Al & SOCIETY
https://doi.org/10.1007/500146-025-02689-w

OPEN FORUM q

Check for
updates

Vernacular computing as encoded aesthetics for decolonial code
intervention

Koundinya Dhulipalla’

Received: 18 April 2025 / Accepted: 7 October 2025
© The Author(s) 2025

Abstract

This paper examines programming languages as cultural and political artifacts embedded within colonial systems of power.
Drawing from critical code studies and decolonial theory, it explores how dominant programming paradigms encode assump-
tions inherited from military-industrial infrastructures, capitalist productivity models, and Western epistemologies. While
often framed as neutral tools, programming languages function as infrastructures that quietly structure knowledge, exclude
alternate forms of reasoning, and naturalise particular logics of abstraction. In response, the paper introduces vernacular
computing as a conceptual and methodological framework for decolonial code intervention. This approach reimagines pro-
gramming not through general-purpose utility, but through culturally situated logics drawn from oral, poetic, and embodied
traditions. As a practice-based articulation of this framework, the paper presents Prasa, an esoteric programming language
based on the Telugu poetic system of chandassu. Rather than relying on conventional syntax or procedural logic, Prasa
encodes metrical constraints as computational rules, enabling a form of programming grounded in rhythm, repetition, and
positional form. By situating Prasa within the lineage of esoteric languages, the paper demonstrates how programming can
emerge from alternate epistemic traditions. Prasa does not offer a universal replacement for existing languages, but proposes
a method for composing otherwise, where code becomes an expressive, situated act of cultural memory and aesthetic rea-
soning. This reframing contributes to emerging discourses on decolonial computing by showing how vernacular practices
might inform programming language design without being flattened into utility or performance.

Keywords Decolonial computing - Programming languages - Vernacular knowledge systems - Esoteric programming -
Cultural computing

1 Introduction

Programming languages form the foundational layer of
modern computing systems. They create layers of abstrac-
tion between our actions and interactions, shaping how we
engage with machines and how new mediums of communi-
cation and their infrastructure are produced and circulated.
Despite their centrality, the cultural and political dimensions
of programming languages remain underexplored in critical
discourses. This paper addresses this gap by interrogating
programming languages through a critical decolonial lens,
examining the historical legacies, institutional ideologies,

P4 Koundinya Dhulipalla
k.dhulipalla@ucl.ac.uk

1 University College London, London, UK

Published online: 19 October 2025

and power structures embedded within them (Nofre et al.
2014).

The historical development of programming languages
is inseparable from systems of colonialism, patriarchy, and
institutional control. This includes the ENIAC computer,
developed during World War II for artillery calculations,
whose design and use exemplify early entanglements of
computational systems with military goals (Ceruzzi 2003).
From Ada Lovelace's foundational contributions to computa-
tion (Fuegi and Francis 2003) to the militarised development
of programming, these languages have evolved within con-
texts that reflect and perpetuate global hierarchies. Today,
dominant programming paradigms continue to privilege
Western-centric logics and epistemologies, marginalising
alternative ways of thinking about computation. This paper
situates programming languages as political artefacts that
encode not only technical functionality but also cultural val-
ues and exclusions.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00146-025-02689-w&domain=pdf

Al & SOCIETY

Situated within the interdisciplinary domains of software
studies and critical code studies, this paper draws on theo-
retical frameworks that foreground the cultural specificity
of code. Mark Marino’s (2020) critical code studies encour-
age analyzing code as a cultural text, not just a functional
artifact, which supports this paper’s examination of syntax
for embedded ideologies. Walter Mignolo’s (2011) deco-
lonial theory, which critiques the colonial matrix of power
and argues for the epistemic authority of local knowledges,
frames this project’s challenge to computation’s dominant
logics. His work supports the view that vernacular grammars
should be recognised as valid sites of knowledge production.
These perspectives unsettle normative assumptions about the
neutrality of programming languages by positioning code
as a space where institutional ideologies are both encoded
and contested.

Central to this inquiry is the framework of vernacular
computing, which focuses on integrating culturally spe-
cific knowledge systems into computational practices as a
mode of decolonial intervention. This framework is opera-
tionalised through the development of Prasa, an esoteric
programming language inspired by Telugu poetic grammar.
By embedding cultural specificity into its syntactic and
structural design, Prasa exemplifies vernacular computing
as both an artistic artefact and a political gesture. It offers
a material manifestation of computation from a vernacular
epistemic position.

Overall, this research addresses three central questions:
How do programming languages function as political arte-
facts? What role do vernacular knowledge systems play in
challenging dominant computational paradigms? And how
can esoteric programming languages serve as decolonial
interventions? To answer these questions, this paper uses
a combination of theoretical analysis and practice-based
research. The theoretical framework situates programming
languages within broader systems of power. The practice-
based component focuses on the design and implementation
of Prasa, analysing its potential as both a functional lan-
guage and an infrastructure for cultural expression.

