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Abstract

Every day, individuals make risky decisions—whether ignoring a chest pain, in-

vesting in a friend’s venture, or stepping outside during a storm. These decisions

raise important questions: How do individuals behave under risk? How much risk are

they willing to accept? And what factors drive their choices? In this thesis, I inves-

tigate the cognitive and computational characteristics of risk-taking behavior using

increasingly complex and naturalistic paradigms, focusing on how internal traits and

external contexts modulate decisions. In the first study (Chapter 2), I demonstrate

that risk aversion is enhanced in anxious depressed patients after a worry induction,

compared to baseline or depressed patients. This finding underscores the transient

nature of risk preferences in generalized anxiety and suggests that these preferences

may be driven by anxiety symptoms rather than causing them. The second study

(Chapter 3), conducted with large online samples, reveals that transdiagnostic com-

pulsivity is the primary predictor of cautious behavior in an approach-avoidance

conflict task set in a risky foraging scenario. This challenges traditional views on

these tasks, which have been extensively used to assess the effects of anxiolytic

agents. The final study (Chapter 4) utilizes fully immersive virtual reality to exam-

ine naturalistic escape decisions under risk of predation by bio-realistic threats. The

results show that escape decisions can be dynamically updated, depend on personal

and threat characteristics; and are implemented to optimize secondary goals. I also

demonstrate that different types of threat-related behavior rely on distinct computa-

tional mechanisms. These findings indicate that escape decisions are not instinctive

but depend on flexible computational mechanisms that integrate both internal and



external factors. Together, these studies converge to highlight the complexity and

flexibility of human risk-taking behavior. By bridging clinical, computational, and

ecologically valid approaches, this thesis advances our mechanistic understanding of

how humans navigate risk and offers new insights into the cognitive processes that

underpin these decisions.

3



Impact Statement

Risk-taking is a core aspect of human decision-making, influencing domains as

diverse as mental health or economical stability. Understanding its drivers is es-

sential for developing interventions that encourage adaptive behaviors and reduce

maladaptive ones. This thesis examines how internal traits and external contexts

influence risky decision-making, integrating insights from clinical and computational

psychiatry, neuroscience, and behavioral economics.

Scientific Impact

In a first approach, we employ a computational prospect-theoretic model to assess

how induced worry and anxiety symptoms influence risk preferences in an economic

decision-making task (cf. Chapter 2). Our results indicated that risk aversion was

heightened in anxious-depressed patients after worry induction, but not at baseline

or in patients with depression alone. This highlights the importance of considering

state-dependent processes in risk-taking behavior.

In a second approach, we use a cross-species validated approach-avoidance con-

flict (AAC) task to explore how transdiagnostic compulsivity and other psychiatric

traits influence cautious behavior (cf. Chapter 3). Transdiagnostic compulsivity

emerges as the strongest predictor, emphasizing the need to prioritize transdiagnos-

tic dimensions over traditional psychiatric categories for understanding approach-

avoidance behaviors.

In a third approach, we utilize immersive virtual reality to investigate human

escape responses to biologically relevant threats (cf. Chapter 4). The results demon-



strate how external threat characteristics and internal factors shape escape behav-

iors, providing a more nuanced understanding of defensive responses. The incor-

poration of virtual reality (VR) underscores the potential of innovative tools to

investigate real-world decision-making in controlled, dynamic environments.

Clinical Impact

This thesis has significant implications for mental health understanding and in-

tervention.

Understanding the distinct impacts of anxiety and depression on risk-taking

(cf. Chapter 2) provides valuable insights for developing therapeutic strategies.

For instance, interventions for generalized anxiety disorder might focus on reducing

sensitivity to uncertainty rather than solely addressing fear of negative outcomes.

In contrast, such approaches may not be universally effective for major depressive

disorder.

On the other hand, the identification of compulsivity as a key driver of cautious

behavior in AAC tasks (cf. Chapter 3) indicates that therapeutic strategies should

also consider compulsivity when addressing avoidance behaviors. Although AAC

tests have been extensively used to characterize the effects of anxiolytic agents and

probe neural circuitry related to anxiety, they might not specifically relate to self-

reported anxiety. Therefore, their validity for etiology research related to anxiety

disorder in healthy humans should be questioned.

Finally, the association between spider phobia and avoidance behaviors in VR

environments (cf. Chapter 4) highlights the potential of VR-based exposure ther-

apies. By simulating realistic threats in a controlled setting, VR could enhance

patient engagement, offering a safe space to confront and overcome fears.

Academic Contribution

This thesis aligns with open, reproducible science, making all data and code

available online. By replicating prior studies and expanding on established find-

ings, the research contributes to a robust and cumulative body of knowledge. It

deepens our understanding of how internal and external factors converge to shape
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risk-related behaviors across diverse contexts, offering a reliable foundation for fu-

ture exploration.
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1
Introduction

Life is filled with risky decisions, ranging from the trivial to the critical. We

constantly encounter situations that require us to weigh options with varying levels of

risk. At a social event, you might decide whether to approach a stranger, risking an

awkward moment for the chance of a meaningful connection. When crossing a street,

you may be tempted to dash across on a red light to save time, weighing the minor

convenience against the potential danger. On poker night, you may place a large

bet hoping for a red diamond to complete your flush. Even in recreation—skiing

down a challenging slope for the thrill or choosing a safer path to avoid injury—we

find ourselves constantly balancing risk with reward.

These examples underscore several important points. Risk taking spans all

areas of life, from leisure to finance, social dynamics, health, and survival. Typically,

higher-risk options offer the opportunity for greater rewards, but also come with



CHAPTER 1. INTRODUCTION

more severe potential downsides compared to safer alternatives. In addition, the

outcomes of riskier decisions are generally less predictable. In some cases, this

predictability can be quantified, as in poker, while in others it can remain unknown.

Although these scenarios provide a glimpse into risk-taking behavior, they fail

to capture the full depth and intricacy of real-life choices. In reality, decisions

are rarely as straightforward as choosing between two options. Often, there are

multiple factors at play, countless alternatives, and various ways to implement each

choice. This complexity makes the process of evaluating and navigating risk much

more challenging than what these simplified examples may suggest. Additionally,

real-life decisions often involve interacting risks, where the outcome of one decision

can influence the risks associated with another, further complicating the process.

Understanding and probing the nuances of risk-taking behavior is a challenging

endeavor.

The universality of risk might imply that all organisms respond to risk in the

same way. However, risk-taking behavior is influenced both by the characteristics

of the decision-maker and by the context of the decision. Internal factors include

individual differences, such as personality traits that play a significant role in shaping

how one responds to risky situations. For example, a person with high sensation-

seeking tendencies may be more inclined to take greater risks for thrills (cf. Section

1.4 will dwell deeper into the effect of individual differences). External factors

include environmental and situational factors, such as proximity to threats, which

also shape risk-taking decisions. For instance, individuals may act more cautiously

at greater distances from a threat, but as the danger draws nearer, they are pushed to

make riskier decisions to avoid harm. These internal and external factors interact,

leading to large individual variations in risk behavior. Thus, understanding risk-

taking requires examining both the decision-maker’s internal predispositions and

the external circumstances they face.
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CHAPTER 1. INTRODUCTION

1.1 Conceptualizing risk-taking behavior

When viewed from a higher level of abstraction, the term "risk" encompasses

the inherent properties of the world. In everyday language, risk generally implies the

chance of a negative event occurring. Scientifically, however, its definition remains

elusive and varies considerably between disciplines such as psychology, economics,

and biology. Some fields define risk in terms of probability, expected values, or

utility function (Kahneman and Tversky, 1979; Markowitz, 1952), while others see

it as the likelihood of undesirable events or dangers (Haynes, 1895), or even as

an embodiment of uncertainty (Aven, 2012; Mishra, 2014; Payzan-LeNestour and

Bossaerts, 2011). This divergence extends further, with some viewing risk as an

epistemic subjective construct dependent on the observer’s knowledge, while others

regard it as an objective independent feature of the world (Aven, 2012; Aven and

Renn, 2009; Aven et al., 2011).

Over the past two decades, the definition of risk has gradually evolved, moving

away from narrowly probability-based frameworks toward more comprehensive and

non-probabilistic models. One reason for this shift is the recognition that probability

models, particularly frequentist approaches, are inadequate for capturing risk in

unique or non-repeatable real-world events, failing to address the full complexity of

risk in diverse scenarios (Aven, 2012).

The definition of risk that underpins this thesis is as follows: Risk represents

uncertainty in outcomes regardless of whether the outcome involves a potential loss

or gain. It is important to note that there are multiple types of uncertainty (Payzan-

LeNestour and Bossaerts, 2011). Here, risk is treated as first-order uncertainty, indi-

cating the irreducible uncertainty that persists even after optimal learning, reflecting

the inherent stochasticity in the outcome-generating process itself. This is distinct

from second-order uncertainty, which captures the likelihood of sudden environmen-

tal changes (Payzan-LeNestour and Bossaerts, 2011; Sandhu et al., 2023)—an area

beyond the scope of this thesis.
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1.2 Risk Preferences

People’s responses to those properties of the world are captured by their risk

preference that ranges from risk aversion, through risk neutrality, to a risk-seeking

attitude (Frey et al., 2017). These risk preferences, in turn, drive risk-taking be-

havior and are shaped by the characteristics of the situation, the decision maker,

and the dynamic and fluctuating interaction between the two. It should be noted

that responses to risk also involve concepts such as risk perception (e.g. Slovic et al.,

2016) and risk appraisal (e.g. Horvath and Zuckerman, 1993), but this goes beyond

the scope of the thesis.

The nature of risk preferences remains contested on two key fronts. The first

debate centers on whether risk preferences are stable traits—similar to personality

traits in psychology (Anusic and Schimmack, 2016) or enduring tastes in economics

(Stigler and Becker, 1977)—or if they are more dynamic, resembling transient states

like emotions. This variability may be influenced by various factors; for instance,

risk-sensitive foraging theory (Mishra, 2014) posits that metabolic needs shape risk

preferences. The second issue concerns the structure of risk preferences: whether

there is a single universal factor, comparable to the g factor in intelligence (Deary,

2012) or the p factor in psychopathology (Caspi et al., 2014), or if risk preferences

are instead a multidimensional construct that varies between different domains of

life.

A comprehensive study involving over 1500 participants and 39 risk-taking

measures (Frey et al., 2017) supports the existence of a general r factor that cap-

tures both broad, overarching risk tendencies and more domain-specific elements.

Crucially, this r factor has shown a strong and consistent link to risky behaviors in

the real world and has been shown to be highly stable over time. These findings

suggest that risk preferences may indeed function as a stable psychological trait,

reflecting a fundamental aspect of human behavior in various contexts (Frey et al.,

2017).

Nevertheless, the strength of the conclusions drawn about these two properties
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hinges on the quality of the measurement tools (Schildberg-Hörisch, 2018). The

following Section (1.3) will delve deeper into the psychometric properties of these

varied measures.

1.3 Assessing risk-taking behavior

The study of risk-taking behavior in animals is influenced by two distinct

schools of thought: comparative psychology and ethology (Datta et al., 2019; Gomez-

Marin et al., 2014). The first focuses on understanding how the brain generates

behavior in response to rewards and punishments, often employing controlled ex-

periments where animals are trained to respond to sensory stimuli with simple ac-

tions (Jazayeri and Afraz, 2017). In contrast, ethology emphasizes the observation

of natural behaviors in their ecological settings, proposing that understanding these

natural patterns can provide insights into how the brain generates behavior (Datta

et al., 2019; Mobbs and Kim, 2015; Tinbergen, 1963). These traditions are not only

foundational in animal research, but have also been extended to human studies,

providing a basis for examining risk-taking behavior between species (Mobbs et al.,

2021).

Building on insights from animal research, recent studies have begun to explore

various positions along a continuum between controlled and naturalistic paradigms.

This continuum enables a more comprehensive understanding of how risk-taking

behaviors are shaped by the environment (Mobbs and Kim, 2015). Indeed, hu-

man research has increasingly emphasized the use of ecologically valid paradigms

that present “rich, multimodal dynamic stimuli reflecting our daily lived experience”

(Sonkusare et al., 2019) and the need to incorporate ecological challenges—problems

that our brains have evolved to solve (Scholl and Klein-Flügge, 2018). Alongside

these approaches, self-reported measures have also been employed to provide insight

into how individuals assess their own risk preferences, adding another layer to under-

standing risk-taking behavior in both controlled and naturalistic contexts (Hertwig

et al., 2019).
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While there is a growing push towards more ecologically valid paradigms, this

does not diminish the value of controlled studies. Controlled experiments remain

essential for revealing critical distinctions that might otherwise be obscured by po-

tential confounding factors or lack of granularity in naturalistic settings. Accord-

ingly, this thesis utilizes a mixed-methods approach that integrates both controlled

and naturalistic settings. This allows us to validate and confirm different aspects of

behavior across varied contexts, providing a fuller understanding of the mechanisms

driving risk-taking.

As such, this section provides an overview of various tasks commonly used

to investigate human risk-taking behavior, ranging from controlled experimental

setups to more naturalistic settings, as well as self-reported measures. I will also

examine their reliability and validity. Notably, the thesis focuses specifically on

risk-taking behavior driven by threats or other negative consequences, rather than

on broader behavioral effects on attention, such as the prioritization of processing

emotional stimuli. Fear conditioning will also not be covered in this overview, as it

primarily addresses how defensive responses are generalized to other stimuli rather

than focusing on innate responses themselves.

1.3.1 Self-reported Measures

The most straightforward way to assess risk-taking preferences is simply to ask

people to report on their tendencies (Charness et al., 2013; Frey et al., 2017; Hertwig

et al., 2019). This can be achieved using several types of questions.

Self-Assessment Questions

Self-assessment questions rely on the introspective abilities of the participants,

asking them to self-assess their risk preferences, often using a Likert scale. Such

questions can range from general inquiries about risk-taking tendencies (e.g. “Are

you generally a risk-taking person or do you try to avoid risks?”) to more specific but

hypothetical scenarios (e.g., "How likely would you be to go white-water rafting at
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high water in the spring?”; Blais and Weber, 2006; Dohmen et al., 2011; Josef et al.,

2016; Mata et al., 2016; Weber et al., 2002). Some approaches also use multiple-

choice formats for specific scenarios to further gauge risk preferences (e.g., “If there

has been a natural disaster at your travel destination, would you still go?”), offering

risky choices (e.g., “I travel to the destination”) and safer but costly options (e.g., “I

cancel the vacation”; Hockey et al., 2000; Mitte, 2007).

This section deliberately omits questionnaires on impulsivity (e.g. Patton et al.

1995), sensation seeking (e.g. Hoyle et al. 2002; Zuckerman 2007b), or daringness

(e.g. Lahey et al. 2010) as these measures, while related, do not directly assess

behavioral risk-taking but instead capture risk-related traits that may influence such

behavior. For a detailed discussion of findings related to these personality traits,

refer to Section 1.4.2.

Visual Scenario-Based Questions

To increase ecological validity and immersion, some questionnaires incorporate

visual aids such as images or videos to simulate real-life scenarios. For example, the

Vienna Risk-Taking Test (Arendasy et al., 2005; Hergovich et al., 2007), enhances the

self-report experience by presenting participants with sequences of images depicting

risky situations and asking them to indicate the point at which the situation becomes

unsafe. In one scenario, a series of images show a car preparing to overtake another

on a snowy road with oncoming traffic (cf. Figure 1.1.A.). Participants press a key

to indicate when they believe the action is no longer safe, and these response times

serve as a measure of risk preference.

Behavioral Frequency Questions

The behavioral frequency questions involve asking participants to report the

frequency of their actual risky behaviors, such as “How many cigarettes do you

smoke per day?” (Marsch, 2021) or how likely they would be to engage in specific

behaviors like “Drinking heavily at a social function” or “Gambling a week’s in-

come at a casino.” Unlike self-assessment questions, this method focuses on specific,
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observable behaviors, providing insight into real-life decisions that carry actual con-

sequences. The underlying assumption is that these reported behaviors may better

reflect true risk preferences because they are grounded in actual experiences rather

than hypothetical situations.

Reliability and Validity

Overall, these questions are straightforward to administer, making them par-

ticularly useful for large-scale surveys. However, they primarily capture perceived

rather than actual risk behavior. Self-reported data are subject to various biases,

such as social desirability bias, where individuals may provide more favorable an-

swers, or recall bias, where individuals may not accurately remember their past

behaviors. Respondents may also lack the incentive to answer truthfully or possess

varying levels of metacognitive ability to introspect accurately about their risk pref-

erences. Nonetheless, self-reported propensity measures have been repeatedly found

to have high test-retest reliability (Frey et al., 2017, 2021; Mata et al., 2018). They

are also reliable predictors of naturalistic risk-taking behavior, such as investment

in stocks, self-employment, and smoking, therefore demonstrating good external va-

lidity (Dohmen et al., 2011). In sum, while self-report measures of risk-taking seem

to offer a reliable and valid insight into risk preferences, these do not allow access

to behavioral risk-taking per se.

1.3.2 Formalized Tasks

This section explores two prominent categories of formalized tasks used to

measure behavioral risk-taking (Frey et al., 2017; Hertwig et al., 2019; Pedroni et al.,

2017; Schonberg et al., 2011). The first category is rooted in economics and focuses

on lotteries or gambling tasks, with Chapter 2 employing one such economic task.

The second type focuses on ethologically inspired risky foraging tasks to simulate

the natural settings in which risk-taking behavior evolved, as utilized in the task

featured in Chapter 3. These tasks are often incentivized, which can be both positive
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(e.g., monetary gain) and/or negative (e.g., monetary loss or threat of shock).

Economic Choices

The simplest way to assess overt risk-taking behavior involves two-outcome

lottery choices. In each trial, participants choose between a guaranteed amount

and a gamble with two equally likely outcomes, one of which always exceeds the

guaranteed amount (cf. Figure 1.1.B.). There are three possible trials: the gamble

offers either a positive gain or nothing (e.g. £1 certain versus £2/£0 gamble), a

gain or a loss (e.g. £0 certain versus £3/-£3 gamble), or a loss or nothing (e.g. -£2

certain versus -£4/£0 gamble). These choices are often analyzed using a Prospect

Theory model (cf. Section 1.5.3 for more details), though other models also exist

(Markowitz, 1952). This task has been conducted on paper (Kahneman and Tversky,

1979), via computer (Baek et al., 2017; Charpentier et al., 2017, 2016a,b; Chumbley

et al., 2014; Ernst et al., 2014; Klaus et al., 2020; Leahy et al., 2012; Schulreich et al.,

2016; Smoski et al., 2008; Sokol-Hessner et al., 2013, 2009, 2016; Sokol-Hessner and

Rutledge, 2019a; Tom et al., 2007; Walasek et al., 2018; Xu et al., 2020), in fMRI

(Canessa et al., 2017, 2013; Martino et al., 2010), and on smartphones (Bedder et al.,

2023; Rutledge et al., 2016). A version of this task is utilized in Chapter 2. Similar

but less common iterations also include the price list method (Holt and Laury, 2002),

a risky asset investment task (Gneezy and Potters, 1997), and a two-choice gambling

task (Eckel and Grossman, 2002).

In real-life decision-making, it is rare to encounter situations where probabilities

are objectively known, as they are in simple monetary gambles. To better capture

this complexity, more sophisticated economic tasks have been developed, in which

individuals need to learn the statistics of the task through experience (Hertwig

et al., 2019). One of the most well-known examples is the Iowa Gambling Task

(IGT; Bechara et al., 1994). In the IGT, participants choose cards from one of four

decks in each trial. Two decks offer high rewards but come with larger losses, making

them less profitable in the long run, while the other two decks provide smaller but

more consistent rewards and better long-term outcomes. Through trial and error,
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participants gradually learn which decks are advantageous. Some versions of the

IGT add further complexity by altering probabilities throughout the task, requiring

continuous adaptation to changing contingencies. A similar task is the Columbia

Card Task (CCT; Figner et al., 2009), where participants flip over 32 cards from

a deck to accumulate points, but with each flip, they risk encountering a loss card

that can end the round and cost them all accumulated points.

Risky Foraging Tasks

To better replicate the ecological conditions under which risk-taking behaviors

evolved, researchers have developed ethologically inspired risky foraging tasks. The

general objective is to collect rewards while avoiding a predator which would make

you lose your rewards. This often involves an Approach-Avoidance Conflict (AAC),

where an individual must integrate a variety of information to navigate a conflict

between collecting a reward but risking harmful consequences or sacrificing rewards

to avoid potential negative outcomes. Various iterations of these tasks exist, ranging

from relatively simple designs to more intricate, complex scenarios. An example is

the “Active Escape Paradigm” (AEP), where participants wait as a predator ap-

proaches them on a runway grid, accumulating money the longer they remain (cf.

Figure 1.1.D.). At any point, they can choose to escape, but if the predator accel-

erates and catches them, they lose their accumulated reward and receive an electric

shock (Fung et al., 2019; Qi et al., 2018).

Another task is the “AAC scoop and run” in which participants start in a safe

place in a quadrant and can choose whether and when to approach a reward at the

risk of getting caught by a predator with varying levels of threat probability and

magnitude (cf. Figure 1.1.E.). The probability of threat is indicated by different grid

colors and is learned through direct experience, while the potential loss is explicitly

indicated as a possible monetary amount (Abivardi et al., 2020; Bach, 2015, 2017;

Bach et al., 2019; Castegnetti et al., 2020; Khemka et al., 2017). A version of this

task is utilized in Chapter 3. Unlike in the AEP, the threat probability is constant

throughout the trial and is not contingent on the reward.
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A similar task is the “AAC stay and play” where participants navigate a 24 x

16 open-field grid, aiming to collect as many dispersed monetary tokens as possible

(cf. Figure 1.1.F.). They start in a safe corner, while a predator begins in another

corner and chases them across the grid. If caught, participants lose all the tokens

they have collected (Bach et al., 2014, 2020).

There are also variations of these foraging tasks that omit the explicit AAC

element. For instance, some tasks focus on avoiding starvation without the presence

of a predator (Korn and Bach, 2018), while others involve evading threats without

the prospect of any reward (Mobbs et al., 2007).

Additionally, there are numerous AAC task variants with different cover stories

beyond the context of risky foraging (Aupperle et al., 2011; Loh et al., 2017; O’Neil

et al., 2015; Smith et al., 2021). One of the most commonly used is the “Balloon

Analogue Risk Task” (BART; Lejuez et al., 2002). In the BART, participants inflate

a virtual balloon to earn money, with each pump increasing both the potential

reward and the risk of the balloon bursting (cf. Figure 1.1.C.). They must decide

when to stop pumping and cash out to avoid losing their earnings if the balloon

bursts. Although the BART does not involve a predator, it shares similarities with

the AEP since the decision to "cash out" mirrors the decision to escape.

Reliability and Validity

Only a few formalized tasks report reliability, and it ranges from weak to ex-

cellent, depending on the task. Low reliability can be attributed to various factors,

such as measurement error, response bias, temporal instability, or low internal con-

sistency. In economic choices, the parameters of the Prospect Theory model have

2-week good-to-excellent test-retest reliability (Mkrtchian et al., 2023). Conversely,

the reliability of the IGT has been consistently challenged, with evidence suggesting

that it is weak (Buelow and Barnhart, 2018; Buelow and Suhr, 2009; Lin et al.,

2013). For AAC tasks, the BART shows acceptable reliability over a 2-week period

(Buelow and Barnhart, 2018; Weafer et al., 2013; White et al., 2008), while the

"AAC stay and play" task demonstrates good 2-year test-retest reliability (Bach

26



CHAPTER 1. INTRODUCTION

et al., 2020).

The evidence regarding the internal validity (or construct validity) of risk-

taking tasks is mixed. For example, the IGT and BART did not share an underlying

structure and appear to measure different aspects of risk-taking behavior (Buelow

and Blaine, 2015). Another study did not find consistency in several economic tasks

(Charness et al., 2020). However, in a large adolescent cohort, the propensity to

choose a gamble over a certain reward parametrized by an economic risk preference

model (Markowitz, 1952) was related, though weakly, to behavioral cautiousness in

the “AAC scoop and run task” (Bach et al., 2020).

In terms of external validity (or predictive validity), the risk preferences elicited

using the BART in adolescents were linked to real-world risky behavior such as

gambling, drug use, and unprotected sex (Bornovalova et al., 2005; Charness et al.,

2013; Lejuez et al., 2003, 2002). Lottery-based measurements were related to actual

market behavior (Pennings and Smidts, 2000), although not consistently (Charness

et al., 2020; Schonberg et al., 2011).

1.3.3 Virtual Reality Tasks

Immersive virtual reality (VR), coupled with emerging technical and method-

ological advances in motion tracking, is part of a new wave of experimental and

behavioral research that represents a promising tool to study and reproduce natu-

ralistic human actions. This is particularly useful when recreating risky scenarios

as it gives participants a high feeling of immersion and VR allows for minimal risk

but maximal experimental control and provides precise kinematic measurements of

the defensive movements.

This technology has already shown its promise in threat research by permitting

the ecologically valid translation of established simple AAC tests, including the

open field test (Gromer et al., 2021; Kallai et al., 2007) and the elevated plus-maze

(Biedermann et al., 2017; Rodrigues et al., 2020; Yilmaz Balban et al., 2021). Indeed,

identical to what has been shown for rodents in the elevated plus-maze, humans
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spent more time on the safe fractions of the maze (i.e., center and closed arms) and

avoided spending time on the aversive open arms fraction in a mixed-reality version

of the elevated plus-maze (cf. Figure 1.1.G., Biedermann et al., 2017).

Recently, more complex and ethnologically inspired risky foraging tasks have

emerged in VR. One significant advantage of using VR is that it provides more

natural stimulus material, enhancing the ecological validity of experimental tasks.

In one such study, similar to the formalized task by Korn and Bach (Korn and

Bach, 2018), participants had to collect enough apples to survive 24 days (one trial)

by moving around an environment (using a joystick) composed of three different

naturalistic contexts—water, forest, and desert—each with varying levels of reward

and punishment magnitude (cf. Figure 1.1.H., Kastrinogiannis and Lonsdorf, 2023).

An underutilized potential of VR lies in its ability to offer a more naturalistic

action space, allowing participants to engage in continuous and dynamic decision-

making processes that challenge simple decision algorithms—this goes beyond mere

ecological validity. For instance, continuous decisions made in a VR environment

cannot always be explained by categorical decision models. Chapter 4 introduces a

novel risky foraging task where participants have to collect as many fruits as possible

while avoiding bio-realistic threats that could chase them (cf. Figure 1.1.I.). They

can run to a safe house or try to evade these threats in a large 5 x 10-meter room,

engaging in continuous, naturalistic actions beyond simple categorical decisions.

Reliability and Validity

Due to its relatively recent adoption, the reliability and validity of VR tasks

remain underexplored. The complexity of the resulting behavioral data further

complicates this investigation. Nevertheless, the fact that VR tasks can replicate

previously validated AAC tests indicates their potential and promise.
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Figure 1.1: Diverse experimental setup used to assess risk-taking behav-
ior. Visual representation of (A) the Vienna Risk-Taking Test (VRTT, Arendasy
et al., 2005), (B) a two-outcome lottery choice used in Chapter 2, (C) the Balloon
Analogue Risk Task (BART, Lejuez et al., 2002), (D) the Active Escape Paradigm
(AEP, Qi et al., 2018), (E) the AAC scoop and run (Bach, 2015) used in Chapter
3, (F) the AAC stay and play (Bach et al., 2014), (G) the mixed reality elevated
plus-maze (Biedermann et al., 2017), (H) a VR AAC risky foraging task (Kastrino-
giannis and Lonsdorf, 2023), and (I) the VR risky foraging task used in Chapter 4.

1.4 Individual Differences in Risk-taking Behav-

ior

While there is a lack of consensus on what constitutes risk, how to measure

it, and how risk-taking behavior should be defined, it is widely accepted that there

are large individual differences in risk-taking behavior. It is influenced by both the

characteristics of the decision-maker and the context of the decision. Factors such

as sex, impulsivity, and other personality traits, as well as the specific context or

domain of the decision, play significant roles in shaping risk-taking behavior.
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1.4.1 Anxiety and Fear

Maladaptive avoidance of risky situations is widely believed to be a core mech-

anism sustaining anxiety, and reducing it is the primary aim of most psychothera-

pies, such as Cognitive-Behavioral Therapy and Exposure Therapy (Aupperle and

Paulus, 2010). Furthermore, the behavioral readout from AAC tests (cf. Section

1.3.2) often reflects the impact of anxiolytic drugs, making these tests central to

pre-clinical anxiety research. Anxiety is thought to be a key driver behind reduced

risk-taking behavior, as supported by studies showing that individuals with higher

levels of anxiety, or those diagnosed with anxiety disorders, tend to exhibit greater

risk avoidance (Giorgetta et al., 2012; Lejuez et al., 2002; Maner et al., 2007). For

example, people with high anxiety spend less time in the open arms of a virtual

reality version of the Elevated Plus Maze (Biedermann et al., 2017) and cashed-out

earlier in the BART (Lejuez et al., 2002; Maner et al., 2007).

However, this association has not been consistent across all studies. Many large-

scale investigations did not find significant effects, as demonstrated in the "AAC stay

and play" task (Bach et al., 2020) or other risk-taking paradigms (Kallai et al., 2007;

Struijs et al., 2018, 2017). Notably, a recent systematic review on interindividual

differences in task-based approach-avoidance behavior found no consistent evidence

of an effect of self-reported anxiety (Fricke and Vogel, 2020).

Some studies, however, suggest more specific differences rather than broad

effects. Various factors, such as the context of the risk and individual-specific con-

structs, have been explored to explain these mixed findings. For instance, the do-

main and framing of risk seem to alter risk-taking behavior in anxious individuals.

High-anxiety individuals are more likely to engage in health-related risks in contrast

to other domain-specific risks (Nicholson et al., 2005), especially when framed nega-

tively (Lauriola et al., 2005). On the other hand, the level of ambiguity involved in

the likelihood of outcomes also seems to have an effect. Higher anxiety predicts less

risk-taking in a high-ambiguity version of the BART (cf. Section 1.3.2), whereas

anxiety is unrelated to risk-taking in low-ambiguity conditions (Smith et al., 2016).

The effect of uncertainty is further supported by studies using economic tasks, where
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individuals with clinical anxiety show an increased risk aversion when faced with un-

certain outcomes, but not necessarily a higher sensitivity to loss (Charpentier et al.,

2017). This is consistent with evidence from other contexts, such as self-reports,

where greater intolerance of uncertainty is reliably associated with increased anxi-

ety (Dugas et al., 1997, 1998; Dugas and Ladouceur, 2000; Grupe and Nitschke, 2013;

Mahoney and McEvoy, 2012; Mcevoy and Mahoney, 2011; Sandhu et al., 2023; Yook

et al., 2010).

Additional factors may account for the inconsistencies found across studies.

These include limitations such as small sample sizes, significant variability in the

stimuli, tasks, or populations examined. Moreover, many studies did not assess

whether the observed effects of anxiety are distinct from those of other clinically rel-

evant traits, potentially capturing nonspecific effects that may not generalize across

different tasks (this issue will be explored further in Chapter 3). Another possibil-

ity is that anxiety’s impact on risk-taking behavior may be more state-dependent,

influenced by temporary emotional conditions, rather than representing a stable,

trait-like characteristic (this hypothesis will be explored further in Chapter 2). On

the other hand, it is possible that (some) approach-avoidance tasks might not be as

sensitive to individual differences as initially thought. Indeed, recent reports have

suggested that using these tests to explore anxiety etiology in healthy populations

needs to be queried and may turn out to be unrealistic (Bach, 2021).

Finally, it is also essential to consider that some risk-taking tasks widely used

to assess anxiety may actually be measuring fear—a closely related but potentially

distinct construct. Fear is typically triggered by an immediate and specific threat,

whereas anxiety tends to arise from uncertain future threats (Mobbs et al., 2020).

Using the AEP (cf. Section 1.3.2), individuals with higher trait anxiety escaped

earlier from slow predators but not from fast predators (Fung et al., 2019). This can

be interpreted in line with the threat imminence continuum model (Fanselow and

Lester, 1988; Mobbs et al., 2020), where slow threats evoke anxiety-like behaviors

due to their uncertain and distant nature, while fast threats trigger fear-driven,

reflexive responses. The earlier escape in response to slow predators may reflect the

heightened anticipatory avoidance typical of anxiety, whereas the absence of this
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behavior with fast predators aligns with the more immediate, fear-based reaction.

Similarly, defensive behaviors in rodents vary depending on whether the threat is

close or far away (Davis et al., 2010), with anxiolytics shown to influence reactions

only to distant threats (Blanchard et al., 1993). However, the distinction between

fear and anxiety can be ambiguous, as both constructs exist along a continuum

and are supported by overlapping neural systems responsible for defensive behavior

(Shackman and Fox, 2016).

1.4.2 Impulsivity, Sensation-seeking, and Daringness

Impulsivity and sensation-seeking are personality traits commonly believed to

influence various forms of risk-taking (Mishra, 2014; Mishra and Lalumière, 2011;

for a review, see Zuckerman, 2007a). Impulsivity refers to the tendency to act spon-

taneously without prior deliberation. Its exact nature is debated, with some consid-

ering it a heterogeneous cluster of lower-order traits (Cross et al., 2011; MacKillop

et al., 2016). Sensation-seeking, on the other hand, involves a desire for diverse,

novel, and intense experiences and sensations (e.g., physiological arousal), often ac-

companied by a willingness to take physical, social, and financial risks to attain such

stimulation (Zuckerman, 1979). While some view sensation-seeking as a subcate-

gory of impulsivity (Berg et al., 2015), others regard it as a distinct personality type

(Cross et al., 2011; MacKillop et al., 2016).

