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Abstract— This work proposes a safe control strategy for
an autonomous vehicle to overtake a human-driven vehicle
(HDV) using a predictive safety filter (PSF) mechanism that
hierarchically combines an end-to-end Reinforcement Learning
(RL) agent with a predictive controller. To create a more
realistic RL environment, a Stackelberg game based on a first-
principles model is employed to capture the HDV’s real-time
response during overtaking rather than relying on a predefined
empirical or purely statistical driver model. In the lower layer, a
distributionally robust chance-constrained predictive controller
is implemented to manage uncertainties in HDV behavior,
ensuring robust safety guarantees. The effectiveness of the
proposed synthetic controller is verified in a gym environment
with comparisons against traditional schemes.

I. INTRODUCTION

Autonomous overtaking is one of the most common ma-
neuvers, often involving complex interactions between CAVs
and HDVs, making it a key focus of research in CAVs control
[1]. Various approaches have been developed in the literature
to address the overtaking problem, with model predictive
control (MPC) standing out as one of the most widely used
solutions due to its ability to handle safety constraints [2]-
[4]. However, MPC methods heavily rely on prior modeling
of the road environment, including obstacle vehicles, making
it challenging to generalize to dynamic scenarios.

Machine learning methods enable agents to learn optimal
policies or models from data, bypassing explicit modeling,
which shows great promise in complex autonomous driving
environments [5]-[8]. End-to-end RL, which directly uses
raw sensor data as input and generates control actions,
offers a straightforward solution and has been successfully
implemented in autonomous overtaking, as demonstrated in
[9]. Alternatively, RL can be applied to the vehicle trajectory
planning layer, followed by a low-level controller, resulting
in a hierarchical framework [10]. Methods that specifically
integrate RL with MPC in such a framework can be found
in [11]. However, current RL-based overtaking solutions lack
interpretability and safety guarantees [6], which are essential
for autonomous vehicles.

A key challenge in autonomous overtaking lies in model-
ing the interaction between the CAVs and the obstacle HDVs,
which inherently involves uncertain human driver behaviors
[1], [12]. Traditional methods assume that the HDV's follow
empirical driver models, such as the Intelligent Driver Model
(IDM) [13]. However, these models are typically based on
deterministic rules derived from microscopic driving behav-
ior and fail to accurately capture the uncertainties of real
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human drivers [12]. Approaches like deep learning [14] and
inverse RL [15] have been used to model HDVs behaviors,
but these methods require large datasets, which may not be
feasible for individual drivers [16]. Game theory is emerging
as a promising approach for modeling these interactions [4],
[17], [18]. In particular, Stackelberg games, which model
interactions as a leader-follower sequential decision-making
process, have been successfully applied to solve overtaking
and lane-changing problems in mixed-traffic scenarios utiliz-
ing MPC [3], [17]. Similarly to other MPC-based methods,
these approaches rely on an accurate parametric state space
model of the system, which may hinder their successful
implementations in practice.

Recently, a promising solution that overcomes the fore-
going limitations of MPC and RL is the introduction of
PSF [19], where end-to-end RL determines the nominal
control law, and MPC is adapted as a safety filter to enforce
safety constraints. With its hierarchical configuration, this
method leverages the strengths of end-to-end RL in manag-
ing complex environments while providing theoretical safety
guarantees. Motivated by the PSF, this paper proposes a two-
layer control framework, combining RL and MPC, to safely
control a CAV to overtake an HDV, as illustrated in Fig. 1.
For the sake of brevity, we will refer to the CAV as the

Fig. 1: Illustration of an overtaking problem. The EV (in
red) begins positioned behind the OV (in blue). The left
lane is denoted as the initial lane, while the right lane is
the overtaking lane.

ego vehicle (EV) and the HDV as the obstacle vehicle (OV)
throughout the remainder of this article. The novelty of this
work lies in two key aspects: 1) In the upper RL layer,
instead of relying on a predefined driver model, we designed
a Stackelberg game-based interaction model to simulate the
OV’s responses to the EV’s movements, which is the key
in autonomous overtaking; and 2) Once a control action is
determined by the RL layer, it is filtered in the lower layer by
a novel stochastic PSF (SPSF), which incorporates carefully
designed chance constraints to account for the uncertainty of
human behaviors, ensuring safety.

The rest of this paper is organized as follows. Section
IT explains the overtaking problem settings. In Section III,
an overview of the controller framework and design of
each module is provided. Moreover, simulation results are
presented in Section IV. A conclusion and future research



plan are provided in Section V.

