg/radare2, 2024.

https://github.com/

James Patrick-Evans, Lorenzo Cavallaro, and Jo-
hannes Kinder. Probabilistic naming of functions
in stripped binaries. In Proceedings of the 36th An-
nual Computer Security Applications Conference
(ACSAC ’20), page 373-385. ACM, 2020.

Kexin Pei, Jonas Guan, Matthew Broughton,
Zhongtian Chen, Songchen Yao, David Williams-
King, Vikas Ummadisetty, Junfeng Yang,
Baishakhi Ray, and Suman Jana. Stateformer:
fine-grained type recovery from binaries using
generative state modeling. In Proceedings of the
29th ACM Joint European Software Engineering
Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE ’21), pages
690-702. ACM, 2021.

Kexin Pei, Zhou Xuan, Junfeng Yang, Suman
Jana, and Baishakhi Ray. Learning approximate
execution semantics from traces for binary function
similarity. IEEFE Transactions on Software Engi-
neering, 49(4):2776-2790, 2023.

Fabio Pierazzi, Feargus Pendlebury, Jacopo
Cortellazzi, and Lorenzo Cavallaro. Intriguing
properties of adversarial ml attacks in the prob-
lem space. In Proceedings of the 41st IEEE Sym-
posium on Security and Privacy (SP ’20), pages
1332-1349. IEEE, 2020.

Abdullah Qasem, Mourad Debbabi, Bernard
Lebel, and Marthe Kassouf. Binary function
clone search in the presence of code obfuscation
and optimization over multi-cpu architectures. In
Proceedings of the 2028 ACM Asia Conference
on Computer and Communications Security (Asi-

aCCS ’23), page 443-456, 2023.

Noam Shalev and Nimrod Partush. Binary sim-
ilarity detection using machine learning. In Pro-
ceedings of the 13th Workshop on Programming

18

[42]

[43]

[44]

[45]

[46]

[48]

[49]

Languages and Analysis for Security, pages 42—47,
2018.

Yan Shoshitaishvili, Ruoyu Wang, Christopher
Salls, Nick Stephens, Mario Polino, Andrew
Dutcher, John Grosen, Siji Feng, Christophe
Hauser, Christopher Kriigel, and Giovanni Vigna.
SOK: (state of) the art of war: Offensive tech-
niques in binary analysis. In Proceedings of the
37th IEEE Symposium on Security and Privacy
(SP ’16), pages 138-157. IEEE, 2016.

Christian Szegedy, Wojciech Zaremba, Ilya
Sutskever, Joan Bruna, Dumitru Erhan, Ian Good-
fellow, and Rob Fergus. Intriguing properties of
neural networks. arXiv preprint arXiv:1312.6199,
2013.

Hao Wang, Wenjie Qu, Gilad Katz, Wenyu Zhu,
Zeyu Gao, Han Qiu, Jianwei Zhuge, and Chao
Zhang. JTrans: Jump-aware transformer for bi-
nary code similarity detection. In Proceedings
of the 31st ACM SIGSOFT International Sym-
posium on Software Testing and Analysis (IS-
STA’22), pages 1-13, 2022.

Wai Kin Wong, Huaijin Wang, Zongjie Li, and
Shuai Wang. Binaug: Enhancing binary similarity
analysis with low-cost input repairing. In Proceed-
ings of the 46th IEEE/ACM International Confer-
ence on Software Engineering, ICSE 2024, pages
7:1-7:13. ACM, 2024.

Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin,
Le Song, and Dawn Song. Neural network-based
graph embedding for cross-platform binary code
similarity detection. In Proceedings of the 24th
ACM SIGSAC Conference on Computer and Com-
munications Security (CCS ’17), pages 363-376,
2017.

Noam Yefet, Uri Alon, and Eran Yahav. Adversar-
ial examples for models of code. In Proceedings of
the ACM on Programming Languages (OOPSLA
’20), volume 4, pages 1-30, 2020.

Xiaoyong Yuan, Pan He, Qile Zhu, and Xiaolin
Li. Adversarial examples: Attacks and defenses
for deep learning. IEEFE Transactions on Neural
Networks and Learning Systems, 30(9):2805-2824,
2019.

Weiwei Zhang, Shengjian Guo, Hongyu Zhang,
Yulei Sui, Yinxing Xue, and Yun Xu. Chal-
lenging machine learning-based clone detectors via
semantic-preserving code transformations. IEFE
Transactions on Software Engineering, pages 1-18,
2023.

Zhuo Zhang, Guanhong Tao, Guangyu Shen,
Shengwei An, Qiuling Xu, Yingqi Liu, Yapeng Ye,
Yaoxuan Wu, and Xiangyu Zhang. PELICAN: ex-
ploiting backdoors of naturally trained deep learn-
ing models in binary code analysis. In Proceedings
of the 32nd USENIX Security Symposium (SEC
'23), pages 2365—2382. USENIX Association, 2023.

https://github.com/radareorg/radare2
https://github.com/radareorg/radare2

A

Algorithm 1 presents our attack procedure. The first
adversarial example fqq, is the query function fq itself
(line 1). We then initialize the set of candidate strands
that can be inserted into the adversarial function either
using DBA or SA (line 3). Then, during the itera-
tive procedure, we first identify possible positions to
perturb (line 7) and then enumerate all the possible
transformations that can be applied in the identified
positions. Specifically, we apply a transformation tr at
the position pos, for every pair (tr,pos) € TR x POS
(lines 8 - 16). We then proceed to evaluate the objec-
tive function defined in Equation 2, considering the set
of candidates CAN D and the set of target variants V'
(line 17). Finally, we select the new adversarial exam-
ple fadv according to the value of € (lines 18 - 22) and
update the set of candidate strands (line 24). The fi-
nal adversarial example f,4, (line 26) is, among all fuq,
generated at the end of each iteration, the one that pro-
duced the highest value for the objective function.

19

B

Below, we present the results of the robustness analy-
sis for the evaluated models, considering various values
of K, P, and A. Specifically, we set K € {10,100}
for untargeted attacks and K € {5,10} for targeted
attacks. Additionally, we consider pools with sizes
|P| € {32,128,512,1000} and A € {0,0.01,0.3}.

We report the results for the untargeted case in Ta-
bles 7, 8, 9, 10 and 11, while the ones for the targeted
scenario in Tables 12, 13, 14, and 15.

Table 7: Untargeted attack at K = 10 when considering a pool of size 32 with A € {0,0.3}.

report the average of the measures across all models.

In column AVG we

Models

Gemini GMN ZEEK BinFinder SAFE jTrans Trex PalmTree AVG
A 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3
Recall pre attack 0.87 0.87 0.98 0.98 0.92 0.92 0.96 0.96 0.99 0.99 0.94 0.94 0.99 0.99 0.98 0.98 0.95 0.95
Recall post attack 0.15 0.85 0.12 0.90 0.33 0.82 0.12 0.96 0.07 0.97 0.31 0.90 0.14 0.98 0.11 0.97 0.17 0.92
wASR 85.07 1547 88.05 9.60 66.75 18.14 88.28 3.77 93.15 3.32 69.15 9.98 86.38 2.23 88.78 3.13 83.20 8.20
INIT 34.67 34.67 4.70 4.70 22,26 22.26 9.80 9.80 5.0 5.0 21.0 21.0 2.58 2.58 5.81 5.81 13.23
o1 ASR 91.18 37.70 97.80 18.50 82.65 39.68 91.80 10.10 96.90 8.75 94.90 28.40 93.04 5.80 93.99 9.22 92.78 19.77
M-Instrs 236.20 9.83 | 210.59 1252 | 198.55 12.35 | 226.78 7.7 | 240.06 16.85 | 134.14 12.63 | 198.86 16.19 | 522.43 12.16 | 245.95 12.46
M-Nodes 27.14 1.61 16.87 2.50 2.04 41.56 0.22 13.66 2.20 16.76 2.03 11.17 1.91 16.70 2.37 21.04 1.86
INIT 14.53 14.53 1.0 1.0 6.96 3.70 3.70 0.60 0.60 3.80 3.80 0.40 0.40 1.50 1.50 4.06 4.06
@2 ASR 18.35 95.70 9.90 20.65 89.70 4.0 95.60 3.22 84.10 10.60 90.46 2.20 92.08 2.61 88.96 8.94
K=10 M-Instrs 236.46 10.73 | 209.58 11.59 16.41 | 226.40 5.75 | 241.03 22.44 | 136.04 15.97 | 200.69 20.77 | 522.57 12.50 | 245.92 14.52
M-Nodes 2741 1.68 17.01 2.67 2.31 41.46 0.30 13.65 2.16 17.07 2.49 11.25 1.64 16.80 2.65 21.10 1.99
INIT 3.71 371 0.30 0.20 1.03 0.60 0.60 0.10 0.10 0.0 0.0 0.20 0.20 0.40 0.40 0.79 0.79
@3 ASR 83.47 4.84 86.0 6.30 61.53 8.50 87.0 0.90 91.70 0.91 56.10 0.80 83.40 0.60 86.37 0.60 79.45 2.93
M-Instrs 238.68 10.77 | 210.40 11.25 | 188.42 21.77 | 226.62 12.22 | 244.53 30.11 | 142.26 14.50 | 204.03 17.17 | 521.36 14.0 | 247.04 16.47
M-Nodes 27.77 2.17 17.45 2.63 22.96 2.77 41.34 0.44 13.63 2.22 17.53 2.75 11.28 2.33 16.83 2.50 21.10 2.23
INIT 0.10 0.10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.01
4 ASR 76.85 1.01 72.70 3.70 47.60 3.74 84.60 0.10 88.40 0.40 41.50 0.10 78.63 0.30 82.67 0.10 71.62 1.18
M-Instrs 241.14 18.10 | 217.51 12.81 | 183.15 23.81 | 226.82 44.0 | 246.59 26.0 | 142.61 28.0 | 207.54 21.33 | 520.03 35.0 | 24817 26.13
M-Nodes 28.48 4.0 18.31 2.97 21.90 2.76 41.31 4.0 13.61 3.50 18.12 6.0 11.35 3.33 16.78 6.0 21.23 4.07

Table 8: Untargeted attack at K = 10 and K = 100 when considering a pool of size 128 with A € {0,0.3}. In
column AVG we report the average of the measures across all models.