Individuals high in impulsivity and sensation-seeking often engage in high-risk

activities such as sexual risk-taking and reckless driving (Schwebel et al., 2006),

smoking, alcohol, and drug use (Berg et al., 2015; Hoyle et al., 2002; Martin et al.,

2002; Nicholson et al., 2005; Reynolds et al., 2019; Roberti et al., 2003; Stephenson

et al., 2003; Zuckerman, 2007b). Furthermore, BART performance is associated

with these traits (Charness et al., 2013; Lauriola et al., 2014; Lejuez et al., 2003,

2002), although not consistently (Mishra and Lalumière, 2011). Sensation-seeking

is also associated with less avoidance on the open arms of an Elevated Plus Maze in

VR (Biedermann et al., 2017).
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Both traits also diverge in specific ways. Sensation-seeking is often associated

with experimentation with drugs during adolescence but typically does not lead

to maladaptive outcomes like substance abuse (Khurana et al., 2015, 2017, 2018).

In contrast, impulsivity predicts the onset, progression, and relapse of drug abuse

(Argyriou et al., 2018; Loree et al., 2015). Furthermore, while both traits are higher

in men, sex differences are more pronounced in sensation-seeking (Cross et al., 2011,

2013; MacKillop et al., 2016).

In addition, daringness, a personality type closely related to sensation-seeking,

has emerged as the best self-reported predictor in the “AAC stay and play” risky

foraging task among young individuals (Bach et al., 2020). Whether daringness is

truly distinct from sensation-seeking or simply a matter of terminology remains to

be clarified. The literature on daringness is limited, but a comparison of the CADS

daringness scale items (cf. Appendix Table B.4) reveals strong similarities to those

of the sensation-seeking scale (cf. Appendix Table B.5).

1.4.3 Sex Differences

Males exhibiting greater risk-taking behavior is a characteristic observed across

numerous animal species (Brand et al., 2023; Daly and Wilson, 1983; Habig et al.,

2017; King et al., 2008; Orsini et al., 2016; Videlier et al., 2015). Evolutionary

theories attribute this pattern to lower parental investment and greater variance in

reproductive success among males. These factors drive males to engage in high-

risk, high-reward behaviors to maximize their mating opportunities. Therefore, the

differential costs and benefits associated with reproduction suggest that males are

biologically predisposed to take more risks than females.

Extensive self-report studies in humans corroborate this hypothesis, revealing

consistent sex differences in risky behaviors (Byrnes et al., 1999; Dohmen et al.,

2011; Frey et al., 2021; Josef et al., 2016; Nicholson et al., 2005). For instance, men

are more prone than women to engage in activities with a possibility of physical

harm (Byrnes et al., 1999), take financial risks (Charness and Gneezy, 2012), and

33



CHAPTER 1. INTRODUCTION

more risk-taking in mundane everyday situations, like catching a bus (Pawlowski

et al., 2008). These sex differences are evident from adolescence, as national sur-

veys demonstrate higher risk-taking behaviors among male teenagers (Eaton et al.,

2008). Interestingly, the magnitude of these differences varies by domain; larger sex

differences are observed in physical risk-taking compared to domains like smoking

or social risks (Byrnes et al., 1999; Frey et al., 2021; Josef et al., 2016; Nicholson

et al., 2005).

When examining behavioral risk-taking tasks, the findings are more nuanced

and sometimes inconsistent. Some studies report overall sex differences in both sim-

ple (Dohmen et al., 2011) and complex gambling tasks (Lewis et al., 2022; Overman,

2004; Reavis and Overman, 2001; Weller et al., 2010). Conversely, other studies find

no significant differences in tasks like the BART (Lauriola et al., 2014; Lighthall

et al., 2009, 2012) and certain gambling paradigms (Frey et al., 2021; Josef et al.,

2016). Some other studies find more specific differences rather than overall differ-

ences. In the “AAC stay and play” risky foraging task, males were less cautious

when their potential loss was smaller but adapted their behavior to the same level

as females when the potential loss was higher (Bach et al., 2020). Similarly, sev-

eral studies found that women exhibit lower risk adjustment (Deakin et al., 2004;

van den Bos et al., 2013, 2014). Therefore, it seems that men do not necessarily be-

have more recklessly in general, but adjust to risk more in low-risk situations (Lewis

et al., 2022).

1.4.4 Interaction between Individual and Situational Dif-

ferences

The interaction between individual differences and situational factors is a cru-

cial aspect of understanding risk-taking behavior. Individuals often vary in their

propensity for risk depending on the specific context or domain in which the deci-

sion is made. For example, personal skills and experiences in particular areas can

significantly shape how one approaches risk. This might be especially evident when
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the individual possesses specialized skills relevant to the decision-making domain.

For instance, the risk attitudes of company managers have been found to differ

substantially depending on whether the risk is related to recreational activities or fi-

nancial decisions (Maccrimmon and Wehrung, 1990). Similarly, Dreber et al. (2011)

demonstrated that female tournament bridge players exhibited markedly different

risk-taking propensities in the domain of bridge compared to financial decision-

making. These examples highlight how expertise or familiarity with a particular

domain can influence one’s willingness to take risks.

In addition to personal skills and domain-specific expertise, cultural norms

play a significant role in shaping risk perceptions and behaviors. Risk-taking is

often evaluated differently across cultures, with some societies valorizing risk as a

sign of bravery, leadership, or innovation, while others view it as reckless or irre-

sponsible. This cultural lens can lead to substantial variability in risk behaviors

between individuals from different cultural backgrounds. Research has documented

between-country differences in risk-taking, often measured by participants’ willing-

ness to engage in monetary gambles or other forms of risk-related decision-making.

For example, L’Haridon and Vieider (2019) and Rieger et al. (2015) found that in-

dividuals from countries with lower income per capita exhibited higher tolerance

to risk compared to individuals from wealthier nations. This finding suggests that

economic factors, such as poverty, may contribute to increased risk tolerance, poten-

tially as a necessity or an adaptive response to uncertain living conditions. Although

this thesis does not delve deeply into the complexities of socio-cultural influences

on risk-taking, it is essential to acknowledge that individual differences in risk pref-

erences may be shaped by broader societal structures, such as economic conditions,

political stability, and social norms.
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1.5 Frameworks for Analyzing Risk-Taking Be-

havior

Individual differences in the extremes of risk-taking play a significant role in the

development and maintenance of psychiatric symptoms. Excessive risk aversion can

result in debilitating avoidance behaviors, where individuals withdraw from oppor-

tunities or challenges due to fear of failure or harm, reinforcing anxiety, depression,

and diminished quality of life. In contrast, excessive risk-seeking behaviors can lead

to severe consequences, particularly among young adults. Risky decisions, such as

substance abuse or neglecting safety measures like wearing seatbelts, contribute to

unintentional injuries—the leading cause of death in this demographic (Eaton et al.,

2008). These patterns underscore the role of risk-taking on mental health and high-

light the importance of better understanding their impact. The following sections

will explore frameworks that provide the tools to analyze, model, and quantify how

individual differences, including psychiatric symptoms, influence risk-taking behav-

iors.

1.5.1 From Biological and Cognitive Psychiatry to Com-

putational Psychiatry

Historically, various dominant schools of thought have emerged to better un-

derstand behavior. Biological psychiatry focuses on identifying the biological un-

derpinnings of cognitive traits and psychiatric symptoms. It emphasizes the brain’s

role as the key organ behind mental processes, often viewing mental disorders as

arising from dysfunctions in neurochemical or structural aspects of the brain. This

perspective has driven significant advancements, particularly in psychotropic drug

development, by targeting neurotransmitter systems, such as dopamine or serotonin,

to treat conditions like depression, anxiety, and schizophrenia. However, this ap-

proach has limitations, as it often involves making broad conceptual leaps from

molecular processes, such as receptor activation or synaptic plasticity, to complex
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psychological phenomena and behaviors (Montague et al., 2012).

In contrast, cognitive psychiatry emerged with a different emphasis, viewing

psychiatric symptoms as the outcome of maladaptive cognitive processes (Shallice,

1988). Cognitive psychiatry draws on cognitive psychology and theories of learning

and perception. It posits that mental disorders are often the result of distorted

or dysfunctional cognitive operations—such as flawed information processing, erro-

neous belief systems, or maladaptive learning patterns. Early foundational work,

such as the Little Albert experiment, demonstrated how emotional responses (such as

fear) could be conditioned through learning processes, shaping behavior in ways that

could lead to long-term psychological difficulties (Harris, 1979). This early cogni-

tive behavior framework has been instrumental in understanding conditions such as

depression and anxiety, where maladaptive thinking patterns (e.g., catastrophizing,

obsessive thoughts) can be directly targeted and restructured through therapeutic

interventions such as cognitive-behavioral therapy (CBT). This approach also has

limitations in its lack of integration of biological functions, but these were partially

addressed by the eventual development of cognitive neuropsychiatry (Halligan and

David, 2001).

The rise of computational approaches in cognitive neuroscience allowed re-

searchers to fill the gap left by a lack of intermediate descriptive frameworks (for

reviews see Huys et al., 2011; Montague et al., 2012). This paradigm proposes that

the brain functions as an information-processing system, continuously updating its

internal model of the world with new data (Huys et al., 2021a). As such, com-

putational models facilitate a mechanistic understanding that can operate across

multiple levels of analysis (Maia and Frank, 2011; Wang and Krystal, 2014). This

approach underpins the emerging field of computational psychiatry.

Computational psychiatry is more expansive than its name suggests. While the

term "psychiatry" suggests a focus solely on mental disorders, the scope of the field

extends across the entire spectrum of cognitive phenotype as the distinction between

"normal" versus "aberrant" is often ambiguous. For example, avoidance is adaptive

in response to real danger but is considered pathological when it occurs without
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a threat. Moreover, while this thesis primarily concentrates on modeling behavior

and individual differences, it represents only a small portion of the broader field

of computational psychiatry. It does not delve into other significant advancements,

such as applying pattern recognition in neuroimaging (Wolfers et al., 2015) or digital

phenotyping (Insel, 2017; Onnela and Rauch, 2016).

In summary, computational psychiatry can be characterized by its efforts to

apply quantitative methods and computational modeling techniques to develop new

insights and approaches for understanding biological or cognitive functions that

psychiatric disorders may impact—integrating methods from multiple disciplines

such as psychology, biology, neuroscience, mathematics, and artificial intelligence

(Adams et al., 2016; Friston et al., 2014; Huys et al., 2021a, 2016, 2011; Montague

et al., 2012; Moutoussis et al., 2018).

1.5.2 The Two Branches of Computational Psychiatry

Computational psychiatry has two main branches: a theory-driven approach

and a data-driven approach (Huys et al., 2016). Theory-driven computational ap-

proaches employ formal models of psychiatric conditions to make explicit hypothe-

ses, sometimes at multiple levels of analysis (Huys et al., 2021b; Maia and Frank,

2011; Wang and Krystal, 2014). There are many formal schemes ranging from neu-

ral network theory, reinforcement learning, or game theory to detailed biological

models (Stephan et al., 2009). On the other hand, data-driven machine-learning

approaches focus on developing agnostic models by leveraging big, high-dimensional

data (Marsch, 2021; Rutledge et al., 2019). Researchers have applied this approach

to high-dimensional neuroimaging data (DeBattista et al., 2011; Iosifescu et al.,

2016; Wolfers et al., 2015) and large-scale clinical cohorts (Chekroud et al., 2016;

Koutsouleris et al., 2016) to recover diagnostic information, predict treatment out-

comes, or improve treatment selection. While the agnostic nature of data-driven

approaches allows for unbiased flexibility, it can also present a downside by disre-

garding existing scientific theories and findings. Therefore, integrating data-driven

methods with theory-based approaches can help mitigate this issue (Hauser et al.,
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2022; Huys et al., 2016). For example, the parameters from mechanistic models can

be used as features to improve machine learning performance. This strategy has

proven effective in reinforcement learning (Eshel et al., 2015; Steinberg et al., 2013).

This thesis employs both approaches across two chapters to explore clinically

relevant individual differences in risk-taking behavior. Chapter 2 utilizes Prospect

Theory as a framework for analyzing risk preferences, relying on computational mea-

sures rather than raw behavioral readouts to capture the effects of clinical differ-

ences. Chapter 3 adopts a dimensional, data-driven approach to identify psychiatric

phenotypes that are associated with altered risk-taking behaviors.

1.5.3 Example of Theory-driven Approach: Prospect The-

ory

Descriptive behavioral readouts, such as summary statistics, often serve as dis-

tant proxies for underlying cognitive processes and may be more indicative of the

experimental design than the processes themselves (Haines et al., 2020; Karvelis

et al., 2023). In contrast, generative models provide a more robust approach by

explicitly modeling cognitive processes, yielding computational measures that are

more closely aligned with the theoretical constructs of interest (Huys et al., 2016).

These measures can offer enhanced content validity, convergent validity, and relia-

bility, though this is not true for all generative models (Karvelis et al., 2023). For

example, parameters of the Prospect Theory model have good-to-excellent reliabil-

ity, while those from a four-armed bandit reinforcement learning model ranged from

poor to good (Mkrtchian et al., 2023).

Prospect Theory offers a valuable framework for understanding how individ-

uals perceive and evaluate risk and reward (Ruggeri et al., 2020; Schonberg et al.,

2011; Sokol-Hessner and Rutledge, 2019b; Tversky and Kahneman, 1979, 1992). In-

terestingly, this model, originally developed in economics, has been adapted as a

cognitive-computational framework to explain clinical variability. It translates ob-

jective values into subjective ones according to the decision-maker’s preferences (cf.
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1.3.2 for examples of those choices). This behavioral economic theory posits that

two stable individual factors (i.e., parameters in the model) explain heterogeneity

in economic decisions such as the commonly observed inclination towards sure out-

comes over risky gambles with potential higher returns (Tversky and Kahneman,

1992). First, risk aversion refers to the tendency to avoid uncertainty in outcomes

regardless of whether the outcome is a potential loss or gain. Second, loss aversion

refers to the tendency to overweigh potential losses relative to potential gains re-

gardless of how uncertain they are. The concept of loss aversion is rooted in the

idea that losing something carries a greater emotional impact than the equivalent

gain. While related, these factors provide insight into two distinct processes rely-

ing on separate neural correlates. For example, amygdala damage in patients was

linked to a dramatic reduction in loss aversion but left risk aversion relatively intact

(Martino et al., 2010). It is worth noting that variations in risk preferences are

not normatively good or bad per se but are contextually dependent. Loss aversion

may prevent death in a survival context but could reduce returns in an investment

context (Sokol-Hessner and Rutledge, 2019b).

Formally, the generative model is composed of two main components: the first

set of equations translates objective utility into subjective utility (cf. Equation 1.1),

while the second equation compares these subjective utilities and maps them into a

probability space (cf. Equation 1.2).

v(x; ρi, λi) =

−λi(−x)ρi for x < 0

xρi for x ≥ 0

(1.1)

Prob[o1] =
1

1 + e−µi(Vo1−Vo2 )
(1.2)

This model allows for the estimation of three risk preference parameters, namely

λ (loss aversion), ρ (risk aversion), and µ (choice consistency). The underlying as-

sumption of the widely-used S-shaped power utility function is that individuals

assess the value of payments with respect to a reference point, which is presumed

to be zero. It suggests that based on typical parameter values, individuals tend to
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be risk-averse when dealing with positive payments (gains) and risk-seeking when

facing negative payments (losses). The presence of an inflection point in the utility

function at zero indicates loss aversion. This is expressed in Equation 1.1 where λi

represents loss aversion, ρi risk aversion, and x is a monetary outcome relative to

the reference point.

λ greater than 1 corresponds to loss aversion, as opposed to less than 1 which

corresponds to loss tolerance. λ is usually around 2 as people tend to weigh losses

about twice as much as gains (Brown et al., 2021; Chapman et al., 2018; Tversky and

Kahneman, 1992). ρ represents the curvature of the utility function, capturing how

outcomes are evaluated as amounts increase. Specifically, it determines sensitivity

to diminishing returns: when 0 < ρ < 1, the value function is concave for gains and

convex for losses, indicating that people become less sensitive to changes in wealth

as amounts grow. This curvature in turn gives rise to risk-related behavior: values

of ρ < 1 are associated with risk aversion, whereas ρ > 1 corresponds to risk-seeking.

Thus, while ρ does not directly measure risk aversion, it is conventionally labeled a

“risk aversion parameter” in the literature. In keeping with this convention, and to

ensure comparability with the studies in Chapter 2, we will continue to describe ρ in

those terms. Then utility and choices are mapped following the SoftMax rule using

the logit function. The logit function depends both on the utility difference between

options o1 and o2 and the choice consistency parameter µi (cf. Equation 1.2). Higher

value of µ represents greater consistency in choices, meaning choices that align more

closely with the predictions of Prospect Theory of selecting the value-maximizing

option.

Concretely, if you consider two options with magnitudes of a certain choice and

a gamble, [+7, +14], the objective difference between them is +7. If risk sensitivity

is set at 0.9, the subjective utilities for these values are [+5.6, +11.1], resulting in a

difference of +5.5. On the other hand, if risk sensitivity is set at 1.1, the subjective

utilities increase to [+9.2, +18.6], with a difference of +9.4. This demonstrates that

as risk sensitivity increases, the difference between subjective utilities also increases.

Although this does not alter which option is more attractive by default, it becomes

relevant in experimental tasks where higher magnitudes are associated with lower
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probabilities. If the higher magnitude [+14] has a 60% chance of being chosen, while

the lower magnitude [+7] is guaranteed, for a risk sensitivity of 1.1, the utilities are

[+9.2, +8.5], with a small difference of -0.7. However, with a risk sensitivity of 0.9,

the utilities are [+5.6, +4.3], and the difference becomes -1.3. A risk sensitivity of

0.9 reflects risk aversion, where the certain option becomes more attractive, whereas

a risk sensitivity of 1.1 appears to encourage risk-seeking behavior.

In sum, the generative model of Prospect Theory allows the extraction of three

risk preference parameters—λ, ρ, and µ. These parameters provide a computa-

tional alternative to the direct behavioral readouts of economic choices, such as the

inclination to choose a gamble over a certain reward. Unlike these basic measures,

which do not factor in the different values of gambles, these computational measures

provide a solution by offering a more reliable and theoretically grounded approach

(Mkrtchian et al., 2023).

1.5.4 Example of Data-driven Approach: Transdiagnostic

Psychiatric Symptom Dimensions

The current process of diagnosing mental disorders is largely based on quan-

tifying the types and severity of symptoms a person is experiencing, as well as the

degree of associated distress or impairment. This method has the advantage of

providing a common language for mental health professionals, as embodied in the

Diagnostic and Statistical Manual of Mental Disorders (DSM-5; American Psychi-

atric Association, 2013) and the International Classification of Diseases (ICD-10;

World Health Organization, 1992). These diagnostic systems were developed to of-

fer a simple, reliable, and descriptive taxonomy of discrete psychiatric conditions

at the expense of considering the complex underlying etiology and pathophysiology.

There are many drawbacks to this traditional phenotyping (Hyman, 2007; Lilien-

feld and Treadway, 2016; Stephan et al., 2016). Firstly, there is a high degree of

heterogeneity within disorder categories and substantial symptom overlap between

different conditions (i.e., comorbidity). Second, the DSM-ICD categories do not
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easily map onto findings from genetics, neuroimaging, or other modern cognitive

neuroscience tools, making it challenging to integrate these findings into diagnosis.

Additionally, these diagnostic frameworks also imply a rigid classification system in

which an individual must either conform to a set category or be excluded from it,

resulting in a binary label of “ill” versus healthy. This dichotomy fails to capture the

reality that many symptoms are more accurately represented as continuous traits

that span both ‘healthy’ and clinical populations to varying degrees (Cuthbert and

Insel, 2013; Lilienfeld and Treadway, 2016). The National Institute of Mental Health

(NIMH) has acknowledged these challenges and launched the Research Domain Cri-

teria (RDoC) initiative to address them (Insel et al., 2010). This initiative focuses

on bridging the gaps between various levels of analysis—genes, cells, molecules,

behavior, and self-reports—to identify transdiagnostic markers that are biologically

grounded and applicable across psychiatric disorders (Cuthbert, 2022; Cuthbert and

Kozak, 2013; Insel et al., 2010).

The RDoC initiative has encouraged the development of new methods for

studying psychiatric symptomatology (de Wit et al., 2014; Kendler et al., 2011;

Schumann et al., 2010). This thesis focuses on one such emerging approach: di-

mensional analysis among healthy populations, as discussed in Chapter 3. This

approach involves examining transdiagnostic symptom dimensions to identify spe-

cific psychiatric phenotypes associated with disruptions in decision-making (Gillan

et al., 2016; Lee et al., 2023; Patzelt et al., 2019; Rouault et al., 2018; Seow et al.,

2020, 2021; Seow and Gillan, 2020; Wise and Dolan, 2020). To achieve the large

sample sizes needed methodically for machine learning applications and theoreti-

cally to capture the wide range of symptom presentations, this method leverages

the benefits of large-scale online data collection (Gillan and Daw, 2016). Specifi-

cally, it uses factor analysis, an unsupervised machine learning algorithm applied to

standard questionnaires covering nine diagnostic categories. This method serves two

key purposes: to reduce the collinearity between the questionnaire scores and to ex-

plore the possibility that a more parsimonious latent transdiagnostic structure could

explain deviations in behavior. Previous research revealed a robust 3-factor latent

structure: ‘Compulsive Behavior and Intrusive Thought,’ ‘Anxious-Depression,’ and
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‘Social Withdrawal’ (Gillan et al., 2016; Hopkins et al., 2022; Rouault et al., 2018).

Interestingly, the transdiagnostic compulsivity factor is specifically linked to deficits

in goal-directed control, which has a relatively well-established neurobiological basis

(Dolan and Dayan, 2013). These insights underscore the importance of examining

normal variability in psychopathology to better understand the neurocognitive basis

of psychiatric dimensions that can span across different disorders.

1.6 Thesis outline

This thesis employs a multi-method approach to investigate the cognitive and

computational characteristics of risk-taking behavior, combining controlled experi-

mental settings with more ecologically valid methods such as virtual reality. Across

the studies, the focus is on how internal (e.g. psychiatric traits and states) and

external factors (e.g. framing, threat characteristics) shape different types of risk-

related behaviors — specifically risk aversion, approach-avoidance conflicts, and

escape responses. Chapter 2 explores the influence of a heightened anxious state

on risk preferences in clinically anxious patients. Chapter 3 investigates the role of

transdiagnostic psychiatric traits on approach-avoidance conflict. Chapter 4 shifts

the focus to an innovative approach, using immersive virtual reality to study real-

time decision-making in dynamic and naturalistic environments and investigate the

effect of various internal and external factors on escape decisions. The concluding

Chapter 5 synthesizes these findings, highlighting broader insights into risk-taking

and outlining limitations as well as future research directions.
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2.1 Introduction

Generalized Anxiety Disorder (GAD) is the most common anxiety disorder

with lifetime prevalence estimates ranging between 6% (Kessler et al., 2012) and

14% (Moffitt et al., 2010) and causes substantial psychological, social, and economic

costs (Beddington et al., 2008; Craske et al., 2017; Mohammadi et al., 2020). GAD

remains a complex and challenging condition to treat effectively (Newman et al.,

2013): only around half of the patients respond to pharmacological (Reinhold et al.,

2011) or psychological (Westen and Morrison, 2001) treatment, and more than half of

these do not reach full remission. This lack of effective treatment for many patients

warrants further research into the specifics of these disorders with the potential to

identify new therapeutic targets.

The defining feature of GAD is persistent, excessive, and uncontrollable worry.

This occurs typically in the form of “worry chains,” that is, chains of thoughts

about potential negative outcomes that concern several life domains such as health,

finances, relationships, work, and safety (Association, 2013). Worry is associated

with feelings of anxiety but also with low mood and other depressive symptoms to

a similar extent (Beard et al., 2016; Hong, 2007; Olatunji et al., 2010; Vîslă et al.,

2022). Indeed, Major Depressive Disorder (MDD) and GAD are highly comorbid,

and their genetic risk factors are closely correlated (Baxter et al., 2014; Kendler

et al., 2007). Hence, worry might be an important core transdiagnostic process

(Kertz et al., 2012; Olatunji et al., 2010) with somewhat distinct features in different

diagnostic groups that may be linked to its uncontrollable and distressing nature

(Hirsch et al., 2013; Ruscio and Borkovec, 2004).

Clinical observations suggest that generalized anxiety (GA) is associated with

negative evaluation of the environment and a tendency to overestimate negative

outcomes within worry chains (Beck et al., 1985). In laboratory studies, GAD and

MDD patients consistently interpret ambiguous events or information as negative,

which is known as the interpretation bias (Aylward et al., 2020; Hirsch and Math-

ews, 1997, 2012; Hirsch et al., 2016; MacLeod and Cohen, 1993). This contrasts
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with healthy people who favor benign (i.e. neutral or positive) interpretations of

ambiguous events (Hirsch and Mathews, 2012). When GAD and MDD patients

are encouraged to adopt more benign interpretations, their worry is reduced, sug-

gesting that interpretational bias may contribute to the emergence and persistence

of negative thought intrusions (Feng et al., 2022; Hayes et al., 2010; Hirsch et al.,

2018). Similarly, highly anxious individuals, including GAD patients, tend to assign

a higher probability and subjective cost of negative events in hypothetical everyday

life scenarios compared to less anxious individuals (Berenbaum et al., 2007; Butler

and Mathews, 1983, 1987; Stöber, 1997), although other studies yielded less clear

results (Blair et al., 2017; Hockey et al., 2000; Mitte, 2007). In particular, Mitte

(2007) found a relationship only when probabilities were described verbally (as in

many other studies) but not when they were described numerically. Thus, individual

differences in verbally describing costs and probabilities and a tendency to self-blame

in everyday-life scenarios (Panayiotou et al., 2014) might have contributed to the

aforementioned results.

To achieve consistent quantification, more recent works (Charpentier et al.,

2017; Ernst et al., 2014; Xu et al., 2020) have relied on economic preference tests in

which outcomes are expressed in terms of monetary or points-based payoffs, allowing

the use of standard economic decision-making models such as Prospect Theory (cf.

Section 1.5.3 for more details on this model). Within this framework, studies have

demonstrated that GAD adults (Charpentier et al., 2017) and GAD adolescents

(Ernst et al., 2014) exhibited similar heightened sensitivity to negative outcomes

(loss aversion) as healthy controls. However, GAD patients exhibited a higher pref-

erence for smaller certain rewards over risky gambles with potentially higher returns

(risk aversion) than controls (Charpentier et al., 2017). In other words, GAD pa-

tients were characterized by enhanced risk aversion but not loss aversion compared

to healthy people (Charpentier et al., 2017).

This finding raises an important question, namely whether risk aversion is a

stable and potential causal factor in the initiation of worry chains or whether it is a

consequence of phases of heightened worry levels and thus variable over time. In the

latter case, it might be triggered by worry chains like thoracic pain can be triggered
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by a cardiac stress test. Crucially, many GAD patients experience excessive worry

intermittently over many hours but can be worry-free for parts of a day or even a few

days. Indeed, triggering worry chains amplified over-expectation of negative events

in a non-economic setup (Butler and Mathews, 1987). The study by Charpentier

et al. (2017) used negative emotional priming on a proportion of their economic

gambles which could have triggered risk aversion. The present study sought to

disentangle state-like and trait-like uncertainty aversion by conducting an economic

preference test (Wang et al., 2010) before and after a worry induction (similar to

Ruscio and Borkovec, 2004). We hypothesized that risk aversion is heightened in

MDD+GA after worry induction compared to baseline to a greater extent than in

MDD-GA. This would suggest that enhanced risk aversion is a state-like feature

of generalized anxiety triggered by worry rather than causing it. To gauge any

potential influence of MDD on results, we additionally recruited an HC group.

2.2 Methods

2.2.1 Participant Details

Sixty-three participants (29 females; mean age ± SD = 42.17 ± 11.78) took

part in the study. This included 40 in-patients from an affective disorder unit with

partly remitted severe depressive episode (MDD), some with (MDD+GA; N = 16,

7 females; age = 41.20 ± 9.94) and others without (MDD-GA; N = 24, 12 females;

age = 44.00 ± 11.50) GA symptoms. All MDD+GA patients met the DSM-IV

criteria for GAD but are not classified as having GAD due to criterion F which

specifies that symptoms should not be exclusively present during an MDD episode

– a condition that cannot be confirmed during a depressive episode. The proportion

of patients in these two subgroups reflects their prevalence in the recruiting clinical

unit. Additionally, 23 healthy controls (HC; 10 females; age = 41.00 ± 13.40) were

recruited from the general population using university advertisements and across

personal networks to approximate age and gender distribution of the other groups.
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Diagnosis and additional comorbid disorders of each participant, including HC,

were assessed by a psychiatrist using the Structured Clinical Interview for DSM-IV

(SCID-I/SCID-II; First and Gibbon, 2004) and recorded (cf. Appendix Table A.1).

All participants gave written informed consent before starting the experiment

and received a monetary compensation. The experiment complied with all relevant

ethical regulations and was approved by Governmental Ethics Committee (KEK-ZH

2013-0470).

2.2.2 Experimental Design

Participants completed the Dynamically Optimized Sequential Experimenta-

tion (DOSE) task (Wang et al., 2010), an adaptive task with 20 trials dynami-

cally adjusted to estimate a participant’s parameters in a prospect-theoretic decision

model (cf. Data Analysis section 2.2.4). On each trial, participants chose between

a guaranteed amount and an uncertain gamble with two equiprobable outcomes.

Notably, one of these gamble outcomes always exceeded the guaranteed amount (cf.

Appendix Figure A.1 for examples). In gain-only trials, the gamble offered either

a positive gain or nothing, while mixed trials included both a gain and a loss. The

amounts were adapted on each trial based on previous choices such as to maximize

the expected gain in information about that participant’s parameters (Wang et al.,

2010). This adaptive procedure allowed to estimate a 3-parameter risk preference

model (loss aversion, risk aversion, and choice consistency). This task was repeated

after the worry induction (described below). For each of the two task sessions, the

outcome of one randomly chosen decision was paid out to the participants to ensure

that each trial is treated like a one-shot gamble. This amount was then added to a

fixed monetary compensation contingent on the duration of the entire study.

As worry chains can last many hours and the assessments had to take place on

the same day, the worry induction always followed the first instance of the DOSE.

In the first phase of the worry induction (similar to Ruscio and Borkovec (2004)),

the experimenter asked participants to enumerate for 2 minutes all the topics that
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worried them recently. Then they were asked to estimate the importance of these

worries (from 1 unimportant to 7 extremely important) and how much time they

spent worrying about them in the previous week (from 0 to 100%). The second phase

aimed at catastrophizing their most time-consuming worrisome topic. Participants

were prompted to explain each worry regarding that particular topic. Subsequently,

they were asked what they would perceive as frightening or undesirable if the worri-

some event actually happened. Ultimately, participants had to estimate the number

of negative events or steps that would need to unfold in the catastrophic scenario.

This was repeated until participants (a) refused to continue, (b) gave the same an-

swer 3 times, (c) spent 10 minutes with the task. Afterwards, the experimenter read

out their answers aloud and participants were asked to estimate the probability that

each of these events would happen.

The most worrisome topics were work and education for HC and MDD-GA,

and health for MDD+GA. Both patient groups exhibited higher levels of discom-

fort prior to the induction (t(55) = 4.54, p < .001), spent more time worrying

(t(58) = 3.65, p < .001) than HC, and at a trend level indicated a higher number

of steps for the disaster scenario to unfold (t(61) = 1.84, p = .07). There were no

significant differences between the two patient groups in terms of these three vari-

ables (all p > .05, cf. Table 2.1). Similarly, no significant differences were found

among the three groups regarding their estimated probability of the negative event

occurring (all p > .05, cf. Table 2.1). Nevertheless, the three groups significantly

differed in the perceived importance of these worries. MDD+GA assigned higher

importance compared to MDD-GA (t(38) = 2.19, p < .05) and MDD-GA attributed

more importance compared to HC (t(43) = 2.10, p < .05, cf. Table 2.1).

2.2.3 Psychiatric Questionnaires

Participants completed a series of self-report psychiatric questionnaires assess-

ing depression using Montgomery-Asberg Depression Rating Scale (MADRS; Mont-

gomery and Asberg, 1979), Beck’s Depression Inventory (BDI; Beck et al., 1961),

and Hamilton Depression Rating Scale (HAM-D; Hamilton, 1960), anxiety using
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Hamilton Anxiety Rating Scale (HAM-A; Hamilton, 1959) and the trait version

of State-Trait-Anxiety-Inventory (STAI; Spielberger, 1983), and worry using Penn

State Worry Questionnaire (PSWQ; Meyer et al., 1990) and the Worry Domains

Questionnaire (WDQ; Tallis et al., 1992). These were not used as diagnostic tools

but rather to stratify the severity and type of symptoms. The scores are reported

in Table 2.1 and their distribution in Figure A.2.

2.2.4 Quantification and Statistical Analysis

Our main dependent variables were the participant’s three risk preference pa-

rameters, namely λ (loss aversion), ρ (risk aversion), and µ (choice consistency)

using a prospect theory utility function with power utility from DOSE (Wang et al.