By critically engaging with programming languages as
sites where epistemic frameworks are reproduced and chal-
lenged, this paper contributes to emerging debates on deco-
lonial computing (Ali 2016). Rather than focusing compu-
tation solely within the history of the digital computer, it
proposes an expanded frame. It recognises that computation
has long existed in vernacular systems, oral traditions, and
poetic forms. Through Prasa, the paper explores how com-
putational thinking can be reframed through cultural gram-
mars that precede and exceed machinic logics.

@ Springer

2 Contexts of control: command,
productivity, and programming language
design

This section turns to the structuring role of programming
languages within computation, not only as tools for writing
code, but as systems that shape how knowledge is organised,
expressed, and made actionable. Programming languages are
often positioned as neutral instruments: vehicles for writing
logic, structuring processes, or interacting with machines.
A tool to build; a means to an end. But they do more than
this. They organise knowledge, embed values, and shape
how problems are formulated. They act as infrastructures:
not only supporting computational systems, but quietly con-
ditioning what ‘computation’ itself can mean.

To consider programming languages as infrastructural is
to ask how they have come to hold such structuring power,
and what assumptions they carry. Their history is not just
one of technical refinement but of alignment with institu-
tional demands. From their early formation, programming
languages were developed in response to State, industrial,
and bureaucratic requirements; each privileging preci-
sion, repeatability, and machinic legibility. These qualities
became foundational to what programming was imagined to
be, even as their origins were rooted in historically contin-
gent systems of control and standardisation.

Languages, such as FORTRAN (1957), ALGOL (1958),
and later C (1972), were developed to formalise thought
into machine-readable instructions. Their design encoded
assumptions not only about how computation should func-
tion, but also about how knowledge ought to be structured.
Syntax, control-flow, and abstraction became tools to disci-
pline in linguistic, procedural, and logical terms. As Nofre
et al. (2014) outline, the institutionalisation of programming
languages coincided with efforts to regulate thought into
syntactical units optimised for computational execution.
Notably, these developments occurred primarily in Western
contexts and were exported globally, effectively marginal-
ising non-Western computing practices and reinforcing a
colonial hierarchy of knowledge (Ali 2016).

The idea of abstraction plays a central role in this trajec-
tory. It is often framed as an enabling concept—one that
allows for generalisation, modularity, and conceptual clar-
ity. Yet abstraction also performs exclusions. It separates
process from context and meaning from material form. The
abstraction models privileged in dominant languages tend
to emphasise efficiency, universality, and separation. These
are qualities that align with modes of knowledge produc-
tion inherited from industrial and computational rational-
ism. What gets abstracted is often what cannot be measured,
controlled, or neatly structured within the available syntax.

Al & SOCIETY

These values have become naturalised within program-
ming infrastructures. The aesthetics of ‘good code’, such as
clarity, modularity, and legibility, are tethered to historical
notions of correctness and design that reflect particular cul-
tural logics. Syntax becomes not only a technical constraint,
but also a normative one, establishing what is possible or
desirable within a programming language. The idea of a
‘well-written’ program is shaped not only by how it func-
tions, but by how it aligns with assumptions about readabil-
ity, structure, and utility.

This section considers programming languages as infra-
structures, as systems that quietly organise practice, thought,
and expression. They are not only mediums through which
programmers communicate with machines, but also frame-
works that shape what kinds of problems appear solvable,
and what forms of articulation are permitted. Their struc-
tures, once sedimented, rarely make themselves visible.
Instead, they operate in the background, reinforcing ways
of thinking while excluding others from being legible as
computation.

The aim here is not to reject abstraction outright. It is
to trace how abstraction, in its form, has been stabilised
around particular values, and how these values structure
the design and uptake of programming languages. There
are other forms of logic, expression, and epistemology that
do not sit easily within this model. These forms may be
rhythmic, poetic, oral, embodied, or situated. They often
fall outside the scope of dominant programming paradigms,
not because they are less systematic, but because they are
structured otherwise.

The following section turns to esoteric programming
languages. These are languages that experiment with syn-
tax and execution in ways that challenge normative ideas of
programming. From there, the discussion moves to Prasa,
a language shaped by the Telugu poetic tradition. It departs
from both dominant programming paradigms and esoteric
languages by grounding its computational logic in vernacu-
lar and metrical structures.

3 Esoteric languages as critical code
practice

To question the dominant structures of programming lan-
guages requires a space in which those structures can be
deformed, exaggerated, or rendered strange. Esoteric pro-
gramming languages (esolangs hereafter) occupy this space.
Emerging in tension with mainstream programming norms,
esolangs have become experimental sites where program-
ming paradigms are no longer treated as fixed or neutral.
Instead, they are manipulated, questioned, or even made
nonsensical (Temkin 2017). Their refusal to conform offers
a way to surface what dominant languages often suppress:

the cultural, formal, and epistemic assumptions behind pro-
gramming itself.