Models

Gemini | GMN I ZEEK | BinFinder | SAFE [jTrams | Trex [PalmTree AVG |
X 00 03| 00 03] 00 03] 00 03| 00 03] 00 03] 00 03| 00 03 00 03 |

Recall pre attack 071 071 | 004 094] 073 073] 091 001 | 004 094 08l 08| 095 005] 090 090 086 086
Recall post attack | 007 0.65 | 003 080 | 005 06| 006 09| 002 08 | 004 075 004 092| 003 086 | 004 079
wASR 92.99 3505 | 97.30 2047 | 9523 30.30 | 93.80 1027 | 98.30 13.51 96.0 25.20 | 96.17 830 | 96.69 13.80 | 95.81 20.74

INIT 6363 63.63 | 16.10 16.10 | 61.76 6176 | 24.40 24.40 | 19.40 19.40 | 51.10 5110 | 12.82 12.82 | 27.66 27.66 | 34.61 34.61

o1 ASR 96.69 67.50 | 99.30 3510 | 98.06 6852 | 9580 25.80 | 99.20 31.19 | 99.40 5580 | 97.61 1940 | 950 33.97 | 98.01 4216
M-Instrs 235.07 8.66 | 214.44 1217 | 201.77 947 | 226.76 5.66 | 237.61 12.09 | 13319 9.99 | 19551 1236 | 524.32 10.56 | 246.08 10.12
M-Nodes 26.98 162 | 1690 226 | 2568 179 | 4173 026 | 13.68 195 | 1674 181 | 1099 1.83 | 16.69 201 | 21.17 1.69

INIT 3848 3848 | 590 590 | 3573 3543 | 990 990 | 490 490 | 2420 2420 | 497 497 | 1062 1062 | 1684 16.84

o2 ASR 9539 46.70 | 98.80 2350 | 97.26 49.70 | 94.70 1150 | 98.80 1429 | 99.20 3270 | 97.22 9.60 | 97.90 17.23 | 9741 25.65
K=10 M-Instrs 23642 952 | 214.09 12.03 | 201.71 11.33 | 226.78 6.51 | 238.13 15.94 | 13335 12.00 | 195.75 14.70 | 524.57 11.58 | 24635 1171
M-Nodes 2712 166 | 1687 243 | 2561 198 | 4167 033 | 13.60 201 | 1675 1.98 | 1101 1.89 | 16.67 217 | 21.17 18l

INIT 1323 1323 | 080 080 | 902 902 30 30| 150 150 | 140 140 | 089 089 | 120 120 | 385 388

o3 ASR 9158 20.60 | 97.0 13.60 | 94.52 2571 | 9310 3.50 | 97.80 6.04 | 94.80 10.70 | 9583 3.0 | 9580 351 | 95.06 10.83
M-Instrs 239.26 10.09 | 21259 13.16 | 202.82 16.09 | 226.88 10.20 | 239.12 22.12 | 135.64 15.87 | 197.18 21.27 | 523.93 17.77 | 247.18 15.82
M-Nodes 27.28 203 | 1693 279 | 2526 240 | 41.59 0.51 | 13.69 245 | 1696 237 | 11.05 1.93 | 1671 2.86 | 2118 217

INIT T20 120 00 00 00 00 00 00 00 00 00 00 00 00 00 00| 015 015

o ASR 88.28 540 | 9410 970 | 9110 13.26 | 91.60 0.30 | 97.40 252 | 90.60 160 | 9404 120 | 9499 050 | 92.76 4.31
M-Instrs 241.56 14.85 | 212.66 12.38 | 202.76 22.94 | 226.61 25.67 | 239.68 20.76 | 137.8 16.19 | 199.00 27.33 | 525.71 28.80 | 248.23 22.24
M-Nodes 2773 296 | 1718 3.05 | 2508 296 | 4152 267 | 13.70 248 | 1722 3.0 | 1117 20| 1676 6.0 | 21.30 3.14

Recall pre attack 099 0.9 10 1.0] 099 099 10 10 10 1.0 T0 1.0 0 1.0 0 10 10 10
Recall post attack | 053 099 | 038 097 | 073 098 | 032 10| 020 10| 075 099 | 055 10| 046 10| 050 0.99
wASR 4712 118 | 6225 3.0 | 26.86 167 | 67.58 025 | 70.60 0.18 | 24.65 0.85 | 45.23 035 | 54.16 020 | 49.81 0.97

INIT 281 281 T10 110 | 171 171 070 070 | 010 010 | 080 080 | 060 060 | 020 0.20 0 10

o1 ASR 6413 330 | 90.20 7.80 | 46.58 4.76 | 7430 0.60 | 8380 070 | 53.30 260 | 56.36 0.90 | 70.64 070 | 67.41 267
M-Instrs 239.92 10.30 | 198.86 10.38 | 184.32 19.09 | 226.40 3.67 | 251.10 34.57 | 138.68 19.96 | 211.08 1344 | 521.46 22.0 | 24648 16.68
M-Nodes 2836 236 | 1648 272 | 2273 226 | 4132 00 | 1357 171 | 1817 246 | 1143 244 | 1693 2.0 | 2112 199

INIT T10 110 | 030 030 | 057 057 | 030 0.30 00 00 00 00| 010 010 | 010 010 | 031 031

o2 ASR 5321 110 | 73.0 3.60 | 33.33 152 | 69.20 030 | 77.10 0.0 | 30.60 080 | 4891 020 | 59.42 0.0 | 5560 0.95
K=100 M-Instrs 236.12 1191 | 207.11 9.08 | 178.44 2520 | 226.56 0.0 | 254.92 - | 13156 19.25 | 21662 260 | 520.98 18.0 | 246.54 15.63
M-Nodes 28.85 236 | 1722 272 | 2165 207 | 4112 0.0 | 13.36 S| 1816 325 | 1139 30| 1699 2.0 | 21.09 2.20

INIT 00 00 00 00 00 00| 010 010 00 00 00 00| 010 010 00 00| 002 002

o3 ASR 39.98 020 | 50.30 090 | 1849 020 | 64.80 0.0 | 660 00 | 870 00 | 4165 020 | 4699 0.0 | 4211 0.20
M-Instrs 239.35 14.50 | 220.92 169.91 24.0 | 22644 0.0 | 265.67 - | 12107 - | 22074 26.0 | 51955 - | 24797 14.90
M-Nodes 30.24 5.0 | 18.40 20.27 0.0 | 4096 0.0 | 1322 - | 1851 - | 1154 3.0 | 1752 - 33 227

INIT 00 00 0.0 0.0 00 00 00 00 00 00 00 00 00 00 0.0

o ASR 3116 0.10 | 355 020 | 620 00| 5550 0.0 60 00| 340 010 | 3958 0.0 . 0.06
M-Instrs 23851 25.0 | 22695 6.0 24.0 | 225.67 - | 26778 - | 12187 - | 22418 35.0 | 517.75 - | 2485 2250
M-Nodes 3106 80 | 19.05 4.0 0.0 | 40.84 - | 1341 - | 1840 - | 1175 60 | 1849 - | 2162 450

20

Table 9: Untargeted attack at K = 10 adn K = 100 when considering a pool of size 512 with A € {0,0.3}. In
column AVG we report the average of the measures across all models.