(2010), cf. 1.5.3 for more details on the model). Importantly, the parameters were es-

timated separately for each participant during the DOSE, as each participant’s gam-

bles were optimized for their particular economic preferences. The DOSE method

has improved parameter recovery for ρ and related preference parameters, as it

uses a Bayesian adaptive approach to select the most informative sequence of ques-

tions for each participant, updating beliefs after each response. Simulation studies

demonstrate that DOSE can recover ρ with roughly twice the accuracy of tradi-

tional elicitation methods, even with fewer questions, and produces more granular

and stable individual-level estimates (Wang et al., 2010).

To test whether the effect of the worry induction on the risk preference pa-

rameters differs in anxious and depressive patients, we conducted a 2 x 2 repeated-

measure ANOVA with time points (baseline, after worry induction) as the within-

subject factor and patient groups (MDD+GA, MDD-GA) as between-subjects fac-

tors. Means of the risk preference parameters before and after the induction were

then compared with post-hoc independent two-sample t-tests between MDD+GA

and MDD-GA, and both MDD and HC as supporting tests. As control analyses,

we added the most distinctive anxiety (HAM-A) and depression (HAM-D) scores

first separately and then jointly as a within-subjects factor in addition to condition

and timepoint in a linear mixed effect model. The Log10 Bayes Factors (LBF) were
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calculated for each test. For the ANOVA and mixed effects models, we compared

models including the effect with equivalent models excluding the effect. For the

post-hoc contrasts, we used Bayesian analysis of one- and two-sample designs.

As secondary outcome variables, the propensity to choose the gamble over

the certain reward option was calculated for each participant. While this variable

cannot be used as an index for risk-taking, as each participant made decisions about

differently valued gambles, it can be computed separately for mixed and gain-only

gambles. The same procedure as mentioned above (repeated-measure ANOVA and

post-hoc t-tests) was employed to compare the propensities between groups. Results

are reported in A.2.

Additional exploratory analyses were conducted to compare other collected

variables such as questionnaire scores and worry-related measures (e.g., time spent

worrying, importance) using the same contrasts as mentioned earlier. We also con-

ducted bi-variate correlations within each group and across all participants.

Before running the statistical tests, the distributions of all outcome variables

were checked. The distribution of λ, ρ, and µ were slightly positively skewed. Pre-

vious studies used log transformation to reduce skewness (Charpentier et al., 2017),

but in our data, this resulted in even more skewness. Therefore, we applied the

square-root transformation, which is weaker and reduced the skewness of ρ in our

data to an acceptable level (between -.5 and .5). We did not transform any other

variables as this did not reduce their skewness. Additionally, in line with previous

work, the negation of ρ was taken as the final index of risk aversion such that higher

values of ρ indicated higher levels of risk aversion.

Finally, we conducted supplementary analyses to more closely replicate the

analyses of Charpentier et al. (2017). In their study, anxious patients and healthy

controls made economic choices that were embedded in an emotional memory task

involving both emotional and neutral faces as well as objects. They estimated risk

and loss aversion across all trials rather than separately for each emotion condition,

as this was the winning model (according to lowest Bayesian information criterion)

which outperformed all other models. Consequently, they did not differentiate be-
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tween trials that may have involved emotional priming and those that did not. To

better match their methodology in order to replicate the results, we combined our

participant variables without distinguishing between baseline and post-induction

time points; thereby collapsing time points.

2.3 Results

2.3.1 Task Characteristics

As expected, healthy people were loss aversive and risk-seeking before and

after the worry induction (cf. Figure 2.1). Loss aversion (baseline: t(22) = 6.26, p <

.001, LBF = 3.86; post-induction: t(22) = 6.31, p < .001, LBF = 3.91) and risk

aversion (baseline: t(22) = −28.2, p < .001, LBF = 15.6; post-induction: t(22) =

−30.69, p < .001, LBF = 16.35) were both different from zero.

2.3.2 Risk Preferences

In accordance with our hypothesis, our primary analysis uncovered a significant

interaction between time (baseline vs. post-induction) and condition (MDD+GA vs.

MDD-GA) for risk aversion (η2p = .10, F (1, 38) = 4.18, p < .05, LBF = .77; cf. Fig-

ure 2.1.A). Control analyses indicated that this was not the case for loss aversion

(F (1, 38) = .06, p = .81, LBF = −1.10; cf. Figure 2.1.B) or choice consistency

(F (1, 38) = 1.51, p = .22, LBF = −.65; cf. Figure 2.1.C). Post-hoc t-tests revealed

that risk aversion was enhanced after worry induction in MDD+GA compared to

MDD-GA patients (t(38) = 2.08, p < .05, LBF = .22) and compared to healthy con-

trols (t(38) = 2.21, p < .05, LBF = .79). In an exploratory control analysis, there

was no significant difference between MDD patients and HC (t(38) = −0.60, p =

.55, LBF = −.52). Before the induction, risk aversion was descriptively similar be-

tween all three groups. Across both patient groups, we found a significant effect of

time on choice consistency (F (1, 38) = 8.36, p < .01, LBF = 1.99), which was not
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present for risk aversion (F (1, 38) = 0.29, p = .59, LBF = −1.40) or loss aversion

(F (1, 38) = 0.93, p = .34, LBF = −1.10).

Next, we conducted control analyses to address how our primary results relate

to psychiatric symptom scores. We added the most distinctive anxiety questionnaire

(HAM-A) as a covariate. This revealed an interaction between timepoint and anxiety

in risk aversion (t(32) = 2.50, p < .05, LBF = .77), while the interaction between

timepoint and patient group was no longer significant (t(32) = 0.99, p = .33, LBF =

−0.79), suggesting that the group differences we found are indeed explained by

anxiety. However, we also found a 3-way interaction between timepoint, anxiety,

and group (t(32) = −2.29, p < .05, LBF = 1.32; cf. Figure 2.2.A). Taken together,

these findings indicate that the effect of worry induction scaled with HAM-A scores

only in the MDD+GA group, not in the MDD-GA group, pointing to qualitative

differences between these two groups beyond questionnaire scores.

When adding the most distinctive depressive symptom score (HAM-D) as a

covariate in addition to anxiety, the interactions between timepoint and anxiety

(t(28) = 2.88, p < .01, LBF = 21.99) and between timepoint, anxiety, and group

remained significant (t(28) = −2.14, p < .05, LBF = 20.09), suggesting that the

relation to patient group and anxiety scores is not explained by depression. There

was no significant effect when only HAM-D was added as a covariate.
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Figure 2.1: Enhanced risk aversion but not loss aversion in MDD+GA
patients after worry induction compared to MDD-GA. Mean estimates of
risk aversion (A), loss aversion (B), and choice temperature (C) plotted separately
for MDD+GA, MDD-GA, and HC. There were no significant group differences in
baseline levels (i.e., before worry induction) of risk aversion (MDD+GA: -.89 vs.
MDD-GA: .-95, t = -1.14, p = .26; MDD: -.92 vs. HC: -.94, t = -.47, p = .64), loss
aversion (MDD+GA: 1.72 vs. MDD-GA: 1.53, t = .52, p = .61; MDD: 1.61 vs. HC:
1.43, t = .61, p = .55) or choice consistency (MDD+GA: 1.37 vs. MDD-GA: 1.3, t
= .26, p = .79; MDD: 1.33 vs. HC: 1.6, t = -1.21, p = .23).
Error bars represent SEM.

Table 2.1: Demographics, Questionnaire Scores, and Participants’ Char-
acteristics.
T-test results: * (<.05), ** (<.01), *** (<.001), tr: trend (<.10), n.s.: non-
significant (>.10). Mean ± SD.

MDD+GA MDD-GA MDD+GA vs.
MDD-GA

HC MDD vs.
HC

Women:Men 7:9 12:12 n.s. 10:13 n.s.
Age (years) 41.20 ± 9.94 44.00 ± 11.50 n.s. 41.00 ± 13.40 n.s.
STAI-S Score 53.53 ± 9.46 49 ± 9.02 n.s. 26.7 ± 5.68 ****
STAI-T Score 47.67 ± 9.58 45.9 ± 11.97 n.s. 22.61 ± 7.00 ****
HAM-A Score 22.67 ± 6.63 15.21 ± 7.37 *** 2.52 ± 2.43 ****
HAM-D Score 22.64 ± 6.40 15.13 ± 7.75 *** .82 ± .96 ****
MADRS Score 24.31 ± 8.25 17.92 ± 7.81 * 1.09 ± 1.12 ****
BDI Score 29.06 ± 8.63 22.32 ± 10.08 * 3.45 ± 3.76 ****
PSWQ Score 61.75 ± 13.43 54.17 ± 10.21 tr. 37.65 ± 8.57 ****
WDQ Score 63.31 ± 19.11 44 ± 21.28 ** 13.87 ± 9.51 ****
Number of episodes 2.25 ± 1.65 2.00 ± 2.02 n.s. n/a n/a
Length of current
episode (months)

29.38 ± 24.56 78.27 ±
279.90

n.s. n/a n/a

Number of comor-
bidities

1.56 ± 1.09 1.21 ± .41 n.s. n/a n/a

Discomfort levels
(/100)

45.89 46 n.s. 15.57 **

Time spent worry-
ing (%)

77.75 62.83 n.s. 43.05 ****

Probability of hap-
pening (%)

71.67 64.76 n.s. 52.03 n.s.

Number of steps 7.88 8.54 n.s. 6.52 tr.
Importance (/7) 6.88 6.25 * 5.43 ***
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2.3.3 Effect of Anxiety and Depression on Risk Prefer-

ences

To further investigate whether the differences in MDD+GA are explained by

anxiety or depression, we conducted additional exploratory analyses using the ques-

tionnaire scores. To avoid issues with interpreting p-values in multiple exploratory

tests, we report only R2 values. Across all included groups, the change in risk aver-

sion from baseline to post-induction was not correlated with any psychiatric scores

(all R2 < .05). Consistent with the previous covariate analysis, it was negatively

correlated with HAM-A scores within the MDD+GA group (R2 = .31), but not in

the other groups (both R2 < .05; cf. Figure 2.2.B). Given HAM-A’s strong pos-

itive correlations with depressive scores (e.g., HAM-A and HAM-D: R2 = .44; cf.

Appendix Figure A.3), we controlled for HAM-D using partial correlations. The cor-

relation between HAM-A and risk aversion differences in MDD+GA increased when

controlling for HAM-D (R2 = .36), MADRS (R2 = .33), and BDI scores (R2 = .46).

A similar effect was observed in the change in propensity to gamble in gain-only

trials from baseline to post-induction (cf. Appendix Figure A.1).

Figure 2.2: Effect of anxiety on risk aversion in MDD+GA but not MDD-
GA patients after worry induction. (A) Regressions between risk aversion and
scaled anxiety (HAM-A) scores. Dotted line corresponds to baseline and full line to
post-induction. (B) Correlation between the difference in risk aversion after worry
induction and scaled anxiety (HAM-A) scores.
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2.3.4 Replication of Analyses from Previous Work

We successfully replicated previous findings, demonstrating an enhanced risk

aversion in MDD+GA compared to both MDD-GA (t(78) = 2.36, p < .05, LBF =

.30) and HC (t(78) = 2.21, p < .05, LBF = .25) when collapsing time points ac-

cording to the original experimental design. No significant differences were observed

between groups in loss aversion or choice consistency (cf. Appendix Table A.2). For

findings related to the propensity to gamble, refer to Appendix A.2.

2.4 Discussion

The present study sought to clarify whether economic risk avoidance in GA is

a trait-like causal factor or a state-like feature triggered by worry. We found that

patients with MDD+GA are characterized by increased risk aversion after a worry

induction but not at baseline when compared to MDD without GA. As anticipated,

GA had no relation with loss aversion. This is in accordance with our hypotheses and

previous studies showing that anxious patients do not overweigh losses (Charpentier

et al., 2017; Ernst et al., 2014) or punishments per se (Aylward et al., 2019).

By incorporating individuals diagnosed with MDD (without GA symptoms)

and healthy participants, we were able to compare the decision-making behaviors of

anxious patients to the two control groups to discern specific differences associated

with anxiety and depression. In particular, by comparing MDD patients with and

without GA, we can rule out that in-patient status or unspecific patient character-

istics shared by both MDD groups contribute to our results. Little is known about

how comorbid depressive disorders impact risk preferences, but evidence seems to

suggest that non-suicidal depressed patients exhibit similar risk and loss aversion

as healthy controls (Baek et al., 2017; Hadlaczky et al., 2018). Our results are in

line with this and suggest that heightened risk aversion is associated with anxiety

symptoms in depression, rather than depression as such.

When considering psychiatric questionnaire scores, several facets of anxiety
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could be separated. MDD+GA patients reported higher worry and anxiety than

MDD-GA, as measured by WDQ, PSWQ, and HAM-A, but not when measured by

STAI. It has been suggested that STAI lacks divergent validity as it does not distin-

guish well between clinically anxious or depressed samples (Knowles and Olatunji,

2020). In addition to higher anxiety levels, MDD+GA also reported higher levels of

depression than MDD-GA, as measured by HAM-D, MADRS, and BDI. Previous

studies found that comorbid depression–anxiety groups have more severe symptoms,

with higher levels reported of depression and anxiety than pure depression or anx-

iety disorder (Penninx et al., 2011; Schoevers et al., 2003, 2005; Starcevic et al.,

2007; ter Meulen et al., 2021). The mixed presentation is also associated with a

worse prognosis even when controlling for differences in severity and duration of

symptoms (Penninx et al., 2011). Nonetheless, we also did not find any continuous

relation between the risk preference estimates and depression scores. Instead, we

observed an effect of anxiety on risk aversion in MDD+GA, which became more

pronounced after correcting for depression scores (but not the other way around).

This pattern suggests that it is not merely the overlapping characteristics of anxiety

and depression that drive this effect, but rather the distinct elements of anxiety.

This underscores a unique link between anxiety in MDD+GA and risk aversion that

goes beyond its strong association with depression. Additional analysis showed that

this effect of anxiety arose after the worry induction, suggesting that in a state

of increased worry, higher anxiety is linked to higher risk aversion. However, it is

still possible that comorbid GA symptoms might rely on different mechanisms than

GAD in non-depressed people. For instance, comorbid anxiety disorder was associ-

ated with higher worry across primary diagnoses including MDD, bipolar disorder,

and psychosis, even after controlling for GAD (Kertz et al., 2012). Charpentier et al.

(2017)’s exploratory analysis found no difference in risk aversion when comparing

pure anxious patients (N=12) to anxious-depressed patients (N=13). It is impor-

tant to consider that their study might have been underpowered to detect subtle

distinctions, highlighting the need for further investigation in this area. Finally, it is

worth noting that different mechanisms might be at play in participants with vary-

ing anxiety levels. While our results and those of Charpentier et al. (2017) suggest
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enhanced risk aversion but not loss aversion in GA, anxiety questionnaire scores in

healthy individuals were linked to enhanced loss aversion but not risk aversion in Xu

et al. (2020). This suggests that GA may be categorically different from enhanced

anxiety in healthy people.

By examining risk preferences both before and after an incidental worry induc-

tion, we could determine whether the previously observed enhanced risk aversion in

GA is a potential cause of worry chains, reflecting a state-like characteristic rather

than an enduring trait of the condition. We found no differences between groups

before the induction. Instead, we uncovered a significant interaction between time

and patient groups, which implies an emotion-induced enhancement in risk aversion.

While Charpentier et al. (2017) found that risk parameters were not influenced by

emotional priming on the same trial, their presentation of a visual prime (e.g., fearful

faces, objects) before each gambling decision might have a longer-lasting spillover

effect on subsequent non-priming. We note that our experimental design did not

aim to specifically investigate the effect of worry induction over any other forms

of emotional priming. It could be interesting to explore whether the induction of

rumination, which has traditionally been linked to MDD (Nolen-Hoeksema, 1987;

Watkins and Roberts, 2020), yields different outcomes. Although worry and rumi-

nation share similarities as repetitive perseverative negative thinking processes, they

differ in their content and temporal orientation. Worry focuses on potential future

threats, whereas rumination centers on past negative events (Kircanski et al., 2015;

Nolen-Hoeksema et al., 2008).

One of the primary factors proposed to underlie heightened risk aversion in

GA is an inclination to overestimate the likelihood of negative outcomes. Our cur-

rent investigation did not reveal any intergroup differences concerning participants’

estimated probability of the realization of their own worries, thereby contributing

to the conflicting body of evidence. This lack of effect could be explained by two

non-mutually exclusive possibilities. Firstly, a distinction might exist between esti-

mating the probability of a negative event in a general context versus for one’s own

personal circumstances. While prior studies focusing on general estimations found

mixed evidence (Butler and Mathews, 1983; Mitte, 2007), those that delved into
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self-contrasted scenarios did reveal more consistently such an impact (Butler and

Mathews, 1983; Miranda and Mennin, 2007; Mitte, 2007). In our study, participants

were asked to gauge the overall likelihood of their most concerning event occurring,

rather than evaluating whether it was more probable for the event to happen to

them as opposed to others. Secondly, GAD may rather exhibit a tendency to under-

estimate the probability of positive events (Blair et al., 2017; Butler and Mathews,

1983; Stöber, 1997), especially in self-contrasted scenarios. This could potentially

explain why, similar to Charpentier et al. (2017), we found that anxious individuals

gambled significantly less on gain-only trials (cf. Appendix A.2) without display-

ing any noticeable differences from the other groups in mixed gambles. This idea

still aligns with the concept of interpretation bias, which suggests that individuals

with anxiety tend to inaccurately interpret ambiguous stimuli as negative. Rather

than solely attributing it to the overestimation of negative events, another possible

explanation lies in the underestimation of positive events. Future studies should

add loss-only trials in addition to the existing gain-only trials to assess whether risk

aversion in the loss and gain domains differ between groups.

Conceptually, we replicated Charpentier et al. (2017) using a clinically dif-

ferent sample from a different country and employing a similar experimental task

(cf. Appendix Table A.2). It is noteworthy that the log transformation applied

in their study resulted in higher skewness within our dataset, but it also yielded

stronger effects. In accordance with our data, we decided to utilize a milder trans-

formation (e.g., square root) for parameters where it improved skewness. Moreover,

Charpentier et al. (2017)’s results on risk aversion were significant regardless of the

transformation (tested using their data available online). This process emphasizes

the significance of verifying the adequacy of replication methods for the specific

dataset and if necessary adapting the analysis accordingly.

In interpreting the results of this study, it is important to consider the possi-

bility that observed changes in risk aversion may not be solely attributable to the

worry induction intervention itself. Instead, these effects could partially reflect non-

specific factors such as the passage of time or repeated exposure to the DOSE task.

Repeated task performance can lead to learning effects, habituation, or changes in
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participant engagement due to fatigue or other. Although the study design included

a within-subjects baseline and post-induction comparison, without a control group

undergoing repeated testing without the worry induction, it is not possible to fully

rule out the influence of time or repetition. Nonetheless, it seems unlikely that

repetition or time effects would selectively impact only the anxious groups, espe-

cially since similar findings have previously been observed within a single session.

Additionally, Prospect Theory model parameters show good-to-excellent two-week

test-retest reliability (Mkrtchian et al., 2023), underscoring their stability over time

without intervention. Thus, it seems unlikely that the observed effects are due to

temporal factors.

This study has several limitations that warrant consideration. Firstly, our

relatively small sample size might obscure small differences between groups at base-

line. Despite the potential for some contrasts to be underpowered, the robustness of

our main analysis—examining the interaction between time and patients—remains

intact and was not underpowered (cf. Appendix A.1 for more details on power

analyses). Of note, MDD patients without GA had relatively high worry scores in

the PSWQ, which might have influenced their baseline risk preferences. However,

this alone is unlikely to explain the lack of group differences at baseline, since both

groups were not appreciably different from healthy participants. Additionally, our

worry induction procedure was established as effective in previous research Ruscio

and Borkovec (2004). However, we did not ask participants to rate their worry and

discomfort before and after the worry induction procedure, we could not verify how

effective the procedure was in individual participants. Another limitation pertains

to the generalizability of our findings. Our sample, composed exclusively of psy-

chiatric in-patients with severe depression, might not reflect the characteristics of

broader populations, such as those with milder forms of depression or individuals in

outpatient settings. Finally, our interpretation partially relies on the DOSE task’s

capacity to measure both trait-level and state-level risk aversion. However, we lack

definitive data to support this capability. Future research should aim to clarify this

aspect to strengthen the validity of interpretations based on this measure.

To conclude, better understanding differences between patient groups with co-
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morbidities is crucial to allow better assessment of potential treatments (Harmer

et al., 2011) or the development or refinement of relevant cognitive interventions

(Robinson et al., 2013). The current study suggests that anxious individuals exhibit

distinct patterns of decision-making compared to depressed and healthy controls,

characterized by heightened risk aversion but unchanged loss aversion after a worry

induction. These findings could directly inform, improve, or lead to the development

of psychological interventions aimed at addressing both mental health conditions.

For example, therapeutic strategies for GA could benefit from focusing on reducing

sensitivity to uncertainty rather than negative outcomes per se.
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Behavioral Cautiousness

The content of this chapter is based on the results published as a preprint in

Sporrer, J. K., Melinscak, F., & Bach, D. R. (2024). Transdiagnostic psychiatric
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https://doi.org/10.31234/osf.io/3u47k


CHAPTER 3. BEHAVIORAL CAUTIOUSNESS

3.1 Introduction

Avoiding threats to one’s integrity is a common and adaptive behavior (LeDoux

et al., 2017). Yet, real-life situations often mandate pursuing rewards in circum-

stances that entail danger, exemplified by risky foraging. Such situations give rise to

conflicting motivations to approach the reward, and avoid the threat (McNaughton

et al., 2016). Solving this dilemma requires a careful assessment of available options,

and the probabilities and magnitudes of the outcomes associated with each of them

(Aupperle and Paulus, 2010). Approach-avoidance conflict (AAC) tests encapsulate

this situation in a well-defined laboratory setting (Bach, 2021; Rodgers et al., 1997).

Anxiolytic substances—i.e., drugs that reduce subjective feelings of anxiety in clin-

ical conditions—crucially alter animals’ cautiousness in such tasks (cf. Cryan and

Sweeney 2011 for a review). This has led to a long history of employing them as a

primary preclinical model in anxiety disorder research, and for the development of

anxiolytic drugs. More recently, AAC tasks have been translated to humans, and

validated by cross-species similarity of underlying neural substrates including their

sensitivity to benzodiazepines and other anxiolytics (cf. Bach 2021 for a review).

An initial assumption in this translational effort was that AAC task readouts should

relate to trait anxiety (Aupperle et al., 2011) and might even be used as diagnos-

tic tests for anxiety disorders (cf. Bach 2021; Stephan et al. 2016 for a review).

While this appears intuitively plausible, evidence that cautiousness metrics such as

approach rate in AAC tasks relates to trait anxiety in common questionnaires is

inconsistent (cf. Fricke and Vogel 2020 for a review). Specific relations reported in

individual studies (Bach, 2015; Fung et al., 2019; Walz et al., 2016) were largely not

replicated (Biedermann et al., 2017; Gromer et al., 2021; Kallai et al., 2007; Struijs

et al., 2018, 2017; Walz et al., 2016), including in a large sample of healthy young

people (N=781; Bach et al., 2020). Similarly, a large-scale clinical study found no

relation between approach-avoidance behavior with anxiety disorder, depression, or

substance abuse diagnosis (Smith et al., 2021). At the same time, cautiousness in

AAC tasks appears to be a relatively stable trait as shown by 2-year test-retest reli-

ability (Bach et al., 2020). This raises an important question: if anxiolytic-sensitive
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cautiousness, and self-reported trait anxiety, are both stable traits but not specifi-

cally related to each other, then what other psychiatric symptom dimensions predict

cautiousness?

This is the question we sought to address here in two large online samples and

with a comprehensive psychiatric symptom battery. To this end, we capitalized

on a human AAC task (Bach, 2015) with a simple and abstract visual design that

could be presented online. In this task, a participant can decide whether, and how

rapidly, to approach a reward, under risk of being virtually attacked by a predator

and incurring a variable loss. As with many AAC tasks, its core behavioral indices

are passive avoidance, i.e., rate of avoidance decisions, and behavioral inhibition,

i.e., latency to initiate approach. Previous work has consistently demonstrated that

both of these indices linearly increase with increasing threat probability and threat

magnitude (i.e., potential loss; Abivardi et al. 2020; Bach 2015, 2017; Castegnetti

et al. 2020; Khemka et al. 2017), a group effect that we replicated in the present

sample. Notably, behavioral inhibition in this task is not reward-maximizing but

might be optimal if the agent has assumptions about the temporal coupling of reward

and threat (Bach, 2015). Thus, in a secondary task, we assessed people’s implicit

beliefs about such reward correlations (Bach, 2017). We then asked whether pas-

sive avoidance and behavioral inhibition, and their relation to threat probability

and magnitude, are linked to psychiatric symptom dimensions. For comparability

with previous work on other behavioral dimensions, we utilized an exhaustive clin-

ical questionnaire battery with a known three-factor structure (Gillan et al., 2016;

Hopkins et al., 2022; Rouault et al., 2018): ‘Compulsive Behavior and Intrusive

Thought (CIT)’, ‘Anxious-Depression (AD)’ and ‘Social Withdrawal (SW)’, which

we also replicated in our samples. We added further anxiety questionnaires, and

questionnaires found relevant in previous work on AAC tasks. As we had no prior

hypothesis on which symptom dimensions or questionnaires would relate to cau-

tiousness, we opted for a rigorous exploration-confirmation approach. Hypotheses

were first generated based on analysis of a discovery sample (N = 315), and then

confirmed after pre-registration in a second sample (N = 690).
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3.2 Methods

3.2.1 Participant Details

Adult participants (> 18 years old) were recruited online using Amazon Me-

chanical Turk (MTurk, https://www.mturk.com/). We included 315 participants

in the discovery sample (149 females, mean age ± SD: 36.40 ± 11.01; October-

November 2021) and 690 in the confirmation sample (338 females, mean age ± SD:

33.41 ± 9.89; February-March 2023; cf. Table B.1). In total, the combined sample

comprised 1005 participants (487 females, mean age ± SD: 34.35 ± 9.89).

Participants who completed the task per protocol were included if they did not

meet any of the following exclusion criteria:(1) Pressed (or did not press) the same

button on the keyboard in more than 95% of the trials, (2) Responded incorrectly to

all three attention checks in the questionnaires (cf. Appendix B.1.1), (3) Returned

to the safe place in fewer than 50% of the trials, indicating lack of understanding

of the task, (4) Performance at chance level. In the discovery sample, we excluded

189 (37%) participants out of 504, leaving 315 participants for analysis (cf. Figure

B.1 for an exclusion flowchart). In the confirmation experiment, we excluded 478

(41%) participants out of 1168, leaving 690 participants for analysis. Although there

are growing concerns about online data quality (Burnette et al., 2022a,b; Chandler

et al., 2014; Zorowitz et al., 2023), further validation tests suggest our findings are

unlikely to come from spurious results (Zorowitz et al. 2023; cf. Appendix B.2.2).

Additionally, to ensure that participants understand the task, they had to

correctly answer five questions on a task comprehension test, after reading the in-

structions and before starting each task. They could reread the instructions after

each try, but if they failed the test more than five times, they could not take part

in the experiment.

After reading an information sheet about the experiment, participants con-

firmed their consent online. All procedures were in accordance with the Declaration

of Helsinki and local regulations. The study was approved by the Governmental
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Ethics Committee (Kantonale Ethikkommission Zurich, BASEC 2016-00068). Par-

ticipants were paid a base sum of 10$ plus a bonus ranging from 2$ to 14.5$ (with

a mean of 12$) conditional on task performance and on passing several attention

checks.

3.2.2 Experimental Design

Participants performed an AAC task embedded in an online computer game

(cf. Figure 3.1), based on previous studies in a lab setting (Abivardi et al., 2020;

Bach, 2015, 2017; Castegnetti et al., 2020; Khemka et al., 2017). On each trial of

this "scoop-and-run" task, participants could collect one monetary token (approach

motivation) under threat of getting caught by a predator and consequently losing

an explicitly signaled number of tokens (avoidance motivation). 144 trials were pre-

sented in randomized order, evenly distributed across 6 different levels of potential

token loss, and three different threat probabilities1. At the start of each trial, the

participant was in a “safe place”, the bottom grid block, and was tasked to decide

whether to collect a token that would appear on either side after an interval that was

the sum of a fixed delay (500 ms) and a random sample from a truncated gamma

distribution (κ = 2, θ = 1, µ = 2 s), truncated at 6 s. In case the participant did not

collect the token, it disappeared after a variable time drawn from the same gamma

distribution. Below the grid, the potential loss of the current trial (0-5 tokens)

was indicated by red tokens. A "sleeping" predator was waiting opposite the safe

place in the top grid block and could catch the participant if they were outside the

safe place. Wake-up of the predator followed a Bernoulli process, independently

determined in successive time bins of 20 ms. Three threat levels, corresponding

to different wake-up rates, were represented by three different frame colors (cyan,

yellow, and purple) with a random relation of color and threat level. If the player

was outside of the safe place for 100 ms, a value established in previous work (Bach,

2015), then this resulted in catch probabilities of p1 = .1, p2 = .2, or p3 = .3. The
1While the term "threat" may be open to interpretation, its use here aligns with prior literature

employing this task (Bach, 2015, 2017) and similar risky-foraging paradigms (e.g. Mobbs et al.,
2007), and also reflects how the experimental design was framed to participants.
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actual catch rates depend on the participants’ individual return latencies. Crucially,

threat probabilities were not explicitly instructed but it was emphasized that the

predators were differently dangerous and that the participants needed to learn this

difference. If the participant got caught, then the token disappeared, the predator

turned red, and the indicated potential loss was realized. In all cases, the trial ended

1 s after the pre-determined token disappearance time.

The second block comprised 57 trials from a different task, the predator expo-

sure task, randomly interspersed with 15 AAC task refresher trials. As the graphical

set-up is similar, the type of task was signaled with either a grey token on AAC task

trials or a grey circle for predator exposure task trials. In the predator exposure

task, participants could not move to the sides of the grid and were instructed to

expose the awake predator by pressing the up-arrow key (i.e. a motor action un-

available on AAC trials). If the predator was awake during the attempt, it turned

red and the trial would end early. Otherwise, it would turn black and the trial would

continue to the pre-determined end. This feedback allowed participants to update

their knowledge of the experimental statistics (which were maintained throughout

all blocks), according to which the probability of being awake was independent of

time or token appearance and was randomly determined at each capture attempt.

Participants were explicitly informed that the tokens were irrelevant to the task and

could not be collected. If participants correctly believed that catch probabilities

were constant, approach time would not depend on token appearance and the opti-

mal strategy would be to approach the predator as soon as the trial starts to shorten

the experiment. On the other hand, if participants incorrectly assumed a temporal

threat-reward correlation, as suggested in previous work (Bach, 2015, 2017), then

the reward-maximizing strategy would be to approach whenever a token appeared,

at the maximum of their subjective threat wake-up function.

After the two tasks, participants were asked to estimate the probability of

getting caught if they left the safe place for each of the three threat levels on a

continuous scale ranging from 0 to 100% (with a 1% step increment). The association

between the color of the threat and threat level depended on behavior and had to

be implicitly learned during the experiment.
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Figure 3.1: Experimental set-up for the approach-avoidance conflict (AAC)
task. (A) where participants could approach a reward at the risk of getting caught
by a predator with varying levels of threat probability (shown by the color of the grid,
learned beforehand by direct experience) and magnitude (signaled by the number
of red tokens). In the predator exposure task (B), participants had to guess when
the predator awoke, following the same threat probabilities as in the AAC task. As
such, the probability of awakening was independent of time or token appearance
and was randomly determined at each capture attempt.

3.2.3 Psychiatric Questionnaires

After completion of the behavioral tasks, participants were asked to answer

a battery of self-report questionnaires based on previous work (Gillan et al., 2016;

Rouault et al., 2018), assessing a range of psychiatric symptoms including depression

(Zung Self-Rating Depression Scale, ZDS, Zung 1965), generalized anxiety (Gener-

alized Anxiety Disorder 7-item scale, GAD-7, Spitzer et al. 2006), schizotypy (Short

Scales for Measuring Schizotypy, SSMS, Mason et al. 2005), impulsivity (Barratt

Impulsiveness Scale-11, BIS-11, Patton et al. 1995), Obsessive-Compulsive Disorder

(Obsessive-Compulsive Inventory-Revised, OCI-R, Foa et al. 2002), social anxiety

(Liebowitz Social Anxiety Scale, LSAS, Liebowitz 1987), eating disorders (Eating

Attitudes Test, EAT, Garner et al. 1982), apathy (Apathy Evaluation Scale, AES,

Marin et al. 1991), alcoholism (Alcohol Use Disorders Identification Test, AUDIT,

Saunders et al. 1993), and a short IQ evaluation (International Cognitive Ability

Resource, Condon and Revelle 2014).
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In addition to this battery, they also answered questionnaires assessing trait

anxiety (State-Trait Inventory for Cognitive and Somatic Anxiety, STICSA-T, Ree

et al. 2008), sensation seeking (Brief Sensation Seeking Scale, BSSS, Hoyle et al.

2002), and the daringness subscale of the Child and Adolescent Disposition Scale

(CADS, Lahey et al. 2010) to replicate and extend previous findings with other AAC

tasks (Bach, 2015; Bach et al., 2020). We did not include questionnaires based on

analysis of rodent AAC tasks (e.g., reinforcement sensitivity inventories) as there

is no empirical support for a relation with behavioral readouts in humans. See

Appendix for questionnaire scores (cf. Table B.1), distributions (cf. Figure B.2),

and correlations (cf. Figure B.3).

