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 INTRODUCTION 

Spatial division multiplexing (SDM) has been proposed as a solution to enhance network capacity, as current 
infrastructure systems based on wavelength-division multiplexing (WDM) with coherent detection near their theoretical 
limits [1]. SDM systems based on multimode fibers (MMFs), multiplex information over multiple orthogonal 
transmission modes referred to as Linearly Polarized (LP) modes [2]. To undo modal crosstalk, multiple-input output 
(MIMO) digital signal processing (DSP) is used. A key challenge in implementing full-scale SDM systems is minimizing 
intermodal dispersion, as the complexity of DSP increases with dispersion. The MIMO equalizer must be designed with 
sufficient duration to compensate for the intermodal spread [3]. To reduce the intermodal spread, MMFs are designed 
with parabolic, graded index profiles and a cladding trench which reduces the macro-bend loss of the higher order modes 
[4]. The specific measurement of the different arrival times of each mode group is called the differential mode delay 
(DMD). For a graded index MMF, the optimization process is trivial, where the maximum DMD has a convex dependency 
on the fiber core grading exponent 𝛼𝛼 and  ∆𝑛𝑛!" difference of the index of the fiber trench w.r.t. the cladding index [4]. 
However, perfect parabolic graded index fibers are difficult to manufacture as they require precise control over the dopant 
concentrations in the core where any fluctuations in the temperature, gas flow or chemical composition can lead to a non-
ideal index profile [5]. In contrast, multi-step index (MSI) fibers are easier to manufacture as the profile consists a few of 
discrete layers, each with a constant index – the fewer the number of steps the easier to manufacture. However, they often 
exhibit higher differential mode delay (DMD) compared to graded-index fibers. Optimizing the design of these fibers is 
challenging because of the increased number of parameters and the nonconvex nature of the problem. This nonconvexity 
stems from the nonlinear relationship between the parameters defining the step index heights and widths and the resulting 
modal effective indices, which determine the propagation speeds. Calculating these effective indices involves solving an 
eigenvalue problem, which is inherently nonconvex [6].  

Machine learning (ML), gradient-based methods have been shown to excel at nonconvex problems especially when 
using the adaptive gradient optimizers such as RMSProp, Adam and AdaDelta [8]. These optimizers use adaptive learning 
rates for each parameter based on past gradients and momentum terms assuring proper adjustment ensuring resilience to 
saddle points and stagnation in flat areas. 

Previous research on MSI MMF optimization has utilized non-gradient-based algorithms, such as the genetic 
algorithm [4] and a numerical approach based on the characteristic matrix method [7]. However, these methods come at 
the cost of efficiency and are unlikely to converge to the global minimum. 

At the heart of this optimization problem lies the mode solver where an eigensolver calculates the effective indices 
which determine the DMD. By employing implicit differentiation of the eigenvalue decomposition, gradients with respect 
to the input parameters can be computed efficiently, thereby enabling end-to-end backpropagation through the 
eigensolver. In fact, previous differentiable mode solvers have been proposed to find the waveguide dispersion for second 
harmonic generation with maximized phase-matching bandwidth [9]. The authors showed that the cost of the gradient 
backpropagation is independent of the number parameters required for the generation of complex waveguide structures. 

In this paper we present optimization of a MSI MMF using a gradient based solver. We calculate the optimum index 
profiles resulting in the lowest maximum DMD for 45 modes for 9 to 19 step fibers. We compare the results to a parabolic 
graded index fiber and show that we can reduce the max DMD provided by the optimized parabolic profile using gradient 
based optimization. 