Models

Gemini | GMN | ZEEK [BinFinder | SAFE | jTrans | Trex | PalmTree AVG |

X 0.0 3] 00 03] 00 03] 00 03] 00 03| 00 03] 00 03] 00 03 00 0.3 |
Recall pre attack 0.56 0.56 0.86 0.86 0.51 0.51 0.83 0.83 0.84 0.84 0.67 0.67 0.89 0.89 0.79 0.79 0.74 0.74
Recall post attack 0.04 0.49 0.01 0.66 0.02 0.39 0.04 0.82 0.0 0.73 0.01 0.59 0.02 0.83 0.01 0.72 0.02 0.65
wASR 96.27 51.45 99.0 33.65 98.12 60.78 96.33 18.0 99.58 26.86 99.15 41.38 98.43 17.05 99.37 28.33 98.28 34.69
INIT 82.87 82.87 36.40 36.40 84.70 84.70 39.40 39.40 42.60 42.60 73.20 73.20 29.22 29.22 53.15 53.15 55.19 55.19
@1 ASR 98.10 85.30 99.70 57.30 99.09 88.77 97.80 40.20 100.0 54.23 100.0 77.60 99.30 37.50 99.90 61.72 99.24 62.83
M-Instrs 234.18 8.20 215.0 10.44 | 202.11 8.15 | 227.07 4.94 | 236.85 10.03 | 133.06 8.75 | 193.39 11.52 | 522.24 9.54 | 245.49 8.95
M-Nodes 26.95 1.57 16.94 2.05 25.83 1.67 41.80 0.28 13.66 1.78 16.73 1.73 10.88 1.79 16.80 1.84 21.20 1.59
INIT 64.33 64.33 16.10 16.10 72.26 72.26 21.20 21.20 17.40 1740 48.40 48.40 12.82 12.82 28.63 28.63 35.14 35.14
@2 ASR 97.49 70.80 99.30 39.30 98.86 77.13 96.90 22.70 99.90 33.40 100.0 54.70 98.81 20.80 99.40 38.88 98.83 44.71
K=10 M-Instrs 234.41 8.67 | 214.44 11.80 | 202.06 8.89 | 226.96 5.42 | 236.93 12.24 | 133.06 10.14 | 194.03 13.92 | 522.88 10.58 245.6 10.21
M-Nodes 27.0 1.60 16.92 2.27 25.81 1.73 41.79 0.35 13.66 . 16.73 1.85 10.91 1.87 16.79 1.95 21.20 1.69
INIT 27.15 27.15 3.40 3.40 34.02 34.02 6.80 6.80 3.50 3. 12.0 12.0 2.49 2.49 3.90 3.90 11.66 11.66
@3 ASR 95.39 37.70 98.80 22.90 97.60 50.81 95.9 8.10 99.30 3.6 99.10 26.0 98.11 7.50 99.20 10.32 97.92 22,13
M-Instrs 237.11 10.29 | 213.98 13.19 | 202.18 11.39 | 226.92 7.46 | 237.66 18.51 133.94 13.10 | 195.07 19.81 | 523.35 15.97 | 246.28 13.72
M-Nodes 27.11 1.90 16.88 2.60 25.62 2.0 41.72 0.44 13.68 2.43 16.84 2.02 10.97 2.13 16.75 2.78 21.20 2.04
INIT 3.01 3.01 0.0 0.0 3.08 3.08 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.76 0.76
@4 ASR 94.09 12.0 98.20 15.10 96.92 26.42 94.70 1.0 99.10 6.14 97.50 7.20 97.51 2.40 99.0 2.40 97.13 9.08
Me-Instrs 239.12 14.64 | 214.32 14.09 | 202.45 17.18 | 226.92 21.70 | 237.94 25.23 | 135.35 18.25 | 195.80 25.83 | 523.85 27.25 | 246.97 20.52
M-Nodes 27.28 2.78 16.92 2.97 25.52 2.57 41.66 2.20 13.68 2.79 17.0 2.69 11.01 2.42 16.75 4.50 21.23 2.86
Recall pre attack 0.84 0.84 0.98 0.98 0.91 0.91 0.96 0.96 0.98 0.98 0.90 0.90 0.99 0.99 0.97 0.97 0.94 0.94
Recall post attack 0.12 0.81 0.07 0.88 0.19 0.79 0.10 0.96 0.04 0.95 0.10 0.84 0.10 0.97 0.07 0.96 0.10 0.90
wASR 88.13 19.10 93.35 12.20 81.42 20.55 90.28 4.10 96.45 5.18 90.0 16.02 89.84 2.83 93.17 4.08 90.33 10.51
INIT 37.37 37.37 6.40 6.40 25.46 25.46 10.40 10.40 6.90 6.90 30.80 30.80 3.68 3.68 8.11 8.11 16.14 16.14
@1 ASR 91.78 42.10 98.10 21.20 89.73 39.78 92.70 10.70 97.90 12.07 98.60 39.20 93.64 7.0 95.60 11.32 94.76 22.92
M-Instrs 237.26 9.74 | 211.20 12.98 | 200.39 12.56 | 226.72 5.96 | 238.95 15.91 133.75 11.77 | 198.47 14.0 523.0 246.22 11.93
M-Nodes 27.18 1.58 16.86 2.46 24.98 2.02 41.59 0.19 13.70 16.74 1.97 11.17 1.79 16.73 21.12 1.80
INIT 18.94 18.94 2.10 2.10 9.82 9.82 4.30 4.30 1.60 10.50 10.50 1.19 1.19 3.20 6.46 6.46
@2 ASR 90.08 23.80 96.90 13.0 86.07 23.89 91.0 4.80 97.40 5.5¢ 95.70 20.50 91.85 2.70 94.69 92.96 12.29
K=100 Me-Instrs 237.21 10.01 | 210.50 12.93 | 198.92 16.28 | 226.69 5.71 239.4 20.62 | 13470 13.61 | 199.68 18.11 | 523.10 246.28 13.81
M-Nodes 27.36 1.66 16.94 2.63 24.70 2.34 41.51 0.25 13.71 2.38 16.81 2.21 11.22 1.48 16.78 21.13 1.92
INIT 6.11 6.11 0.40 0.40 2.28 2.28 0.60 0.60 0.30 0.30 0.0 0.0 0.30 0.30 0.60 1.32 1.32
@3 ASR 86.97 8.50 93.10 8.40 7797 12.25 89.20 0.80 96.0 2.11 87.0 3.90 88.37 1.30 91.99 88.82 4.76
M-Instrs 240.62 10.69 | 210.86 12.60 | 198.26 21.06 | 226.76 14.75 | 240.66 28.62 | 137.75 17.59 | 201.81 22.08 | 521.96 247.33 17.92
M-Nodes 27.52 2.12 17.16 2.79 23.81 2.77 41.42 0.50 13.64 2.38 17.10 2.72 11.18 1.85 16.95 21.10 2.25
INIT 0.30 0.30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.04 0.04
@4 ASR 83.67 2.0 85.30 6.20 71.92 6.28 88.20 0.10 94.50 1.01 78.70 0.50 85.49 0.30 90.39 84.77 2.06
M-instrs@4 242.59 19.4 | 213.31 10.74 | 196.17 25.34 | 226.72 44.0 | 241.91 28.40 | 140.61 17.80 | 204.38 21.33 | 521.90 248.45 25.25
M-Nodes 27.93 3.30 17.69 2.81 23.39 2.94 41.37 4.0 13.62 2.20 17.62 4.0 11.31 3.33 16.98 21.24 3.57

Table 10: Untargeted attack at K = 10 and K = 100 when considering
column AVG we report the average of the measures across all models.