As a measure of data quality, attention checks were added to three question-

naires to ensure participants read the questions carefully (cf. Appendix B.1.3 ).

3.2.4 Quantification and Statistical Analysis

The exclusion criteria, pre-processing steps (cf. Appendix B.1.2), and analysis

plan were based on a discovery sample and pre-registered before the confirmation

sample was recruited (osf.io/5hmgk/; registered on 05 January 2023). The analy-

sis plan encompassed 3 steps. Step 1 was a manipulation check and consisted of

replicating the 4 behavioral group-level effects of the task previously shown in lab

settings (Abivardi et al., 2020; Bach, 2015, 2017; Castegnetti et al., 2020; Khemka

et al., 2017). Step 2 was a check of the questionnaire battery and consisted of

replicating a 3-factor solution of the transdiagnostic symptom dimensions (Gillan

et al., 2016; Hopkins et al., 2022; Rouault et al., 2018). For steps 1-2, every single

precondition needed to be confirmed at p < .05 to progress to the next step; hence

there was no multiple comparison correction. The goal of step 3 was to assess our

main research questions and investigate associations between behavioral variables

of interest (indexing passive avoidance and behavioral inhibition), and psychiatric

symptom dimensions extracted in step 2 and individual psychiatric questionnaires.

Holm-Bonferroni method was applied to correct for multiple comparisons across 20

pre-registered hypotheses in the confirmation sample.
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Step 1 – Replication of behavioral inhibition and passive avoidance

To test whether any of the behavioral variables were influenced by the inde-

pendent variables, we conducted (Generalized) Linear Mixed-Effects (LME) Models,

using glmer() and lmer() from the lme4 package in R. These models can deal with

unbalanced data. Each model embodied a 3 x 6 factorial design with threat level

(low/medium/high) and potential loss (0–5 tokens), specified in the syntax of the

lme4 R package as: Dependent variable 1 + threat level * potential loss + (1 |

participant).

Step 2 – Replication of the 3-factor psychiatric symptom dimensions

To replicate a previously established latent transdiagnostic structure (Gillan

et al., 2016; Hopkins et al., 2022; Rouault et al., 2018), we applied a factor analy-

sis with Maximum Likelihood Estimation using the fa() function from the Psych

package in R with an oblique rotation (oblimin). We selected the number of factors

based on Cattell’s criterion (Cattell, 1966) using the Cattell-Nelson-Gorsuch (CNG)

test from the nFactors package. The participants’ factor scores were estimated

using the Thurstone method. Finally, to ensure that our extracted latent structure

replicated previous findings, we compared the item loadings and participants’ z-

scored scores using the item weights between our current study and that of Hopkins

et al. (2022) who had access to a substantially higher subject-to-variable ratio (N =

4782).

The CNG test revealed a 3-factor latent structure that was concordant with

previous studies (Gillan et al., 2016; Hopkins et al., 2022; Rouault et al., 2018). As

the loadings across items had large positive correlations between studies (cf. Figure

B.4), we adopted the same labels as in the previous studies. For Factor 1 ‘Compulsive

Behavior and Intrusive Thought (CIT)’, the highest loadings came from the Alco-

holism, OCD, Eating Disorders, Impulsivity, and Schizotypy questionnaires. Factor

2 ‘Anxious-Depression (AD)’ was dominated by items from the Generalised Anxiety,

Depression, and Apathy questionnaires. Lastly, Factor 3 ‘Social Withdrawal (SW)’

had the highest average loadings from the Social Anxiety questionnaire, with some
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significant contributions from Generalised Anxiety and Eating Disorder question-

naires (cf. Figures 3.2,B.3, and B.5).

Exploratory inclusion of the three additional questionnaires assessing daring-

ness, sensation seeking, and trait anxiety did not alter the 3-factor latent structure

(cf. Appendix B.1.3 and Figure B.6).

Figure 3.2: Three latent transdiagnostic symptom dimensions explained
the shared variance between all questionnaire items. Loadings of all indi-
vidual questionnaire items (color-coded by questionnaire) onto each factor. This
plot is based on the combined sample, Figure B.5 shows the results separately for
the discovery and confirmation samples. Cf. Figure B.3 for the eigenvalues and
correlation matrices between questionnaires in both samples.

Step 3 – Effect of the psychiatric symptom dimensions and demo-

graphics on task readouts

To test the extent to which the interindividual differences predict behavior,

we included each symptom dimension score or demographics as a z-scored fixed

effect predictor into a simplified model from step 1 (i.e. without interaction of the

within-subject factors). In the syntax of the lme4 package, the specification was:

Dependent variable 1 + (threat level + potential loss) * IV + (1 | participant).

For all hypotheses relating to symptom dimensions, we ensured that the tests in the

discovery sample remained significant in a model in which all demographics were
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added as covariates, and vice-versa for the hypotheses relating to demographics.

To test the extent to which the symptom dimensions predict recollection of

threat memory (i.e. learned association between color and threat level), we in-

cluded each score as a z-scored fixed effect predictor of estimated catch rates while

accounting for true catch rates. In the syntax of the lme4 package, the specifica-

tion is Estimated catch rates 1 + symptom dimension * actual catch rate + (1 |

participant).

Estimating explained variance in symptom dimensions is complicated by the

fact that mixed-effects models include within-subjects effects and trial-by-trial data.

Thus, we estimated the proportion of explained variance in a regression model with

symptom dimension as the dependent variable and six per-participant predictor

variables as predictors: each participant’s average approach rate and latency, and

their respective linear relation to threat probability and magnitude.

To investigate a subjective prior assumption that the presence of tokens alerts

the predator, we estimated the influence of each symptom dimension on the percent-

age of predator exposure attempts before the token appearance in a linear regression.

3.3 Results

We investigated the relationship between AAC behavior and three transdiag-

nostic symptom dimensions, namely Compulsive Behavior and Intrusive Thoughts

(CIT), Anxious-Depression (AD), and Social Withdrawal (SW). Twenty hypotheses

(denoted as H) were first generated based on a large discovery sample (N1 = 315)

and then confirmed after pre-registration in a second sample (N2 = 690) with cor-

rection for multiple comparisons (cf. Table 3.1). To put our findings into context,

we report effect sizes and inference statistics from post hoc exploratory analyses

conducted on the combined sample.

We confirmed that in line with previous lab-based results (Abivardi et al.,

2020; Bach, 2015, 2017; Bach et al., 2019; Castegnetti et al., 2020; Khemka et al.,

2017), passive avoidance (i.e., proportion of avoidance decisions) and behavioral
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inhibition (i.e., approach latency) increased with threat probability and magnitude

(cf. Figures 3.3.A and B.7, Table B.2). We also confirmed that the factorial structure

of our questionnaire battery matched the one found in previous work (cf. Appendix

B.1.3).

3.3.1 Approach-Avoidance Conflict Decisions

We found a strong and robust relation between AAC behavior and CIT (cf.

Figures 3.3.B and B.8; Table 3.1). Individuals with high CIT scores exhibited a

greater inclination to approach tokens (i.e., reduced passive avoidance, H1; p <

.0001). Quantitatively, one standard deviation increase in CIT was associated with

a 59.2% increase in approach rate, all other predictors being held equal. Secondly,

individuals with high CIT scores were delayed in approaching tokens (i.e., higher

behavioral inhibition, H8; p < .0001), such that one standard deviation increase in

CIT corresponded to a 128 ms increase in approach latency. Finally, people with

high CIT had a higher tendency to approach in the incorrect direction, i.e., the side

opposite to the token (H20; p < .0001). Post-hoc analyses further indicated that

while individuals with higher CIT levels were significantly more likely to be caught

(β = 3.2, t(997) = 6.71, p < .0001), there was no significant association with reduced

task performance as measured by total tokens won (β = −0.72, t(997) = −0.99, p =

.32).

Next, AAC behavior in individuals with high CIT was less dependent on para-

metric threat features. The decrease in approach rate towards the token with higher

threat probability (H2; p < .0001) and magnitude (H3; p < .0001) was less pro-

nounced in people with high CIT. Similarly, the increase in approach latency with

higher threat probability (H9; p < .01) and magnitude (H10; p < .0001) was less

pronounced in people with high CIT. All in all, behavior explained 37.4% variance

in CIT.

The next best predictor was IQ, as measured with the International Cognitive

Ability Resource, with behavior explaining 8.0% variance (cf. Figure B.8). AAC
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decisions of higher IQ people depended more strongly on parametric threat features.

The decrease in approaching tokens under higher threat probability (H5; p < .0001)

and magnitude (H6; p < .0001) was more pronounced in people with higher IQ.

Similarly, the increase in approach latency with higher threat magnitude was more

pronounced in people with high IQ (H15; p < .0001).

Crucially, no strong relation between behavior and AD or sex was found, and

those that were initially hypothesized were rejected in the confirmation sample (cf.

Table 3.1). Indeed, no relation of any behavioral index with AD exceeded R2 = .01

in the combined sample. Thus, in line with previous work, we found no evidence

that AAC decisions related to subjective reports of transdiagnostic anxiety.

Notably, when analyzing individual questionnaire scores, we found that some of

the aforementioned relationships were profoundly non-specific, i.e., extended across

multiple questionnaires. In a post-hoc analysis across the combined sample, 11/12

questionnaires had a positive relation at p < .05 with approach choices (cf. Table B.3

and Figure 3.4). Among those, sensation-seeking and daringness had the strongest

effect. In contrast, the remaining 1/12, social anxiety, had no effect. Similarly,

12/12 questionnaires had a significant positive relation at p < .05 with approach

latency. Among these, OCD and daringness had the strongest effect. Nonetheless,

the effect of CIT was larger than any of these individual questionnaires. CIT also

accounted for the greatest proportion of behavioral variance at 37.4%, notably ex-

ceeding the variance explained by daringness and OCD, the two highest among the

questionnaires, at 21.2% and 21.1% respectively (cf. Table B.3). Thus, while altered

approach-avoidance behavior showed broad and non-specific relationships to most

questionnaire scores, the patterns were better explained by a single transdiagnostic

dimension than by any individual questionnaire.

3.3.2 Subjective Prior Assumptions

To investigate the subjective prior assumption that the presence of tokens alerts

the predator, participants completed a predator exposure task. Here, optimal be-
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havior according to the task statistics was to make an exposure attempt early in

the trial, regardless of token appearance. Across participants in the combined sam-

ple, the majority of the exposure attempts (58.8%) were made after the token had

appeared, confirming previous work in lab-based settings (cf. Figure 3.5.A). Peo-

ple with higher CIT made more exposure attempts before the token appeared than

those with low CIT (H18; p < .0001). A one standard deviation increase in CIT

score corresponded to a 161.33 ms reduction in exposure latency. This suggests that

people with high CIT might have a less strong prior assumption that the presence

of rewards alerts the predator.

3.3.3 Biased Threat Memory

After the two behavioral tasks, participants estimated the probability of getting

caught by each predator. As expected, the estimated catch rates depended on

threat level (ANOVA: F (2, 1004) = 29.98, p < .0001) and true catch rates (LME:

t(1, 2009) = 131.59, p < .0001) across all participants. However, the relation between

true and estimated catch rate was far from perfect (regression coefficient β = .21),

and there was a significant intercept (t(1, 2009) = 4417.79, p < .0001): participants

estimated catch rate on average 36.6% higher than the true catch rate (cf. Figure

3.5.B), which is in line with previous lab-based results (Bach et al., 2019).

CIT was linked to a biased learned association between color and threat level:

people with high CIT globally overestimated catch rates more, even while accounting

for true catch rates (H16; p < .0001). Additionally, the estimated catch rates of

people with high CIT depended less on actual catch rates (H17; p < .0001). Post-

hoc exploratory analysis suggested that the effect of the CIT scores was driven both

by a higher memory bias (β = .21, t(997) = 6.70, p < .0001) and lower memory

precision (β = −.08, t(997) = −2.54, p < .01) as indexed by the intercept and

the slope relative to variations between estimated and actual catch rates. This

analysis indicates that high CIT scorers were significantly impaired in their ability

to differentiate between threat levels. To illustrate this, the top 25% of CIT scorers

demonstrated a marked inability to accurately gauge threat based on catch rates
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(cf. Figure 3.5.C; cf. Appendix B.2.4 ).

Table 3.1: Pre-registered hypotheses and the results of the confirmation
analysis. P-values from the discovery sample are not corrected for multiple com-
parisons and are presented as a heuristic guide only. For the confirmation sample,
uncorrected P-values are presented; all of these were significant after comparing to
adjusted alpha-rates according to the Holm-Bonferroni method.

Hypotheses Discovery Sample Confirmation Sample

H1. People with high CIT approach more of-
ten

β = .693 (.09),
t(1, 44823) = 58.92,
p < .0001

β = .367 (.07),
t(1, 98245) = 31.2,
p < .0001

H2. The decrease in approach with higher
threat level is less pronounced in people with
high CIT

β = .267 (.03),
t(1, 44823) = 102.23,
p < .0001

β = .132 (.02),
t(1, 98245) = 62.59,
p < .0001

H3. The decrease in approach with higher po-
tential loss is less pronounced in people with
high CIT

β = .955 (.04),
t(1, 44823) = 546.94,
p < .0001

β = .528 (.02),
t(1, 98245) = 463.76,
p < .0001

H4. The decrease in approach with higher po-
tential loss is more pronounced in people with
high AD

β = −.111 (.04),
t(1, 44823) = 9.64,
p < .01

Not confirmed

H5. The decrease in approach with higher
threat level is more pronounced in people with
high IQ

β = −.247 (.02),
t(1, 44966) = 112.33,
p < .0001

β = −.081 (.02),
t(1, 98819) = 21.21,
p < .0001

H6. The decrease in approach with higher po-
tential loss is more pronounced in people with
high IQ

β = −.638 (.04),
t(1, 44966) = 278.66,
p < .0001

β = −.182 (.03),
t(1, 98819) = 50.97,
p < .0001

H7. The decrease in approach with higher
threat level is less pronounced in males

β = .2 (.05), t(1, 44680) =
17.19, p < .0001

Not confirmed

H8. People with high CIT approach later β = .087 (.01),
t(1, 32215) = 35.54,
p < .0001

β = .098 (.01),
t(1, 79978) = 114.76,
p < .0001

H9. The increase in approach latency with
higher threat level is less pronounced in people
with high CIT

β = −.014 (.00),
t(1, 32215) = 26.18,
p < .0001

β = −.005 (.00),
t(1, 79978) = 10.13,
p < .01

H10. The increase in approach latency with
higher potential loss is less pronounced in peo-
ple with high CIT

β = −.036 (.00),
t(1, 32215) = 72.38,
p < .0001

β = −.013 (.00),
t(1, 79978) = 36.09,
p < .0001

H11. People with high AD approach earlier β = −.053 (.02),
t(1, 32215) = 11.97,
p < .001

Not confirmed

H12. The increase in approach latency with
higher potential loss is more pronounced in
people with high AD

β = .012 (.00),
t(1, 32215) = 7.26,
p < .01

Not confirmed

H13. People with high IQ approach earlier β = −.065 (.02),
t(1, 32335) = 18.73,
p < .0001

Not confirmed

H14. The increase in approach latency with
higher threat level is more pronounced in peo-
ple with high IQ

β = .015 (.00),
t(1, 32335) = 25.24,
p < .0001

Not confirmed
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Table 3.2: Continuation of Table 3.1

Hypotheses Discovery Sample Confirmation Sample

H15. The increase in approach latency with
higher potential loss is more pronounced in
people with high IQ

β = .023 (.00),
t(1, 32335) = 25.35,
p < .0001

β = .008 (.00),
t(1, 80372) = 16.96,
p < .0001

H16. People with high CIT overestimate catch
rates more

β = 19.36 (1.49),
t(1, 625) = 168.33,
p < .0001

β = 11.11 (.9),
t(1, 1367) = 150.76,
p < .0001

H17. For people with high CIT, estimated
catch rates depend less on actual catch rates

β = −.29 (.04),
t(1, 625) = 61.9, p < .0001

β = −.15 (.02),
t(1, 1367) = 51.43,
p < .0001

H18. People with high CIT make more preda-
tor exposure attempts before token appear-
ance

β = 5.66, t(1, 309) = 3.19,
p < .01

β = 6.31, t(1, 645) = 4.9,
p < .0001

H19. People with high AD make fewer preda-
tor exposure attempts before token appear-
ance

β = −4.88, t(1, 309) =
−2.73, p < .01

Not confirmed

H20. People with high CIT more often ap-
proach in the incorrect direction

β = −.426 (.07),
t(1, 33892) = 32.5,
p < .0001

β = −.231 (.05),
t(1, 84335) = 25.09,
p < .0001

3.4 Discussion

Cautiousness in AAC tests is a stable behavioral trait (Bach et al., 2020) and is

sensitive to anxiolytic drugs (Bach, 2021; Cryan and Sweeney, 2011) across species

including humans (Bach et al., 2018; Korn et al., 2017) but with no strong evidence

of a relation to self-reported anxiety (Bach, 2021; Bach et al., 2020; Fricke and Vogel,

2020). Here, we asked what are the clinically relevant personality traits that predict

this behavioral trait. We included a large questionnaire battery, including a brief

IQ test, as well as demographic information, in our analysis. In a discovery sample

(N1 = 315), we formed and pre-registered 20 hypotheses which were subsequently

tested in a large independent sample (N2 = 690).

Our primary finding highlights transdiagnostic compulsivity (i.e. CIT) as the

main predictor of all behavioral readouts. High transdiagnostic compulsivity was

related to decreased passive avoidance (i.e. lower avoidance rate) but also heightened

behavioral inhibition (i.e. later approach). Interestingly, while participants with low

levels of transdiagnostic compulsivity did not lack behavioral inhibition, those with
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high transdiagnostic compulsivity exhibited a heightened form. In addition, for

those with high transdiagnostic compulsivity, both passive avoidance and enhanced

behavioral inhibition were less dependent on trial-by-trial threat characteristics.

In a secondary task, we assessed implicit beliefs on threat-reward correlation as

a potential mechanistic explanation for behavioral inhibition. We found that high

transdiagnostic compulsivity was linked to a diminished belief that the presence of

tokens alerts the predator, which indicates an altered or simplified representation of

threat and reward relations. This links with previous studies suggesting that com-

pulsive behavior may be explained by the difficulty in building an accurate explicit

model of the world (Seow et al., 2020), which suggests they may rely on simplifica-

tions or shortcuts. While additional experiments are needed to determine exactly

which mechanisms are at play behind the amplified behavioral inhibition, it seems

unlikely that these processes operate under the same model-based control commonly

observed in the rest of the population (Bach, 2015, 2017). Additionally, numerous

studies have provided compelling evidence that individuals with compulsive disor-

ders (Gillan et al., 2016, 2011; Morris et al., 2015; Voon et al., 2015), as well as

healthy people with high CIT (Gillan et al., 2016), show reduced goal-directed con-

trol. Studies hint towards the idea that model-based learning deficits in compulsive

individuals predict the presence of habits (Gillan et al., 2014). In the context of

behavioral inhibition, a similar mechanism might be at play at least to the extent

that it seems to rely on a basic association between cues (i.e. rewards) and response

(i.e. avoidance) that does not adapt to environmental characteristics (i.e. threat

probability and magnitude). Furthermore, our pre-registered findings revealed that

higher IQ, associated with enhanced goal-directed control (Schad et al., 2014), was

linked to higher integration of threat features into behavior, and post-hoc analysis

revealed an increased belief in threat-reward correlations with high IQ (cf. Appendix

B.2.3). These results, concordant with previous findings (Bach et al., 2020), suggest

a form of attenuated behavioral inhibition, further endorsing the premise that vari-

ations in behavioral inhibition could stem from differences in goal-directed control

abilities.

On the other hand, the decreased dependency on threat probability in people
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with high transdiagnostic compulsivity could be the result, at least partially, of an

inability to discern between threats. The association between the color of the threat

and threat level depended on behavior and had to be implicitly learned during the

experiment. Given people with high transdiagnostic compulsivity approached more,

they had more opportunity to learn, but in fact their estimated catch rates were

less accurate. Interestingly, it has been posited that OCD and general compulsivity

show deficits in the subjective reporting but not the learning of uncertain stimulus

statistics (Lee et al., 2023; Vaghi et al., 2017) such that OCD patients can construct

an accurate internal representation of the environment characteristics but fail to use

it to guide behavior. In contrast, in the present study, people with high transdiag-

nostic compulsivity had deficits both in behavior and in explicit reports of threat

statistics. Overestimation of threat has been implicated in the pathogenesis of OCD,

mapping high on the CIT factor, due to biased processing of threat-related informa-

tion (Moritz and Jelinek, 2009; Moritz and Pohl, 2009; Sookman and Pinard, 2002;

Tolin et al., 2003).

Sex has been previously found to be the best predictor of cautiousness in a

somewhat different risky foraging task in young people (Bach et al., 2020), in line

with extensive self-report literature (Byrnes et al., 1999). In the current study,

we did not observe any relation between cautiousness and sex but it was also not

designed to investigate sex differences. In Bach et al. (2020), males were less cautious

when their potential loss was smaller but adapted their behavior to the same level

as females when the potential loss was higher (Bach et al., 2020). This may mean

they are not more reckless overall, but adjust to risk more (Lewis et al., 2022).

Nonetheless, we replicated an intriguing finding from Bach et al. (2020), who

identified daringness as the best self-reported predictor of behavioral cautiousness.

Similarly, in our study, daringness strongly predicted cautious behavior. Although

the associations were not unique, daringness consistently emerged as the best indi-

vidual questionnaire predictor. However, its predictive strength was still outpaced

by transdiagnostic compulsivity, which it notably maps onto.

Finally, we add to a large body of literature suggesting that cautiousness in
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AAC tests, although these are often referred to as "anxiety tests," does not specifi-

cally relate to self-reported anxiety (Bach, 2021; Fricke and Vogel, 2020). Our study

found no connections with transdiagnostic anxiety (AD). However, it is worth noting

that the AD factor might relate more closely to apathy and depression rather than

anxiety, as general anxiety scores demonstrated closer ties with apathy and depres-

sion than with another trait anxiety questionnaire (cf. Appendix B.1.3). Addition-

ally, some connections between some (but not all) anxiety-related questionnaires and

approach-avoidance biases were found. However, these links were not unique and

exhibited the same directional patterns as other psychiatric questionnaires, some of

which consistently explained more variance than anxiety. These findings are unlikely

to be due to the specificity of the online sample, as they were equally, if not more,

anxious than in-person studies (cf. Appendix B.2.1). In sum, the validity of using

AAC tests for etiology research related to anxiety disorder in healthy humans may

be questioned (Bach, 2021; Bach et al., 2020).

Beyond the specific findings of our study concerning behavioral inhibition and

avoidance, our data underscore the advantages of employing transdiagnostic dimen-

sions in contrast to traditional methods of phenotyping. Similar to Seow et al.

(2020), we identified nonspecific patterns of correlation with task-related variables

when we scrutinized commonly used yet infrequently compared clinical question-

naires. For instance, all twelve questionnaires were consistently associated with

behavioral inhibition, yet only the compulsive factor distinctly aligned with this

association and exhibited a larger effect than any individual questionnaire. This

approach not only addresses collinearity concerns among questionnaires but also

tackles their inherent heterogeneity. Moreover, our findings affirm the generaliza-

tion of these symptom dimensions to another independent dataset, reinforcing their

utility across various experimental designs for a comprehensive understanding of

their impact on cognitive functions (Gillan et al., 2016; Katyal et al., 2023; Lee

et al., 2023; Rouault et al., 2018; Seow et al., 2020, 2021).

An important consideration is whether CIT might in fact represent a general

factor of psychopathology, often referred to as the p-factor (Watts et al., 2023).

However, the strong correlation between our factor loadings and those identified in

81



CHAPTER 3. BEHAVIORAL CAUTIOUSNESS

prior studies which delineated distinct effects associated with these factors, makes

this association between CIT and the p-factor speculative and unlikely. Addition-

ally, a second-order principal component, which represents a broad-spectrum psy-

chopathology factor (Caspi et al., 2014; Lahey et al., 2021), did not explain behavior

better than CIT, and several individual questionnaires (cf. Appendix B.1.4). Yet

even if each three symptom dimensions represents distinct facets of psychopathology;

higher CIT might still signal a propensity towards more severe psychopathological

states, negative outcomes, and generally exert a more adverse impact on cognitive

functions. This alternative explanation seems improbable under the premise of a

linear relationship between psychopathology levels and approach-avoidance biases,

given that the observed effects did not intensify in the confirmation sample, despite

its consistently higher psychopathology scores compared to the discovery sample.

Another possible explanation for the results is that CIT is linked to less engage-

ment in the task or that intrusive thoughts, for example, could cause momentary

disengagement on some trials for high-CIT individuals. However, the combination of

stringent exclusion criteria, comprehension and attention checks, performance-based

incentives, and replication in a pre-registered sample suggest that the relationship

between CIT and AAC task behavior is not simply due to inattentiveness or dis-

engagement, both overall and on individual trials. Additionally, CIT was not asso-

ciated with lower performance. Supporting this, recent work by Moutoussis et al.

(2021) demonstrates that individual differences in decision-making—captured by a

construct called "decision acuity"—are stable, meaningfully related to psychopathol-

ogy, and underpinned by brain connectivity patterns. Their findings indicate that

such cognitive differences are not merely artifacts of disengagement or inattention,

but reflect genuine psychological and neurobiological variation. Together, these lines

of evidence strengthen the case that the observed association between CIT and AAC

task behavior reflects true individual differences rather than reduced task engage-

ment.

While web-based data collection offers many benefits in psychiatry research

(Crump et al., 2013; Gillan et al., 2016; Mason and Suri, 2012), concerns regarding

the quality of data—particularly on mTurk—have been on the rise (Burnette et al.,
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2022a,b; Chandler et al., 2014; Zorowitz et al., 2023). Our exclusion rate, while

somewhat higher than the typical 3-37 % range found in a meta-analysis, is not

unusual for such studies (Shapiro et al., 2013). Interestingly, Zorowitz et al. (2023)

demonstrated that inattentive responding can lead to spurious correlations. By

addressing each possible source of spurious correlations through further tests and

validations, we believe it is unlikely that our findings are the result of false-positive

correlations (cf. Appendix B.2.2).

In conclusion, we find that a transdiagnostic symptom dimension assessing

Compulsive Behavior and Intrusive Thoughts is the main predictor of cautious be-

havior in an AAC task. Even if AAC tests have been extensively used to characterize

the effects of anxiolytic agents and probe neural circuitry related to anxiety (Bach,

2021), they might not specifically relate to self-reported anxiety.
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Figure 3.3: Increasing threat probability and potential loss enhance passive
avoidance and behavioral inhibition. (A) Proportion of approach-avoidance
decisions, indexing passive avoidance (left) and approach latency, indexing behav-
ioral inhibition (right). (B) Estimated marginal means of approach choice (left) and
latency (right) depending on CIT (Compulsive Behavior and Intrusive Thought)
symptom dimension scores while other predictors are kept fixed. This plot is based
on the combined sample, Figures B.7 and B.8 show the results separately for the
discovery and confirmation samples. Low CIT: -1.5, Mean CIT: 0, and High CIT:
+1.5.
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Figure 3.4: Correlation matrix between behavioral indices and question-
naires scores (left of black line) and symptom dimensions scores (right of
black line). The color scale and the numbers indicate the correlation coefficient.
The number is only present when the absolute r > .10. This plot is based on the
combined sample. AC: Approach choices, AL: approach latency.
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Figure 3.5: Subjective prior assumptions and threat memory. (A) Time
of threat exposure attempts relative to token appearance. (B) Across participants,
the estimated catch rates depended on the true catch rate which had to be learned
during the experiment. (C) CIT (Compulsive Behavior and Intrusive Thought) is
linked to biased threat memory such that the top 25% CIT scorers (center) did
not distinguish between different threat levels and overestimated their probabilities.
While the bottom 25% CIT scores (left) and all participants (right) distinguished the
threats better, they still overestimated the threat probabilities. Actual threat rates
for each level are denoted by red diamonds. This plot is based on the combined
sample, Figures B.9 and B.10 show the results separately for the discovery and
confirmation samples. Est.: estimated.
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Escape Decisions
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CHAPTER 4. ESCAPE DECISIONS

4.1 Introduction

Field observations and laboratory experiments have revealed that many non-

human species employ complex and sophisticated defensive behaviors (Evans et al.,

2019, 2018), to escape from immediate threat. However, little is known about human

escape actions and the computational mechanisms that control them, as this is diffi-

cult to study for ethical reasons. Previous work has used imagined threat scenarios

(Blanchard et al., 2001), withdrawal from mild aversive stimuli or cues associated

with them (Dinsmoor, 1977), or third-person view computer games (Bach, 2021;

Fung et al., 2019; Mobbs et al., 2007; Qi et al., 2018; van Meurs et al., 2014) which

restrict possible actions to key presses or joystick movements and tends to minimize

behavioral dynamics. This mismatches with the rich and large repertoire of defen-

sive actions commonly seen in real life and is likely to underestimate the complexity

of the action space, and the ensuing decision problem (Bach, 2017). For example,

Homer’s Iliad anecdotally describes at least 13 distinct behavioral patterns under

conspecific attack, not counting the use of weapons (cf. Appendix Table C.1). How-

ever, a systematic empirical assessment of the mechanisms that compute the choice

between these behaviors in humans remains elusive (Bach, 2017; Mobbs et al., 2020;

Mobbs and LeDoux, 2018).

Here, we investigated human escape behavior in a fully immersive virtual reality

(VR) environment in which participants could move freely within a 5 x 10 m physical

space (cf. Figure 4.1.A.). With “escape”, we refer to behaviors aimed at distancing

oneself from an existing threat in the environment, in order to reduce or eliminate

harm. This is in contrast to “avoidance”, which is often defined as behaviors aimed

at preventing threat encounter in the first place (Sege et al., 2018).

In two independent experiments, N1 = 29 (E1) and N2 = 30 (E2) participants

were instructed to forage for fruit on a bush, and to stay clear of various threats

over 68/36 (E1/E2 part 1) independent trials. We included 13/7 natural and 3/1

artificial (control) threats (cf. Figures 4.1.B., C.1; Appendix Table C.2), which

appeared on 60/32 of all trials (cf. Appendix C.1.3 for threat selection). A shelter,
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which was always 5 m behind the fruit bush, provided protection from all threats. On

half of these trials, the threat moved toward the participant (“attack” condition; cf.

Figure 4.1.C.) requiring escape, while on the other half, the threat diverted from the

attack trajectory after covering 20% of the distance, making any escape unnecessary

(“divert” condition; cf. Figure 4.1.D.). All threats were animated to show realistic

behavior (URL to replay the experiments: https://osf.io/2b3k7/). Fast animal

threats would chase and outrun the participants, forcing them to enter the shelter

to survive. Slow animal threats would chase but not outrun the participants, thus

requiring escape but not necessarily entry into shelter. The inanimate threat did

not chase such that entering the shelter was unnecessary. Analyses in the main

text refer to natural threats included across both experiments (cf. Figure 4.1.B.,

Appendix Tables C.2, C.3). In an exploration-confirmation strategy, hypotheses

were generated by inspecting contrasts of estimated marginal means from linear

mixed-effects models in E1, which were then tested in E2 with Holm-Bonferroni

correction for multiple comparisons (cf. Figure 4.1.E.; Appendix Tables C.4, C.5).

4.2 Methods

4.2.1 Participant Details

To test eligibility, participants first had to complete an anonymous pre-screening

questionnaire. To exclude any potential risk, they could not take part if they have a

lifetime history of being victim to a life-threatening situation or interpersonal attack,

or if they ever had major symptoms of post-traumatic stress-disorder (PTSD). This

was assessed using the PTSD Checklist for DSM-5 (PCL-5; Weathers et al., 2013).

Exclusion criteria also included the diagnosis of a mental or neurological disorder.

To minimize the risk of injury from falling while moving in the virtual environment,

they also needed to confirm that their movement abilities, hearing, and vision were

unimpaired.

We report data from 29 participants (19 females; mean age ± SD = 25.9 ±
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5.6) in the first experiment (E1) and 30 participants (15 females; mean age ± SD

= 24.7 ± 5.3) in the second experiment (E2). Due to hardware failures, some

individual trials were not completed such that participants experienced, on average,

66.5 out of 68 and 35.8 out of 36 trials. One additional participant in E1 and three

additional participants in E2 did not complete the experiment per protocol due to

VR hardware failure and were not included. Since we were interested in escape

behavior (which could only be initiated after the threat appeared), we excluded one

additional participant in E2 who moved away from the fruit bush before any threat

appeared on 31 out of 36 trials (corresponding to 5 standard deviations above group

average).

All participants gave written informed consent before starting the experiment

and received a fixed monetary compensation. Experiments complied with all rele-

vant ethical regulations and were approved by the UCL Research Ethics Committee

(6649/003).

4.2.2 Experimental Design

Each experiment consisted of a sequence of short encounters (trials) with vari-

ous threats (cf. Appendix Tables C.2, C.3; Appendix C.1.3 for threat selection), and

short breaks in between. Participants were tasked with collecting as many pieces of

fruit (resembling kumquats) as possible while staying clear of physical contact with

any threat.

Tutorial

An interactive tutorial took place in a white barren environment. First, we

instructed participants to walk around the boundaries of the physical environment,

run back and forth across the length of the space, and walk backward toward the edge

of the physical environment. Secondly, we showed the participants an example of a

fruit bush. Participants were taught to hold their hand over any appearing fruit for

one second, which made it disappear and play a “string pluck” sound, before the next
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fruit appeared. The third stage allowed the participant to experience a red display

and loud white noise that occurred on threat contact. Finally, participants were

shown the shelter and told it would always appear behind their starting position.