Esolangs are not designed for efficiency, clarity, or ease
of use. Languages like INTERCAL (1972, Don Woods and
James Lyon) parody the seriousness of formal syntax by
introducing needlessly obscure commands. Brainfuck (1993,
Urban Miiller) reduces computation to a minimal symbolic
core, stripping programming to its barest operational logic.
Piet (2001, David Morgan-Mar) rewrites logic through
colour, treating code as image rather than text. Whitespace
(2003, Edwin Brady and Chris Morris) writes programs
using only space, tab, and newline characters, rendering
the code visually empty. These languages often complicate
rather than simplify expression, turning programming into
a space of conceptual or aesthetic exploration rather than
practical function (Mateas & Montfort 2005).

In doing so, they perform a kind of formal subversion.
They challenge what programming languages are assumed to
be for, and what constitutes ‘proper’ code. This resistance is
useful not only for its playfulness but for its ability to surface
the norms embedded within programming paradigms. Many
esolangs experiment with form, syntax, and logic in ways
that expose the assumptions of mainstream programming.
They open computation as a space for aesthetic, conceptual,
and critical play. These languages stretch what code can be,
making room for ambiguity, contradiction, and strangeness.
Their existence exposes how values like efficiency, read-
ability, and logic are not universal but are shaped by specific
contexts.

3.1 Prasa as situated esolang

Prasa builds within this experimental lineage but takes a dif-
ferent path. Its refusal is not focused on technical abstraction
or syntactic minimalism. Instead, it turns toward a structure
grounded in Telugu poetic metre. The logic behind Prasa is
shaped by chandassu (Medicherla 1981), a prosodic system
that has long guided literary and oral composition. This is
not a rejection of structure, but an engagement with a differ-
ent kind of structure, one that emerges from rhythm, repeti-
tion, and positional patterning. Where esolangs highlight the
strangeness of code through disruption, Prasa attempts to
introduce an alternate logic drawn from composition.

By embedding positional and rhythmic constraints into
its design, Prasa moves beyond critique toward proposition.
Computation, in this model, is not merely reinterpreted but
potentially restructured. This shift aligns with a broader con-
cern of the paper: how to imagine programming languages
that operate outside industrial, militarised, and formalist
epistemologies. The aim is not to discard structure, but to
foreground different ones. It does not ask what computation
can be without clarity or logic; it asks what computation
might look like when rooted in other systems of rhythm,

@ Springer

Al & SOCIETY

structure, and meaning—other traditions of knowledge. It
operationalizes vernacular logic as a form of decolonial
intervention.

Rather than relying on absurdity, constraint, or parody,
as many esolangs do, it turns to tradition. This is not tradi-
tion as something fixed, but as an active aesthetic grounded
in the historical poetics of Telugu verse. It offers a way to
think about computation beyond machine logic, English-
based syntax, and industrial expectations. It is informed by
the metrical technique of the same name, Prasa, a form of
rhythmic echo and alliteration that structures expression
through constraint. Here, constraint is not disciplinary but
generative.

To situate Prasa is to locate it against the epistemic foun-
dations of what is often called ‘traditional programming.’
This tradition, born in the military-industrial complex of the
mid-twentieth century, privileges abstraction, control, and
optimisation. Its knowledge systems are derived from logics
of formalism and mathematics, where clarity, legibility, and
efficiency are treated as universal virtues. As Foucault sug-
gests, regimes of knowledge are not neutral but structured
by power (Foucault 1980). They determine what is sayable,
writable, and thinkable. Prasa intervenes in this regime not
by opposing it from the outside, but by composing within
another episteme. This episteme draws from literary craft,
orality, and rhythmic aesthetics.

Where most programming languages use keywords and
syntax and mathematical formalism, Prasa draws from
Telugu poetic structures. It is not a metaphorical gesture;
it is a formal, syntactic one. This positions Prasa not just
as a language, but as an alternate approach to inscription.
It understands computation as expressive, rhythmic, and
situated. The stakes here are not cultural representation, but
epistemic reconfiguration. What does it mean to write code
when its structure echoes poetic metre rather than procedural
logic? What kinds of knowledge does it prioritise, and what
modes of attention does it require?

Prasa, then, is not only a programming language but a
proposition for how code might be inscribed, transmitted,
and inhabited differently. It does not seek to replace exist-
ing paradigms, but to question them by introducing forms
of composition that emerge from other traditions of thought
and expression.