a pool of size 1000 with A € {0,0.3}. In

Models

Gemini GMN ZEEK BinFinder SAFE jTrans Trex PalmTree AVG
A 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3
Recall pre attack 0.49 0.49 0.81 0.81 0.0 0.0 0.79 0.79 0.78 0.78 0.60 0.60 0.85 0.85 0.72 0.72 0.63 0.63
Recall post attack 0.03 0.42 0.01 0.59 0.0 0.0 0.03 0.78 0.0 0.65 0.01 0.52 0.01 0.78 0.0 0.65 0.01 0.55
wASR 97.39 58.28 99.45 41.33 100.0 100.0 97.27 22.27 99.87 34.53 99.50 47.57 98.78 22.39 99.60 34.89 98.98 45.16
INIT 88.76 88.76 4742 4742 100.0 100.0 46.29 46.29 55.41 55.41 80.66 80.66 37.82 37.82 64.76 64.76 65.14 65.14
@1 ASR 98.80 90.30 99.80 67.30 100.0 100.0 98.60 47.49 100.0 67.04 100.0 83.37 99.40 47.90 100.0 71.21 99.57 71.83
M-Instrs 233.71 7.86 | 216.29 9.98 | 201.32 7.69 | 227.07 4.63 | 236.96 9.26 | 133.02 8.27 | 192.94 10.87 | 522.46 9.21 | 245.47 8.47
M-Nodes 27.06 1.52 16.94 1.98 25.80 1.63 41.84 0.27 13.65 1.75 16.73 1.69 10.84 1.74 16.75 1.75 21.20 1.54
INIT 75.80 75.80 23.61 23.61 100.0 100.0 2715 27.15 28.66 28.66 58.02 58.02 18.36 18.36 38.35 38.35 46.24 46.24
@2 ASR 98.29 80.17 99.60 50.60 100.0 100.0 97.70 28.66 100.0 44.35 100.0 64.83 99.30 26.55 99.70 51.18 99.32 55.79
K=10 Me-Instrs 234.06 8.18 | 215.61 10.89 | 201.32 7.69 | 226.92 5.34 | 236.96 11.05 | 133.02 9.17 | 193.11 12.86 | 523.28 10.0 | 245.54 9.40
M-Nodes 26.98 1.53 16.97 2.14 25.80 1.63 41.80 0.37 13.65 1.87 16.73 1.79 10.86 1.83 16.74 1.81 21.19 1.62
INIT 34.84 34.84 5.85 5.85 100.0 100.0 9.92 9.92 5.41 5.41 19.44 1944 4.19 4.19 7.23 7.23 23.36 23.36
@3 ASR 96.89 46.62 99.40 29.70 100.0 100.0 96.89 11.52 99.90 19.15 99.50 32.16 98.50 11.02 99.50 14.69 98.82 33.11
M-Instrs 235.75 9.53 | 215.08 12.58 | 201.32 7.69 | 226.99 7.33 | 237.05 17.25 | 133.54 12.04 | 194.47 17.99 | 523.11 14.75 | 24591 12.40
M-Nodes 27.07 1.79 16.97 2.46 25.80 1.63 41.76 0.40 13.65 2.26 16.79 2.04 10.94 2.07 16.74 2.31 21.22 1.87
INIT 3.71 3.71 0.0 0.0 100.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12.96 12.96
o ASR 95.58 16.03 99.01 17.70 100.0 100.0 95.89 1.40 99.60 7.56 98.50 9.92 97.90 4.11 99.20 2.49 98.21 19.90
M-Instrs 237.11 13.57 | 214.63 13.43 | 201.32 7.69 | 227.03 24.29 | 237.46 25.08 | 134.51 17.09 | 195.15 26.41 | 523.77 26.67 | 246.37 19.28
M-Nodes 27.13 2.58 17.0 2.87 25.80 1.63 41.71 2.0 13.65 2.51 16.94 2.65 10.97 2.44 16.70 4.10 21.24 2.60
Recall pre attack 0.77 0.77 0.96 0.96 0.77 0.77 0.93 0.93 0.96 0.96 0.84 0.84 0.97 0.97 0.94 0.94 0.89 0.89
Recall post attack 0.09 0.72 0.03 0.83 0.09 0.63 0.07 0.93 0.02 0.90 0.04 0.77 0.06 0.95 0.03 0.91 0.83
wASR 91.19 28.27 96.55 17.12 91.50 37.15 93.11 7.16 97.87 9.73 96.14 23.05 94.39 5.41 96.66 8.86 94.68 17.09
INIT 51.31 51.31 11.21 11.21 5491 54.91 17.54 17.54 12,12 1212 4248 4248 6.99 6.99 17.07 17.07 26.70 26.70
o1 ASR 94.48 56.54 98.81 29.10 95.21 63.66 94.79 18.24 98.60 21.27 99.60 49.70 96.41 12.12 97.79 22.51 96.96 34.14
M-Instrs 235.98 8.73 | 214.91 12.24 | 200.80 9.82 | 226.65 5.26 | 238.58 14.26 | 133.20 10.47 | 196.27 13.38 | 524.59 11.14 | 246.37 10.66
M-Nodes 27.09 1.56 16.84 2.32 25.41 1.80 41.68 0.29 13.67 2.02 16.76 1.88 11.02 1.79 16.64 1.96 21.14 1.70
INIT 2992 29.92 3.57 3.57 29.57 29.57 7.21 7.21 3.11 3.11 19.04 19.04 2.69 2.69 6.73 6.73 1273 12.73
@ ASR 93.47 36.29 98.12 18.90 94.29 45.45 93.89 8.02 98.20 10.38 99.20 29.86 95.61 6.11 97.59 11.02 96.30 20.75
K=100 M-Instrs 236.69 9.41 | 213.87 12.81 | 200.03 11.97 | 226.66 5.62 | 238.76 18.61 | 133.54 12.58 | 196.78 14.56 | 524.98 13.55 | 246.41 12.39
M-Nodes 27.22 1.58 16.87 2.54 25.35 2.0 41.63 0.25 13.69 2.30 16.81 2.04 11.05 1.82 16.64 2.14 21.16 1.83
INIT 10.34 10.34 0.60 0.60 7.88 7.88 1.60 1.60 0.70 0.70 1.30 1.30 0.60 0.60 0.90 0.90 2.99 2.99
@3 ASR 89.96 15.72 95.93 11.90 90.07 25.91 92.59 2.20 97.70 4.94 94.89 10.82 93.61 2.51 95.88 1.54 93.83 9.44
Me-Instrs 240.27 10.20 | 212.58 12.97 | 199.66 16.57 | 226.71 13.32 | 239.13 24.49 | 136.12 15.07 | 198.60 22.40 | 524.66 19.92 | 247.22 16.87
M-Nodes 27.33 2.0 17.02 2.84 24.99 2.41 41.55 0.55 13.69 2.59 16.97 2.46 11.12 1.92 16.69 2.54 21.17 2.16
INIT 1.10 1.10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.14 0.14
@4 ASR 86.85 4.54 93.35 8.60 86.42 13.56 91.18 0.20 96.99 2.32 90.88 1.80 91.92 0.90 95.38 0.36 91.62 4.04
M-Instrs 243.81 13.49 | 213.29 1151 | 200.17 22.78 | 226.59 29.0 | 240.05 31.17 | 137.90 15.17 | 199.77 24.67 | 525.34 31.67 | 248.36 22.43
M-Nodes 27.79 2.56 17.25 3.05 24.66 2.99 41.46 4.0 13.70 2.26 17.15 2.89 11.19 1.78 16.72 5.33 21.24 3.11

21

Table 11: Untargeted attack at K = 10 and K = 100 when considering A = 0.01 and |P| € {32,128,512,1000}.
In column AVG we report the average of the measures across all models.