Notations: Let R, Ry denote the real and strict positive
real sets of numbers, respectively. N denotes the set of natural
numbers, N = {0,1,2,...} and, for any two integers m
and n satisfying m < n, Ny, ) = {m,m +1,...,n}. I,
denotes a n x n identity matrix. Given a vector x € R", the
Euclidean norm of x is denoted by ||x||, and ||x||w is the
norm weighted by W. The superscripts ()¢ and (-)° denote
the variables corresponding to EV and OV, respectively. The
Minkowski sum of two sets is defined by A@B := {a+b:
a € A, b € B}. The distance between two sets is defined
as dist(A,B) := min{||r|| : (A @® r)NB # 0}. The operator
v = 0 means that all elements of v are non-negative. Pr(p {-}
denotes the probability under distribution P ~ (,u7 02) , where
w and o2 are mean and variance, respectively.

II. PROBLEM FORMULATION AND PRELIMINARIES

This work considers an overtaking problem on a two-
lane, one-way straight highway of uniform lane width W,
as shown in Fig 1. The EV starts the overtaking maneuver
in the initial lane, changes its lane to the overtaking lane,
and eventually merges back into the initial lane. The goal of
the EV is to overtake the OV and drive comfortably without
collision. The following assumptions are imposed.

Assumption 1: The OV remains in the center of its initial
lane throughout the task with an initial speed strictly below
the speed limit, that is, v°(0) < Upax.

Assumption 2: EV and OV have identical dimensions (ve-
hicle length [ and width w) and physical limits. The center of
the mass coincides with the geometric center of the vehicle.

A. Vehicle Dynamics

As illustrated in Fig. 2, we use a kinematic bicycle model
[20] to describe the dynamics of the EV. Let pg and py
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Fig. 2: Kinematic bicycle model of the EV.

represent the position of the EV’s center of mass in a Carte-
sian coordinate system, where X denotes the longitudinal
axis and Y the lateral axis. The vehicle speed is denoted
by v, and 1 represents the orientation angle of the vehicle
relative to the global X-axis. Define the state of the EV as
x¢ = [p%,pg, v, ¥]" and the control input as u® = [a®, 4] .
The dynamics of EV are modeled as

ve cos(¢ + )
vesin(y + )
¢ = f(z°u®) = a® ; (D

Ue
—sin
Ly

where § = arctan ( lflf}l tan 5). According to Assump-

tion 2, I, = [ are the distances from the center to the rear
and front axles, respectively. 8 is the side-slip angle. The
state and input of the EV are respectively constrained by

X = {xe € Rﬂ”min S v° S vmawimin S w S /l/)max}
and
U° = {ue € R2|amin < a’ < amaX75min < 0 < 6max}~

Under Assumption 1, OV can be modeled by

i° = g(z°,u°) = [v°,a’] " (2)
with the state 2° = [p2,v°] " and control input u® = a°. The
convex polyhedral constraint on states is defined as X° =
{2° € R?|upmin < v° < Umax}» and the convex polytopic
constraint on control input is U° = {u° € R|amin < a°® <
(max }- Umax can be set to the legal speed limit while vy,
is designed based on the driving environment. To facilitate
control, it is reasonable to make the following assumption.

Assumption 3: The state variables ¢ and z° of the EV
and the OV can be measured by the EV.

B. Road Object Description

The space occupied by a full-dimensional EV at time &
is described as E(zf) = p§ & R(¢y)B [21], where p§ =
[PS 4> 15 1] T is the position of EV, B = {p € R?*[Ap < b} is
a convex polytope, which describes the shape of the vehicle
at the origin, and R(v) is the rotation matrix. Then, it can
be inferred that E(z§) = {p € R?|AS (¢vr)p < b§(x§)} with
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Ai(d’k):é -1 0 O} [coswk

sin vy
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Similarly, the space occupied by OV at time & is described
by O(z7) = pp @B = {p € R*|Ap_< b(p})}, where
the position of OV is py = [pg ,,pg]" with pf = W/2
(remaining in the center of the initial lane) and
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Collision avoidance between the two vehicles is ensured if

dist(E(zf), O(x7)) > dmin, &)



which is equivalent to [21]

A = 0,75 = 0,

—b§ " A — 09 T > dinin,s
A TN+ ATy =0,
ATy < 1.

(6)

where )\, € R?, Vi € R* are the two dual variables.

III. METHODOLOGY

The overall framework of the proposed control scheme is
shown in Fig. 3. The RL agent generates the control input
u” based on observations and rewards from the environment.
If u% is verified as safe by the PSF, it is then forwarded to
the EV for execution. If the PSF predicts that u’ would
lead to unsafe behavior, u” is adjusted to a safe control u°,
where the differences between u” and u° are minimized.
As the key element of the environment, the OV’s behavior
during overtaking (when the EV passes through and merges
back into the original lane) is characterized by a Stackel-
berg game-based model, which solves two sequential finite
horizon optimal control problems (FHOCPs) to decide the
control of the OV. In this section, we will elaborate on the
design of each module in Fig. 3. The RL agent, reward
function, and training environment, including the game-based
model of the OV, are introduced in Section III-A. Section III-
B presents a stochastic PSF to account for safety under the
uncertainty of human driver behavior.

uS
SPSF Modified EV Execute

if unsafe

T
L= [ae, 5]
| Stackelberg game-

{based human driver
model

Observation

Environment

Fig. 3: Control scheme framework.