4 Operationalising vernacular poetics:
technical implementation of Prasa

This section details the technical design of Prasa as a pro-
gramming language grounded in metrical poetics. Build-
ing on the critical and conceptual foundation established
in the previous sections, Prasa's implementation functions
as a material articulation of vernacular computing, where

@ Springer

Table 1 Chandassu gana and syllable sequences (Medicherla 1981)

Sequence Notation Ganam (group)
guruvu-laghuvu-laghuvu UII Bha-ganam
laghuvu-guruvu-laghuvu IUI Ja-ganam
laghuvu-laghuvu-guruvu 11U Sa-ganam
laghuvu-guruvu-guruvu IUU Ya-ganam
guruvu-laghuvu-guruvu UluU Ra-ganam
guruvu-guruvu-laghuvu UUI Ta-ganam
QUIUVU-GUTUVU-GUTUVU uuu Ma-ganam
laghuvu-laghuvu-laghuvu I11 Na-ganam

computational structure emerges from cultural form rather
than symbolic logic. The subsections that follow explain the
syntax, evaluation model, and broader implications of this
approach, demonstrating how Prdasa reconceives code not as
instruction but as constraint-driven composition.

4.1 Language design

Prasa's syntax derives from Telugu chandassu, a poetic
system governing verse structure through rhythmic syllable
sequences (ganas). Chandassu, which is a set of grammati-
cal rules for writing poetry bases its foundation on syllables.
A poem is traditionally four lines long, and chandassu rules
apply to each one of them. Syllables can be categorised into
long-syllables (guruvu) or short-syllables (laghuvu), denoted
by U and I respectively. A set of three possible sequences of
these syllables is called a ganam (group) (Medicherla 1981).
This poetic tradition employs a complex system of syllabic
patterns that has evolved over centuries in the Telugu-speak-
ing regions of Southern India.

The syllable combinations in Table 1 define the metri-
cal logic of Telugu verse and structure Prasa’s rule system.
Depending on the arrangement of these patterns, poems can
be categorised into three major umbrella groups: jaati, upa-
Jjaati, and vruttam. Of these, vruttam is the commonly used
and requires both a caesura (yati) and rhythmic alliteration
(Prasa"). Within vruttam, there are seven subcategories of
poems that follow the same core rules with slight variations
in their metrics. This rich structure enables over 134 mil-
lion? unique syllabic combinations and metric variations
(Tables 2, 3, 4).

For example, the following excerpt from the epic poem
Andhra Mahabhagavatam (fifteenth century) by Potana
(1987) illustrates such constraints:

! The metrical device after which this language is named

2 Based on possible permutations of gana structures across standard
poem formats; estimate by author. Based on Toral combinations=8"
(where n=number of ganas).

Al & SOCIETY

Table 2 Stress-to-syllable approximation

Word Syllables Stress Pattern
BEAUTIFUL BEAU 1 U
TI 0 I
FUL 2 I
Table 3 Tokens used in Prasa syntax
Token Type Example Function
INDENT 4 spaces Move tape head + 1
WORD “HERE BE DRAG- Syllable accumulation
ONS”
BRACKET 0O Metric multiplier

Table 4 Cell value to ASCII encoding

Cell Syllables ASCII Value Character
0 72 72 H
1 69 69 E

DN 230 BeBor ETEON0HN BE HrESS
230€309239020088) IO 50N PO LSO
BB 23302 Se0E6DNDIEN aIPCDEN BD IS D)IEID
SO 235020 BTN T80T FeoerS.

(padamula battinarm dalakuba tokayintayu leka $tratan.

madagajavallabhundu matimantudu dantayu ganta
ghattanam.

jedaraga jimme nammakaricippalu padulu
dappanoppararm.

vadali jalagrahambu karivalamumalamujire goralan).?

It satisfies:

1. Each line contains a total of 21 syllables.
The second syllable in each line across the poem shares
a common phonetic sound.

3. The first and eleventh syllables match across lines.

4. Syllable pattern on each line are in the following order:
ITITUIUIIIUIIUIIUIUIU

3 Translation: Judging by words alone, one may seem brave, though
not truly so. Even a wise elephant, when in rut, charges and crashes
into obstacles. Ships break apart, trusted cargo spills and scatters. The
sea’s pull and waves drag everything into the deep. Translation by the
author.

These rules serve as executable constraints in Prasa,
shifting code from procedural logic to cultural composition.

The implementation leverages the CMU Pronouncing
Dictionary* to approximate Telugu meter using English pho-
netics. In this system, a primary-stressed syllable (marker
‘1’) is treated as a long syllable (guruvu, denoted U), while
an unstressed or secondary-stressed syllable (marker ‘0’ or
‘2’) is treated as short (laghuvu, denoted I). A Python script
parses words according to these stress markers and produces
a JSON dictionary that maps English words onto chandassu-
style syllable patterns.

This allows a dictionary of syllables to be constructed that
mimics chandassu metrics, creating a phonological bridge
between the writing systems.

4.2 a.lLexical analysis: stress-based syllabification
Prasa’s lexical engine includes two interdependent systems:
1 CMU Dictionary Processing

As described above, a Python script parses phonetic data
from the CMU Pronouncing Dictionary to identify syllable
boundaries using vowel clustering heuristics. For instance,
“RIVER?” is syllabified as RI (U), VER (I), approximating
Telugu's guruvu/laghuvu syllables through stress markers.
This process enables the generation of a syllable diction-
ary that maps English words to chandassu-inspired metrical
forms.