Models
Gemini | SAFE | jTrans AVG |
‘ Pool Size 32 128 512 1000 ‘ 32 128 512 1000 ‘ 32 128 512 1000 32 128 512 1000 ‘
Recall pre attack 0.90 0.71 0.55 0.48 0.98 0.93 0.84 0.78 0.93 0.81 0.67 0.61 0.94 0.82 0.69 0.62
Recall post attack 0.46 0.23 0.14 0.11 0.26 0.07 0.02 0.01 0.66 0.34 0.17 0.12 0.46 0.21 0.11 0.08
wASR 54.47 76.58 86.24 89.22 74.0 9274 9835 98.98 | 34.16 65.84 82.61 87.50 | 54.21 7839 89.07 91.90
INIT 27.51 63.15 83.94 89.24 491 19.54 42.79 53.86 | 21.69 51.31 73.19 80.30 | 18.04 44.67 66.64 74.47
01 ASR 7279 90.46 96.08 97.23 | 87.07 96.79 99.40 99.76 | 66.16 91.06 97.29 9852 | 75.34 92,77 97.59 98.50
M-Instrs 26.32 24.03 23.28 23.04 | 46.29 44.81 44.31 44.16 18.93 17.71 17.41 17.38 | 30.51 28.85 28.33 28.19
M-Nodes 7.71 7.05 6.80 6.71 5.85 5.87 5.84 5.80 3.81 3.70 3.65 3.68 5.79 5.54 5.43 5.40
INIT 10.24 38.76 65.56 76.36 1.10 5.51 17.74 26.63 4.42 2440 48.39 57.20 5256 22.89 43.90 53.40
@2 ASR 61.75 83.53 93.17 94.46 | 80.06 95.89 99.10 99.40 | 45.78 81.83 93.37 95.76 | 62.53 87.08 95.21 96.54
K=10 M-Instrs 27.94 25.12 23.74 2349 | 47.13 4492 44.39 44.29 19.93 1828 17.68 17.52 | 31.67 29.44 28.60 28.43
M-Nodes 8.04 7.29 6.95 6.84 5.83 5.87 5.84 5.81 3.91 3.80 3.72 3.73 5.93 5.65 5.50 5.46
INIT 241 12,75 2731 36.21 0.20 1.40 3.41 6.14 0.0 1.20 11.95 18.54 0.87 5.12° 14.22 20.30
@3 ASR 4749 71.59 83.03 88.18 | 69.14 90.98 98.20 98.67 | 16.77 55.12 7841 84.85 | 44.47 72.56 86.55 90.57
M-Instrs 30.37 27.31 2548 24.62 | 48.72 45.75 44.57 44.43 | 2275 19.74 18.63 18.28 | 33.95 30.93 29.56 29.11
M-Nodes 8.80 7.90 7.41 7.17 5.74 5.89 5.87 5.83 4.44 4.10 3.92 3.90 6.33 5.96 5.73 5.63
INIT 0.10 1.41 291 4.90 0.10 0.20 0.30 0.36 0.0 0.0 0.0 0.0 0.07 0.54 1.07 1.75
@4 ASR 35.84 60.74 72.69 77.0 | 59.72 87.27 96.69 98.07 7.93 35.34 61.35 70.87 | 3450 61.12 76.91 81.98
M-Instrs 32.79 29.42 2745 26.52 | 49.98 46.28 44.80 44.56 | 24.14 21.08 19.64 19.22 | 35.64 32.26 30.63 30.10
M-Nodes 9.65 8.55 7.93 7.66 5.67 5.90 5.89 5.85 4.68 4.34 4.13 4.07 6.67 6.26 5.98 5.86
Recall pre attack - 0.99 0.85 0.77 - 1.0 0.98 0.96 - 1.0 0.90 0.85 - 1.0 0.91 0.86
Recall post attack - 0.79 0.38 0.30 - 0.70 0.16 0.09 - 0.94 0.50 0.36 - 0.81 0.35 0.25
wASR - 21.01 6197 70.45 - 29.86 83.84 91.08 - 5.65 49.8 63.96 - 1884 65.20 75.16
INIT - 2.61 35.64 50.80 - 0.20 6.81 12.41 - 0.70 30.62 41.63 - 1.17 24.36 34.95
@1 ASR - 33.84 76.20 83.92 - 47.70 91.08 96.02 - 14.16 7831 87.82 - 3190 81.86 89.25
M-Instrs - 31.84 2588 24.94 - 50.29 4569 44.93 - 2277 1835 17.94 - 3497 2997 29.27
M-Nodes - 8.82 7.56 7.24 - 5.71 5.87 5.85 - 4.26 3.77 3.77 - 6.26 5.73 5.62
INIT - 1.0 17.97 30.03 - 0.10 1.90 3.49 - 0.0 10.54 18.11 - 0.37 10.14 17.21
@2 ASR - 23.09 67.07 76.04 - 3457 87.68 93.98 - 6.43 63.35 78.28 - 2136 7270 82.77
K=100 M-Instrs - 3391 2743 26.16 - 51.61 46.05 45.29 - 2492 19.24 18.57 - 36.81 3091 30.01
M-Nodes - 9.35 7.88 7.50 - 5.57 5.89 5.89 - 4.41 3.82 3.84 - 6.44 5.86 5.74
INIT - 0.20 5.32 10.44 - 0.0 0.50 1.20 - 0.0 0.0 1.17 - 0.07 1.94 4.27
@3 ASR - 16.16 56.83 65.81 - 2224 8146 89.04 - 1.31 36.75 53.6 - 1324 5835 69.48
M-Instrs - 36.48 29.18 28.07 - 52.67 47.01 46.13 - 2469 21.31 19.90 - 3795 3250 31.37
M-Nodes - 10.05 8.35 8.05 - 5.41 5.84 5.87 - 4.77 4.26 4.15 - 6.74 6.15 6.02
INIT - 0.0 0.20 1.17 - 0.0 0.10 0.24 - 0.0 0.0 0.0 - 0.0 0.10 0.47
@4 ASR - 1094 47.79 56.02 - 1493 75.15 85.30 - 0.70 20.78 36.12 - 8.86 47.91 59.15
M-Instrs - 3830 31.13 30.01 - 53.18 47.83 46.68 - 21.0 23.01 21.0 - 3749 33.99 32.56
M-Nodes - 10.35 8.79 8.63 5.28 5.83 5.88 - 4.86 4.50 4.34 - 6.83 6.37 6.28
Table 12: Targeted attack at K = 5 and K = 10 when considering a pool of size 32 with A € {0,0.3}. In column
AVG we report the average of the measures across all models.
Models
Gemini [GMN [ZEEK [BinFinder | SAFE [jTrans [Trex [PalmTree AVG |
‘ A 0.0 0.3 ‘ 0.0 0.3 ‘ 0.0 0.3 ‘ 0.0 0.3 ‘ 0.0 0.3 ‘ 0.0 0.3 ‘ 0.0 0.3 ‘ 0.0 0.3 0.0 0.3 ‘
wASR 58.06 14.44 68.10 15.20 38.14 13.36 92.11 14.58 74.17 17.72 56.056 22.65 62.78 15.24 73.25 15.37 65.33 16.07
@1 INIT 30.10 30.10 31.0 31.0 29.29 29.29 25.25 25.25 27.10 27.10 43.60 43.60 2230 22.30 29.16 29.16 29.72 29.72
ASR 85.70 32.70 85.70 33.60 59.69 29.66 97.8 26.15 90.40 34.74 94.0 54.80 80.70 28.31 90.38 31.59 85.55 33.94
M-Nodes 13.64 0.92 18.68 0.96 13.72 1.05 33.50 0.07 15.57 0.98 11.50 1.04 11.40 0.90 18.01 0.85 17.0 0.85
INIT 16.80 16.80 15.0 15.0 12.65 12.65 16.23 16.23 17.10 17.10 20.0 20.0 14.60 14.60 16.33 16.33 16.09 16.09
@ ASR 69.8 18.61 77.60 17.50 46.22 15.55 96.09 17.13 83.60 21.39 76.20 28.20 70.50 18.78 81.16 18.51 75.15 19.46
M-Instrs 177.28 4.75 | 210.62 5.55 104.62 5.17 | 156.23 2.18 123.69 4.95 79.35 5.49 111.24 5.76 193.30 4.43 | 144.54 4.78
K=5 M-Nodes 14.01 0.90 18.66 0.90 12.41 0.97 33.55 0.07 15.69 0.97 12.02 1.06 11.38 0.82 18.20 0.75 16.99 0.80
INIT 4.50 4.50 5.30 5.30 3.16 3.16 8.92 8.92 6.90 6.90 3.30 3.30 6.90 6.90 6.61 6.61 5.70 5.70
@3 ASR 47.60 4.93 63.10 6.90 29.69 6.08 90.48 9.62 69.90 10.34 35.9 6.0 56.80 9.64 68.74 7.85 57.78 7.67
M-Instrs | 177.31 3.04 | 211.28 5.71 116.74 4.36 | 157.25 2.31 | 126.55 5.21 92.23 4.47 | 112.01 5.36 | 194.07 4.76 | 148.43 4.40
M-Nodes 14.51 0.69 18.47 0.9 12.24 0.85 33.74 0.08 15.8 1.05 13.45 1.03 11.29 0.83 18.5 0.67 17.25 0.76
INIT 1.21 1.21 2.30 2.30 1.22 1.22 5.51 5.51 2.70 2.70 0.70 0.70 3.70 3.70 3.11 3.11 2.56 2.56
4 ASR 29.10 1.51 46.0 2.80 16.94 2.16 84.07 5.41 52.80 4.42 18.10 1.60 43.10 4.22 52.71 3.52 42.85 3.20
M-Instrs 189.28 5.93 | 217.58 5.68 127.83 5.05 | 158.79 2.24 133.9 4.93 | 101.06 6.19 | 112.81 5.07 | 195.16 4.43 | 154.55 4.94
M-Nodes 16.04 0.8 18.81 0.86 12.01 1.24 34.20 0.04 15.89 1.05 14.13 0.88 11.16 0.81 18.99 0.86 17.65 0.82
wASR 80.95 30.96 87.80 35.02 59.80 28.55 98.35 30.51 89.60 37.12 75.6 44.17 84.05 34.66 90.76 34.26 83.36 34.41
INIT 49.30 49.30 55.20 55.20 51.73 51.73 44.09 44.09 49.0 49.0 70.80 70.80 45.60 45.60 50.20 50.20 51.99 51.99
o1 ASR 95.50 53.52 95.0 59.90 76.43 50.77 99.60 44.89 95.50 56.02 98.90 81.60 93.40 51.31 96.49 54.93 93.85 56.62
M-Instrs 187.36 4.44 | 214.27 5.98 105.82 4.71 156.66 1.63 121.52 4.92 74.16 5.07 | 109.49 5.88 198.37 4.16 145.96 4.60
M-Nodes 13.78 0.86 18.90 1.01 16.52 0.92 33.64 0.08 15.48 0.96 11.38 1.08 11.31 0.97 18.03 0.87 17.38 0.84
INIT 34.70 34.70 37.70 37.70 36.53 36.53 34.77 34.77 36.40 36.40 49.60 49.60 34.0 34.0 36.07 36.07 37.47 37.47
@ ASR 88.40 38.33 91.80 42.60 66.02 34.50 99.10 36.57 92.60 42.77 95.40 63.0 88.10 41.06 93.59 41.25 89.38 42.51
M-Instrs 183.01 4.40 | 213.54 5.94 | 104.13 4.90 | 156.57 1.75 121.92 5.02 75.15 5.25 | 109.68 5.79 198.19 4.19 | 145.27 4.66
K=10 M-Nodes 13.81 0.86 18.78 1.03 14.98 0.90 33.64 0.06 15.56 0.95 11.45 1.07 11.38 0.93 17.98 0.82 17.20 0.83
INIT 18.11 18.11 20.0 20.0 18.57 18.57 22.85 2285 2320 23.20 15.80 15.80 21.0 21.0 20.54 20.54 20.10 20.10
@3 ASR 77.10 20.72 85.90 23.80 54.29 18.85 98.30 23.55 87.80 29.52 63.60 23.40 81.10 27.21 89.08 24.75 79.65 23.98
M-Instrs 185.11 4.70 212.0 5.80 | 103.81 5.57 | 156.53 1.68 122.60 4.75 85.51 5.09 110.79 5.99 | 196.56 4.47 | 146.61 4.76
M-Nodes 14.17 0.87 18.88 1.0 13.45 1.03 33.62 0.06 15.54 0.94 12.71 1.10 11.51 0.85 18.12 0.82 17.25 0.83
INIT 9.80 9.80 10.20 10.20 10.10 10.10 16.43 16.43 1420 14.20 4.30 4.30 15.0 15.0 12.42 1242 11.56 11.56
@4 ASR 62.80 11.27 78.50 13.80 42.45 10.09 96.39 17.03 82.5 20.18 44.50 8.70 73.60 19.08 83.87 16.10 70.58 14.53
M-Instrs | 188.77 4.06 | 217.14 6.14 | 108.34 4.98 | 157.09 1.64 | 124.88 5.18 94.42 5.69 | 111.24 5.53 197.1 4.12 | 149.87 4.67
M-Nodes 14.99 0.77 19.10 0.96 12.62 0.89 33.72 0.06 15.75 0.98 13.92 1.13 11.60 0.74 18.30 0.70 17.50 0.78