A. Deep RL-based Controller

Twin Delayed Deep Deterministic Policy Gradient (TD3)
algorithm [22], an algorithm specific for tasks with contin-
uous action space, is used for training. The action vector
is defined as a = ae,d]T, and the state vector is s =
[peT,pOT,w,ve,vo] € R7. When EV runs off the road,
the reward is set to 0. Otherwise, the reward is calculated by

T = Tcollision 1 Tbehavior T Tlane + Tovertaking s )

and its components are designed as

N —1, if a collision occurs, (8a)
collision = 3 9 otherwise,
, ~ _J 2, success overtaking, (8b)
overtaking = () otherwise,
251
Tlane = A2’ (8C)
o2 + azAy
~ =2 52
Thehavior = W10 — Wod~ — w30~ (8d)

where Ay is the lateral distance from the EV to the target
lane center. The target lane is determined based on the
relative longitudinal distance between the EV and the OV.
When the EV is at least twice the vehicle length ahead of
the OV, the target lane is set as the initial lane; otherwise, the
target lane remains the overtaking lane. 7, iS to encourage
the EV to stay in the center of the target lane. ¥ represents
v® normalized in the range [0, 1], while @ and § are the
normalized versions of a¢ and d, respectively, mapped in the
range [—1, 1]. Thenavior rewards higher speed to facilitate over-
taking while penalizing aggressive acceleration and steering
actions to promote smoother driving behavior. {1, as, as}
and {w1,ws,ws} represent weights that need to be tuned.

The next step is to model the behavior of the OV during
overtaking. Generally, OV is treated as a part of the envi-
ronment in the RL training loop, and the OV is assumed
to follow a certain model such as the IDM used in traffic
flow modeling. However, such models cannot capture human
behavior in response to an overtaking maneuver. In this
work, we model the interaction between the OV and the
EV as a Stackelberg game-based model to simulate human-
like behavior of the OV. It is reasonable to assume that the
interaction is triggered when the EV is ahead of the OV by
half a vehicle length (i.e., p . > p2 . +1/2), as indicated
by the EV’s turn signal. 7 7

Definition 1: [17] The Stackelberg game is a sequential
game between the leader £ and follower F, where L takes
action first, and then F responds based on the action of L.
The Stackelberg equilibrium is the solution of the following
optimization problem

uy = argmin ( min Jg(x,;,x].-;ubuf)> , (9a)
ucg€lUy \ur€Ux
U-(ug) 2{ul € Uz : Jr(vg, vr;us, ul) <
Jr(xe,vrsuc,ur),Yue € U},

where x and u denote states and actions, respectively.

By assuming the OV follows a Stackelberg game with
EV, where OV is the leader and EV is the follower. Through
backward induction, the optimal control input u{* is obtained
by solving the following two cascaded FHOCPs.

1) EV Subgame: For all given possible actions of OV, EV
minimizes the cost function J¢ by finding the optimal control
sequence {uf‘k*},z’ € Njo,y—1], which is the solution of the
following FHOCP1,

(9b)

min
e .o
Uik Yilk

N-1

e o e e 2

JO = Z {Ql(vi\k — v5),) + Q245
i=0

d;
+Q35i2|k + Qﬂ/}?\k_QE) In <d l_k >} (10a)

st i, = @, + (@5 uip)Ts, Vi € N v-1j, (10b)

ik = Tk + 9@ ug) T, (10c)
xzﬁk € Xea u1¢|k € Ueaxg\k = xe(k)a (10d)
xf, € X% ufy, € U%, ag), = 2°(k), (10e)

where N is the prediction horizon, and T is the sampling
time. The first term in J¢ is to encourage EV to overtake.
When EV is slower than OV, the cost increases, and when
EV is faster than OV, the cost decreases. The control input
of EV and its heading angle are penalized for a smooth
and comfortable overtaking maneuver. The last term uses



a log-barrier function to incentivize a safety gap with d; .
[P§, — i ll- The five objectives are weighted by Q;
Rso, Vj € {1,...,5}. °(k) and z°(k) are the states at
current time k.

2) OV Subgame: Given {uf‘ « } of the EV, the optimal
control action of the OV is obtained by solving the following
FHOCP2, and then the state s gets updated:

m |l

N—-1

%i?Jo:Z {Rl ln(jii) +R2a§k2+R3(v§’|kv0(k))2}

' = (11a)
stoafy =g+ f (@ ufe )T, Vi € N v,

(11b)

i1k = Tk + 9@k ufe) T, (I1c)

z3y, € X% ug), € U7, (11d)

oo = (k) ag = 20 (k) (11e)

where the third term represents the OV’s intention to main-
tain its current speed. The three objectives are weighted by
R; € Ry, Vj € {1,2,3}.