They entered the shelter to end the tutorial.

Trials

At the start of each trial, the participant was positioned in a low grass clearing

surrounded by tall grass, with a single fruit bush 2.5 m in front of them and a shelter

2.5 m behind them. To reduce cue and context conditioning, the color and shape of

the fruit bush were randomly varied, and additional bushes, grass patches, animal

carcasses, and distant flocks of birds were added randomly around the participant

without blocking any escape paths. Once they started fruit collection, a threat could

emerge from the grass accompanied by an initial rustling sound after a delay which

was uniformly drawn from 1-11 s. A trial could end in one of three ways: 1. Contact

of any body part with a threat (approximated by a set of simple volumes), turning

the display red, playing an uncomfortable high amplitude white noise sound, and

removing any collected fruit in that trial while playing a chime sound. 2. Upon

entering the shelter, the door was slammed shut (unless the threat was already in

close proximity, thus blocking the door, leading to outcome 1). 3. After a pre-

determined time, if none of outcomes 1-2 occurred. After outcomes 2-3, a white

display appeared, and collected fruit were added to a total count. In all cases,

verbal feedback was given on a sign in front of the participant (e.g., “you were killed

by the threat”, “you escaped safely”, or “you survived”). Afterwards, the participant

was placed in a transition environment with floor markers, on which they had to

stand in order to start the next trial.

4.2.3 Experimental Conditions

In E1 (68 trials) and the first part of E2 (36 trials), we implemented a 2 x 2

factorial design with “threat behavior” (attack/divert) and “time-to-impact” (1.5 s/5
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s) as the two independent variables. Two of the 16 threats in E1 (crocodile and time

bomb) were not compatible with divert behavior, and so were only used with the

“attack” animation. For E1, this resulted in 60 trials, plus 8 no-threat trials visually

identical to threat trials. For E2, this resulted in 32 trials, plus 4 no-threat trials.

Threat Behavior

Threats approached from a randomly selected angle (-45, 0, 45 degrees) and ran

straight towards the fruit picking position. The attack angle did not affect the total

distance traveled, as the threat path consisted of two approximately straight paths.

In attack trials, the threat started chasing the participant after 75% of the time it

took to reach the fruit picking position (calculated based on the threat’s speed).

In divert trials, the threat changed target to an invisible object on the far left or

right of the participant after 20% of the time. Its target depended on the initial

approach angle: left (-45 degrees) led to right diversion (+90 degrees), right (+45

degrees) led to left diversion (-90 degrees), and center (0 degrees) resulted in random

left (-110 degrees) or right (110 degrees) diversion with equal probability. All angles

were measured around the y-axis (up/down) relative to the positive z-axis (direction

the participant would naturally be facing). The rock was set up in a different way.

As a non-living object, we did not allow it to divert from its trajectory. Hence,

in attack trials, it would roll towards the fruit picking position and beyond, in a

ballistic manner. In divert trials, the initial direction of the rock was adjusted by

+/-5 degrees. This meant the rock would not hit the participant, but the participant

must still watch it for some time to estimate the precise trajectory.

Time-to-impact

We defined time-to-impact as the maximum time available to initiate escape

and just about collide with the threat (i.e., if participants were minimally faster, they

could escape; if they were minimally slower, they would get killed; cf. Appendix

Figure C.1). Threats could be either faster or slower than the participant. For

slow animals and the ballistic rock, this was simply the interval between the first
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occurrence of the threat and their arrival at the fruit-picking position. For chasing

fast threats, this was the time that would lead to simultaneous arrival of the threat

and the participant at the shelter, given assumed participant speed of 2 m/s based

on pilot data. In other words, time-to-impact was the participant’s lead time at the

shelter if they could escape with zero delay. For all moving threats (excluding time

bomb and crocodile in E1), time-to-impact was realized by adjusting initial threat

distance and the placement of surrounding covering grass from which the threat

appeared (cf. Table 4.1). Large threats appeared from tall grass placed around

the participant. Smaller threats appeared from patches of shorter grass placed in

the same manner. However, decoy tall grass was placed in small threat scenarios,

and decoy short grass in large threat scenarios (at a randomized radius) so that the

presence of either type of grass could not be used to predict the type of threat.

We used 1-dimensional constant velocity equations to derive the required initial

position of the threat (ST ). In the first case, the threat is faster than the participant

(VT > VP ). Assuming constant velocity, the relationship between time, velocity,

and position for the threat is given by:

Sesc = ST + VT · Tesc

Tesc =
Sesc − ST

VT

And for the participant by:

Sesc = SP + VP · (Tesc − TPlan)

Tesc =
Sesc − SP

VP

+ TPlan

Combining these, we can solve for the initial distance of the threat (ST ):

Sesc = ST + VT ·
(
Sesc − SP

VP

+ TPlan

)
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ST = Sesc − VT ·
(
Sesc − SP

VP

+ TPlan

)
Where Sesc is the safe house position, SP is the expected position of the par-

ticipant (fruit picking position), Tesc is the estimated escape time, and TPlan is the

time to plan and initiate their escape. Sesc and SP were fixed at -2.5 m and 2.5 m

respectively, as they were based on the size of the physical room, which gave a partic-

ipant a 5 m distance to escape. VP was assumed to be -2 m/s (running downwards)

based on pilot data. The equation was used to a priori programmatically generate

the scenarios which would make up each trial, for example placing the threat at its

initial position and generating surrounding foliage that would obscure it.

The above method for threat initial placement would not work in the instances

where the threat was slower than the participant (VT < VP ) since the threat would

not be able to ever catch them during their escape. In these cases, a different

equation was used, whereby the participant was expected to get caught when the

time-to-impact ended. If VT < VP , the threat can only catch the participant during

the RT period so the movement time of the threat is equal to RT, and will catch

the participant at SP :

SP = ST + VT · TPlan

The participant’s speed (VP ) is 0 during the RT period, so is not needed. We

simply solve the above for ST . This allows for the calculation of the initial threat

position (ST ) based on only the fruit picking position, speed of the threat, and

prescribed time-to-impact:

ST = SP − VT · TPlan

For the crocodile (in E1), a different environment with murky water was used.

The crocodile moved perpendicularly along the bank as it approached to match the

participant’s position on the bank. Therefore, we positioned the threat such that

the time it took to surface from the water and initiate the attack was equal to the
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time-to-impact for that trial.

The time bomb (in E1) appeared to be “thrown” from the tall grass and landed

on the ground in front of the participant 1 second later. The time bomb displayed a

timer which ticked down to an explosion that would kill the participant (regardless

of distance) if they were not in the safe house. We set the time until detonation to

match the sum of the time-to-impact for that trial and the estimated escape time

(Tesc), starting from the moment it hit the ground.

Non-natural elements in the second part of E2

In the second part of E2 (blocks 2-4), we used non-natural elements in the en-

vironment, to address computational characteristics of action-selection mechanisms

for one particular threat not used in block 1, namely the panther.

Force shield

In E2 block 2, we tested reinforcer devaluation in a 2 (force shield vs. no force

shield) x 2 (panther vs. no threat) x 2 (1.5 vs. 5 s time-to-impact) design. In force

shield trials, a visible and audible force shield built up and surrounded the partic-

ipant at the beginning of the trial and then disappeared visually but continued to

protect against the threat. Participants learned about the force shield in a preceding

tutorial, during which the panther did not occur. To induce unpredictability and

avoid participants from inferring the presence of the threat and the availability of

the force shield, we determined the number of trials in this block randomly for each

participant (cf. Appendix Table C.7). Thus, we implemented 3 types of trials: 1-

certain panther trials that would occur for every participant, 2- uncertain panther

trials that would occur with a probability of 75%, and 3- uncertain no-threat trials

that would occur with a probability of 75%. Overall, in this block, there are 4 cer-

tain trials and 8 uncertain trials with 75% chance of occurring for each participant

(cf. Appendix Table C.7).
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Hands-up

In E2 block 3, we addressed whether participants could learn to use an in-

structed non-natural behavior (here, raising both hands above their head) to stop

the threat from attacking. Participants were informed at the beginning of each trial

whether panthers in this environment would be sensitive to the novel action by a

sign in the grass clearing. The factorial design and number of trials were analogous

to block 2.

Medusa

In E2 block 4, we sought to investigate whether participants could learn, by

trial and error, to identify and avoid a common action (here, looking at the threat)

when it led to a negative outcome (here, virtual death by a “magical force”). We used

a 2 (panther vs. no threat) x 2 (1.5 vs. 5 s time-to-impact) design. This resulted

in the following trials: 2 (time-to-impact) x 3 (repetition) certain panther trials, 2

(time-to-impact) uncertain panther trials, and 2 (time-to-impact) x 2 (repetition)

= 4 uncertain no-threat trials (cf. Appendix Table C.7).

Exploratory trials

Block 5 comprised several exploratory trials related to the shelter presence and

position. We included 2 trials where the participant started in a cul-de-sac gorge

with no shelter, which made escape from the threat impossible.

4.2.4 Equipment

We used an HTC Vive Pro Eye HMD running an experiment built in the Unity

Engine with SteamVR & Unity Experiment Framework (Brookes et al., 2019). Vive

controllers were held in each hand, and Vive Trackers were attached to the waist

and feet to allow for real-time body tracking. The VR headsets included a built-

in microphone and eye tracking (cf. Appendix C.1.1 for more details about eye

tracking).
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4.2.5 Self-reported Questionnaires

We aimed to determine if heterogeneity between participants in threat-related

behaviors arose due to individual differences, especially those that have an etho-

logical origin. As such, we wanted to assess predictors of cautiousness such as fear

susceptibility, phobia and anxiety levels, and risk preferences (cf. Appendix C.1.2

for more details about questionnaire selection). We implemented all questionnaires

using REDCap electronic data capture tools hosted at University College London

(Harris et al., 2009).

A few days before the experiment, participants completed self-report ques-

tionnaires assessing fear (Fear Survey Schedule-III, FSS; Wolpe and Lang, 1964),

trait anxiety (State-Trait Inventory for Cognitive and Somatic Anxiety, STICSA-T;

Gros et al., 2007; Ree et al., 2008, 2000), sensation seeking (Brief Sensation Seek-

ing Scale, BSSS; Hoyle et al., 2002), disgust (Disgust Propensity and Sensitivity

Scale, DPSS-12; Fergus and Valentiner, 2009), spider phobia (Spider Questionnaire-

12, SPQ-12; Zsido et al., 2018), snake phobia (Snake Questionnaire-12, SNAQ-12;

Zsido et al., 2018), motion sickness (Motion Sickness Susceptibility Questionnaire,

MSSQ; Golding, 1998, 2006), video game usage (Video game usage questionnaire,

VGUQ; Tolchinsky, 2013), as well as questions enquiring about their experience and

expertise in martial arts.

Immediately before the VR game, participants provided demographic informa-

tion including sex and gender, age, body weight and height as well as current health

and physical status and completed the state portion of the STICSA (Gros et al.,

2007; Ree et al., 2008, 2000).

Immediately after the VR game, participants assessed their cybersickness (Sim-

ulator Sickness Questionnaire, SSQ; Lane and Kennedy, 1988).

Cybersickness

Cybersickness is part of virtual reality-induced symptoms and effects (VRISE)

and is considered to be a subtype of motion sickness induced by immersion into
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virtual reality (Davis et al., 2014; Saredakis et al., 2020). There is limited consensus

about the symptoms provoked by VR as the biological mechanisms are unknown.

To ensure participants did not experience any negative symptoms from the

VR, we measured their level of cybersickness (Davis et al., 2014). Compared to

the mean cybersickness from similar VR interactive experiments combined in a re-

cent meta-analysis (Saredakis et al., 2020), our sample reported lower cybersickness

(MSaredakis et al., 2020 = 34.3, ME1 = 24.2, ME2 = 26.6). Additionally, for ease of com-

parison between studies, the VRSQ scores were ME1 = 12.2, ME2 = 12.7, the CSQ

Dizziness scores were ME1 = 0.5, ME2 = 0.7, and the CSQ Difficulty focusing scores

were ME1 = 0.8, ME2 = 1.

4.2.6 Quantification and Statistical Analysis

Task Measures

A priori, we extracted 18 trial-level summary statistics from our data (cf. Ap-

pendix Table C.4) for E1; a subset of these were used for statistical analysis of the

first part of E2. When averaging over time periods, we use the trapezium rule to

ensure the average is accurate over an irregular time sample. (1-3) The three pos-

sible outcomes, namely “escape to shelter” by going into the shelter, “survived” by

not going into the shelter, or “virtual death” when getting into contact with the

threat. We estimated “initiated escape” (4) and “escape initiation time” (5) as the

time when participants first moved away from the fruit bush using the head tracker

which had the highest data quality. When participants initiated their escape but

did not go into the shelter, we considered this an “interrupted escape” (6). We

extracted the smallest distance between the participant and the shelter (7) or the

threat (8). We extracted peak (9) and mean speed (10) of the participant during

escape. The following measures were extracted and averaged over the 1.5 s after the

threat appeared (corresponding to the shorter time-to-impact), or during the entire

escape (until entering the shelter, or trial end, whichever occurred earlier): (11-12)

body orientation (mean cosine of angle between a vector pointing forward from the
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participant’s pelvis, and the line between the participant and the threat), (13-14)

head orientation (similar for a vector pointing forward from the participant’s fore-

head), (15-16) fruit picking rate, and (17-18) visual scanning, defined as cumulative

angle of head movements. For no-threat trials, the corresponding measures were

taken from a random time point defined a priori within Unity. For trials in which

participants did not escape, all measures relating to escape were considered missing.

For the second part of E2, we considered the following additional summary

statistics: (19) fruit picking rate from threat appearance to the minimum duration

of the trial (12.5 s); (20) virtual death by magical force. Furthermore, as we had eye

tracker data available for E2, we used gaze orientation (rather than head orientation)

to compute (17) for E2 part 2 only; results for head orientation were similar.

Behavioral Analysis

The numerous possible analysis methods combined with the high dimensional-

ity of the dataset posed a formidable multiple comparison problem. Therefore, we

opted for a rigorous exploration-confirmation approach. We generated 11 hypotheses

by exploring E1 (cf. Appendix Table C.5), which we replicated in E2 while correct-

ing for multiple comparisons (Holm-Bonferroni method). For statistical analysis, we

used generalized linear mixed-effects models for binomial variables (virtual death,

initiated escape, interrupted escape) and linear mixed-effects models for continuous

variables (glmer() and lmer() from the lme4 package in R). All models followed a

7 x 2 x 2 factorial design with threats (Elephant, Rock, Human, Bear, Dog, Snake,

and Spider), time-to-impact (1.5 s and 5 s), and threat behavior (attack, divert);

model syntax DV ∼ threat * time-to-impact * threat behavior + (1 | Subject). If

models did not converge, we used the lme4 function allfit to iterate through all

alternative (g)lmer optimizers. For glmer, if the model still did not converge, we

removed the integration over random effects (option nAGQ). To test pre-defined hy-

potheses, we estimated marginal means (EMMS) for each cell of the design using

emms() and generated contrasts using contrast() (from the emmeans library in R).

For E2 part 2, the a priori primary outcome measures were “escape to shelter”

99



CHAPTER 4. ESCAPE DECISIONS

and “minimum distance from shelter” in force shield and hands-up trials, and “vir-

tual death by magical force” in Medusa trials. As secondary outcome measures for

force shield trials, we considered “fruit picking rate from threat appearance to the

minimum duration of the trial (12.5 s)” and “mean visual scanning over 0-1.5 s after

threat appearance”. For no-threat trials, the corresponding measures were taken

from a random time point defined a priori within Unity. The resulting statistical

analysis can be found in Appendix Table C.7.

Questionnaire Analysis

To determine which personal characteristics to include in a multiple regression,

we selected questionnaire scores that fulfilled r2 > .10 in bi-variate correlations with

a behavioral outcome and retained up to three variables with the highest correla-

tion. Additionally, sex was included in all multiple regressions as it is an important

predictor of cautious behavior (Bach et al., 2020). We generated 4 hypotheses by

exploring E1 (cf. Appendix Tables C.6 and 4.2), which we replicated in E2 while

correcting for multiple comparisons (Holm-Bonferroni method).

Sound Analysis

For E1, a human rater classified, all microphone recordings during trials, whether

they contained any voiced sounds and/or voiceless speech, or not. For trials with

detected voiced sounds or voiceless speech, a second rater then categorized the time

period from threat appearance to trial end, according to the following categories

(several possible): (0) No sound in this interval, (1) non-differentiable such as vow-

els, growls, long hissing, (2) laughing, (3) shrieking, (4) speech apparently directed

at the threat, (5) exclamation of surprise, including swearwords, (6) talking to one-

self, (7) talking to the experimenter, (8) breathing sounds, (9) ambient sounds. Any

occurrence of categories 1-6 was then summarized as “any vocalization”.

For E2, we used an automated sound detection algorithm that counts the num-

ber of samples above a volume threshold and retains the recording if this number

exceeds a time threshold. This algorithm was validated on manual classification
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as ground truth in E1. We performed a grid search over volume and time thresh-

olds and retained the threshold tuple that resulted in at most 5% misses (within the

training sample) and had the lowest number of false alarms. In a 5-fold Monte Carlo

cross-validation with 1000 repetitions, this resulted on average in 6.2% misses and

28% false alarms on the test data set. We then used the thresholds optimized on the

entire data set in E1, which resulted in a threshold pair of 700 a.u. (volume) and

0.06 s (time) (in-sample performance: 4.1% misses, 34.7% false alarms). Identified

sounds were classified in the same way and by the same rater as in E1.

Figure 4.1: Using fully immersive virtual reality to investigate escape be-
havior. (A) Participant view (example trial). (B) Images of the 7 natural threats
used in E1-E2. (C) Schematic view of the scenario setup. In the “attack” condition,
threats moved toward the participant’s position. Fast threats appeared from ob-
scuring tall grass (dark green) and slow threats from short grass (light green) with
dashed lines representing their possible trajectories. The escape path toward the
shelter is shown in blue. (D) In the “divert” condition, the threat deviated after
covering 20 % of the distance to the fruit bush. (E) Schematic representation of all
behavioral outcomes whose hypotheses replicated.
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4.3 Results

4.3.1 Escape Decisions

We define “virtual survival” when participants did not have any physical con-

tact with a threat during a trial. When attacked, virtual survival occurred in

81.8%/75.4% of all trials and plateaued after around 3/5 trials (cf. Appendix Fig-

ure C.2.B.). Participants collected on average 9.1/9.0 fruits per trial (cf. Appendix

Figure C.3.A.).

Beyond complying with explicit instructions to forage and survive, they also

engaged in task-irrelevant behaviors that might be adaptive in natural environments.

Alarm vocalization is a commonly used defensive behavior in the animal kingdom

to deter or distract predators and warn conspecifics (Seyfarth and Cheney, 2003).

Participants vocalized toward the threat (e.g., shrieks, squeaks) in 9.1%/18.8% of

trials (cf. Appendix Figure C.3.B.) by 83%/73% of the participants. Post hoc

analyses of the combined sample revealed that vocalizations occurred significantly

more often during threat trials compared to no-threat trials (t(58) = 5.16, p <

.0001). Additionally, they also showed avoidance behavior, such as seeking shelter

in the absence of threat in 16.2%/7.1% of trials.

Figure 4.2: Escape goals are dynamically updated according to environ-
mental changes. (A) Percentage of interrupted escape. (B) Distance of the
participant from the fruit bush over time after threat appearance.
Each colored line represents a participant, and the black line is the overall mean.
Orange: 1.5 s time-to-impact; brown: 5 s time-to-impact.
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Table 4.1: Statistical results of the eleven hypotheses generated by explo-
ration of E1, and statistically tested in E2 part 1. Parameter estimates and
statistics are derived from linear mixed-effects models. P-values from E1 are not
corrected for multiple comparisons and are presented as a heuristic guide only. For
E2, uncorrected P-values are presented; all of these were significant after comparing
to adjusted alpha-rates according to the Holm-Bonferroni method.

Name Dependent variable Contrast E1 (β ± SE, t(df), p) E2 (β ± SE, t(df), p)

H1 Interrupted escape Divert vs. attack,
fast threats

β = −25.3 ± 2.98, z =
−8.49, p < .0001

β = −7.71 ± 2.26, z =
−3.41, p < .001

H2 Escape initiation
time

1.5 s vs. 5 s, attack β = −14.4 ±
0.80, t(528) =
−18.15, p < .0001

β = −12.7 ±
0.81, t(617) =
−15.59, p < .0001

H6 Escape initiation
time

Rock vs. all other
threats, 5 s attack

β = 1.60 ±
0.23, t(528) =
7.01, p < .0001

β = 1.3±0.22, t(616) =
5.85, p < .0001

H3 Initiated escape 1.5 s vs. 5 s, divert β = 10 ± 1.71, z =
5.86, p < .0001

β = 10.7 ± 1.96, z =
5.44, p < .0001

H4 Escape to shelter Feral (elephant,
bear) vs. Familiar
(human, dog), 1.5 s
attack

β = 2.65 ± 1.09, z =
2.44, p < .05

β = 2.09 ± 0.93, z =
2.24, p < .05

H5 Escape to shelter Rock vs. all
threats, attack

β = −4.26 ± 0.71, z =
−6.1, p < .0001

β = −2.66 ± 0.65, z =
−4.09, p < .0001

H7 Mean escape speed Fast vs. slow
threats, attack

β = 1.14 ±
0.13, t(522) =
8.51, p < .0001

β = 1.17 ±
0.14, t(609) =
8.63, p < .0001

H10 Mean escape speed 1.5 s vs. 5 s, attack β = 2.48 ±
0.40, t(522) =
6.25, p < .0001

β = 2.02 ±
0.40, t(609) =
5.07, p < .0001

H8 Body orientation
during escape

Fast vs. slow
threats, attack

β = −0.88 ±
0.12, t(522) =
−7.60, p < .0001

β = −0.71 ±
0.12, t(610) =
−6.01, p < .0001

H9 Head orientation
during escape

1.5 s vs. 5 s, attack β = −1.28 ±
0.39, t(522) =
−3.27, p < .01

β = −0.85 ±
0.38, t(609) =
−2.25, p < .05

H11 Visual scanning
during 0-1.5 s after
threat appears

Human vs. other
fast threats

β = −66.5 ±
13.7, t(736) =
−4.86, p < .0001

β = −69.0 ±
15.2, t(768) =
−4.54, p < .0001
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Table 4.2: Statistical results of the four hypotheses relating to question-
naires, generated by exploration of E1, and statistically tested in E2 part
1. Parameter estimates and statistics are derived from GLM models. P-values from
E1 are not corrected for multiple comparisons and are presented as a heuristic guide
only. For E2, uncorrected P-values are presented; all of these were significant after
comparing to adjusted alpha-rates according to the Holm-Bonferroni method.

Name Dependent variable Predictors in model E1 (r2, F (df1, df2), p) E2 (r2, F (df1, df2), p)

Q-H1 Escape initiation
time

Spider phobia
(SPQ), fear (FSS),
sex

r2 = .27, F (3, 28) =
3.13, p < .05

r2 = .40, F (3, 28) =
5.66, p < .005

Q-H2 Minimum distance
from threat during
escape

Spider phobia
(SPQ), fear (FSS),
sex

r2 = .27, F (3, 28) =
3.16, p < .05

r2 = .46, F (3, 28) =
7.20, p < .005

Q-H3 Fruit picking dur-
ing 0-1.5 s after
threat appears

Spider phobia
(SPQ), fear (FSS),
sex

r2 = .27, F (3, 28) =
3.15, p < .05

N.s.

Q-H4 Head orientation
during 0-1.5 s after
threat appears

Sensation seeking
(BSSS), spider
phobia (SPQ), fear
(FSS), sex

r2 = .36, F (4, 28) =
3.41, p < .05

r2 = .34, F (4, 28) =
3.16, p < .05

Escape is often conceptualized as “instinctive”: triggered by specific features,

with flexible motor implementation, but a predictable end goal (Evans et al., 2019;

Gray and McNaughton, 2000). In our experiments, escape was initiated on 93.8%/91.7%

of attack trials, and on 54.4%/70.8% of divert trials (cf. Appendix Figure C.4).

Once escape was initiated, its ultimate target depended on the threat trajectory.

For fast threats, participants did not reach the shelter on 14.2%/23.2% of initiated

escapes when attacked. In contrast, when threat diverted, shelter was not reached

in 63.9%/37.2% of initiated escapes (H1, p < .001; cf. Figures 4.2.A., C.5). Notably

in attack trials, escape interruption appeared non-intentional, as it occurred later

than during divert trials and invariably led to virtual death (cf. Figures 4.2.B.,

C.5). Importantly in divert trials, 27.4%/37.5% of interrupted escapes had already

been initiated before the threat diverted and were thus presumably started with an

intention to go to shelter. These results demonstrate that initiated escapes with an

intention to go to shelter can be interrupted when the environment changes. This

suggests that escape goals are dynamically updated during escape, rather than being

predictable from the outset.
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A commonly suggested escape trigger is “defensive distance” (Gray and Mc-

Naughton, 2000) or “predatory imminence” (Fanselow and Lester, 1988) of the

threat, which is thought to heuristically integrate physical distance and type of

threat. Here, we formalized this concept as time-to-impact of the threat, defined

as the maximum time available to initiate an escape and just about collide with

the threat during escape (i.e., if participants were minimally faster, they would sur-

vive). By adjusting physical threat distance and the surrounding covering grass,

we implemented two time-to-impact conditions, 1.5 s and 5 s (cf. Appendix Figure

C.2; Table 4.1). When threat attacked, participants initiated escape earlier during

short time-to-impact (1.3 s/1.2 s) compared to long time-to-impact (2.9 s/2.5 s; H2,

p < .0001; cf. Figure 4.3.A.). When threat diverted, participants initiated escape

more often when time-to-impact was short vs. long (69.2%/82.6% vs. 39.8%/59.0%;

H3, p < .0001). These results suggest that time-to-impact is an important factor

for determining whether and when to initiate escape.

Beyond time-to-impact, biological and physical threat characteristics contributed

to participants’ escape decisions. For short time-to-impact, participants were more

likely to enter the shelter when attacked by fast feral (i.e., elephant, bear; 61.6%/68.3%)

than fast familiar threats (i.e., dog, human; 51.9%/56.9%; H4, p < .05; cf. Figures

4.3.B., C.6.A.). Participants entered the shelter less often when attacked by the (bal-

listic) rock than by any other threat (38.6%/40.7% vs. 76.0%/64.9%; H5, p < .0001)

and initiated escape later than for any other threat when time-to-impact was long

(4.8 s/4.2 s vs. 3.2 s/2.9 s; H6, p < .0001; cf. Figures 4.3.A., C.7.A.). These results

suggest that the decision of whether and when to escape integrates the expected

trajectory and behavior of the threat with its time-to-impact.

4.3.2 Escape Implementation

Next, we addressed the implementation of escape once initiated. When at-

tacked, mean escape speed—and thus, energy expenditure (van der Walt and Wyn-

dham, 1973)—depended on the threat’s speed (slow threat: 1.4 ms−1/1.3 ms−1,

fast threat: 1.9 ms−1/1.9 ms−1; H7, p < .0001; cf. Figures 4.3.C., C.8). Similarly,
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participants oriented their body more toward the threat during escape for slow vs.

fast threats when attacked (averaged cosine of orientation angle away from threat,

ranging from -1 (away from threat) to 1 (toward threat): 0.2/0.1 vs. -0.3/-0.3; H8,

p < .0001; cf. Figures 4.3.D., C.9.A.). Body orientation during movement affects

energy expenditure (Chaloupka et al., 1997) as well as how easy it is to observe the

threat, and to return to foraging. Furthermore, head orientation during escape, and

mean escape speed, depended on time-to-impact: participants oriented their head

more toward the threat (0.0/0.0 vs. -0.1/-0.2; H9, p < .05; cf. Appendix Figure

C.10.A.) and moved more slowly (1.5 ms−1/1.5 ms−1 vs. 1.9 ms−1/1.9 ms−1; H10,

p < .0001) when they had more time. Finally, visual scanning during the first 1.5

s after threat appeared was less pronounced for a human threat, compared to any

other fast threat (cumulative angle of frame-by-frame movements of the participant’s

forehead: 56.9 ◦s−1/71.3 ◦s−1 vs. 66.2 ◦s−1/79.9 ◦s−1; H11, p < .0001; cf. Appendix

Figure C.11). Taken together, this suggests that escape implementation accounts

for energy optimization and behavioral affordances (e.g., monitoring threat).

4.3.3 Effect of Individual Differences

Escape decisions were affected by stable personal characteristics (cf. Appendix

Tables C.6, 4.2). Across all threats and conditions, fearfulness (Wolpe and Lang,

1964), fear of spiders (Zsido et al., 2018), and sex jointly explained 27%/40% of the

between-person variance in escape initiation time (Q-H1, p < .005), and 27%/46%

of the variance in minimum distance from threat during escape (Q-H2, p < .005):

generally fearful females with high fear of spiders initiated escape earlier, and left

more space between themselves and the threat.

Additionally, escape implementation also depended on stable personal char-

acteristics (cf. Appendix Tables C.6, 4.2). Sensation seeking (Hoyle et al., 2002),

fearfulness (Wolpe and Lang, 1964), fear of spiders (Zsido et al., 2018), and sex

jointly explained 36%/34% of the between-person variance in head orientation when

the threat appeared (Q-H4, p. < 05). High sensation seekers oriented more, and peo-

ple with high fearfulness, fear of spiders, and with female sex, oriented less toward
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the threat.

Interestingly, we found spider phobia to be the strongest predictor of cautious

behavior. In an exploratory post hoc analysis across the combined sample, spider

phobia was significantly associated at p < .05 with more than 8 behavioral variables

(cf. Table C.8). Specifically, individuals with high levels of spider phobia showed

a distinct pattern of behavior: for example, they escaped more frequently (r2 =

.17, p < .001), were less likely to interrupt their escape (r2 = .08, p < .05), stayed

closer to the safe house (r2 = .16, p < .005), maintained a greater distance from the

threat (r2 = .15, p < .005), and oriented their head (r2 = .18, p < .001) and body

away (r2 = .16, p < .005) from the threat upon its appearance. This effect appears

to be specific to spider phobia, as snake phobia was only significantly related to 3

behavioral variables, indicating a more limited influence on cautious behavior (cf.

Table C.8).

See Appendix C.2.1 and C.2.2 for more details about replicating previous find-

ings related to sex differences and anxiety, respectively (cf. Table C.8).
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Figure 4.3: The decisions whether, when, and how to escape depends on
threat characteristics. (A) Time of escape initiation. (B) Percentage of shelter
entries. (C) Mean speed during escape. (D) Body orientation (mean cosine of
orientation angle from threat; 1: toward; -1: away).
Large points with error bars represent mean and standard error across participants
and trials, and small points represent individual trials. Threats are sorted by speed
with the ballistic rock on top from elephant (fastest) to spider (slowest). Orange:
1.5 s time-to-impact; brown: 5 s time-to-impact.

4.3.4 Computational Characteristics of Escape Behavior

Overall, these results strengthen the view that escaping humans face a complex

decision-making problem. Statistically optimal decision algorithms, such as model-
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based planning, are time- and memory-consuming (Bach, 2017). Thus, defensive

behavior, especially at a short defensive distance, has been suggested to be controlled

by mechanisms that are solely based on scalar action values (also termed model-free)

(LeDoux and Daw, 2018; Mobbs et al., 2020). These action values might be malleable

from experience, but could even be hard-wired. Such characteristics have a potential

to improve decision speed but reduce flexibility to adapt to changing environments.

Hence, in the second part of E2, we perturbed the environment in non-natural ways

to reveal the computational characteristics of the underlying mechanisms through

behavior (cf. Appendix Table C.7). All trials in this part employed a predatory

threat that had not occurred in the first part of E2 (panther; cf. Figure 4.4.A.).

The first characteristic we investigated was sensitivity to reinforcer devaluation.

This addresses whether an action is suppressed when the outcome (e.g., escape to

shelter) is suddenly no longer desirable. It distinguishes, for example, certain model-

based from classical model-free mechanisms (Dickinson and Balleine, 1995). On half

of the trials in a “force shield” block (cf. Figure 4.4.B.), we devalued the shelter by

endowing participants with a protective force shield that built up around the partic-

ipant at the start of a trial and then visually disappeared. In a tutorial, participants

learned from experience that objects could not penetrate the force shield even when

it was invisible, meaning it would protect just like the shelter. Participants did

not encounter the panther during this tutorial. A devaluation-sensitive mechanism

would stop escaping immediately when encountering the panther within the force

shield, whereas an insensitive mechanism might need repeated exposure to the pan-

ther to learn to suppress escape (Dickinson and Balleine, 1995). Hence, the following

analyses only refer to the first trial of each condition (subsequent trials are visual-

ized in Appendix Figure C.12). We found that participants rarely escaped to shelter

when attacked within the force shield compared to without, independent of time-to-

impact (3.3% vs. 80%; E2-H1, p < .0001; cf. Figure 4.4.C.; Appendix Table C.7).