2 Indentation as tape navigation

Inspired by the conceptual model of the Turing machine,
Prasa reimagines indentation as tape movement. Each
4-space indent represents a move to the next memory cell,
and line breaks accumulate syllables into each cell. This
spatial structure mirrors the layout of a Turing tape, in which
a head moves across an infinite tape to read and write values.

A Turing Machine is a theoretical model of computation
in which a read/write head moves across an infinite tape
divided into discrete cells, each capable of holding a sym-
bol (Fig. 1). It describes computation in terms of sequen-
tial symbolic manipulation and is foundational to computer
science.

Prasa draws on the structure of the Turing tape to shape
how programs unfold across space. Indentation becomes a
way of moving between memory cells, with each level mark-
ing a shift in position (Fig. 2). Syllables placed within these
cells build meaning through their sequence and alignment.
This model lets poetic metre guide computation through

* Dictionary file available at https://www.speech.cs.cmu.edu/cgi-bin/
cmudict

@ Springer

https://www.speech.cs.cmu.edu/cgi-bin/cmudict
https://www.speech.cs.cmu.edu/cgi-bin/cmudict

Al & SOCIETY

TAPE

ot

HEAD
+—>

etc.

\\
I I T I T I ! \ I \
. | l \
number of a Tur achine M | Input to M ‘Output 2
L IR 0
Scanned
bol Current Current Current
$ymbo state 4: state B: state V-
Table Of U Write Move Next Write Move Next Write Move Next
Prlnt Sk Erase symbol tape state symbol tape state symbol tape state
i
LCft nght tape symbol is blank 1 R A 1 R P P R M
’ tape symbol is 0 1 R B 0 L K 1 L N
tape symbol is 1 X R C E R H X N o
tape symbol is X 1 L D E N U 0 R P
tape symbol is ¥ 1 L E 1 R N Y R H

Control unit

Fig. 1 Representation of the tape in a Universal Turing Machine (Image by Cbuckley, licensed under CC BY-SA 3.0, via Wikimedia Commons:
https://commons.wikimedia.org/wiki/File:Universal_Turing_machine.svg)

Fig.2 Cell movement with
indentations

For instance:

—...._HERE BE DRAGONS // 1 indentation -> cell 1

o AND BUTTERFLIES // 1 indentation -> cell 1

FROM ONE EAR TO THE OTHER // no indentations -> cell @

spatial rhythm rather than procedural logic. By treating
movement of a cell as functional, Prasa links the structure
of verse with the mechanics of execution, allowing form
itself to drive how a program behaves.

This spatial approach to syntax draws from both compu-
tational theory and experimental poetry, creating a visual
grammar where the physical arrangement of text on the page
becomes functionally meaningful. The indentation system
transforms the typically aesthetic use of whitespace in poetry
into a computational mechanism, allowing programmers to
navigate the conceptual ‘tape’ of memory while maintaining
and experimenting with poetic form.

For instance:

Indentation levels dictate tape position, while sylla-
ble counts generate output-merging poetic structure with
machine execution. This visual-spatial approach to code
organisation represents a significant departure from con-
ventional programming paradigms, where indentation typi-
cally serves readability rather than functional purposes. In
essence, moving one indent level to the right in code cor-
responds to moving one cell forward on an imagined tape

@ Springer

(memory), and vice versa — thus the poem’s layout in space
determines program state changes.

4.3 b. Parsing and evaluation: enacting cultural
constraints

Prasa's parser validates programs against chandassu rules,
constructing an Abstract Syntax Tree (AST) that prioritizes
cultural fidelity:

Prasa’s parser checks each line for correct syllable
counts, repeated sounds at required positions, and struc-
tural alignment based on chandassu metrics. The code is
tokenised according to indentation and syllabic structure,
and the resulting sequence is validated against the expected
metrical pattern. If these constraints are not satisfied, the
parser simply rejects the validity of the poem as a chandassu
composition. It does not produce an error or halt execution
in a conventional sense. There is no crash, only a refusal to
recognise the input as code. The result remains a poem, just
not one that meets the structural requirements for interpreta-
tion within Prasa.

https://commons.wikimedia.org/wiki/File:Universal_Turing_machine.svg

Al & SOCIETY

Following parsing, where the input code-poetry is trans-
lated to measure, syllable counts in each tape cell are trans-
lated into their corresponding ASCII values:

This encoding structure transforms cultural metrics into
machine-readable output, bridging oral tradition with com-
putational function. The convergence of poetic form and
computation here demonstrates that technical rules can
emerge from aesthetic and culturally situated systems, rather
than from industrial or utilitarian priorities. Because ASCII
accommodates a broad range of character sets, the output
generated by Prasa need not be linguistically uniform; any
language may be represented, provided the cell values cor-
respond to the appropriate numerical codes. This flexibility
decouples the language of output from the structure of input,
allowing vernacular composition to coexist with multilin-
gual expression.