22

Table 13: Targeted attack at K = 5 and K = 10 when considering a pool of size 128 with A € {0,0.3}. In column
AVG we report the average of the measures across all models.
Models
Gemini [GMN [ZEEK [BinFinder | SAFE [jTrans [Trex [PalmTree AVG |
[x 00 03] 00 03] 00 03] 00 03| 00 03] 00 03| 00 03] 00 03 0.0 0.3 |
wASR 32.17 4.84 46.30 4.03 13.98 4.35 78.18 3.63 48.20 4.37 30.80 5.88 36.40 3.74 43.29 3.50 41.16 4.29
INIT 11.50 11.50 8.10 8.10 7.96 7.96 6.81 6.81 8.20 8.20 11.30 11.30 5.90 5.90 7.49 7.49 8.41 8.41
@1 ASR 57.60 12.50 68.70 9.94 29.80 11.74 89.28 7.52 69.50 10.94 65.30 17.40 54.10 8.13 65.17 8.95 62.43 10.89
M-Instrs 168.08 4.71 | 210.41 7.04 90.81 5.98 | 154.83 2.80 127.34 4.79 80.82 5.80 | 114.17 5.07 | 191.74 5.34 | 142.28 5.19
M-Nodes 14.21 0.85 18.40 0.98 9.98 1.11 33.08 0.08 15.76 0.95 12.27 1.01 11.42 0.86 18.03 0.94 16.64 0.85
INIT 5.0 5.0 3.10 3.10 2.14 2.14 4.21 4.21 2.80 2.80 2.80 2.80 3.10 3.10 2.59 2.59 3.22 3.22
@ ASR 39.40 5.54 55.90 4.37 17.76 4.53 82.97 4.41 56.70 4.92 37.60 5.20 43.0 4.62 50.40 4.12 47.97 4.71
M-Instrs 173.39 3.29 | 213.08 6.02 91.01 6.34 | 156.15 3.75 129.9 4.65 89.29 5.92 | 115.26 6.70 | 188.92 5.76 | 144.62 5.30
K=5 M-Nodes 15.14 0.65 18.33 0.82 10.26 1.18 33.40 0.14 15.77 0.98 13.23 0.88 11.23 0.91 17.91 1.02 16.91 0.82
INIT 0.90 0.90 0.90 0.90 0.20 0.20 1.70 1.70 0.80 0.80 0.40 0.40 1.20 1.20 0.20 0.20 0.79 0.79
@3 ASR 20.40 1.01 38.10 1.19 5.82 0.93 74.35 1.70 39.8 1.10 13.70 0.70 29.50 1.31 34.33 0.70 32.0 1.08
M-Instrs 178.93 2.30 | 222.24 5.0 79.56 6.11 158.05 3.88 | 133.82 4.91 102.27 4.57 | 117.87 6.77 | 182.46 8.71 146.9 5.28
M-Nodes 16.21 0.20 18.84 0.67 8.98 1.11 33.69 0.12 15.78 1.27 14.58 1.14 11.17 0.62 18.30 1.43 17.19 0.82
INIT 0.20 0.20 0.20 0.20 0.10 1.0 1.0 0.10 0.10 0.10 0.10 0.60 0.60 0.0 0.0 0.29 0.29
@4 ASR 11.30 0.30 22.50 0.60 0.21 66.13 0.90 26.80 0.50 6.60 0.20 19.0 0.90 23.25 0.20 22.27 0.48
M-Instrs 193.28 1.67 | 232.65 7.0 4.0 | 159.70 3.0 | 142.31 2.40 | 114.97 9.50 120.6 5.89 | 187.06 15.50 | 155.58 6.12
M-Nodes 17.50 0.0 19.25 1.0 2.0 34.01 0.0 15.54 1.20 15.88 2.0 10.87 0.44 18.70 1.0 17.83 0.96
wASR 48.25 8.47 64.68 8.33 8.52 88.95 7.97 64.80 9.16 45.25 12.20 54.85 8.43 63.60 8.68 57.06 8.97
INIT 1720 17.20 15.80 15.80 15.0 12.12 12,12 13.90 13.90 23.90 23.90 12.10 12.10 14.97 14.97 15.62 15.62
e1 ASR 71.90 19.35 78.60 17.99 43.16 19.16 94.39 13.33 80.30 17.07 80.20 32.20 68.80 15.26 78.04 17.10 74.42 18.93
M-Instrs 173.62 5.29 | 214.53 6.80 94.86 5.87 155.21 2.19 123.74 4.94 77.29 5.63 112.70 5.57 | 193.41 4.74 143.17 5.13
M-Nodes 13.83 0.92 18.87 0.98 11.18 1.07 33.28 0.06 15.72 0.96 11.95 1.07 11.44 0.80 18.28 0.86 16.82 0.84
INIT 9.40 9.40 8.10 8.10 .53 6.53 7.82 7.82 8.60 8.60 8.30 8.30 8.20 8.20 7.98 7.98 8.12 8.12
@2 ASR 57.0 10.58 71.10 9.15 31.94 10.20 91.68 9.22 71.40 11.14 58.90 13.50 60.40 10.24 70.06 9.96 64.06 10.50
M-Instrs 173.68 4.25 | 213.81 5.61 5. 5.84 | 155.94 2.75 126.32 4.86 84.68 5.16 | 112.83 4.88 192.08 4.77 | 144.52 4.76
K=10 M-Nodes 14.68 0.74 18.63 0.96 10.35 1.12 33.40 0.09 15.89 0.95 12.65 1.04 11.30 0.73 18.09 0.75 16.87 0.80
INIT 2.70 2.70 3.30 3.30 1.84 1.84 4.91 4.91 3.10 3.10 1.30 1.30 4.10 4.10 2.89 2.89 3.02 3.02
@3 ASR 38.0 2.92 60.40 3.88 18.57 3.50 87.37 5.81 60.10 5.62 27.30 2.50 49.50 5.02 57.58 5.03 49.85 4.28
M-Instrs 177.87 3.83 | 214.63 5.08 93.72 5.94 | 157.19 3.53 129.75 4.57 96.62 4.76 | 115.36 6.20 | 189.60 4.76 | 146.84 4.83
M-Nodes 15.76 0.55 18.92 0.82 10.26 1.18 33.67 0.10 15.84 0.93 13.86 1.36 11.34 0.92 18.15 0.84 17.23 0.84
INIT 0.90 0.90 1.60 1.60 0.31 0.31 3.21 3.21 1.41 1.41 0.30 0.30 2.60 2.60 1.20 1.20 1.44 1.44
@4 ASR 26.10 1.01 48.60 2.29 10.61 1.24 82.36 3.51 47.40 2.81 14.60 0.60 40.70 3.21 48.70 2.62 39.88 2.16
M-Instrs 190.36 8.0 | 219.14 5.83 104.95 6.92 | 159.24 2.11 136.29 3.89 109.49 6.67 | 116.21 5.19 192.21 5.19 | 153.49 5.48
M-Nodes 16.57 0.80 19.48 0.70 10.99 1.33 34.19 0.06 16.05 0.71 14.71 1.67 11.42 0.88 18.37 1.0 17.72 0.89
Table 14: Targeted attack at K =5 and K = 10 when considering a pool of size 512 with A € {0,0.3}. In column
AVG we report the average of the measures across all models.
Models
Gemini I GMN I ZEEK [BinFinder] SAFE I jTrans I Trex [PalmTree AVG |
[X 00 03| 00 03| 00 03] 00 03] 00 03| 00 03| 00 03] 00 03 0.0 03 |
wASR 16.93 1.16 26.88 1.03 5.15 1.11 58.27 0.98 27.95 0.93 15.82 1.17 20.52 0.98 18.09 1.01 23.7 1.05
INIT 3.80 3.80 1.90 1.90 2.24 2.24 1.60 1.60 1.90 1.90 2.40 240 1.70 1.70 1.80 1.80 217 217
@1 ASR 34.20 3.63 49.0 270 12.24 3.71 71.94 2.10 49.50 2.71 38.30 3.98 34.50 2.51 34.37 2.92 40.51 3.03
M-Instrs 168.49 3.19 | 206.50 5.81 110.12 5.22 | 155.03 7.86 | 126.75 3.11 89.29 6.32 113.79 5.48 | 176.89 6.93 | 143.36 5.49
M-Nodes 15.67 0.44 17.87 1.04 10.58 1.0 33.09 0.10 15.64 0.59 13.28 0.90 11.32 1.20 18.37 1.17 16.98 0.80
INIT 1.0 1.0 0.40 0.40 0.31 0.31 1.10 1.10 0.50 0.50 0.20 0.20 0.40 0.40 0.60 0.60 0.56 0.56
@2 ASR 19.70 0.81 33.0 1.0 6.02 0.72 65.03 1.20 33.80 0.70 18.0 0.70 24.30 0.90 21.34 1.01 27.65 0.88
M-Instrs 182.49 4.12 | 212.32 5.50 | 123.47 5.0 | 156.63 3.0 | 13294 1.14 | 101.05 5.14 | 115.57 7.67 | 173.31 7.80 | 149.72 4.92
K=5 M-Nodes 16.52 0.25 17.77 1.0 11.12 0.57 33.57 0.0 15.54 0.57 1443 1.14 11.03 1.33 18.49 1.40 17.31 0.78
INIT 0.10 0.10 0.10 0.10 0.0 0.0 0.40 0.40 0.10 0.10 0.0 0.0 0.20 0.20 0.0 0.0 0.11 0.11
@3 ASR 8.6 0.20 16.90 0.30 1.33 0.0 53.01 0.40 19.0 0.20 4.70 0.0 14.50 0.30 10.42 0.10 16.06 0.19
M-Instrs 196.09 4.5 | 229.03 5.33 | 133.38 - | 158.70 0.0 | 132.81 2.0 | 108.21 - 111.91 5.67 | 172.12 21.0 | 155.28 6.42
M-Nodes 17.74 0.0 18.53 0.67 11.85 - 34.05 0.0 15.64 1.0 16.21 - 11.63 0.67 19.37 0.0 18.13 0.39
INIT 0.0 0.0 0.0 0.0 0.0 0.0 0.20 0.20 0.0 0.0 0.0 0.0 0.10 0.10 0.0 0.0 0.04 0.04
@4 ASR 5.20 0.0 8.60 0.10 1.02 0.0 43.09 0.20 9.50 0.10 2.30 0.0 880 0.20 6.21 0.0 10.59 0.08
M-Instrs 210.69 - | 249.30 13.0 135.9 161.58 0.0 | 144.53 0.0 | 121.22 - 116.50 2.0 | 178.15 - | 164.73 3.75
M-Nodes 17.88 - 19.67 0.0 13.0 - 34.29 0.0 15.41 0.0 16.78 - 12.05 1.0 21.23 - 18.79 0.25
wASR 25.10 2.39 40.15 2.38 9.34 2.14 71.37 1.75 40.02 1.96 23.35 2.26 30.48 2.08 30.24 1.81 33.76 2.10
INIT 5.70 5.70 3.90 3.90 3.47 3.47 311 3.11 4.0 4.0 4.80 4.80 3.30 3.30 4.11 4.11 4.05 4.05
@1 ASR 45.10 6.35 59.80 5.60 19.49 6.59 80.96 3.71 59.10 5.12 49.10 6.86 44.60 4.52 47.19 4.63 50.67 5.42
M-Instrs 170.18 4.76 | 210.35 6.88 101.21 6.39 154.78 5.41 128.05 3.84 84.46 5.64 112.76 5.58 182.05 5.24 142.98 5.47
M-Nodes 15.23 0.57 18.35 1.07 10.80 1.16 33.0 0.16 15.72 0.86 12.66 0.99 11.36 1.02 18.62 1.0 16.97 0.85
INIT 230 2.30 1.90 1.90 0.71 0.71 1.80 1.80 1.40 1.40 0.80 0.80 1.60 1.60 1.40 1.40 149 149
@2 ASR 29.20 2.52 47.3 270 11.33 1.75 75.55 1.90 46.3 191 28.0 1.79 34.40 2,51 34.97 1.91 38.38 2.12
M-Instrs 173.84 3.16 | 214.23 6.85 | 108.93 5.71 156.73 7.26 | 129.57 2.47 94.18 3.61 114.63 5.56 | 173.26 7.05 | 145.67 5.21
K=10 M-Nodes 16.26 0.48 18.68 0.81 11.50 0.82 33.46 0.11 15.70 0.84 13.61 0.67 11.13 1.12 18.08 1.05 17.3 0.74
INIT 0.50 0.50 0.40 0.40 0.0 0.0 0.80 0.80 0.30 0.30 0.10 0.10 0.50 0.50 0.10 0.10 0.34 0.34
@3 ASR 15.70 0.50 32.30 0.80 4.29 0.21 67.33 0.90 32.30 0.60 10.40 0.30 24.10 0.90 22.14 0.50 26.07 0.59
M-Instrs 181.08 2.80 | 224.91 5.0 | 108.83 10.50 159.0 4.0 | 131.05 1.33 | 105.67 4.33 | 114.20 3.89 | 175.48 10.20 | 150.03 5.26
M-Nodes 17.45 0.0 19.17 0.75 11.14 2.0 33.88 0.0 15.88 0.67 15.56 1.33 11.2 0.89 19.18 1.60 17.93 0.90
INIT 0.20 0.20 0.0 0.0 0.0 0.0 0.40 0.40 0.0 0.0 0.10 0.10 0.30 0.30 0.0 0.0 0.12 0.12
@4 ASR 104 0.20 21.20 0.40 2.24 0.0 61.62 0.50 2240 0.20 590 0.10 18.80 0.40 16.63 0.20 19.90 0.25
M-Instrs 192.19 2.50 | 239.85 6.75 124.5 - | 160.23 5.40 | 140.71 0.0 | 118.15 4.0 | 117.37 4.25 | 176.20 16.0 | 158.65 5.56
M-Nodes 18.25 0.0 19.49 0.50 13.45 - 34.12 0.0 16.40 0.0 16.24 2.0 11.53 0.50 19.39 1.0 18.61 0.57