When the force shield was active, they stayed at a comparable distance from shelter

regardless of threat presence (5 m vs. 5.1 m; E2-H2). This demonstrates that escape

initiation is sensitive to reinforcer devaluation and likely to be under model-based

control. On the other hand, some secondary defensive behaviors showed a different
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picture. When within the force shield and a threat appeared, fruit picking rate over

the remaining trial was suppressed compared to a no-threat trial (0.8 s−1 vs. 1.1

s−1; E2-H3, p < .0001; cf. Figure 4.4.C.). In turn, visual scanning over 0-1.5 s after

threat appearance was increased, compared to a no-threat trial (45.0 °s−1 vs. 25.6

°s−1; E2-H4, p < .05; cf. Figure 4.4.C.). This was also confirmed with gaze eleva-

tion, which was extracted using eye-tracking, representing another measurement to

assess rapid information-seeking behavior (cf. Appendix Table C.7). This suggests

that the mechanisms controlling rapid information-seeking and foraging-suppression

are partly insensitive to reinforcer devaluation.

The second characteristic we addressed was the flexibility to update behav-

ior from experience (sometimes termed “Pavlovian” vs. “instrumental”). Escape

depends on threat identity and trajectory, and participants often looked at the

threat, presumably for threat identification. In a “Medusa” block, participants were

instructed that they had to identify and suppress a particular movement (head ori-

entation toward the threat) that would activate a lethal magical force. They were

not instructed what this movement was. Most participants learned to suppress this

action, and thus reduced mortality from the magical force from 90.0% (trial 1) to

18.5% (trial 7; E2-H5, p < .0001; cf. Figure 4.4.D.). In a post-hoc interview, 60.0%

of participants reported the correct force-activating movement. The remaining 40%

still appeared successful in reducing their mortality (from 83.3% to 30.0%; cf. Ap-

pendix Figure C.13), possibly by altering related movements (e.g., body orientation)

or by learning the correct movement but not forming an awareness of it. Overall,

these results indicate that human threat identification behavior preceding escape is

malleable by experience rather than hardwired.

Finally, we addressed the flexibility of the action repertoire. In a “hands up”

block, participants were instructed that some panthers were trained to stop attacking

when humans raised both hands high above their head. This action is novel and

non-natural in this context as participants would normally use their hands to aid

escape or protect their torso, rather than raise them above the head. The potential

presence of these specific panthers was indicated by a sign at the start of each

trial. Participants were so efficient in utilizing this novel action that even in the
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first trial for each condition, they never escaped to shelter when the new action

was signaled (0.0% vs. 86.7%; E2-H6, p < .0001; cf. Figures 4.4.E., C.14 for

subsequent trials). Furthermore, in two exploratory trials in the last block of E2,

participants were attacked by a panther in a visually different scenario without

shelter. Unexpectedly, 26.7% of participants spontaneously evoked the non-natural

hands-up action they had previously learned, despite a lack of instruction to do so,

or proof of effectiveness in this new context. Taken together, these results confirm

again that escape initiation is sensitive to reinforcer devaluation, and demonstrate

that the action-selection mechanism can easily integrate novel instructed actions

and later retrieve them in novel situations.
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Figure 4.4: Computational properties of the controllers underlying human
escape behavior. (A) Participant view of the force shield. (B) All trials in E2
part 2 used the panther as threat. (C) Minimum distance from the shelter (top),
fruit picking rate over the entire trial after threat appearance (center), and visual
scanning during 0-1.5 s after threat appearance (bottom) in the force shield block.
(D) Percentage of virtual death from magical force over trials in the Medusa block.
(E) Percentage of escape to shelter in the hands-up block.
Large points with error bars represent the mean and standard error across all par-
ticipants and trials, and small points represent individual trials.
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4.4 Discussion

While escape from immediate attack is sometimes depicted as a fixed reaction

pattern (“fight or flight response”), the absence of observable and explicit delibera-

tion does not imply a lack of dynamic and complex decision-making (Evans et al.,

2019). We demonstrate that behavioral goals during human escape are dynami-

cally updated, integrate time-to-impact with threat characteristics such as attack

probability (feral vs. domestic) and expected trajectory (pursuit vs. ballistic inter-

ception), and are implemented in a manner that allows optimizing secondary goals

(energy expenditure, behavioral affordances). Thus, in line with field observations

in non-human animals (Evans et al., 2019), human escape responses are flexible and

can integrate multiple variables such as spatial constraints of the environment and

economic trade-offs even under strong timing constraints (Barrett and Finlay, 2018;

Evans et al., 2019).

This flexibility poses a substantial challenge for computing accurate actions in

limited time. Nevertheless, perturbance experiments show that escape decisions are

controlled by a goal-directed mechanism that is sensitive to reinforcer devaluation

in two separate tests. Furthermore, the action-selection mechanism can easily learn

a novel non-natural action and integrate it into an enduring action repertoire. At

the same time, general information-seeking and foraging-suppression behavior before

escape appear insensitive to reinforcer devaluation and thus possibly rely on scalar

action values, although threat-identification behavior can still be unlearned over

time when leading to negative outcomes. Taken together, this suggests that the

human brain might use different algorithms depending on the behavior required, or

on the time constraints involved, which in our experiment were more pronounced for

rapid information seeking than for the decision to escape. It is possible that with a

time-to-impact shorter than the 1.5 s used here, humans would resort to simplified

algorithms even for escape decisions.

Using third-person view and strategic computer games, we have previously

shown that humans use goal-directed mechanisms to decide whether and when to
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approach a foraging opportunity under threat (Bach, 2017; Castegnetti et al., 2020),

but that in doing so they may often employ approximate computations that rely on

situation-specific heuristics (Korn and Bach, 2018, 2019). While we demonstrate

that escape initiation depends on time-to-impact, we cannot yet quantitatively for-

malize the underlying computations and whether they represent or approximate sta-

tistical optimality. These are likely to involve additional and possibly threat-specific

influences of physical distance, participant speed, foraging success, and the partici-

pants’ actual escape speed which is variable across trials. One might argue that VR,

although more realistic than third-person view computer games, is still insufficient

to match the rich and large repertoire of defensive behaviors informally observed or

imagined in real life. Notwithstanding, the robust elicitation of appropriate motor

escape behaviors, the primary objective of the task, demonstrates the effectiveness

of our experimental manipulations. Additionally, the use of task-irrelevant vocal-

ization (e.g., shrieks, squeaks, screams) by the majority of the participants, and

the occurrence of avoidance in the absence of threat, testifies to the realism and

immersive nature of our VR environment. In turn, cybersickness in our experiments

was lower than in typical VR experiments (Saredakis et al., 2020). Cybersickness,

a constellation of bodily symptoms of discomfort such as eye strain, headache, and

dizziness, driven by sensory integration processes (Kober et al., 2012; Weech et al.,

2019), is negatively related to presence and immersion (Davis et al., 2014; Reben-

itsch and Owen, 2016). Thus, low cybersickness further supports the notion of our

VR environment being immersive.

Additionally, we found strong individual differences in escape decisions and

their implementation. Across all threats and conditions, we found that generally

fearful females (Wolpe and Lang, 1964) with a high fear of spiders (Zsido et al., 2018)

initiated escape earlier, and left more space between themselves and the threat. Then

the same personal characteristics on top of sensation seeking (Hoyle et al., 2002)

jointly explained more than 30% of the between-person variance in head orientation

where high sensation seekers oriented more, and people with high fearfulness and

fear of spiders oriented less, toward the threat when it appeared.

As discussed in the general introduction (cf. Chapter 1 Section 1.4.3), a large-
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scale study using a 2D risky foraging task identified sex as the strongest predictor of

performance among young people (Bach et al., 2020). Our findings revealed a similar

pattern: males demonstrated higher performance than females (cf. Appendix C.2.1),

likely due to maintaining a smaller distance from the threat and escaping later.

Specifically, they were less cautious when they had more time but adjusted their

behavior to match females when under time constraints. Notably, these cautiousness

differences did not impact survival in either study. This supports the hypothesis that

males are not inherently reckless but adjust their risk-taking to exploit lower-risk

opportunities within high-risk environments. However, as these findings stem from

post hoc analyses of the combined sample, they should be interpreted cautiously.

Spider phobia emerged as the strongest predictor of cautious behavior. Specif-

ically, individuals with high spider phobia responded to threats by escaping more

frequently with reduced flexibility, maintaining a greater distance, and orienting

away from the threat. This is consistent with prior research, which identifies spe-

cific phobias as the only psychopathology reliably linked to avoidance biases in AAC

tasks (Fricke and Vogel, 2020). Interestingly, our findings indicate that these effects

are particularly strong for spider phobia compared to snake phobia, despite both

threats being included in the task. The reasons for this difference remain uncer-

tain. Although spider and snake phobias have similar lifetime prevalence rates (2%

to 6%) and share evolutionary roots, some studies suggest that disgust may play

a unique role in spider phobia (Cisler et al., 2009; Jong et al., 2002; Olatunji and

Deacon, 2008). However, disgust sensitivity alone (Fergus and Valentiner, 2009) did

not explain the variations in escape decisions observed in our study, implying that

it may be the specific combination of fear and disgust that drives the heightened

cautious behavior linked to spider phobia.

We found no general effect of self-reported anxiety (Ree et al., 2008), which

aligns with expectations given the nature of our task. Since the task focused on

circa-threat responses—situations in which an immediate threat is present — fear,

rather than anxiety, appears to play a predominant role. Anxiety is typically associ-

ated with pre-encounter situations, where anticipatory responses are more relevant

(Mobbs et al., 2020). However, the distinction between fear and anxiety is still
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contested (cf. Section 1.4.1 for more details).

In summary, our results provide an entry point for understanding how the

healthy human brain computes and implements flexible and sophisticated escape

decisions. This mechanistic and computational framework could offer a unique ref-

erence point for clinical research to investigate how these mechanisms might be

altered in fear-related disorders (Bach, 2017; Yamamori and Robinson, 2023).

116



5
General discussion

Each experimental chapter included a discussion section that connected specific

findings to existing research, addressing limitations and potential areas for improve-

ment. In this concluding section, I will summarize each chapter’s main points,

examine their interconnections, and discuss broader limitations and future research

directions.

5.1 Overview

In Chapter 1, I introduced the broad scope of risk-taking behavior, highlighting

the complexity and unpredictability inherent in real-life decision-making and defin-

ing risk in this thesis as "first-order uncertainty"—the irreducible unpredictability

in outcomes. This chapter also covered key aspects of risk preferences, exploring
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whether they are stable traits akin to personality or if they fluctuate dynamically

in response to context. Additionally, I examined the possibility of both a general

risk factor r and domain-specific influences. To investigate risk-taking, I introduced

a range of assessment methods, from controlled experimental tasks to ecologically

valid, naturalistic paradigms, including self-reported measures, and VR tasks. Each

method, while insightful, has distinct strengths and limitations regarding precision

and real-world applicability. Moreover, I discussed previous findings about individ-

ual differences that shape risk behavior, such as sensation-seeking, impulsivity, and

sex differences, alongside the roles of anxiety and fear. Lastly, I presented compu-

tational frameworks, focusing on how theory-driven and data-driven approaches in

computational psychiatry enable a more structured analysis of risk-taking behav-

ior. These frameworks, specifically Prospect Theory and transdiagnostic psychiatric

dimensions, provide a basis for understanding the computational underpinnings of

risk preferences and individual differences. Through this multifaceted approach,

the chapter sets the stage for a deeper exploration of risk-taking in the following

chapters, examining how internal states and external factors converge to shape risk-

related behavior.

In Chapter 2, I employed an economic gambling task alongside a computational

prospect-theoretic model to assess patients’ risk preferences, including risk and loss

aversion, before and after a worry induction. Specifically, in-patients with MDD,

with or without GA symptoms, and healthy controls had to choose between a cer-

tain monetary payoff and an uncertain gamble. There were no significant differences

in risk and loss aversion between the three groups at baseline. After worry induc-

tion, patients with GA symptoms, but not the other groups, showed increased risk

aversion. Crucially, these changes in decision-making were predominantly driven

by anxiety rather than depression, as confirmed by psychiatric symptom scores.

These findings suggest that decision-making disruptions in anxiety disorder may be

driven by anxiety symptoms such as worry rather than causing them. This could

shape etiological models, motivate standardization of emotional state in research

on decision-making in anxiety disorders, and guide treatment strategies targeting

reducing worry.
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In Chapter 3, I explored which clinically relevant personality traits might in-

fluence cautious behavior using a cross-species validated AAC test, widely applied

in pre-clinical anxiety disorder research. Participants chose whether and when to

approach rewards under varying threat probability and magnitude. They also com-

pleted a psychiatric questionnaire battery with a known three-factor structure, con-

sisting of Compulsive Behavior and Intrusive Thought (CIT), Anxious-Depression

(AD), and Social-Withdrawal (SW). Using an exploration-confirmation approach

across two large online samples, the results indicated that transdiagnostic compulsiv-

ity, rather than anxiety, is the strongest predictor of cautious behavior. Specifically,

transdiagnostic compulsivity (i.e. CIT) was associated with decreased passive avoid-

ance, increased behavioral inhibition, and reduced sensitivity to trial-by-trial threat

features. High transdiagnostic compulsivity also implied an altered subjective model

of threat and reward relations in the environment. Broad and unspecific associations

were found between individual questionnaire scores and behavior, underscoring the

value of transdiagnostic dimensions. Notably, there were no significant associations

between behavior and transdiagnostic anxiety-depression (i.e. AD) or sex, and indi-

vidual anxiety questionnaires were not among the best predictors of behavior. This

study highlights that cautiousness in AAC tasks is comprised of two components,

which are linked to transdiagnostic compulsivity in opposite ways, but not specifi-

cally or particularly strongly to self-reported trait anxiety. This finding challenges

the traditional understanding of AAC tasks and provides a new view on cautious

behavior in every-day situations.

In Chapter 4, I presented a comprehensive investigation of human escape re-

sponses to a broad range of biologically relevant threats using wireless 3D-VR in a

large, immersive space. Thirteen naturally occurring threats, including predators,

self-defending animals, and inanimate objects with realistic attack animations, were

employed to observe how humans escape to shelter. Using a rigorous exploration-

replication approach, the study uncovered a surprising blend of flexibility and rigid-

ity in human escape decisions, offering new insights into the field. First, I found that

human escape responses, even at close range, are dynamic rather than instinctive

or hard-wired. Second, these decisions are based on a detailed assessment of threat
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identity and predicted behavior, rather than relying on broad features like a silhou-

ette. Third, escape execution was found to integrate secondary behavioral goals.

Fourth, I identified both external (threat-related) and internal (person-related) fac-

tors that influence escape decisions and their implementation. Key external factors

included threat characteristics such as speed, attack probability, and expected tra-

jectory. On the internal side, factors like spider phobia, general fearfulness, sensation

seeking, and sex significantly impacted responses, while self-reported anxiety levels

showed no link with general behavioral cautiousness. Finally, perturbation experi-

ments suggested that distinct computational mechanisms underlie different types of

threat-related behavior. Specifically, the decision-making algorithm underlying es-

cape decisions demonstrated planning capabilities and the ability to integrate novel

actions, while rapid information-seeking and foraging-suppression behaviors were

only partially sensitive to devaluation. Taken together, this study provides steps

toward a computational model of how the human brain rapidly solves survival chal-

lenges.

5.2 Implications for Cognitive Neuroscience

All three studies show that risk-taking behavior is modulated both by external

and internal factors. In Chapter 2, internal factors include the induced worry state

and the anxiety symptoms, while external factors include the framing of the eco-

nomic lottery choice (cf. Appendix Results A.2). In Chapter 3, behavioral inhibition

and passive avoidance were influenced by external factors such as threat magnitude

and probability, and by internal factors like transdiagnostic compulsivity and other

psychiatric traits. There was also an interaction between these factors. For instance,

threat characteristics impacted behavior less in participants with high compulsivity.

Finally, in Chapter 4, a number of behavioral readouts were influenced by external

threat characteristics such as speed, attack probability, and trajectory, as well as

internal factors like spider phobia, general fearfulness, sensation seeking, and sex.

The following sections will dive deeper into the findings, focusing on internal
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factors with an emphasis on individual differences, and integrate these insights for

a more comprehensive understanding.

5.2.1 Anxiety

Avoidance of risky situations is widely regarded as a hallmark behavior of anx-

iety, yet empirical findings present a mixed picture. One explanation is that anxiety

may impact risky decision-making through context-specific differences, or ‘specific

effects,’ which only become evident under certain experimental conditions. When

more general or ‘broad effects’ are observed, it becomes crucial to determine whether

these effects are unique to anxiety or are influenced by overlap with other psychi-

atric traits, such as depression or compulsivity, which can similarly heighten caution.

Anxiety’s impact on risk-taking may also vary based on temporary emotional states

rather than reflecting stable, trait-based tendencies.

In Chapter 2, anxiety increases risk aversion only in heightened emotional states

in patients with high anxiety. This suggests that heightened risk aversion might arise

during periods of acute stress or heightened emotionality but not in calmer states.

Interestingly, this might be necessary to drive risk aversion in economic decisions,

which typically lack a strong emotional context. This contrasts with risky foraging

scenarios, which naturally evoke greater emotional arousal. However, it remains

unclear whether a specific emotional state (e.g., worry) is necessary or if heightened

general arousal suffices.

In Chapter 4, the impact of anxiety appears highly specific in foraging tasks:

among more than 20 behavioral variables, only two were significantly associated

with anxiety, yet these associations were aligned with previous work on a similar

task (cf. AEP, Section 1.3.2). Specifically, both studies linked anxiety with earlier

escape and greater escape success, particularly in response to distant threats. These

findings suggest that trait anxiety plays a role in responses based on threat proxim-

ity, supporting theories that associate fear with temporally proximal or immediate

threats and anxiety with temporally distal or further threats. However, it remains
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unclear whether anxiety is more closely related to the timing of the attack or the

actual distance from the threat.

Another aspect often overlooked in theories of threat distance is the role of

uncertainty in scenarios where threats are further away rather than imminent. In

distant threats, the exact timing and trajectory of the potential attack might be

more uncertain, creating a wider range of possible outcomes. Interestingly, escaping

in the AEP is similar to cashing out in the BART (cf. tasks detailed in Section

1.3.2), and higher anxiety predicts less risk-taking in a high-uncertainty version of

the BART, whereas anxiety is unrelated to risk-taking in low-uncertainty conditions

(Smith et al., 2016). This is consistent with the evidence from Chapter 2 and

other contexts where greater intolerance of uncertainty is reliably associated with

increased anxiety (Dugas et al., 1997, 1998; Dugas and Ladouceur, 2000; Grupe and

Nitschke, 2013; Mahoney and McEvoy, 2012; Mcevoy and Mahoney, 2011; Sandhu

et al., 2023; Yook et al., 2010).

Nonetheless, in Chapter 3, some anxiety-related questionnaires correlated with

approach-avoidance biases, but these connections were not specific to anxiety. Other

psychiatric measures showed similar patterns and often explained more variance.

This suggests that cautiousness in this category of tasks is not directly related to

feelings of anxiety, or their representation in questionnaire measures. Another possi-

bility is that (some) approach-avoidance tasks may not be as sensitive to distinguish-

ing individual anxiety-related differences as previously assumed (Bach, 2021; Fricke

and Vogel, 2020). Instead, they may highlight other important task characteristics.

5.2.2 Sensation-Seeking and Daringness

Notably, Chapter 3 also replicated a finding from Bach et al. (2020), who

identified daringness as the best self-reported predictor of behavioral cautiousness in

a similar AAC task with an open field component. Although the associations were

not unique, daringness consistently emerged as the best individual questionnaire

predictor. However, sensation-seeking, a trait related to daringness (cf. Section
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1.4.2), was not a particularly important predictor of escape behaviors in the VR

study in Chapter 4. In fact, it was only associated with a behavioral variable

involved in the implementation of escape.

Whether daringness is truly distinct from sensation-seeking or simply a matter

of terminology remains to be clarified. To the extent that they represent an over-

lapping concept, another possible reason for these differences could be the contrast

in emphasis between reward and threat across studies. In the AAC tasks of Chap-

ter 3 and Bach et al. (2020), daringness primarily reflects less cautious behavior in

approaching rewards, while the VR study in Chapter 4 and the AEP in Fung et al.

(2019) focus more on avoiding threats. Future research should examine whether

these differences stem from a decoupling of reward-seeking and threat-avoidance (or

rather, avoidance of threat-related uncertainty) or are influenced by other underlying

factors.

5.2.3 Spider Phobia

Interestingly, spider phobia emerged as a strong predictor of cautious behavior

in the VR study presented in Chapter 4. Individuals with high spider phobia re-

sponded to threats by escaping more frequently with reduced flexibility, maintaining

a greater distance, and orienting away from the threat even for escape from non-

spider threats. This aligns with previous research, including a systematic review

identifying specific phobias as the only psychopathology reliably linked to avoidance

biases in AAC tasks (Fricke and Vogel, 2020). In particular, our findings suggest

that these effects are particularly pronounced for spider phobia compared to snake

phobia, despite both threats being included in the task. The reasons for this differ-

ence remain uncertain. Although spider and snake phobias share evolutionary roots

and exhibit similar lifetime prevalence rates (2% to 6%, Polák et al., 2020), some

studies suggest that disgust may play a unique role in spider phobia (Cisler et al.,

2009; Jong et al., 2002; Olatunji and Deacon, 2008).
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5.2.4 Sex Differences

Sex differences in risk-taking are widely observed across species and are often

attributed to evolutionary factors, with males engaging in higher-risk behaviors due

to lower parental investment and greater reproductive variance. Human self-report

studies largely align with this pattern, stating that males take more risks across var-

ious domains, including physical, financial, and everyday activities (Byrnes et al.,

1999). Findings from behavioral risk-taking tasks are more nuanced on the other

hand, suggesting that males may not be inherently more reckless but instead adjust

their risk-taking more dynamically in low-risk situations. For instance, a large-scale

study using a 2D risky foraging task identified sex as the strongest predictor of

performance among young people, particularly in lower-risk conditions (Bach et al.,

2020). Our findings in Chapter 4 revealed a similar pattern: males demonstrated

higher performance than females (cf. Appendix C.2.1), likely due to maintaining

a smaller distance from the threat and escaping later. Specifically, they were less

cautious when they had more time, but they adjusted their behavior to match fe-

males under time constraints. Notably, these cautiousness differences did not impact

survival in either study, supporting the hypothesis that males are not inherently

reckless but instead exploit lower-risk opportunities within high-risk environments

(Lewis et al., 2022).

However, we found no notable sex differences in Chapters 2 and 3. Regarding

Chapter 2, it is possible that the sample size and statistical power were insufficient

to detect subtle sex differences, particularly in a clinical population of anxious pa-

tients where other factors, such as symptom severity or treatment effects, might

overshadow sex-related patterns. In Chapter 3, the lack of observed sex differences

might be attributed to the experimental design, which relied on binary choices rather

than continuous reward collection. This design may have limited the ability to cap-

ture sex-specific risk-taking strategies, such as dynamic adjustments in cautiousness.
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5.2.5 Intermediate Conclusion

In conclusion, the findings in these studies highlight the complexity and speci-

ficity of the factors that influence risk-taking behavior, highlighting the interaction

between internal characteristics, external contexts, and situational variables. Anxi-

ety, while often linked to cautiousness, appears to exert its effects in context-specific

ways, particularly under conditions of heightened emotional arousal or uncertainty.

The differential roles of traits like daringness, sensation-seeking, and spider phobia

further underscore the need to disentangle the contributions of overlapping psycho-

logical dimensions. In addition, the nuanced sex differences observed in some tasks

point to adaptive strategies rather than generalized risk-taking tendencies.

5.3 Implications for Mental Health

Decision-making disruptions in mental disorders can be transient, shifting with

the patient’s emotional state. Such variability may partly explain inconsistent find-

ings across studies, as decision-making may be influenced by factors like stress,

mood, or anxiety at the time of assessment. This emphasizes the importance of dis-

tinguishing between state and trait influences in decision-making research. Adopting

longitudinal or repeated-measure designs could deepen our understanding of how

fluctuating internal states impact decision-making in clinical populations, offering a

more nuanced, dynamic view of these processes over time.

A transdiagnostic approach also proves valuable in understanding risk and de-

fensive behaviors, as single-diagnosis frameworks may overlook the unique ways in

which overlapping symptom dimensions, such as compulsivity and anxiety, shape be-

havior. Furthermore, using multiple psychiatric questionnaires when linking symp-

toms with behaviors is crucial to avoid attributing nonspecific effects to specific

traits. Relying on a single measure risks mistaking general associations for specific

ones. Common correlations between task-related variables and psychiatric traits

may reflect the limitations of frequently used yet rarely compared clinical question-
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naires, underscoring the need for broader, multi-measure assessments to reveal a

clearer picture of the connections between psychiatric symptoms and behavior.

The strong association between spider phobia and avoidance behaviors un-

derscores the potential to enhance phobia-specific therapies, particularly exposure

therapy, by addressing the unique interaction of fear and disgust in shaping threat

responses. Spider phobia can still be elicited by virtual, rather than real, threats,

highlighting the viability of using VR to replicate phobic triggers effectively. This

reinforces the potential for VR-based exposure therapy, which can replicate realistic

and dynamic threat scenarios in a safe, controlled, and immersive environment. By

practicing adaptive responses in these scenarios, patients can confront their phobia,

build resilience, and develop coping strategies that can be transferred to real-world

contexts, potentially improving treatment efficacy and long-term outcomes.

5.4 Implications for Society

Interestingly, risk-taking is often praised in society, with those who take greater

risks generally enjoying higher status. This may be because risk-taking tends to be

more advantageous at the societal level than at the individual level. On a societal

scale, risk-taking is often necessary for innovation and progress as an individual’s

success can propel collective advancement through new inventions or ideas that

benefit the entire community. Moreover, the loss of an individual might be seen as

inconsequential—or even beneficial—if their resources are redistributed in ways that

support others.

From the individual’s perspective, the potential negative consequences of risk-

taking, such as bankruptcy or even death, are far more significant and personally

devastating. This disparity raises an important ethical question: if society benefits

from individuals taking risks, does it have a responsibility to support those who

fail? Gaining a deeper understanding of the drivers behind risk-taking, as well as

identifying circumstances or individuals where risk-taking becomes maladaptive or

disruptive—whether through extreme risk aversion or excessive risk-seeking—could
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serve as a primary safety net. Such insights could help mitigate the negative impacts

of risk-taking while still fostering societal progress.

5.5 Limitations

5.5.1 Limitations Related to the Samples

A primary limitation across all studies concerns the characteristics of the sam-

ple used, which may impact the generalizability of the findings.

In Chapter 2, the relatively small sample size may have limited the statistical

power to detect more nuanced effects between the patient groups at baseline. Al-

though the main effects were robust, subtle contrasts could have been missed. In

addition, the focus of this chapter is on a specific clinical population, psychiatric in-

patients with severe depression and comorbid anxiety, which may not fully represent

the broader spectrum of individuals with milder symptoms or those in outpatient

care. Thus, the findings may not generalize to populations experiencing different

forms or severities of these conditions.

In Chapter 3, I relied on online recruitment, which introduces additional ques-

tions about sample representativeness, particularly compared to in-person samples.

Online samples often differ in demographic and psychological characteristics (Gillan

and Daw, 2016), which can influence the generalizability of the results to clinical

and community populations that might respond differently in controlled laboratory

settings. More studies with larger, more diverse, and clinically varied samples, in-

cluding those recruited in person, would help validate and extend these findings.

The sample in Chapter 4 consisted primarily of university students with char-

acteristics typical of WEIRD (Western, Educated, Industrialized, Rich, and Demo-

cratic) populations (Henrich et al., 2010). Furthermore, for ethical considerations,

pre-screening was quite extensive, preventing anyone who experienced significant

adverse events from participating. This may limit the extent to which our findings
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apply to individuals from different socio-demographic or cultural backgrounds. This

may be especially important in risk-taking research, as cross-cultural studies have

documented meaningful differences between populations (L’Haridon and Vieider,

2019; Rieger et al., 2015; Vieider et al., 2012). Therefore, future research would

benefit from more inclusive sampling strategies that encompass a broader range of

socio-cultural backgrounds to provide a fuller picture of how risk-taking behaviors

manifest globally.

Despite these sample-specific limitations, this thesis benefits from the diversity

of samples across studies. This diversity allows us to explore a broad spectrum

of risk-related and defensive behaviors and offers a unique perspective by integrat-

ing findings from clinically affected individuals, online respondents, and healthy

students. While each sample type has its limitations, this multi-sample approach

strengthens the thesis by providing complementary insights that together enhance

our understanding of how internal and external factors shape risk-taking across dif-

ferent populations and contexts.

5.5.2 Limitations Related to the Experimental Designs

As each study examines distinct aspects of risk-taking and defensive behav-

ior—economic risk in Chapter 2, approach-avoidance conflict in Chapter 3, and

escape behavior in Chapter 4—there is limited opportunity to directly compare

findings across these domains. This restricts the ability to generalize conclusions

regarding risk aversion, cautiousness, and escape tendencies across different con-

texts. Future studies could address this by integrating multiple risk domains within

a unified experimental framework, which would allow for the assessment of whether

internal (e.g., personality traits, anxiety) and external (e.g., threat type, framing)

factors exert consistent influences across varied types of risk-taking behaviors. Addi-

tionally, longitudinal or repeated-measures designs could help clarify whether these

behaviors are stable across contexts or vary based on situational demands.

Another limitation pertains to the choice of questionnaires in individual dif-
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ferences research. Our findings are only as robust as the questionnaires’ ability to

accurately measure the targeted constructs, particularly in the realm of anxiety re-

search, where there is no consensus on the most appropriate measure. This issue is

highlighted in Chapter 3, which underscores the risks of drawing broad conclusions

about anxiety based on a single type of questionnaire. The results can vary sig-

nificantly depending on the chosen questionnaire, raising questions about whether

the observed effects genuinely reflect anxiety-related constructs or are influenced by

confounding factors.

For example, in Chapter 3, the STAI-Trait and GAD-7 items mainly loaded

onto an anxious-depression factor, while the STICSA-Trait items showed stronger

loading on a compulsivity factor (cf. Appendix B.1.3 for hypotheses on these factor-

loading differences). In addition, LSAS items that assess social anxiety are loaded

onto a separate social withdrawal factor. These differences indicate that the find-

ings derived from STICSA may differ considerably from those obtained with STAI

or GAD-7. To mitigate these issues, I included multiple psychiatric measures in

Chapters 2 and 3 to capture anxiety and other psychiatric traits more comprehen-

sively. However, including multiple measures is not always feasible, especially in

studies where individual differences are not the primary focus, as it requires sub-

stantial time and resources. In Chapter 4, for example, I had to limit the approach

to a single anxiety measure due to practical constraints, although I included several

other psychiatric questionnaires to capture a broader range of individual differences.

This allowed some insight into psychiatric traits beyond anxiety, while keeping the

assessment time manageable.

Moreover, findings in Chapter 3 highlight the advantages of using transdiag-

nostic dimensions over traditional phenotyping, as this approach reduces the depen-

dence on any one questionnaire and allows for a broader assessment of psychiatric

traits. However, transdiagnostic approaches require a high subject-to-variable ra-

tio to reliably capture dimensional constructs, making them difficult to implement

in studies with limited sample sizes. This issue is particularly relevant in clinical

research, where the recruitment of large homogeneous samples can be challenging.

Future studies could explore adaptive sampling methods or machine-learning tech-
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niques to optimize the accuracy of transdiagnostic measures in smaller samples.

5.5.3 Limitations Related to Computational Psychiatry

While computational psychiatry has shown and continues to show, great promise

in bridging the gap between neurobiology, computational neuroscience, and clinical

psychiatry, enhancing our understanding of the (ab)normal human behavior, it is

not without its limitations. One of the core issues is that the limitations inherent in

the measurements themselves persist. The quality of results is constrained by the

quality of the methods; therefore, computational approaches cannot compensate for

poorly designed experiments.

Computational psychiatry also carries a high risk of drawing unjustified con-

clusions for several reasons. In theory-driven approaches, presenting a single well-

fitting model is not sufficient. Models need to be compared against alternatives, and

simulations are necessary to falsify each model properly (Palminteri et al., 2017).

Moreover, many studies report that the reliability of parameter estimates is often

poor to moderate; however, various methods can be employed to improve this (cf.

reviews Karvelis et al., 2023; Zorowitz et al., 2023).

Data-driven computational methods also face significant challenges due to the

high dimensionality of data and the multitude of analytical techniques available.

These conditions can lead to problems such as multiple comparisons and overfitting,

which are not always adequately controlled. When the number of predictors exceeds

the number of available data points, it becomes easy to create models that produce

seemingly perfect predictions, which can often be misleading (Huys et al., 2016;

Rutledge et al., 2019).

Furthermore, computational models relevant to psychiatry should incorporate

neurobiological constraints, which makes them subject to the limitations of current

empirical neuroscience. While efforts have been made to model even the most sub-

jective human experiences, such as happiness (Rutledge et al., 2014), computational

models still struggle to comprehend qualia—defined as the phenomenal properties of
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experience, such as the “fearfulness” of fear. As a result, some computational frame-

works deliberately avoid addressing qualia altogether (Bach and Dayan, 2017).

Ultimately, the most significant challenge may be the complexity of real-world

behavior and its interactions within a highly intricate and interconnected environ-

ment. Our current mathematical tools might fall short, and while we anticipate

breakthroughs in computational research, the full scope of these complexities could

remain elusive, perhaps even unsolvable.

5.6 Future Directions

A significant portion of this work has focused on examining between-person

differences in behavior, which overlooks important within-person variations. Under-

standing within-person dynamics could provide insight into how individuals mod-

ulate their risk and defensive behaviors in response to shifting internal states (e.g.

stress, sensation-seeking, Lydon-Staley et al., 2020) and external contexts (e.g., in-

creasing threat levels). This approach would allow future studies to capture more

nuanced, situationally responsive behaviors that may not be apparent when only

comparing individuals.