4.4 Situated computation and vernacular
infrastructure

Prasa’s technical implementation is not only a demonstra-
tion of poetic constraint as logic but also an articulation of
vernacular computing as a conceptual and material frame-
work. By centering a metrical tradition like Telugu chan-
dassu, Prasa foregrounds a mode of computation that does
not rely on general-purpose utility. Instead, it proposes a
grammar rooted in rhythm, in repetition, in positional con-
straints, and in vernacular knowledge systems.

This approach reframes what programming can be. In
most contemporary models, programming languages are
built around presumed universality: their syntax draws from
formal logic, their functions are abstracted from specific cul-
tural practices, and their aims often prioritise efficiency and
scalability. These are not neutral defaults but reflect histori-
cal legacies shaped by institutional, military, and commer-
cial infrastructures. In contrast, vernacular computing treats
code as situated, expressive, and often oral or embodied. It
resists the idea of universality by showing that computation
can emerge from specific traditions of making, writing, and
knowing.

Prasa enacts this refusal through form. Its syntax does
not generalise or optimise. It enforces poetic rules with pre-
cision, requiring that programs adhere to syllabic length,
rhythmic alignment, and alliterative echoes. These are not
aesthetic flourishes layered onto code. They are the condi-
tions of execution. If a line fails to meet metrical constraints,
it does not run. Programming becomes an act of attunement
rather than abstraction. The programmer is not issuing com-
mands to a machine but composing verse within a formal
structure that predates computational logic.

This changes the role of the programmer. In Prasa, the
programmer becomes a performer, one who internalises the
rhythm and structure of chandassu to write code-poetry that

is valid. This is not merely an analogy. The process involves
counting syllables, ensuring repetition, and aligning with a
prosodic pattern. Execution is not outsourced to a compiler
alone. It requires the programmer’s embodied attention. This
is particularly evident in the use of indentation as navigation
across a Turing tape, where spatial form governs memory
allocation and syllable accumulation drives output. The tape
does not merely store values but becomes a surface inscribed
with poetic form.

Prasa’s machine independence extends this logic further.
Its structure is designed to work with any syllabic language.
The current implementation uses a custom-built English dic-
tionary based on syllable approximation. It also allows for
modularity in a way where the language used to write the
code-poetry into Prdsa can be replaced with any language,
provided a suitable dictionary file. This makes it, in prin-
ciple language-agnostic, not by flattening cultural distinc-
tions but by offering a framework into which other writing
systems can be inscribed. A program could be written in
any language and script if its phonological structures and
constraints can be defined within Prasa’s syllable system
as a dictionary. The output, encoded through ASCII values,
can similarly represent any language or symbolic system,
as long as the numerical values correspond to valid charac-
ters. English was used for the current implementation due
to resource availability, specifically the CMU English pho-
netic dictionary. This choice is a practical convenience, not
a cultural preference. Any language with defined syllable or
stress patterns could be integrated. For example, a Telugu
or Hindi dictionary file could be developed to write Prasa
code-poems in those languages. The use of ASCII output
is a concession to interoperability, but it does not privilege
English in the input. This allows for an expansive vision of
vernacular computing, not as a fixed linguistic reference but
as a methodology for building situated, culturally informed
systems of logic and expression.

In these ways, Prasa serves as a proof-of-concept for ver-
nacular computing, not a universal solution, but a situated,
limited, and culturally embedded infrastructure. Its con-
straints are not limitations to be overcome but propositions
that reveal the assumptions of other programming systems.
Computation, through this lens, becomes not only what
machines execute, but what bodies compose, what cultures
refine, and what histories carry forward.

The appendix includes a HELLO, WORLD! program writ-
ten in Prasa. Rather than a minimal proof of functionality,
it unfolds as a poetic composition that meets the constraints
required for execution. Its inclusion reflects both a formal
gesture—fulfilling a common convention in programming—
and a conceptual one, demonstrating how Prasa reimagines
even the most canonical exercises through metrical and ver-
nacular logic.

@ Springer

Al & SOCIETY

Prasa language itself is written in JavaScript and Python;
it is distributed through a GitHub repository.’ This is not a
contradiction but a reflection of its technical dependencies.
Its reliance on existing infrastructures is a limitation. While
it proposes an alternative approach to computation, it must
still navigate the architectures it critiques. These infrastruc-
tures remain deeply embedded across technical, institutional,
and cultural domains, making it difficult to build outside
them without also depending on them.

5 Conclusion

This paper has proposed vernacular computing as a con-
ceptual and methodological framework for rethinking how
programming languages can be designed, interpreted, and
practiced. Rather than treating computation as a culturally
neutral domain defined by abstraction and logic, vernacular
computing foregrounds the cultural, rhythmic, and epistemic
structures that already inform how people think, speak, and
reason. It frames code not as a universal language, but as
one possible articulation among many: each embedded in
particular ways of knowing and making.