 METHODS 

A. Mode Background 
LP modes are solutions to the radially symmetric wave equation (1) that satisfy the boundary conditions and which 

the spatial profile does not change with propagation [2].   
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Where 𝐹𝐹)(𝜌𝜌) is the radial component of the field, 𝑚𝑚 is the azimuth index of the mode group, 𝜌𝜌 being the radius, 𝑛𝑛 is the 
index profile, 𝑘𝑘( is the wavenumber and 𝛽𝛽 is the propagation constant. The constants 𝛽𝛽 are solved for using a finite 
difference numerical method. The radius 𝜌𝜌 is discretized into a 1D grid, the derivatives are approximated by finite 
difference approximations or central differences. With the first derivative approximated as: 
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Where ∆𝜌𝜌 is the spacing, and the second derivative is approximated as: 
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The appropriate boundary conditions for the field need to be set. We set for, at 𝑚𝑚 = 0: #$

#%
 = 0 at 𝜌𝜌 = 0 and for  𝑚𝑚 ≠ 0: 

𝐹𝐹 = 0, in accordance with the LP mode spatial profiles. A small offset is provided at 𝜌𝜌 = 0 to prevent infinite values. All 
terms which do not involve 𝛽𝛽 are used to build a sparse matrix operator where the diagonal entries collect −2/∆𝜌𝜌' from 
the second derivative term and the potential term: &𝑛𝑛'𝑘𝑘(' −	
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*. The ±1 off-diagonal terms collect the first derivative 

1/∆𝜌𝜌' and the ±1/2𝜌𝜌∆𝜌𝜌. The eigenvectors 𝐹𝐹) corresponding to the field profile and eigenvalues 𝛽𝛽 corresponding to the 
propagation constants are then calculated.  
 The effective indices 𝑛𝑛011 are then calculated by 𝛽𝛽/𝑘𝑘(. The group index  𝑛𝑛2 is calculated by 𝑛𝑛011 − 2𝜋𝜋	𝑓𝑓(
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 is approximated by a finite difference approach 
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 where 𝜇𝜇 is a wavelength offset and 𝑑𝑑𝑑𝑑 

is defined as 2𝜋𝜋(𝑓𝑓(	(𝑓𝑓( − 𝑑𝑑𝑑𝑑) where 𝑑𝑑𝑑𝑑 is the frequency offset associated with the wavelength offset. 

B. Implementation 
We write the eigenvalue solver using PyTorch, a ML library with support for accelerated operation on CUDA enabled 

graphics processing units. The matrices are constructed for different azimuthal indices can be constructed and solved for 
in parallel using the torch.linalg.eig function and the resulting eigenvalues are sorted from largest to smallest. 

To construct the step profiles, we utilize custom sigmoid functions defined as: 
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Where 𝑘𝑘 is a sharpness parameter determining the derivative at 𝑥𝑥 = 0. For sharp step generation we set 𝑘𝑘 to be 1e11. 
However, its derivative will give 0 across the whole domain. To allow gradient propagation, we set 𝑘𝑘 to be 1e4 on the 
backwards pass. A simple scheme of the optimization process is shown in Fig. 1. 
 

 
Fig. 1.  Algorithm outline. 

C. Fiber profile initialization 
For all simulation settings we start with a fiber initialization of core radius 𝑟𝑟 of 25 𝜇𝜇𝜇𝜇, a core index of 𝑛𝑛<="0 1.4585, a 
cladding index 𝑛𝑛<> of 1.444, with a radius step size ∆𝜌𝜌 of 0.25 𝜇𝜇𝜇𝜇, a trench offset from core of 2 𝜇𝜇𝜇𝜇 with a trench width 
of 6 𝜇𝜇𝜇𝜇 and an initial depth of 1.4425. We use a wavelength of 1550	𝑛𝑛𝑛𝑛 and a frequency offset of 1 𝑀𝑀𝑀𝑀𝑀𝑀. The step 
profiles are initialized by naively discretizing the parabolic fiber profile shown in Fig. 2. 
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Fig. 2.  Initialization of 15-step index fiber profile with an optimized parabolic profile. 

We allow the step widths and heights to be free floating, constrained by the 𝑛𝑛<="0 and 𝑟𝑟 respectively. We also constrain 
a descending step pattern to ensure efficient convergence. To ensure valid comparisons, we consider strongly guided 
modes where the condition is defined as: 
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> 0.01               (5) 
The fiber initialization settings allow for a minimum of 45 modes to be strongly guided. The Adam optimizer is used with 
default settings and a learning rate of 1e-7 for 5000 iterations. All step radii, all step heights excluding the first height at 
the center are optimized for. The value of the trench index is also optimized and allowed to take values from 1.416 to 
1.446. 