Another area not addressed in this thesis—but with a well-established founda-

tion in classical defense theories—is the role of physiological arousal. In several the-

oretical frameworks, such as the defense cascade model, physiological arousal is con-

sidered a primary trigger for activating defensive behaviors (Kozlowska et al., 2015).

The integration of psychophysiology and neuroscience has enabled translational in-

sights from animal studies into human research, enhancing our understanding of the

neurobiological mechanisms behind threat responses. However, while physiological

responses to threat have been extensively studied in tightly controlled laboratory

conditions, there is a notable gap in connecting these physiological measures to more

naturalistic defensive behaviors, as seen in real-world or VR environments. Incorpo-

rating physiological data into studies with dynamic and ecologically valid scenarios

could enrich our understanding of threat responses and highlight unique response
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patterns or representations that are obscured in artificial contexts.

Moreover, VR provides an opportunity to explore these responses in an im-

mersive and realistic context, which may reveal how physiological reactions interact

with environmental cues in ways that are distinct from reactions to abstract or

static threats. Integrating physiological measures, such as heart rate, galvanic skin

response, or eye tracking, into VR-based studies on escape and defensive behavior

could offer deeper insights into how arousal shapes rapid decision-making in realistic

settings. This approach could also clarify whether certain physiological markers con-

sistently predict defensive actions, providing a multilayered understanding of how

physiological and psychological components jointly influence behavior under threat.

Finally, this thesis did not address the neural underpinnings of the risk-related

behaviors examined. The neural correlates of risk aversion, cautiousness, and es-

cape behavior could provide foundational insights into the brain regions and net-

works involved in processing different types of risk. Incorporating neuroimaging

techniques, such as Electroencephalography or Optically-Pumped Magnetometers

Magnetoencephalography (Brookes et al., 2022), could help map the neural circuits

engaged during risk-taking and defensive behaviors, and explore how these circuits

vary across contexts (e.g., economic decisions vs. immediate escape responses).

Future studies could benefit from using neural and physiological measures in combi-

nation, examining how the brain and body coordinate during risk-related decisions

in both controlled and naturalistic settings. This would not only enrich our un-

derstanding of the neural architecture supporting these behaviors but could also

identify how specific neural pathways or networks respond differentially across risk

contexts, thereby enhancing our ability to translate findings from animal research

to human behavior.

5.7 Concluding remarks

Overall, the studies in this thesis collectively contribute to understanding risk-

taking and defensive behaviors such as risk aversion, cautiousness, and escape be-
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haviors by showing how internal factors, such as anxiety and compulsivity, and

external factors, such as threat characteristics and task framing, interact to shape

decision-making. Anxiety amplifies risk aversion as a state-dependent process and

may influence escapes through specific effects, while compulsivity contributes to a

more rigid, trait-like cautiousness. The distinct role of spider phobia, as revealed in

the VR study, highlights how specific psychopathologies uniquely shape cautious be-

havior, underscoring the importance of tailored approaches in understanding threat

responses. Crucially, all studies validate findings by replicating prior research and

expanding knowledge, ensuring new insights build on reliable evidence rather than

fragmented findings, while providing a deeper understanding of how internal and

external factors converge to shape risk-related behaviors across diverse scenarios.
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A.1 Supplemental Methods

A.1.1 Correlation between Risk Preference Estimates

The three baseline estimates were not correlated with each other across partici-

pants, suggesting that they are underlined by distinct processes (λ and ρ: r = −0.11,

p = 0.40; λ and µ: r = 0.04, p = 0.78; µ and ρ: r = 0.03, p = 0.79). Noteworthily,

risk aversion (ρ) and choice consistency (µ) were correlated after the worry induc-

tion (r = −0.31, p < 0.05). This correlation was mainly driven by HC (r = −0.45,

p < 0.05) and not by MDD+GA (r = −0.29, p = 0.27) or MDD-GA (r = −0.14,

p = 0.51). There was no correlation post induction between ρ and λ (r = −0.11,

p = 0.39) or λ and µ (r = −0.04, p = 0.73).

A.1.2 Power Analyses

We conducted a post-hoc power analysis using G*Power (version 3.1.9.7), to

calculate achieved power based on α, sample size, and effect size. These analyses

were informed by the effect size reported in existing literature, specifically referencing

Charpentier et al. (2017). They reported higher risk aversion in pathologically

anxious individuals compared to controls (t(46) = 2.49, p = 0.016, Cohen’s d =

0.72). Applying this effect size to our sample sizes (NMDD+GA = 16, NMDD-GA = 24)

and setting an alpha error probability at 5%, we estimated a post hoc power of

approximately 71% for detecting a one-tailed difference between the two independent

means.

We also conducted a sensitivity analysis for the results of the 2x2 repeated-

measures ANOVA. The parameters were set as follows: an alpha error probability

of 5%, power of 95%, a total sample size of 40 (with 2 groups), 2 measurements,

a correlation among repeated measures of 0.85 (calculated from the data), and a

nonsphericity correction factor of 1. The critical F value is 4.10, and the minimum

effect size f is 0.16 which we exceeded as our main interaction of interest.
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These estimations allow contextualizing the power of our results, particularly

regarding the lack of baseline differences between MDD+GA and MDD-GA groups.

However, it is important to note that this power estimate is based on the external

validity of the effect size from Charpentier et al. (2017) and may not fully represent

our study context. Additionally, we acknowledge that our use of post-hoc rather

than a priori power analysis, necessitated by external constraints preventing further

data collection, has its limitations.

A.2 Supplemental Results

A.2.1 Propensity to Gamble

Across all participants, the propensity to choose the gamble instead of the

certain reward was on average 50% ± 2% (baseline) and 47% ± 2% (post-induction).

There were no significant group differences at baseline (cf. Figure A.1). We found

a trend-like interaction between time points (baseline and induction) and patient

groups (F (1, 38) = 3.97, p = 0.054). Post-hoc t-tests revealed that MDD+GA

gambled significantly less after the worry induction than MDD-GA (t = −2.51, p <

0.05). There was no difference between MDD and HC (t = −0.65, p = 0.52). When

separating trial types, we found a trend-like interaction between time points and

patient groups in gain-only trials (F (1, 38) = 3.06, p = 0.089) such that MDD+GA

gambled significantly less after the worry induction than MDD-GA (t = −2.69,

p < 0.01). This was not the case for mixed-only trials where no interaction and no

difference between groups were found.

Finally, when adding the type of gamble (i.e. mixed and gain only) as within-

subjects factor in addition to time points and patient group, a trend level interaction

arose between type of gamble and patient groups but not time point (F (1, 114) =

3.42, p = 0.067) such that MDD+GA patients gambled significantly less than MDD-

GA patients on gain-only decisions (t = −3.11, p < 0.001) but the propensity to

gamble on mixed gamble trials did not differ between patient groups (t = −1.2,
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p = 0.24).

A.2.2 Propensity to Gamble in Gain Trials

When adding the most distinctive anxiety scores (HAM-A) as a within-subjects

factor, a significant interaction between timepoint and anxiety in the propensity to

gamble was revealed in gain-only trials (t(35) = −2.08, p < 0.05) and the interaction

between timepoint and patient group was no longer significant (t(35) = −0.20,

p = 0.84). No other effect was significant.

However, when adding the most distinctive depressive symptom score (HAM-

D) as a within-subjects factor in addition to anxiety, condition, and timepoint, the

interaction between timepoint and anxiety was no longer significant (t(28) = −1.08,

p = 0.29). There was also no significant effect when only HAM-D was added as a

within-subjects factor.

A.2.3 Effect of Anxiety on the Propensity to Gamble

The difference in the propensity to gamble in gain-only trials from baseline

to the post-induction was correlated with HAM-A (r2 = 0.35), BDI (r2 = 0.30),

and PSWQ (r2 = 0.28) in MDD+GA patients but not in MDD-GA or HC (both

r2 < 0.10). Given HAM-A’s strong positive correlations with depressive scores (e.g.,

HAM-A and HAM-D: r2 = 0.44; cf. Figure A.3), we controlled for them using partial

correlations. The correlation with HAM-A was still strong even when controlling for

depressive scores as measured by MADRS (r2 = 0.31), BDI (r2 = 0.18), and HAM-

D (r2 = 0.19). Inversely, the correlation with BDI was less strong when controlling

for anxiety as measured by HAM-A (r2 = 0.12).
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A.2.4 Replication of Charpentier et al. (2017)

We fully replicated previous findings and found enhanced risk aversion in

MDD+GA compared to MDD-GA (MDD+GA: 0.87 vs. MDD-GA: 0.95, t = −2.36,

p < 0.05) and to HC (MDD+GA: 0.87 vs. HC: 0.94, t = −2.21, p < 0.05) but not

between MDD and HC (MDD: 0.92 vs. HC: 0.94, t = −0.76, p = 0.45). Addi-

tionally, there was no difference between groups in loss aversion (MDD+GA: 1.77

vs. MDD-GA: 1.62, t = 0.58, p = 0.56; MDD+GA: 1.77 vs. HC: 1.58, t = 0.7,

p = 0.48) or choice consistency (MDD+GA: 1.68 vs. MDD-GA: 1.44, t = 1.26,

p = 0.21; MDD+GA: 1.68 vs. HC: 1.68, t = 0, p = 1).

Regarding the propensity to gamble, we conceptually replicate their findings.

Where they found a trend-level difference, we found a significant group difference

such that MDD+GA patients gambled less than MDD-GA (MDD+GA: 0.4 vs.

MDD-GA: 0.52, t = −2.71, p < 0.01) and HC (MDD+GA: 0.4 vs. HC: 0.51,

t = −2.66, p < 0.01). There was no difference between MDD and HC (MDD: 0.47

vs. HC: 0.51, t = −1.14, p = 0.26). When adding the type of gamble (i.e. mixed and

gain only) as a within-subjects factor, we only found a trend-like interaction between

trial type and patient group (F (1, 118) = 3.50, p = 0.064), and no interaction when

comparing MDD+GA and HC (F (1, 115) = 1.53, p = 0.22). This only partially

replicates their significant interaction when comparing anxiety patients with HC.

However, we also found that MDD+GA patients gambled significantly less than

MDD-GA patients (MDD+GA: 0.36 vs. MDD-GA: 0.58, t = −3.11, p < 0.005) and

HC (MDD+GA: 0.36 vs. HC: 0.55, t = −2.79, p < 0.01) on gain-only decisions

but not on mixed gamble trials (MDD+GA: 0.44 vs. MDD-GA: 0.51, t = −1.2,

p = 0.24; MDD+GA: 0.44 vs. HC: 0.53, t = −1.42, p = 0.16).
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A.3 Supplemental Tables

Table A.1: Comorbidities for each group acquired through the Structured Clinical
Interview for DSM-IV (SKID-I and SKID-I). In parentheses is the DSM-IV code of
each diagnosis.

Diagnosis MDD, Single
episode,
Severe,
Without
psychotic
features
(296.23)

MDD, Single
episode,
Severe, With
psychotic
features
(296.24)

MDD, Re-
current,
Moderate
(296.32)

MDD, Re-
current,
Severe,
Without
psychotic
features
(296.33)

MDD, Re-
current,
Severe, With
psychotic
features
(296.34)

Adjustment
disorder
with de-
pressed
mood
(309.0)

N/A MDD+GA:
3, MDD-GA:
9

MDD+GA:
1, MDD-GA:
1

MDD+GA:
5, MDD-GA:
7

MDD+GA:
1, MDD-GA:
2

HC: 1

Generalized
anxiety
disorder
(300.02)

MDD+GA:
1

MDD+GA:
1

Dysthymic
Disorder
(300.4)

MDD+GA:
1

Cannabis-
related dis-
orders, abuse
(304.30)

MDD-GA: 1,
MDD+GA:
1 (with
300.01 Panic
disorder
without ago-
raphobia)

Panic dis-
order with
agoraphobia
(300.21)

MDD-GA: 1 MDD+GA:
1 (with 300.4
Dysthymic
disorder)

Social pho-
bia (300.23)

MDD-GA: 1,
MDD+GA:
1 (with 300.4
Dysthymic
Disorder,
301.9 per-
sonality
disorder
301.6 de-
pendent
personality
disorder)

Eating disor-
der (307.50)

MDD-GA: 1

Feeding
disorder
of infancy
(307.59)

MDD+GA:
1
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Table A.2: Summary of results to replicate Charpentier et al., 2017. In
our study, we have two control groups (healthy control and depressed control corre-
sponding to columns 3 and 4 respectively).
Anx: Anxious (MDD+GA in the current study), HC: healthy controls, Dep: De-
pressed (MDD-GA in the current study).

Findings Charpentier et al., 2017 Current Study Current Study
(NAnx = 25; NHC = 23) (NAnx = 16; NHC = 23) (NAnx = 16; NDep = 25)

Enhanced risk aver-
sion

t(46) = 2.5, p = 0.02 t(78) = 2.21, p = 0.03 t(78) = 2.36, p = 0.02

Unchanged loss
aversion

t(46) = 0.14, p = 0.89 t(78) = 0.70, p = 0.48 t(78) = 0.58, p = 0.56

Decreased propen-
sity to gamble

t(46) = −1.43, p = 0.16 t(78) = −2.66, p = 0.01 t(78) = −2.71, p = 0.008

Gamble type by
group interaction

F (1, 46) = 5.20, p = 0.03 F (1, 115) = 1.53, p =
0.22

F (1, 118) = 3.50, p =
0.064

Reduced gambling
on gain-only trials

t(46) = −2.73, p = 0.01 t(78) = −2.79, p = 0.007 t(78) = −3.11, p = 0.003

Unchanged gam-
bling on mixed
gamble trials

t(46) = −0.39, p = 0.70 t(78) = −1.42, p = 0.16 t(78) = −1.20, p = 0.24
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A.4 Supplemental Figures

Figure A.1: Reduced propensity to gamble in MDD+GA after worry in-
duction compared to MDD-GA and healthy controls. Mean estimates of
propensity to gamble on all trials (A), on gain-only trials (B), and on mixed-only
trials (C) plotted separately for MDD+GA, MDD-GA, and HC. There were no sig-
nificant group differences in the propensity to gamble on all trials (MDD+GA: 43
vs. MDD-GA: 52, t = −1.32, p = 0.20; MDD: 48 vs. HC: 53, t = −0.95, p = 0.35),
on gain-only trails (MDD+GA: 40 vs. MDD-GA: 57, t = −1.67, p = 0.1; MDD:
51 vs. HC: 54, t = −0.41, p = 0.69), and on mixed-only trials (MDD+GA: 46 vs.
MDD-GA: 50, t = −0.55, p = 0.58; MDD: 49 vs. HC: 54, t = −0.83, p = 0.41).
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Figure A.2: Distribution of questionnaire scores across all participants (A),
healthy controls (B), MDD+GA patients (C), and MDD-GA patients (D).
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Figure A.3: Correlation between questionnaire scores across all partici-
pants (A), healthy controls (B), MDD+GA patients (C), and MDD-GA patients
(D).
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B.1 Supplemental Methods

B.1.1 Attention Checks

To identify inattentive participants, I included several attention checks within

the questionnaires. Namely:

• “If you were paying attention to the previous questions, please select "A lot"

as your answer.” in OCI-R.

• “It is important that you carefully read the following options, choose "Yes"

below.” in the Schizo.

• “If you were focusing on the statements above, tick "A little"”. in STICSA.

Each statement was formulated such that participants could not easily search

for a recurrent keyword. Participants were told that missing the attention check

questions would disqualify them from obtaining any potential bonuses they may

have won during the task.

B.1.2 Pre-processing

Data were pre-processed according to a pre-defined pipeline. To avoid response

latencies being biased by lapses or extreme values, they were only included if they

fell into response windows of 150 ms < approach latency < 2,000 ms and 0 ms <

return latency < 2,000 ms, as in previous work (Bach, 2015, 2017), and were then

log-transformed.
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B.1.3 Incorporating Three Additional Questionnaires into

the Factor Analysis

I introduced three additional questionnaires—daringness (CADS; Lahey et al.,

2010), sensation seeking (BSSS; Hoyle et al., 2002), and trait anxiety (STICSA; Ree

et al., 2008)—into our factor analysis to examine their effects on the established

3-factor latent structure. The inclusion of these additional questionnaires did not

alter the existing structure. Notably, I observed near-perfect correlations between

the loadings and factor scores from the factor analysis with the original set of ques-

tionnaires as in Rouault et al. (2018) and Gillan et al. (2016), and from the analysis

that included the new questionnaires (cf. Figures B.3-B.6).

All three questionnaires showed high loadings on the CIT factor and only

marginal loadings on the AD and SW factors. While it was expected that sensation

seeking and daringness would align with the CIT factor, trait anxiety was more sur-

prising. However, several reasons might explain why trait anxiety was more strongly

associated with CIT than AD. First, STICSA contains quite a few items that are

linked to the intrusive nature of anxiety-related thoughts (e.g. item 10: "I can’t

get some thought out of my mind.”, item 16: “I keep busy to avoid uncomfortable

thoughts.”, item 17: "I cannot concentrate without irrelevant thoughts intruding.”

and item 19: “I worry that I cannot control my thoughts as well as I would like

to.”. Second, the AD factor might relate more closely to apathy and depression

rather than anxiety. Indeed, generalized anxiety as assessed by the STAI and which

mapped more strongly onto AD than CIT, correlated more with apathy (discovery:

r=.70, confirmation: r=.55) and depression (discovery: r=.79, confirmation: r=.72)

than with STICSA scores (discovery: r=.62, confirmation: r=.68; cf. Figure B.3).

B.1.4 Second-order Principal Component Analysis

To test whether the effect of the CIT symptom dimension could be explained

by a general psychopathology factor broader than CIT, I tested the effect of a

second-order factor. Second-order factor analysis can highlight higher-order, broad-
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spectrum factors by analyzing associations between the oblique first-order factors

(Caspi et al., 2014; Lahey et al., 2021).

To this end, I conducted a Principal Component Analysis (PCA) using the

prcomp() function from the Stats package on the factor scores from the combined

sample. I then tested the effect of the first component of the resulting PCA on

behavior. While this second-order principal component significantly predicted be-

havior, it did not explain behavior better than the CIT symptom dimension. Indeed,

behavior only explained 13.49% variance in this second-order component, compared

to 37.42% in CIT. In fact, it performed worse than 6 individual questionnaire scores,

namely those assessing alcoholism, OCD, impulsivity, schizotypy, sensation seeking,

and daringness (cf. Table B.3).

B.2 Supplemental Results

B.2.1 Elevated Anxiety Levels in the Online Sample

The absence of anxiety’s effect cannot be attributed to low anxiety levels within

the online sample. Indeed, our current online participants exhibited higher anxiety

scores compared to those in a previous in-lab study conducted by Sporrer et al.

(2023). Specifically, the in-lab study reported mean trait anxiety scores (Ree et al.,

2008) of 27.93 (SD = 5.57) for the discovery sample and 29.80 (8.89) for the ex-

ploratory sample. In comparison, the online sample presented considerably higher

scores, with means of 39.38 (15.68) and 48.99 (14.66), respectively.

B.2.2 Inattentive Responding and Data Validity

It is worth noting that the distribution of clinical scores differs significantly

across waves in our study. Specifically, the confirmation sample exhibits more un-

usual patterns compared to the discovery sample. For instance, scales assessing OCD
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and Generalized Anxiety lack the expected positive skew, and the Alcoholism scale

displays bimodal distributions, both of which deviate from typical findings. Such

atypical distributions have been linked to inattentive responding in questionnaires.

Zorowitz et al. (2023) demonstrated that inattentive responding can produce

spurious associations between task behavior and symptom measures. However, there

are several factors indicating that in the present case, inattentive responding is

unlikely to explain the lack of specificity in the pattern of cognitive deficits associated

with CIT and other psychiatric questionnaires in our study.

First, Zorowitz et al. (2023) reported that nearly no significant (spurious) cor-

relations emerged among symptom measures with more symmetric distributions. In

our study, the strongest effects were observed in the discovery sample, where clini-

cal scores followed typical patterns and were more symmetric (cf. Table 3.1, Figure

B.2). Second, Zorowitz et al. (2023) noted a marked reduction in significant corre-

lations after excluding inattentive responders, a result unlikely to be due to reduced

statistical power. In our experiments, I employed conservative, pre-registered exclu-

sion criteria, combining several task-behavior and self-report measures (cf. Methods

3.2). This approach, as noted by Zorowitz et al. (2023), is one of the best ways to

prevent spurious correlations. Additionally, rigorous participant screening does not

appear to introduce overcontrol bias, as inattentive responding is independent of psy-

chopathology (Zorowitz et al., 2023). Finally, Zorowitz et al. (2023) highlighted that

false-positive rates for spurious behavioral-symptom correlations actually increase

with sample size (i.e. keeping the inattentive responders) due to an increase in mea-

surement bias rather than measurement noise. In our study, when all participants

were included in the analysis, the results of interest were smaller or insignificant

compared to those excluding inattentive respondents. Based on these additional

tests and the successful replication of results, our findings are unlikely to be driven

by false-positive correlations due to inattentive responding.
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B.2.3 Interindividual Differences in Subjective Prior As-

sumptions

To investigate the subjective prior assumption that the presence of tokens

alerts the predator, participants completed a predator exposure task. Here, op-

timal behavior according to the task statistics was to make an exposure attempt

early in the trial, regardless of token appearance. Interestingly, post hoc analysis

on the combined sample shows that the opposite pattern is true for people with

high IQ who tried to expose the robber more frequently after the token appeared

(β = −2.1, t(1, 961) = −2.06, p < .05). A one standard deviation increase in IQ

score is linked to a 76.98 ms later approach. This suggests that people with high IQ

might assume that the presence of tokens alerts the predator.

B.2.4 Interindividual Differences in Threat Memory

To further investigate which aspect of threat memory is influenced by factor

scores, I extracted each participant’s slope and intercept from a linear regression

between the estimated catch rates and the threat levels, indicating threat memory

precision and bias, respectively. I then used these regressors as dependent variables

in another linear regression with the factor scores or demographics as predictors.

In this post-hoc exploratory analysis, CIT was associated with higher bias (β =

.21, t(997) = 6.70, p < .0001) and lower precision (β = −.08, t(997) = −2.54, p <

.01). The inverse was true with people with high IQ who had a lower bias (β =

−.12, t(1002) = −4.08, p < .001) but a higher precision (β = .09, t(1002) = 2.86, p <

.005).

I then split the data into subsets comprising of either participant scoring in the

25% top or the 75% bottom of CIT scores. I then repeated our analyses in these

sub-samples. The 25% highest CIT scorers were not able to dissociate between the

threats and reported similar catch rates (F (2, 249) = 1.59, p > .05) in contrast to

the 75% lowest CIT scores who could (F (2, 749) = 37.01, p < .0001).
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B.3 Supplemental Tables

Table B.1: Demographic and questionnaire scores within each sample. In
parentheses is the standard deviation from the mean.

Variable Discovery Sample Confirmation Sample

N 315 690
Female 149 338
Age 36.40 (11.01) 33.41 (9.89)
Generalized Anxiety 42.21 (10.80) 44.79 (8.36)
Eating Disorders 14.12 (9.83) 17.45 (9.92)
Apathy 35.39 (9.15) 38.20 (6.95)
Alcoholism 9.71 (9.35) 17.16 (9.41)
Depression 40.32 (10.04) 44.71 (8.13)
OCD 25.32 (16.45) 35.19 (13.73)
Social Anxiety 54.60 (31.53) 66.13 (28.27)
IQ 7.40 (3.55) 6.55 (2.91)
Impulsivity 62.12 (12.90) 69.30 (10.32)
Schizotypy 15.01 (9.20) 21.01 (8.51)
Sensation seeking 2.97 (0.84) 3.31 (0.72)
Trait anxiety 39.38 (15.68) 48.99 (14.66)
Daringness 2.55 (0.79) 2.89 (0.55)
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Table B.2: Behavioral results within each sample. In green are the data valida-
tion criteria that must be fulfilled to progress to the next analysis step. The GLMM
and LMM included a 3 x 6 factorial design with threat level (low/medium/high) and
potential loss (0-5 tokens). The models contained all possible polynomial terms, but
I only reported linear contrasts for each factor or interaction. The p-values are not
corrected for multiple comparisons and are presented as a heuristic guide only. In
parentheses is the standard deviation from the beta mean.

Variable Discovery Sample Confirmation Sample

Approach choices

Threat level β = −.358, (.02), t(1, 44964) =
209.56, p < .0001

β = −.173, (.02), t(1, 98925) =
85.24, p < .0001

Potential loss β = −2.329 (.04), t(1, 44964) =
3644.72, p < .0001

β = −1.003 (.03), t(1, 98925) =
1418.03, p < .0001

Interaction: Threat level x
Potential loss

β = .052 (.06), t(1, 44964) = .69,
p > .05

β = .018 (.05), t(1, 98925) = .16,
p > .05

Approach latency

Threat level β = .010 (.00), t(1, 32333) =
11.8, p < .01

β = .003 (.00), t(1, 80454) =
3.89, p < .05

Potential loss β = .043 (.00), t(1, 32333) =
104.41, p < .0001

β = .011 (.00), t(1, 80454) =
32.81, p < .0001

Interaction: Threat level x
Potential loss

β = .002 (.01), t(1, 32333) = .08,
p > .05

β = −.005 (.00), t(1, 80454) =
1.9, p > .05

Withdrawal latency

Threat level β = −.047 (.01), t(1, 22022) =
42.29, p < .0001

β = −.062 (.00), t(1, 51285) =
173.98, p < .0001

Potential loss β = −.023 (.01), t(1, 22022) =
4.63, p < .05

β = −.012 (.01), t(1, 51285) =
3.06, p > .05

Interaction: Threat level x
Potential loss

β = −.02 (.02), t(1, 22022) =
1.21, p > .05

β = .002 (.01), t(1, 51285) = .04,
p > .05
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Table B.3: Effect of each questionnaire score (above black line) and symp-
tom dimension (below black line) on approach choices and latencies. The
last three questionnaire scores (i.e. sensation seeking, trait anxiety, and daringness)
in grey were not included in the factorial analysis to calculate the symptom dimen-
sions. This table is based on the combined sample. The p-values are not corrected
for multiple comparisons and are presented as a heuristic guide only. Cf. methods
on how the explained variance was estimated.

Questionnaire Approach choices Approach Latencies Explained vari-
ance (%)

Generalized
Anxiety

β = .11, (.05), t(1, 143657) =
4.08, p < .05

β = .02, (.01), t(1, 112602) =
8.82, p < .01

2.13

Eating Disor-
ders

β = .32, (.07), t(1, 143800) =
22.97, p < .0001

β = .05, (.01), t(1, 112722) =
26.26, p < .0001

5.57

Apathy β = .17, (.06), t(1, 143514) =
8.90, p < .01

β = .03, (.01), t(1, 112472) =
12.59, p < .001

4.39

Alcoholism β = .39, (.06), t(1, 143369) =
45.86, p < .0001

β = .09, (.01), t(1, 112447) =
106.72, p < .0001

17.46

Depression β = .25, (.05), t(1, 143371) =
22.75, p < .0001

β = .05, (.01), t(1, 112363) =
45.79, p < .0001

8.94

OCD β = .37, (.06), t(1, 143657) =
42.96, p < .0001

β = .10, (.01), t(1, 112602) =
144.62, p < .0001

21.05

Social Anxiety N.s. β = .06, (.01), t(1, 112385) =
41.29, p < .0001

4.76

Impulsivity β = .34, (.05), t(1, 143514) =
40.26, p < .0001

β = .07, (.01), t(1, 112472) =
83.68, p < .0001

16.73

Schizotypy β = .42, (.06), t(1, 143514) =
56.02, p < .0001

β = .07, (.01), t(1, 112493) =
73.5, p < .0001

14.63

Sensation seek-
ing

β = .43, (.06), t(1, 143371) =
59.92, p < .0001

β = .06, (.01), t(1, 112436) =
49.85, p < .0001

15.06

Trait anxiety β = .34, (.06), t(1, 143219) =
35.60, p < .0001

β = .08, (.01), t(1, 112331) =
73.50, p < .0001

12.64

Daringness β = .42, (.05), t(1, 143657) =
65.74, p < .0001

β = .08, (.01), t(1, 112665) =
112.07, p < .0001

21.19

CIT β = .59, (.05), t(1, 143083) =
122.20, p < .0001

β = .13, (.01), t(1, 112208) =
251.89, p < .0001

37.42
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Table B.4: Items from the daringness subscale of the CADS (Lahey et al.,
2010). Participants have to select of the options following these instructions "When
you answer these questions, please think about the last 12 months and tick the box
that you feel best describes you." The options are: "Not at all", "Just a little",
"Pretty much/pretty often", and "Very much/very often"

Questions

1) Are you daring and adventurous?
2) Do you like rough games and sports?
3) Do you enjoy doing things that are risky or dangerous?
4) Do you like things that are exciting and loud?
5) Are you brave?

Table B.5: Items from the Brief Sensation Seeking Scale (BSSS; Hoyle
et al., 2002). Participants have to select of the options following these instructions
"Please read each statement carefully and select the option which best describes
you. We are interested only in your likes or feelings, not how others feel about
these things or how one is supposed to feel." The options are: "Strongly disagree",
"Disagree", "Neither disagree nor agree", "Agree", and "Strongly agree".

Questions

1) I would like to explore strange places.
2) I get restless when I spend too much time at home.
3) I like to do frightening things.
4) I like wild parties.
5) I would like to take off on a trip with no pre-planned
routes or timetables.
6) I prefer friends who are excitingly unpredictable.
7) I would like to try bungee jumping.
8) I would love to have new and exciting experiences, even
if they are illegal.
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B.4 Supplemental Figures

Figure B.1: Exclusion flowchart for the first exploration experiment. The
same criteria were applied to the second confirmation experiment.
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Figure B.2: Distribution of questionnaire scores in both samples.

Figure B.3: Correlation matrices between questionnaires in both samples.
Specifically, the correlation between questionnaire items (top left), questionnaire
scores and demographics (top right), and the three factors and demographics (bot-
tom right). In the bottom left are the eigenvalues from the factor analysis revealing
the three-factor solution that best accounted for our data. The color scale indicates
the correlation coefficient.

189



APPENDIX B. STUDY 2 SUPPLEMENTS

Figure B.4: Correlation matrices between questionnaires in both samples.
Specifically, the correlation between questionnaire items (top left), questionnaire
scores and demographics (top right), and the three factors and demographics (bot-
tom right). In the bottom left are the eigenvalues from the factor analysis revealing
the three-factor solution that best accounted for our data. The color scale indicates
the correlation coefficient.

Figure B.5: Questionnaire loadings onto each factor in both samples, color-
coded by questionnaire. The top figures of each factor detail the loadings of the
individual questionnaire items, the bottom figures summarise the loadings at the
questionnaire score level. The error bars represent the standard deviation of the
mean over item loadings
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Figure B.6: Loadings of all questionnaires (originals and additional) onto
each factor in both samples, color-coded by questionnaire. The top figures of
each factor detail the loadings of the individual questionnaire items, the bottom
figures summarise the loadings at the questionnaire score level. The error bars
represent the standard deviation of the mean over item loadings.

Figure B.7: Behavioral results in both samples. Proportion of approach-
avoidance decisions, indexing passive avoidance (left), approach latency, indexing
behavioral inhibition (center), and withdrawal latency (right).
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Figure B.8: Estimated behavioral output according to main behavioral
predictors in both samples. Estimated marginal means of approach choice (top)
and latency (bottom) depend on CIT symptom dimension scores (left) or IQ (right)
while other predictors are kept fixed. Low CIT/IQ: -1.5, Mean CIT/IQ: 0, and
High CIT/IQ: +1.5

Figure B.9: Time of threat exposure attempts relative to token appearance
in both samples.
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Figure B.10: Biased reported threat memory in both samples. Across par-
ticipants, the estimated catch rates depended on the true catch rate which had to
be learned during the experiment (bottom). CIT is linked to biased threat memory
such that the top 25% CIT scorers (center top) cannot distinguish between different
threat levels and overestimate their probabilities. While the bottom 25% CIT scores
(left top) and all participants (right top) distinguished the threats better, they still
overestimated the threat probabilities. Actual threat rates for each level are denoted
by red diamonds. Est.: estimated.
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C.1 Supplemental Methods

C.1.1 Equipment

We used an HTC Vive Pro Eye HMD, Windows PC with an Intel i7 9700K CPU

and Nvidia RTX 2080Ti GPU. Vive controllers were held in each hand, and Vive

Trackers were attached to the waist and feet to allow for real-time body tracking.

The VR headsets included built-in eye tracking and a microphone positioned on the

underside of the HMD.

To calibrate the eye tracking before starting E2, participants performed the

HTC VIVE Pro Eye built-in calibration provided by the SRanipal software develop-

ment kit (SDK). First, this procedure assists the participant in properly adjusting

the head-mounted display for a snug fit and fine-tuning the lenses to accommo-

date their specific inter-pupillary distance (i.e. distance between the centers of eye

pupils). Subsequently, the participant is presented with a series of five calibration

positions to focus on consecutively ("track the dot"). Once all five positions have

been fixated upon, the procedure ends. The manufacturer reports an accuracy of

0.5° - 1.1° (Corporation, 2023) which has been confirmed in a recent study that

found an accuracy of 1.10° using real-world data (Schuetz and Fiehler, 2022).