Through the design and implementation of Prasa, the
paper has shown how the syllabic constraints of Telugu
chandassu can form the basis for a programming language.
This is not merely metaphorical or illustrative: the language
functions by enforcing metrical and alliterative patterns as
syntactic and semantic constraints. In doing so, it replaces
the usual control-flow paradigm with one of rhythmic, con-
straint-driven composition that demands the programmer’s
embodied attention. Prasa is intentionally limited, cultur-
ally specific, and structurally awkward. Rather than view-
ing these as limitations, we can see them as conditions that
reveal different ways of thinking about computation.

Across the paper’s sections, this intervention has been
positioned against the backdrop of programming language
infrastructure, esolang traditions, oral knowledge systems,
and embodied computation. Together, these elements make
the case that programming languages are not neutral or uni-
versal, but ideological and constructed. Prasa does not solve
this; it simply redirects the terms. By encoding cultural form
as logic, it opens space for code that expresses rather than
commands, and for systems that calculate through aesthetic
form rather than formal abstraction.

What this paper contributes is not a tool, but a way of
thinking about code. Vernacular computing is not offered
as a category of languages, but as a lens for understand-
ing how computation always reflects cultural and historical
assumptions. It invites treating programming languages as

> An online collaboration and version control platform for working

with code. Also where the full source code for Prasa is available—
https://github.com/koundinyad/prasa-lang

@ Springer

expressive forms shaped by the worlds they emerge from.
Prasa is one instance of this—one that demonstrates how
computation can be rooted in rhythm, poetics, and linguistic
memory.

This framework points toward further questions: What
other epistemic traditions might structure code differently?
How might computation look if built from the logics of
chant, weaving, oral formulae, or storytelling? And how
might infrastructures of software and learning shift if code
were treated not as a neutral abstraction, but as an extension
of specific cultural practices and ways of reasoning?

Vernacular computing is not an answer to these questions.
It is a proposal that they are worth asking.

Appendix

HELLO, WORLD! program in Prasa. By Janani
Venkateswaran.

A FIBONACCI CONUNDRUM
HERE, HERE
A DISTANT SOUND
TRAVELS (A) DADI ALA ADAALA A A ALADIDA A DA LALA DI
FAINTLY,
VISCERALLY
AND THEN ALL AT ONCE.
FROM ONE EAR
TO THE OTHER
(ON THE RIGHT)
A GENTLE GIANT
IN PEACEFUL SLUMBER
EARS FANNING THE WIND
TAIL STROKING THE SOIL
STOMACH COOING
MOUTH DROOLING
CHEST HEAVING
RISE

AND

https://github.com/koundinyad/prasa-lang

Al & SOCIETY

FALL
RISE
AND
FALL
RISE
AND
FALL
A SONG.
(AND A MIRACLE)
(ON ITS CHEEK)
AN EYELASH!

(MAKE A WISH MAKE A WISH MAKE A WISH MAKE A WISH) DADIALAADAALAAAA
LA DI DA A DA LALA DI

A WISP OF DNA
DELICATE, BROWN
DARK CHOCOLATE MILO
HER BROTHER'S EYES
YOUR SISTER'S HAIR

MY FATHER'S ANGER
THE TRUNK OF A TREE.

(DEAFENING EXCITEMENT) LA DA DI ALA ADAALAAAALADIDA ADA
LALA DI

@ Springer

Al & SOCIETY

(AND HANDS TREMBLING BUT FINGERS STEADY) DA LA DI ALA ADA A
LAAAALADIDA ADALALADI

(FEET SLOWLY INCHING CLOSER) LADADIALAADAALAAAALADIDAA
DA LALA DI

AND THEN
IN THE BLINK OF AN EYE
IT HOVERS (AIRBORNE)
TEASING,
THEN
FLIES,
DRIFTS
(AWAY) DADIALA ADAALAAAALADIDAADALALADI
INTO THE UNKNOWN
AWAY FROM THE VAST EXPANSE
OF GREY, GOO AND GLUE
AND
INTO THE VAST EXPANSE
OF OLIVES AND PISTACHIOS,
OF WATER AND LIGHT,
OF HANDSOME HUNKS
(TO LAY ON LAPS OF) DADIALAADAALAAAALADIDAADALALA DI
TALL AND DARK

SHORT AND THICK

@ Springer

Al & SOCIETY

(AND OTHERS) LA DA DI ALA A DA ALA A A A LA DI DA A DA LALA DI
BUT
(NOT HERE THOUGH, NOT YET) DA DI ALA A DA A LA A A A LA DI DA A DA LALA DI
S0,
BACK TO
FLOATING,
DRIFTING,
SCOURING,
AND SEARCHING,
AND JUST AROUND THE CORNER
(LIKE A BLESSING IN A PALM)
A HEART.
VEINS RUNNING ACROSS
EMBRACING AND WELCOMING
AND GRAZING AND FLIRTING
SOME REST (AND)

(A WORTHY SPOT TO SETTLE) LA DADIALA ADAALAAAALADIDAADA
LALA DI

THE MOON LOOKS OVER
(A SIGHT, BEHOLD)

A BIG FAT SIGH.