 RESULTS 

To act as a comparison, we determine the minimum max DMD for a parabolic profile with a sweep of the 𝛼𝛼 from 1.94 
to 2 and obtain a minimum of 30 𝑝𝑝𝑝𝑝/𝑘𝑘𝑘𝑘 determined by max(DMD) – min(DMD) for a value of 𝛼𝛼 = 1.987 for 45 modes.  
The max DMD of a 19-step fiber at initialization was determined to be 2338 𝑝𝑝𝑝𝑝/𝑘𝑘𝑘𝑘  and after optimization was 
determined to be at 108 𝑝𝑝𝑝𝑝/𝑘𝑘𝑘𝑘. The complete results are shown in Fig. 3 A) with an example of a 15-step initial vs 
optimized fiber profiles in Fig 3. B). 

 

 
Fig. 3 A).  Results of step profile optimization for 5 – 17 step fiber profiles. 3 B) Initial vs optimized 9 step fiber profiles. 

 CONCLUSIONS 

In this work we investigated the design of multi-step index (MSI) fibers using a gradient based solver allowing for 
efficient learning. 9 to 19 step designs were investigated and were compared to an optimized parabolic graded index fiber. 
While our approach does not surpass the max DMD of a parabolic graded index fiber, our results demonstrate the potential 
of gradient based fiber profile design. For future work, we will extend our optimization to higher step counts and conduct 
optimizations across the entire C-band to improve broadband performance. Additional constraints, such as enforcing a 
constant step radius or height, could be introduced to enhance manufacturability. Furthermore, relaxing the descending 
staircase condition would allow for the formation of trenches within the core, potentially unlocking new index profiles 
with improved dispersion and loss characteristics. 

ACKNOWLEDGMENT 
This work was supported by the UKRI Future Leaders Fellowship under Grant MR/Y034260/1. Underlying data: 

10.5522/04/28509176. 



OECC/PSC 2025 
 

©IEICE 

REFERENCES 
 
[1] Puttnam, B.J., Rademacher, G. and Luís, R.S. (2021). Space-division multiplexing for optical fiber communications. Optica, 

8(9), p.1186. doi:https://doi.org/10.1364/optica.427631. 
[2] Agrawal, G.P. (2002). Fiber-optic Communication Systems. 
[3] Arık, S.Ö., Kahn, J.M. and Ho, K.-P. (2014). MIMO Signal Processing for Mode-Division Multiplexing. IEEE SIGNAL 

PROCESSING MAGAZINE. 
[4] Ferreira, F., Fonseca, D.J. and Silva (2014). Design of Few-Mode Fibers With M-modes and Low Differential Mode Delay. 

32(3), pp.353–360. doi:https://doi.org/10.1109/jlt.2013.2293066. 
[5] www.thefoa.org. (n.d.). FOA Tech Topics: Manufacturing optical fiber. [online] Available at: https://www.thefoa.org/tech/fibr-

mfg.htm. 
[6] Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge University Press. 
[7] Riesen, N. and Love, J.D. (2011). Dispersion equalisation in few-mode fibres. Optical and Quantum Electronics, 42(9-10), 

pp.577–585. doi:https://doi.org/10.1007/s11082-011-9480-9. 
[8] Zaheer, M., Reddi, S.J., Devendra Singh Sachan, Kale, S. and Kumar, S. (2018). Adaptive Methods for Nonconvex 

Optimization. Neural Information Processing Systems, 31, pp.9793–9803. 
[9] Gray, D., West, G.N. and Ram, R.J. (2024). Inverse Design for Waveguide Dispersion with a Differentiable Mode Solver. 

Optics Express, 32(17), pp.30541–30541. doi:https://doi.org/10.1364/oe.530479. 