23

Table 15: Targeted attack at K = 5 and K = 10 when considering a pool of size 1000 with A € {0,0.3}. In

column AVG we report the average of the measures across all models.

Models

Gemini | GMN [ZEEK | BinFinder | SAFE | jTrans | Trex [PalmTree AVG |
X 00 03] 00 03|00 03] 00 03] 00 03] 00 03] 00 03] 00 03 0.0 03]

wASR 11.35 0.55 19.80 0.65 0.0 0.0 49.55 0.45 19.60 0.43 11.0 0.40 15.17 0.55 13.83 0.55 17.54 0.45

INIT 1.90 1.90 0.90 0.90 0.0 0.0 0.90 0.90 1.0 1.0 0.90 0.90 1.20 1.20 0.70 0.60 0.94 094

o1 ASR 24.30 1.81 38.60 1.50 0.0 0.0 63.63 1.10 38.50 1.31 27.20 1.50 27.60 1.51 26.85 1.51 30.84 1.28
M-Instrs 167.52 1.44 | 205.78 4.67 - - | 154.96 7.36 | 129.22 4.23 94.96 3.67 | 115.66 3.6 | 178.75 7.67 | 149.55 4.66
M-Nodes 15.69 0.33 17.11 1.07 - - 33.31 0.0 15.98 0.77 13.80 0.53 11.11 0.67 19.0 0.93 18.0 0.61
INIT 0.40 0.40 0.20 0.20 0.0 0.0 0.50 0.50 0.30 0.30 0.0 0.0 0.20 0.20 0.30 0.30 0.24 0.24

@2 ASR 13.20 0.30 24.80 0.80 0.0 0.0 55.41 0.60 24.30 0.30 12.30 0.10 17.70 0.40 15.73 0.70 20.43 0.40
M-Instrs 177.74 3.0 | 213.77 5.88 - - | 157.06 1.50 | 136.39 1.33 | 109.87 4.0 | 114.71 3.0 | 173.85 8.0 | 154.77 3.82
K=5 M-Nodes 16.53 0.0 17.09 1.0 - - 33.59 0.0 15.68 0.67 14.86 2.0 11.08 1.5 18.19 1.43 18.15 0.94
INIT 0.0 0.0 0.0 0.0 0.0 0.0 0.10 0.10 0.10 0.10 0.0 0.0 0.20 0.20 0.0 0.0 0.05 0.05

@3 ASR 4.90 0.10 10.50 0.20 0.0 0.0 43.59 0.10 10.60 0.10 2.80 0.0 9.40 0.20 7.62 0.0 11.18 0.09
M-Instrs 211.73 9.0 | 241.01 8.0 - - 159.89 0.0 125.3 0.0 120.07 - 120.39 2.0 171.64 - 164.29 3.80
M-Nodes 17.96 0.0 18.97 1.0 - - 34.20 0.0 15.75 0.0 17.07 - 12.84 1.0 20.05 - 19.55 0.40
INIT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.10 0.10 0.0 0.0 0.01 o0.01

o4 ASR 3.0 0.0 5.30 0.10 0.0 0.0 35.57 0.0 5.0 0.0 1.70 0.0 6.0 0.10 5.11 0.0 7.71 0.02
M-Instrs | 245.87 - | 23464 13.0 - - 161.7 - | 129.72 - | 130.06 - | 119.83 0.0 | 186.63 - | 172.64 6.5
M-Nodes 16.87 - 18.94 0.0 - 34.3 - 15.72 - 18.0 - 12.73 0.0 22.35 - 19.84 0.0
wASR 17.95 1.11 29.93 1.18 0.0 0.0 62.12 1.08 29.98 1.05 17.22 1.07 229 1.13 21.89 1.01 25.25 0.95

INIT 3.80 3.80 2.0 2.0 0.0 0.0 1.60 1.60 2.10 2.10 2.30 2.30 1.60 1.60 2.0 2.0 1.92 1.92

o1 ASR 33.90 3.53 50.10 2.90 0.0 0.0 72.65 2.10 48.50 291 38.70 3.70 35.60 2.71 3717 2.82 39.58 2.58
M-Instrs 171.54 2.63 | 207.16 5.72 - - | 154.78 7.86 | 125.41 3.38 89.19 5.62 | 113.74 5.19 | 179.66 7.68 | 148.78 5.44
M-Nodes 15.54 0.29 18.06 0.90 - - 33.11 0.10 15.67 0.69 13.19 0.97 11.10 1.26 18.68 1.36 17.91 0.80
INIT 0.90 0.90 0.60 0.60 0.0 0.0 1.10 1.10 0.70 0.70 0.10 0.10 0.70 0.70 0.60 0.60 0.59 0.59

@2 ASR 20.80 0.81 36.10 1.20 0.0 0.0 66.53 1.30 35.40 1.0 20.0 0.60 25.90 1.0 24.45 1.01 28.65 0.86
M-Instrs 179.71 4.12 | 213.21 5.25 - - 156.29 3.38 130.25 1.20 99.26 7.0 115.91 5.0 175.13 9.20 152.82 5.02
K=10 M-Nodes 16.49 0.25 17.89 0.83 - - 33.47 0.0 15.82 0.60 14.16 1.0 10.88 0.80 18.80 1.20 18.22 0.67
INIT 0.0 0.0 0.10 0.10 0.0 0.0 0.50 0.50 0.20 0.20 0.0 0.0 0.30 0.30 0.0 0.0 0.14 0.14

@3 ASR 10.20 0.10 21.0 0.40 0.0 0.0 57.72 0.60 2240 0.20 6.80 0.0 17.80 0.40 14.93 0.10 18.86 0.22
M-Instrs 182.40 9.0 | 22453 6.25 - - 159.46 1.50 130.45 2.0 111.19 - 114.92 4.25 170.79 21.0 156.25 7.33
M-Nodes 18.02 0.0 18.89 1.0 - - 33.95 0.0 16.24 1.0 15.79 - 11.39 0.50 19.76 0.0 19.15 0.42
INIT 0.0 0.0 0.0 0.0 0.0 0.0 0.30 0.30 0.0 0.0 0.0 0.0 0.20 0.20 0.0 0.0 0.06 0.06

@4 ASR 6.90 0.0 12.50 0.20 0.0 0.0 51.6 0.30 13.60 0.10 3.40 0.0 12.30 0.40 11.02 0.10 13.92 0.14
M-Instrs | 200.35 - | 24532 11.0 - - | 160.52 0.0 140.0 0.0 | 132.94 - | 119.30 4.25 | 181.96 21.0 | 168.63 7.25
M-Nodes 18.58 - 19.55 1.0 - - 34.24 0.0 16.24 0.0 17.88 - 11.34 0.5 20.51 0.0 19.76 0.30

Table 16: Targeted attack at K = 5 and K = 10 when considering A = 0.01 and |P| € {32,128,512,1000}. In

column AVG we report the average of the measures across all models.