AND THEN

SUDDENLY

@ Springer

Al & SOCIETY

A FAMILIAR SOUND
RISE
AND
FALL
RISE
AND
FALL
RISE
AND
FALL
A SONG.
THE SONG.

(UGH) DADIALA ADAALAAAALADIDA ADALALA DI

THE LONE EYELASH

BACK IN THE AIR

DRIFTING,

SCOUTING,

SCOURING.

BLUE AND BROWN AND BLUE AND BROWN

WATER AGAINST SAND

AND SAND AGAINST WATER

BLUE AND BROWN AND BLUE AND BROWN

@ Springer

FINALLY,

THE BEACH!

A SMOOTH (SMOOTH) PEBBLE

BRICK RED, IN A BLANKET OF MOSS

(PERFECT!) DADI ALAADAALAAAALADIDAADALALADI

THE MOON IS IVORY

IT'S BEEN A LONG DAY

(IT'S TIME, IT'S TIME) DA DIALA ADA ALA AAALADIDAADALALADI

A BIG FAT YAWN.

BUT WHY IS

THE TIDE RESTLESS

THE HORIZON EVASIVE

THE WATER COLD

AND THEN OUT OF NOWHERE

A FAMILIAR SOUND SNEAKS IN

FAINTLY,

VISCERALLY,

THEN ALL AT ONCE.

EMERGING FROM THE HEART OF THE SEA,

(RISE)
(AND)
(FALL)
(RISE)
(AND)
(FALL)
(RISE)
(AND)
(FALL)
THE SONG.

Al & SOCIETY

Acknowledgements I thank Janani Venkateswaran for contributing
the "HELLO WORLD!" text to the Prasa, and helping bring it to life.

Author contributions K.D. wrote the main manuscript text and devel-
oped the technical artefact. K.D. reviewed the manuscript.

Data availability No datasets were generated or analysed during the
current study.

Declarations

Competing interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Ali SM (2016) A brief introduction to decolonial computing. XRDS
22(4):16-21. https://doi.org/10.1145/2930886

Ceruzzi, P. E. (2003). A history of modern computing. Mit Press.

Foucault, M. (1980). Power/knowledge: Selected Interviews and Other
writings, 1972-1977 (C. Gordon, Eds). Pantheon Books.

Fuegi J, Francis J (2003) Lovelace & babbage and the creation of the
1843 “notes.” IEEE Ann Hist Comput 25(4):16-26. https://doi.
org/10.1109/mahc.2003.1253887

Marino, M. C. (2020). Critical code studies. The Mit Press.

Mateas, M., & Montfort, N. (2005). A Box, Darkly: Obfuscation, Weird
Languages, and Code Aesthetics.

Medicherla, A. (1981). Chando Vyakaranamu [Grammar of Prosody]
(2nd eds). Vidyarthi Publications.

Mignolo W (2011) The Darker Side of Western Modernity: Global
Futures. Duke University Press, Decolonial Options

Nofre D, Priestley M, Alberts G (2014) When technology became
language: the origins of the linguistic conception of computer
programming, 1950-1960. Technol Cult 55(1):40-75. https://doi.
org/10.1353/tech.2014.0031

Potana. (1987). Potana Bhagavatamu [Andhra Mahabhagavatam; Tel-
ugu translation of the Srimad Bhagavatam]. Tirumala Tirupati
Devasthanams. (Original work composed ca. 15th century)

Temkin D (2017) Language without code: intentionally unusable,
uncomputable, or conceptual programming languages. J Sci Tech-
nol Arts 9(3):83. https://doi.org/10.7559/citarj.v9i3.432

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

@ Springer

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/2930886
https://doi.org/10.1109/mahc.2003.1253887
https://doi.org/10.1109/mahc.2003.1253887
https://doi.org/10.1353/tech.2014.0031
https://doi.org/10.1353/tech.2014.0031
https://doi.org/10.7559/citarj.v9i3.432

	Vernacular computing as encoded aesthetics for decolonial code intervention
	Abstract
	1 Introduction
	2 Contexts of control: command, productivity, and programming language design
	3 Esoteric languages as critical code practice
	3.1 Prāsa as situated esolang

	4 Operationalising vernacular poetics: technical implementation of Prāsa
	4.1 Language design
	4.2 a. Lexical analysis: stress-based syllabification
	4.3 b. Parsing and evaluation: enacting cultural constraints
	4.4 Situated computation and vernacular infrastructure

	5 Conclusion
	Appendix
	Acknowledgements
	References