C.1.2 Questionnaire Selection

We selected these scales because they were short and easy to fill in, have suitable

psychometric properties and have been used in previous research.

Fear

To assess diverse fears, we selected the widely used FSS-III (Wolpe and Lang,

1964). Its two main criticisms relate to its poor discriminant validity between pa-

tients with specific anxiety disorders (Beck et al., 1998) and the conflation of fear

and anxiety. Whereas the first criticism appeared less relevant in the context of the
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present study, the second might raise questions. Fear is often seen as a short-lived

emotion which motivates escape from an imminent threat, and anxiety as a longer

response to an ambiguous or uncertain threat which might happen in the future

(Adolphs, 2013; Steimer, 2002; Öhman, 2008). The Situated Fear Questionnaire

(SFQ) was developed to better distinguish those two concepts (Campbell et al.,

2016). However, we are not aware of investigations on the factorial structure of the

SFQ or extensive validation data, which is why it was not retained for the present

study.

Animal phobias

Specific animal phobias are globally the most frequent mental illness (Steel

et al., 2014). Snakes and spiders are especially potent in eliciting strong negative

emotions, even in non-clinical populations (Polák et al., 2020). To measure the

specific phobia related to snakes, we selected the SNAQ-12 (Zsido et al., 2018) which

is a short version of the well-known Snake Questionnaire (SNAQ; Klorman et al.,

1974). While reducing its length from 30 to 12 items, it retains good psychometric

values such as internal consistency (α = .88) and provides a cut-off score with an

optimal balance between sensitivity and specificity. Thus, participants scoring above

8 should be considered potentially snake phobic. Similarly, to measure the specific

phobia of spiders, we utilized the SPQ-12 (Zsido et al., 2018) which is a short version

of the Spider Questionnaire (SPQ; Klorman et al., 1974). It also reduces the length

from 31 to 12 items and retains good psychometric values (α = .9) with a cut-off at

7 which would suggest a risk of developing spider phobia. In contrast to FSS, both

scales have a high discriminant validity between phobic and non-phobic individuals

(Zsido et al., 2018). Furthermore, they also have very good test-retest reliability.

We did not include specific scales related to other animals as they have been found

to be highly correlated with the animal sub-scale from the FSS-III (Matchett and

Davey, 1991).
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Disgust

The Disgust Propensity and Sensitivity Scale Revised (DPSS-R; van Overveld

et al., 2006) based on the original DPSS (Cavanagh and Davey, 2000) aims to assess

a general tendency to respond with disgust to any given situation by measuring

the frequency of disgust experiences (i.e. disgust propensity) and the emotional

impact of disgust experiences (i.e. disgust sensitivity). Furthermore, the DPSS-R

has good predictive validity as it corresponds well with disgust-induced avoidance in

behavioral experiments (van Overveld et al., 2006). Thus, we decided to select the

DPSS-12 (Fergus and Valentiner, 2009) which is a shorter version of the DPSS-R

(van Overveld et al., 2006). While it reduces the number of items from 16 to 12,

it provides even stronger internal consistency (α for disgust propensity = .83, α for

disgust sensitivity = .80). It was replicated in both clinical and non-clinical samples

and provides an index of the subject’s tendency to feel disgust that generalized across

contexts and is not limited to the three dimensions mentioned above (Goetz et al.,

2013). Another one of the most commonly used questionnaires to assess disgust is

the Disgust Scale Revised (DS-R; Olatunji et al., 2007) based on the original DS

(Haidt et al., 1994). The DS-R is a 25-item scale that measures the participant’s

level of disgust about three core dimensions, including core disgust, animal reminder

disgust, and contamination-based disgust. However, the DS-R measures disgust for

specific elicitors including some unrealistic scenarios (e.g., “eating monkey meat”).

It therefore does not give any indication of whether they appraise these experiences

more negatively, which is why it was not retained for our experiments.

Anxiety

To measure anxiety, we selected the State-Trait Inventory for Cognitive and So-

matic Anxiety (STICSA; Ree et al., 2008, 2000) that assesses cognitive (i.e., thought

processes such as intrusive thoughts) and somatic dimensions (i.e., symptoms like

sweating or trembling) to better discriminate between the different components of

anxiety with good discriminant validity. This scale has been validated in clinical

and nonclinical samples demonstrating its excellent internal consistency (α = .87),
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reliability, and construct validity as a purer measure of anxiety (Gros et al., 2007;

Roberts et al., 2016). The STICSA was created (Ree et al., 2008, 2000) to counter

the lack of discriminant validity between anxiety and depression but keep the the-

oretical formulation of state and trait anxiety of one of the most long-standing

and popular measures to assess anxiety which is the State-Trait Anxiety Inventory

(STAI; Spielberger, 1983). Indeed, an important point consistently reported in the

literature regards its tendency to measure confounding depressive symptoms rather

than anxiety and its inability to distinguish them (Bados et al., 2010; Bieling et al.,

1998). The STICSA Trait scale correlated more highly with another measure of

anxiety (DASS-A) than with the STAI Trait scale, and the STAI Trait correlated

more highly with a measure of depression (DASS-D) than with the STICSA Trait

(Gros et al., 2007).

Daringness

Daringness is the best predictor in a risky foraging task (Bach et al., 2020).

This study was conducted in young people and used the daringness items from the

Child and Adolescent Dispositions Scale (CADS; Lahey et al., 2010). For our current

experiments, we sought to use an adequate scale for adults. A similar questionnaire

often used in adults is the Sensation Seeking Scale (SSS-V; Zuckerman, 2007b)

which includes four subscales: Thrill and Adventure-Seeking, Experience Seeking,

Disinhibition, and Boredom Susceptibility. Based on these four dimensions, a short

version of the SSS was created by reducing its length from 40 to 8 items. The Brief

Sensation Seeking Scale (BSSS; Hoyle et al., 2002) includes two items representing

each aspect of sensation seeking and maintains good psychometric characteristics

(α = .76).

Cybersickness

Cybersickness is part of virtual reality-induced symptoms and effects (VRISE)

and is considered to be a subtype of motion sickness induced by immersion into

virtual reality (Davis et al., 2014; Saredakis et al., 2020). There is limited consensus
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about the symptoms provoked by VR as the biological mechanisms are unknown.

One of the most commonly used measures is the Simulator Sickness Questionnaire

(SSQ; Lane and Kennedy, 1988) which was created to assess motion sickness for sim-

ulator systems. It indicates three constructs of simulator sickness: Nausea, Disori-

entation, and Oculomotor dimension, along with a second-order more general factor

concerning total severity. Despite its extensive use, the SSQ has been widely criti-

cized for its psychometric qualities and applicability in VR. In response, two scales

were developed that selected those symptoms from SSQ that were found to be most

relevant for VR (Sevinc and Berkman, 2020). First, based on a factor analysis-

based method, the Virtual Reality Sickness Questionnaire (VRSQ) includes nine

symptoms from the original SSQ to indicate Oculomotor and Disorientation con-

structs (Kim et al., 2018). Secondly, based on an item-response theory approach,

the Cybersickness Questionnaire (CSQ-VR) retains nine symptoms from the SSQ in

two factors: Dizziness and Difficulty in Focusing, and uses a scoring method based

on item weights (Kourtesis et al., 2023). While both subscales have equally good

psychometric qualities, there is so far limited work using these scales. This is why

we decided to include all the items from the SSQ, which allows computing both

subscales.

Cyber sickness and motion sickness susceptibility are subject to large variabil-

ity but older age and being male act as protective factors. To monitor predictors of

potential adverse effects in the VR, we included a short version of the Motion Sick-

ness Susceptibility Questionnaire (MSSQ; Golding, 1998, 2006). This scale assesses

previous experiences of motion sickness in different contexts (e.g., cars, aircraft,

funfair rides) during childhood and adulthood. We did not use this scale as an

exclusion criterion because evidence is still lacking regarding its predictive validity

in VR experiments. Existing data on MSSQ’s predictive validity were derived from

laboratory motion experiments without VR (Golding, 2006).

As video game usage might impact the susceptibility of experiencing cybersick-

ness, we sought to include a questionnaire assessing video game habits. The Video

Game Usage Questionnaire was created to measure the weekly amount of video game

play whether it is the average number of hours played, the average duration of each

199



APPENDIX C. STUDY 3 SUPPLEMENTS

session, etc. (Tolchinsky, 2013).

C.1.3 Threat Selection

We selected the threats based on six principles.

First, we sought to sample from a variety of threat classes, as there is a sug-

gestion they might engage different action-selection mechanisms. We considered

five broad and overlapping threat classes: conspecific, predatory, defensive, disgust-

relevant, and inanimate. There are several reasons to motivate this wide range of

threats. First, there is some evidence in animals that suggests different classes of

threats engage different neural mechanisms. For example, learning to predict preda-

tory or conspecific threat from conditioned stimuli involves distinct neural pathways.

Secondly, these different threats may motivate different behaviors; for example, self-

defending but not predatory animals may cease their aggression when an intruder

retreats. We specifically sought to include domestic animals which may again evoke

specific behaviors since a common goal for a human is to dominate a domestic ani-

mal rather than to escape from it. We did not include self-defending prey animals;

an example of this is the mobbing behavior of smaller monkeys towards predating

chimpanzees However, such threats may be quite habitat specific. Also, modeling

them in VR would require the player to engage in aggressive behavior in the first

place, which we decided was too difficult to implement. To motivate the class of

disgust-related threats, some animals inflict no or limited acute damage to humans

but are commonly feared or avoided in the population in modern-day times. This

is evidenced by the prevalence of specific phobias of such animals (e.g., spider pho-

bia with a prevalence of 3.5%), and by non-clinical self-report surveys 8–11. Factor

analysis of cross-cultural fear ratings across many animal species has suggested three

factors: fear of non-dangerous animals, fear of dangerous animals (including preda-

tors and self-defending animals, such as lions or snakes, respectively), and fear of a

third category including spiders, worms, and slugs. Several among this latter cat-

egory of animals were shown to evoke disgust to a similar or greater degree than

fear.
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Secondly, our primary research goal was to characterize cognitive or neural

mechanisms that may be pre-programmed to control behavior towards particular

threats. The emergence of pre-programmed mechanisms is likely to involve evolu-

tion of behavioral controllers themselves, or the evolution of learning systems that

allow acquiring behavioral control during an individual’s lifetime; a process that is

perfected over timespans of hundreds of thousands of years, as exemplified by the

acquisition of skills for tool use. A plethora of threats present in modern civilization

and warfare were only developed in the past few centuries; therefore, to avoid an

arbitrary cut-off date we focused exclusively on threats that emerged during pre-

historic times and were present throughout all or most of human history. For each

class of pre-historic threats, the next requirement was to select relevant species or

instantiations. We approached this from two angles. First, we drew on contempo-

rary and historical sources to assess the amount of damage inflicted by a particular

threat and sought to prioritize those that inflicted the highest rate of deaths or in-

juries. Secondly, for threats that occur in phobias or are feared in surveys, we used

the fear ratings as an additional or primary relevance criterion.

As the fourth selection principle, we sought to elicit a wide range of motor

behaviors. To this end, beyond manipulating proximity and attack mode for each

of the threats, we also endeavored to include threats of different physical sizes.

Fifth, threats that have been the subject of previous research in humans or

other animals were prioritized. This allows any new evidence for behaviors to con-

tribute to a larger field of study and allows for comparisons and validation against

existing research.

Lastly, the implementation difficulty of the threat was considered, as the de-

velopment of some otherwise relatively similar threats may have relied upon more

complex texturing and animation work (e.g., the coat of a leopard versus that of

a panther, or a long-haired versus a short-haired dog breed). These considerations

led us to develop and include the following threats within five categories (cf. Table

C.2).
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C.2 Supplemental Results

C.2.1 Replicating Sex Differences

Bach et al. (2020) found that sex was the most significant predictor of cautious

behavior in a 2D computerized risky foraging task, accounting for 17% of the variance

in performance, measured by tokens retained after predator activation. In a post

hoc analysis across our combined sample, sex explained around 8% of the variance

in a similar measure of performance (cf. Table C.8). This sex difference was not

attributable to males collecting fruits more quickly or starting to gather them earlier

than females.

Additionally, sex was linked to the minimum distance maintained from the

threat, with males keeping a smaller distance from the predator in both studies

(in-lab study: 9%; VR studies: 14%). Uniquely in our VR study, we also observed

that males tended to delay their escape more than females (r2 = .10, p < .05). This

tendency was also not due to faster escape speeds compared to females.

Importantly, males escaped later especially when they had more time (i.e. in

the 5 seconds time-to-impact condition), allowing them to take advantage of lower-

risk conditions. Indeed, on top of the individual significant effect of sex and time-to-

impact, there were significant interactions in linear mixed effect models for escape

initiation time (β = .67 ± .27, t(57) = 2.46, p < .05), minimum threat distance

(β = −2.58 ± .77, t(57) = −3.34, p < .005), and the number of fruits collected

per trial (β = .81 ± .32, t(57) = 2.56, p < .05). In sum, males were less cautious

when they had time (in the VR study) or when potential losses were small (in the

in-lab study), but adapted their behavior to the same level as females when under

time constraints or potential loss increased. Despite acting less cautiously in certain

scenarios, these behavioral differences did not translate to higher mortality rates

for males in either study, indicating that their riskier strategies did not compromise

survival.

However, while these findings align with previously replicated results, it is
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important to note that I did not pre-select these hypotheses; instead, I analyzed

the combined sample directly. This post hoc approach may introduce potential

biases, and therefore, these results should be interpreted with caution, as further

pre-registered studies are needed to confirm the robustness of these associations.

C.2.2 Replicating Effect of Anxiety

Fung et al. (2019) found that trait anxiety, measured by the STAI-Y, was

associated with earlier escape responses for distant threats, but not for closer threats,

in a simple 2D task (detailed in Section 1.3.2). Specifically, they did not observe a

main effect of anxiety or an interaction between anxiety and close threat type, but

they did find a significant interaction between anxiety and distant threat type.

While our experimental design is slightly different, we partially replicate these

findings. We found that trait anxiety was correlated with escape initiation time

(r = −.34, r2 = .11, p < .01), indicating that a higher anxiety score was associated

with earlier escape (cf. Table C.8). This correlation was not significant in the

short time-to-impact condition (closer threats) but was significant in the longer

time-to-impact condition (distant threats, r = −.29, r2 = .08, p < .05). Using a

linear mixed-effects model, we observed significant main effects of anxiety (β =

−.61± .23, t(73.05) = −2.67, p < .01) and time to impact (β = −1.65±0.14, t(56) =

−11.80, p < .0001), but their interaction only reach trend-like significance (β =

.27± .14, t(56) = 1.91, p = .0615).

Additionally, Fung et al. (2019) found that trait anxiety is related to how

successfully participants escaped the predators. Notably, they found a significant

interaction between anxiety score and predator type such that anxiety was positively

related to escape success in the distant predator condition. However, they found no

overall effect of anxiety. Similarly, we also found a significant interaction between

anxiety and threat timing (β = .03± .01, t(56) = 2.09, p < .05) and an overall small

but significant correlation of trait anxiety on survival rates (r = .28, r2 = .08, p <

.05). (cf. Table C.8).
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The effect of anxiety appears to be highly specific. Among over 20 behavioral

variables, only two showed significant associations with anxiety, yet these aligned

with previous findings from another risky-foraging task that differed substantially

in presentation. Specifically, in both studies, anxiety was linked to earlier escape

and higher escape success, particularly in response to distant rather than imminent

threats.

The differences between our studies may stem from variations in experimental

conditions. Our study included only two conditions (1.5s and 5s time to impact),

represented by 7 threats with varying speeds, which led to differences in actual

distances. In contrast, Fung et al. (2019) used three conditions with consistent

predator speeds, yielding three distinct distances and timings of predator attacks.

Thus, it remains unclear whether anxiety is more closely related to the timing of

the attack or the actual distance of the threat.
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C.3 Supplemental Tables

Table C.1: Thirteen specific behavioral patterns in response to attack from
a conspecific, as depicted in Homer’s Iliad. These examples illustrate the
richness of informally observed or imagined human behavior; we do not claim they
are exhaustive or empirically supported. Translation: Richard Lattimore, The Iliad
of Homer, Chicago 1951, as retrieved from Kahane A & Mueller M, The Chicago
Homer, https://homer.library.northwestern.edu.

Behavioral pattern Example Chapter/verse

Turn around to run For as [Periphetes] whirled about to get back, he fell
over the out-rim of the shield he carried.

15/645-646

Flee forward He spoke, and Sokos turning from him was striding in
flight, but in his back even as he was turning the spear
fixed between the shoulders and was driven on through
the chest beyond it.

11/446-448

Flee backward As [Euphorobos] was drawing back, [Menelaos] caught
him in the pit of the gullet.

17/47

Flee backward [The haughty Trojans] thrust him away from them so
that he gave ground backward staggering.

5/623-625

Draw back, star-
ing/turning around

[Aias] stood stunned, [...] and drew back, throwing his
eyes round the crowd of men, like a wild beast, turning
on his way, shifting knee past knee only a little.

11/545-547

Drop to the knee to
avoid thrown object

Glorious Hektor kept his eyes on him, and avoided [the
spear], for he dropped, watchful, to his knee, and the
bronze spear flew over his shoulder.

22/274-275

Bend forward to
avoid thrown object

[Automedon], keeping his eyes straight on him, avoided
the bronze spear. For he bent forward.

17/526-527

Tremble But the Trojans were taken every man in the knees with
trembling.

20/44

Stand still But Aineias, free of the long spear, stood still, and
around his eyes gathered the enormous emotion and
fear, that the weapon had fixed so close to him.

20/281-283

Huddle inside an
enclosure

Thestor, Enops’ son, who huddled inside his chariot. 16/402

Call for help [Odysseus] gave back a little way and called out for his
companions.

11/461

Flung at oppo-
nent’s knee and beg
for mercy

Brilliant Achilleus held the long spear uplifted above
him, straining to stab, but [Lykaon] under-ran the stroke
and caught him by the knees [...]: "Achilleus, I am at
your knees. Respect my position, have mercy upon me."

21/67-74

Group of people
fleeing in many
different directions

The high-hearted Epeians fled one way and another in
terror when they saw the man fall.

11/744-745

Withdraw into a
group of people

But Alexandros the godlike when he saw Menelaos, [...]
to avoid death he shrank into the host of his own com-
panions.

3/30-32
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Table C.2: Summary of threat classes and selected threats for each study

Threat Instantiation(s) Threat
class(es)

E1 E2 Reason for change

Human Male, medium skin tone,
medium build

Conspecific x x

Bear Brown bear Predatory,
defensive

x x

Crocodile American alligator Predatory,
defensive

x Comparison to other sce-
narios limited

Big cat Panther (black furred
variant of leopard)

Predatory,
defensive

x x

Bovine Spanish fighting bull Defensive x No specific behaviors rele-
vant to study purpose

Elephant African bush elephant Defensive x x
Canine Dobermann dog Defensive x x
Snake Viper (Bitis arietans) Defensive x x
Scorpion Indian red scorpion Disgust-

relevant,
Defensive

x Sometimes not detected
by participants

Spider Australian funnel-web spi-
der

Disgust-
relevant,
Defensive

x x

Insect Yellow-jacket wasp Disgust-
relevant,
Defensive

x Sometimes not detected
by participants

Rat Brown rat Disgust-
relevant

x No specific behaviors rele-
vant to study purpose

Collision
with large
object

Boulder rolling down a hill Environmental x x

Red box Medium Red box Control x x
Small Red box Control x No specific behaviors rele-

vant to study purpose
Time bomb Dynamite sticks Control x No specific behaviors rele-

vant to study purpose
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Table C.3: Threat speeds and the resulting calculated distance from fruit
picking position for the two time-to-impact conditions. “No threat” condi-
tions were included to assess baseline behavior; here the “speed” is a dummy variable
that served to determine the distance of the visual grass elements from the player.
The slow/fast column relates to analysis; for the distance calculation, the “slow”
threat equations were used for the (non-chasing) rock.

Threat name Speed (m/s) Slow/fast for
analysis

Threat distance
(1.5s time-to-
impact)

Threat distance
(5.0 s time-to-
impact)

Elephant 6.4 Fast 18.1 43
Bull 5.49 Not included 14.46 36.175
Human 5.2 Fast 13.3 34
Panther 4.07 Not included 8.78 25.525
Bear 3.84 Fast 7.86 23.8
Wasps 3.75 Not included 7.5 23.125
Doberman 3.53 Fast 6.62 21.475
Snake 1.92 Slow 2.88 9.56
Rat 1.36 Not included 2.04 6.8
Spider 0.32 Slow 0.48 1.6
Scorpion 0.16 Not included 0.24 0.8
Rolling Rock 6.283 Not included 9.425 31.416
Crocodile 0.75 Not included 1.125 3.75
Time bomb N/A N/A 1.125 3.75
RedBox
Medium

3.375 N/A 6.0 20.3125

RedBox
Small

0.375 N/A 0.5625 1.875

No threat (1) 4.07 N/A 8.78 25.525
No threat (2) 1 N/A 1.5 5
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Table C.4: Number of epochs in the second part of E2 according to block
type. The second line indicates the possible numbers of the specific type of epoch
described above and the third line indicates the actual number of the specific epoch
realized on average across participants in E2.

Block
name

Characteristics of epochs / Possible number of epochs / Actual number of epochs

Force shield

Panther,
Shield,
1.5s

Panther,
Shield, 5s

Panther,
No shield,
1.5s

Panther,
No shield,
5s

No
threat,
Shield,
1.5s

No
threat,
Shield, 5s

No
threat,
No shield,
1.5s

No
threat,
No shield,
5s

1-2 1-2 1-2 1-2 0-1 0-1 0-1 0-1
1.67 1.77 1.87 1.83 0.80 0.83 0.80 0.80

Hands up

Panther,
Hands-
up, 1.5s

Panther,
Hands-
up, 5s

Panther,
No
hands-
up, 1.5s

Panther,
No
hands-
up, 5s

No
threat,
Hands-
up, 1.5s

No
threat,
Hands-
up, 5s

No
threat,
No
hands-
up, 1.5s

No
threat,
No
hands-
up, 5s

1-2 1-2 1-2 1-2 0-1 0-1 0-1 0-1
1.77 1.67 1.83 1.77 0.80 0.70 0.50 0.73

Medusa
Panther,
Lethal
force,
1.5s

Panther,
Lethal
force, 5s

No
threat,
Lethal
force,
1.5s

No
threat,
Lethal
force, 5s

3-4 3-4 0-2 0-2
3.60 3.77 1.57 1.60
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Table C.5: All behavioral variables and their description on how they were
computed

Name Description

Escape to shelter Participant went into the shelter (as logged in Unity)
Survived Participant did not go into the shelter (as logged in Unity)
Virtual death Participant entered in contact with the threat (as logged in

Unity)
Minimum distance from shelter Smallest distance between participant’s head tracker and shel-

ter, regardless of outcome
Minimum distance from threat Smallest distance between participant’s waist tracker and

threat center during escape
Time of escape initiation Begin of the movement away from the bush (velocity threshold

0.1 m/s) that brings the participant’s head tracker at least 75
cm away from fruit-bearing bush for the first time (at this
distance, they cannot reach fruit any more)

Initiated escape Participant initiated escape as per above
Interrupted escape Participant initiated escape as per above but did not reach the

shelter as logged by Unity
Fruit picking rate Number of collected fruit(s) per second (as logged by Unity)
Escape speed Speed of the participant’s waist tracker between time of escape

initiation, and end of escape. To compute speed, position data
are resampled at a rate of 10 Hz and median-smoothed over 3
data points (300 ms), in order to avoid an impact of momentary
tracker mislocation.

Body orientation Cosine of angle between a vector pointing forward from the
participant’s pelvis, and the line between the participant and
the threat, while ignoring the upward axis. This results in
values between -1 and 1, where 1 is towards the threat, -1 is
away, and 0 is perpendicular.

Head orientation Same as body orientation but for a vector pointing forward
from the participant’s forehead

Visual scanning Cumulative angle of frame-by-frame movements of a vector
pointing forward from the participant’s forehead (i.e. ignoring
movements around this axis)
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Table C.6: Retained correlations between questionnaires and behavioral
variables discovered in E1 and used to compose GLM models to test in
E1. The full set of correlations are only tested in E1. The p-values are not corrected
for multiple comparisons and are presented as a heuristic guide only. The retained
GLMs are listed in Table 4.2.

Dependent variable Questionnaires E1 (r, r2, p)

Minimum distance from threat Fear (FSS) r = .48, r2 = .23, p < .01
during escape Spider phobia (SPQ) r = .44, r2 = .20, p < .05

Fear (FSS) r = −.50, r2 = .25, p < .01Escape initiation time Spider phobia (SPQ) r = −.34, r2 = .12, p < .05
Fruit picking during 0-1.5 s Fear (FSS) r = −.46, r2 = .21, p < .01
after threat appears Spider phobia (SPQ) r = −.39, r2 = .16, p < .05

Sensation seeking (BSSS) r = .42, r2 = .18, p < .05
Head orientation during 0-1.5 Fear (FSS) r = −.43, r2 = .19, p < .05
after threat appears Spider phobia (SPQ) r = −.43, r2 = .18, p < .05
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Table C.7: Statistical results for the second part of E2 (block 2 – 4). Each
hypothesis tests a distinct a-priori question and hence p-values are not corrected for
multiple comparisons.

Name Dependent variable Contrast or Interaction E2 (β ± SE, t(df), p)

Force shield block

E2-H1 Escape to shelter Shield vs no shield, pan-
ther, 1st epoch

β = −5.97 ± 1.29, z =
−4.65, p < .0001

Supporting
test

Minimum distance from
shelter

Shield vs no shield, pan-
ther, 1st epoch

β = 2.13 ± 0.10, t(278) =
21.01, p < .0001

E2-H2 Minimum distance from
shelter

Panther vs no threat,
shield, 1st epoch

β = −0.13±0.10, t(278) =
−1.26, p = .21

E2-H3 Fruit picking rate from
threat appearance to the
minimum duration of the
epoch (12.5 s)

Panther vs no threat,
shield, 1st epoch

β = −0.45±0.10, t(268) =
−4.22, p < .0001

Supporting
test

Fruit picking rate from
threat appearance to the
minimum duration of the
epoch (12.5 s)

Shield vs no shield, no
threat, 1st epoch

β = −0.44±0.11, t(268) =
4.07, p < .0001

E2-H4 Visual scanning during 0-
1.5 s after threat appears

Panther vs no threat,
shield, 1st epoch

β = 43.1 ± 18.1, t(216) =
2.38, p < .05

Supporting
test

Gaze elevation during 0-
1.5 s after threat appears

Panther vs no threat,
shield, 1st epoch

β = 25.7 ± 6.55, t(215) =
3.92, p < .0001

Medusa block

E2-H5 Virtual death by lethal
force

Interaction of lethal force
and epoch order

β = 0.60 ± 0.13, z =
−4.57, p < .0001

Hands-up block

E2-H6 Escape to shelter Hands-up (mean = 0) vs
no hands-up, panther, 1st
epoch

Binomial test against 0:
p < .0001

Supporting
test

Minimum distance from
shelter

Hands-up vs no hands-up,
panther, 1st epoch

β = 2.23 ± 0.10, t(278) =
21.99, p < .0001

Supporting
test

Minimum distance from
shelter

Panther vs no threat,
hands-up, 1st epoch

β = −0.03±0.10, t(278) =
−0.32, p = .75
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Table C.8: Exploratory correlations between questionnaires and behavioral
variables in combined sample (N=58). Spider phobia was measured by SPQ-12,
snake phobia by SNAQ-12, and Anxiety by STICSA-T

Behavioral variable Spider phobia Snake phobia Trait Anxiety Sex

Escape to shelter r = .41, r2 =
.17, p < .001

r = .26, r2 =
.07, p < .05

ns ns

Interrupted escape r = −.28, r2 =
.08, p < .05

ns ns ns

Survival r = .37, r2 =
.14, p < .005

ns r = .28, r2 =
.08, p < .05

ns

Minimum Safe Distance r = −.40, r2 =
.16, p < .005

r = −.26, r2 =
.07, p < .05

ns r = −.28, r2 =
.08, p < .05

Minimum distance from
threat during escape

r = .39, r2 =
.15, p < .005

ns ns r = .38, r2 =
.14, p < .005

Escape Initiation Time ns ns r = −.34, r2 =
.11, p < .01

r = −.32, r2 =
.10, p < .05

Number of fruits collected
per trial (Performance)

ns ns ns r = −.28, r2 =
.08, p < .05

Total number of fruits ns ns ns r = −.27, r2 =
.07, p < .05

Head orientation during 0-
1.5 s after threat appears

r = −.42, r2 =
.18, p < .001

r = −.32, r2 =
.10, p < .05

ns ns

Body orientation during
0-1.5 s after threat ap-
pears

r = −.40, r2 =
.16, p < .005

ns ns ns

Fruit picking during 0-1.5
s after threat appears

r = −.28, r2 =
.08, p < .05

ns ns ns
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C.4 Supplemental Figures

Figure C.1: Experimental setup. (A) Illustration of all 16 threats used across
experiments 1-2. Note that the red box comes in two sizes (small and medium) with
different speeds (slow/fast). (B) Fast threats were initially hidden behind grass (at
ST), the position of which was calculated such that the participant (at SP) would
just collide with the threat at the shelter if they took a certain time (TPlan) to plan
and initiate their escape. (C) Slower threats could not outrun a moving participant,
so instead were placed such that they would collide with the participant at the fruit
bush. In both experiments, TPlan was realized as two time-to-impact conditions,
1.5 s and 5 s.
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Figure C.2: Virtual Survival. (A) Percentage of virtual survival for all threats
and conditions in E1 (left) and E2 (right). (B) Percentage of virtual survival during
attack over epochs for all threats in E1 (left) and for the threats included across
both experiments in E1 (center) and E2 (right). Points with error bars represent
the mean and standard error across all participants and epochs.
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Figure C.3: Participants are engaged as demonstrated by instructed and
non-instructed behaviors. (A) Fruits collected per epoch for all threats and con-
ditions in E1 (left) and E2 (right). Large points with error bars represent the mean
and standard error across all participants and epochs, and small points represent
individual epochs. (B) Percentage of vocalization for all threats in E1 (left) and
E2 (right). Points with error bars represent the mean and standard error across all
participants and epochs.
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Figure C.4: Initiated escapes. Percentage of initiated escape of all epochs of the
same type and for all threats and conditions in E1 (left) and E2 (right). Points with
error bars represent the mean and standard error across all participants and epochs.
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Figure C.5: Interrupted escapes. (A) Percentage of escape interruption of all
initiated escapes of the same type for all threats and conditions in E1 (left) and
E2 (right). Points with error bars represent the mean and standard error across all
participants and epochs. (B) Velocity towards or away from the fruit bush during
interrupted escapes for all conditions in E1 (left) and E2 (right). Each colored line
represents a participant’s mean across epochs of the same type, and the black line
is their overall mean.
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Figure C.6: Use of shelter. (A) Percentage of escape to shelter and (B) minimum
distance from shelter for all threats and conditions in E1 (left) and E2 (right). Large
points with error bars represent the mean and standard error across all participants
and epochs, and small points represent individual epochs.
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Figure C.7: Time and distance from threat. (A) Time of escape initiation
relative to threat appearance and (B) minimum distance from threat during escape
for all threats and conditions in E1 (left) and E2 (right). Large points with error
bars represent the mean and standard error across all participants and epochs, and
small points represent individual epochs.
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Figure C.8: Mean Escape Speed. Mean speed during escape for all threats
and conditions in E1 (left) and E2 (right). Large points with error bars represent
the mean and standard error across all participants and epochs, and small points
represent individual epochs.
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Figure C.9: Body orientation. (A) Body orientation (averaged cosine of orien-
tation angle away from threat, ranging from -1: away from threat to 1: towards
threat) during escape and (B) within the initial 1.5 s of threat appearance for all
threats and conditions in E1 (left) and E2 (right). Bars with error bars represent the
mean and standard error across all participants and epochs, and points represent
individual epochs.
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Figure C.10: Head orientation. (A) Head orientation (averaged cosine of orien-
tation angle away from threat, ranging from -1: away from threat to 1: towards
threat) during escape and (B) within the initial 1.5 s of threat appearance for all
threats and conditions in E1 (left) and E2 (right). Bars with error bars represent the
mean and standard error across all participants and epochs, and points represent
individual epochs.
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Figure C.11: Visual scanning within the initial 1.5 s of threat appearance for all
threats and conditions in E1 (left) and E2 (right). Large points with error bars
represent the mean and standard error across all participants and epochs, and small
points represent individual epochs.
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Figure C.12: Force-shield block. Behavioral variables over epoch in "force shield"
block of E2 including (A) escape to shelter, (B) minimum distance from shelter
during escape, (C) visual scanning within the initial 1.5 s of threat appearance, and
(D) fruit picking rate over the entire epoch after threat appearance. Points with
error bars represent the mean and standard error across all participants.

Figure C.13: Medusa block. Virtual death from magical force over epoch in
"Medusa" block of E2. In a post-hoc interview, 60% of participants reported the
correct force-activating movement, 40% did not. Points with error bars represent
the mean and standard error across participants.
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Figure C.14: Hands-up block. Behavioral variables over epoch in "hands-up"
block of E2 including (A) escape to shelter, (B) minimum distance from shelter
during escape, and (C) fruit picking rate over the entire epoch after threat ap-
pearance. Points with error bars represent the mean and standard error across all
participants.
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Figure C.15: Correlation matrices between questionnaires in the combined
sample. The color scale indicates the correlation coefficient.
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