Models

Gemini [SAFE [jTrans AVG |

| Pool Size 32 128 512 1000 | 32 128 512 1000 | 32 128 512 1000 32 128 512 1000 |
wASR 29.49 12.52 4.56 2.48 | 54.23 28.25 13.63 8.38 | 32.17 10.80 3.33 1.80 | 38.63 17.19 7.17 4.22
INIT 30.26 11.90 3.97 2.08 27.0 8.30 1.90 1.0 | 42.60 11.10 2.40 0.90 | 33.29 10.43 2.76 1.33
o1 ASR 53.08 26.69 11.41 595 | 73.30 45.80 26.40 18.50 | 70.10 29.70 9.70 4.90 | 65.49 34.06 15.84 9.78
M-Instrs | 11.36 12.16 13.55 13.83 | 24.53 28.12 30.52 30.85 7.34 8.42 8.80 7.88 | 14.41 16.23 17.62 17.52
M-Nodes 3.67 4.13 4.61 4.80 4.86 5.28 5.62 5.65 1.84 2.11 2.21 1.88 3.46 3.84 4.15 4.11
INIT 16.77 5.26 0.99 0.50 | 17.30 2.90 0.50 0.20 | 19.70 2.50 0.20 0.0 | 17.92 3.55 0.56 0.23
@2 ASR 36.01 15.48 4.46 2.78 | 62.10 34.20 16.40 9.80 | 44.10 10.90 2.60 1.70 | 47.40 20.19 7.82 4.76
M-Instrs 1191 13.19 16.49 18.25 | 26.13 29.36 32.23 32.60 7.90 9.70 9.19 9.06 1531 1742 19.30 19.97
K=5 M-Nodes 3.88 4.59 5.47 5.79 5.02 5.32 5.65 5.82 2.0 2.31 2.38 2.35 3.63 4.07 4.50 4.65
INIT 5.56 0.79 0.10 0.0 7.40 0.90 0.10 0.10 3.30 0.40 0.0 0.0 5.42 0.70 0.07 0.03
@3 ASR 18.35 5.36 1.49 0.79 | 46.40 20.10 7.30 3.70 11.0 2.0 0.60 0.30 | 25.25 9.15 3.13 1.60
M-Instrs | 14.22 15.65 17.87 1825 | 28.03 31.86 35.07 35.57 8.48 11.0 9.50 11.67 | 16.91 19.50 20.81 21.83
M-Nodes 4.63 5.37 6.0 6.50 5.21 5.68 6.19 6.49 2.20 3.10 3.0 3.33 4.01 4.72 5.06 5.44
INIT 1.49 0.20 0.0 0.0 2.90 0.10 0.0 0.0 0.80 0.10 0.0 0.0 1.73 0.13 0.0 0.0
@ ASR 10.52 2.58 0.89 0.40 | 35.10 12.90 4.40 1.50 3.50 0.60 0.40 0.30 | 16.37 5.36 1.90 0.73
M-Instrs | 16.67 17.62 16.89 15.25 | 29.70 33.81 36.23 34.07 9.63 13.0 12.0 11.67 | 18.67 21.48 21.71 20.33
M-Nodes 5.23 5.77 6.0 5.50 5.21 5.60 6.32 6.53 2.34 3.67 3.50 3.33 4.26 5.01 5.27 5.12
wASR 50.97 21.23 7.81 4.61 | 73.78 4218 21.57 14.70 | 52.98 19.80 5.35 3.30 | 59.24 27.74 11.58 7.54
INIT 49.80 17.66 5.85 3.97 50.0 13.90 4.0 2.10 71.0 23.60 4.80 2.30 | 56.93 18.39 4.88 2.79
o1 ASR 73.12 36.9 17.56 11.01 | 85.90 56.80 36.30 26.60 89.0 46.90 14.80 9.30 | 82.67 46.87 22.89 15.64
M-Instrs 10.52 12.61 12.50 13.05 | 23.24 26.63 29.15 29.42 6.83 7.84 8.74 8.98 13.53 15.69 16.80 17.15
M-Nodes 3.44 4.16 4.21 4.40 4.71 5.16 5.38 5.53 1.73 1.97 2.22 2.28 3.29 3.76 3.94 4.07
INIT 34.82 9.62 2.38 0.99 | 37.20 8.50 1.40 0.80 | 49.60 8.60 0.80 0.10 | 40.54 8.91 1.53 0.63
@2 ASR 60.32 25.40 8.43 4.27 | 79.30 46.80 24.80 16.90 | 75.30 24.50 4.80 2.70 | 71.64 32.23 12.68 7.96
M-Instrs | 11.22 13.15 14.20 15.81 | 24.02 28.16 30.60 31.20 7.23 8.91 9.0 10.19 | 14.16 16.74 17.93 19.07
K=10 M-Nodes 3.67 4.38 4.75 5.07 4.80 5.31 5.44 5.62 1.83 2.16 2.42 2.52 3.43 3.95 4.20 4.40
INIT 18.95 2.78 0.50 0.0 | 23.20 3.0 0.30 0.20 | 14.70 1.30 0.10 0.0 | 18.95 2.36 0.30 0.07
@3 ASR 4236 13.89 3.27 1.98 | 69.10 36.80 14.90 9.0 | 33.40 5.60 1.30 0.70 | 48.29 18.76 6.49 3.89
M-Instrs | 12.21 15.25 17.70 18.40 | 25.24 29.48 31.82 34.06 7.88 9.23 11.92 11.71 | 15.11 17.99 2048 21.39
M-Nodes 3.93 5.21 5.76 5.60 4.99 5.36 5.68 5.91 2.05 2.46 3.08 3.43 3.66 4.34 4.84 4.98
INIT 10.02 0.99 0.20 0.0 | 13.60 1.40 0.0 0.0 4.0 0.30 0.10 0.0 9.21 0.90 0.10 0.0
@4 ASR 28.08 8.73 1.98 1.19 | 60.80 28.30 10.30 6.30 | 14.20 2.20 0.50 0.50 | 34.36 13.08 4.26 2.66
M-Instrs | 12,93 16.45 19.75 17.75 | 26.21 30.31 33.99 35.37 8.70 10.55 14.60 14.60 | 15.95 19.10 22.78 22.57
M-Nodes 4.33 5.34 6.20 5.17 5.08 5.29 5.94 6.25 2.34 2.64 4.0 4.0 3.92 4.42 5.38 5.14

24

Algorithm 1 Greedy Optimization Strategy

Inp
.

ut:
Query function fg

Set of target variants V'

Output: Adversarial example fqq4q

Definitions:

e Maximum number of iterations A

e Set of semantics-preserving transformations T'R

e randomStrands(): Initialize the set STRANDS with ran-
dom strands.

e ir(fudv,pos). Apply the IR transformation to f,4, at loca-
tion pos. Return a new candidate adversarial example.

e 1s(faqv,pos). Apply the NS transformation to fuq, at lo-
cation pos. Return a new candidate adversarial example.

e dba(fyqy,pos). Apply the DBA transformation to fuq4, at
location pos. Return a list of |[STRANDS)| candidate ad-
versarial examples, where each candidate consists of adding
in a dead branch at position pos within f,4, a strand from
STRANDS.

e sa(fadv,pos). Apply the SA transformation to fyq, at lo-
cation pos. Return a list of |[STRANDS)| candidate adver-
sarial examples, where each candidate consists of adding at
position pos within f,4, a strand from STRANDS.

o cvaluate(cands,V). Evaluate the objective function in
Equation 2 considering the possible candidates cands and
the set of target variants V.

o best(advs). Given a set of adversarial examples, return the
one that maximizes the value of Equation 2.

1 fadw < fQ

2: qter <0

3: STRANDS < randomStrands()

4: advs, POS « [],]]

5: while iter < A do

6: cands < []

T POS.update()

8: for (tr,pos) € TR x POS do

9: if tr == ‘IR’ then

10: cands.extends(ir(f4qv, P0S))

11: else if tr == ‘NS’ then

12: cands.extends(ns(fqdv, P0S))

13: else if tr == ‘DBA’ then

14: cands.extends(dba(fydv, P0S))
15: else

16: cands.extends(sa(fody, pos))

17: objective_values < evaluate(cands, V)
18: prob < uniform(0, 1)

19: if prob < € then
20: fadv < selectGreedy (objective_values)
21: else
22: fadv < selectRandom (objective_values)
23: advs.extends(fadv)
24: STRAN DS.update(objective_values)
25: iter < tter 4+ 1
26: return best(advs)

25

	Introduction
	Contributions

	Threat Model
	Targeted and Untargeted Attacks

	Attack Overview
	Multi-Objective Optimization
	Greedy Optimizer

	Semantics-Preserving Transformations

	Target Systems
	Graph Neural Network (GNN): Gemini and GMN
	Intermediate Representation (IR) and Neural Network (NN): Zeek
	Fully Connected Neural Network: BinFinder
	Recurrent Neural Network (RNN): SAFE
	Transformer: jTrans, Trex, PalmTree

	Datasets and Implementation
	Dataset
	Implementation Details

	Experimental Results
	RQ1: Targeted vs Untargeted Attacks
	Untargeted Attacks
	Targeted Attacks
	Impacts of the Modification Size

	RQ2: Generalizability and Transferability
	Generalizability
	Transferability

	RQ3: Common Model Behaviors
	Distribution of Applied Transformations
	Transformations in Isolation
	Efficiency Analysis
	Qualitative Analysis

	Non-ML Approaches

	Related Works
	Attacking Image Classifiers and NLP Models
	Attacking Models for Source Code Analysis
	Attacking Models for Binary Code Analysis

	Discussion
	Practical Impacts
	Limitations

	Conclusions and Future Works
	
	