B. Stochastic Predictive Safety Filter

RL cannot provide guaranteed safety, therefore PSF is
used to filter the probably unsafe input generated by the RL
controller. The formulation of a nominal PSF is as follows:

N-1
cmin fuf (k) = uglB Y AR, (122
US| Ni R YVilk Pt
sty =25+ (@5 ufj) s, Vi € N v_1),
(12b)
x5y, € X%, uf)y, € US, a5, = 2°(k), (12c¢)
Ak = 0,73 = 0, (12d)
*bfu;)\i\k - bﬂkT%‘\k > dmin, (12e)
AS "N + ATy = 0, (12f)
1A el < 1, (12¢)
where u” (k) is the control of EV generated by RL controller
at current time k. Auflk = uf‘k — uf_l‘k,Vi € N -1

and Auglk, = u8|k — u8|k’—1 are the rate of change in the
control of the EV. The objectives are weighted by P; €
Rso, V5 € {1,2}, and P; > P,. The velocity of OV is
assumed to be constant during the entire prediction horizon.
In this context, bf‘k in the collision avoidance constraint
over the prediction horizon is predefined based on (2) and
(4). To ensure that all safety constraints, such as collision
avoidance and physical limits, are satisfied in the presence
of uncertainties from human driver behavior, we propose an
SPSF framework below for robust safety guarantees.

To capture the uncertainty of human driver behavior, we
make the following assumption to model OV’s acceleration.

Assumption 4: The acceleration of the OV follows a® ~
P(0,02), where the distribution P is unknown and o2 is
known from neutralized driving data specific to overtaking
scenarios. The acceleration at each time step afl & 1 indepen-
dent and identically distributed (i.i.d.).

Due to the unknown distribution of a°, the optimization
problem should be solved considering the worst case, as

reflected in bf‘k. Then, the following distributionally robust
chance constraint is imposed in place of (12e)

. -1
H%I&_l?f) Prp {(12¢)} > 1 —, (13)

where € < 1 is the risk level, P is the ambiguity set of the
uncertainty. In order to turn the chance constraint (13) into
a computationally tractable form, we first write system (2)
in a discrete-time form

o ]‘ TS o 0 o o o
Thoq = [0 1] Ty + [TJ up = Agxy + Bauy, (14)
and OV’s position can be decomposed by

1 0]

0
DR = g+ { o] = Cuz} + d. (15)
k {0 0_ B k
Let x° = o T go T OTTdo_
= %ok Tk o TNk and u” =
1T
[aglmaflk, e ’a‘?\/—l\k . Then, (14) can be written in a
compact form ’
x° = Adx8|k + Bgu®, (16)
where
I O2x1 O2x1 © O2x1
Ad2 By 02x1 © 02x1
Ay= Ay By= AdBy By <o 09x1
AN ANIB; AN2B; -+ By
Define the selection matrix as
Si=[02x2i T2 Oaxan—i)] Vi€ Ny ni, a7

such that S;x° = xflk. By substituting (15), (16) and (17)
into constraint (12e), we obtain

[w? 1] {%“’“} <0=p'n<0, (18)

ilk
where M, = By SiTCTA v and Ny, = b5, " A +
bT7i|k+x8lkTAdTSiTCTATW]C—&-dTAT%\k—dem. Denote
the mean vector and covariance matrix of u°® as p = Onx1
and ¥ = 021 y. Then,

b 0N><1

E(p) = m = p,Cov(p) = {leN 0 } =X. (19

According to results in [23], constraint (13) is equivalent
to the following second-order cone constraint

1—¢€
€

1/2
)2 p Ty <o,

(n"=n (20)

The proposed control scheme is summarized in Algorithm 1.

IV. NUMERICAL RESULTS

In this section, the proposed control scheme is evaluated
in a gym environment to demonstrate its safety assurance
and advantages compared to the control mechanism using
an IDM-based OV model.



Algorithm 1 Safe Learning-Based Controller for Overtaking

1: Offline RL training

2: Initialize N, T, 0?2 and €

3: Online

4: while £ > 0 do

5:  Measure the states of the EV (zf) and the OV ()

6:  Generate u% using the TD3 model subject to game-
based environment given in (10) and (11)

7: Construct (20) based on zj, and z7

8: if u” satisfies safety constraints then

9: Set the control input v = u”

10:  else

11: Modify u” to a safe control u° via the SPSF
122 end if

13:  Apply u° to the EV

14: end while

A. Simulation Settings

The simulation is conducted in highway-env [24],
and the environment is set as shown in Fig. 1. It is
worth-noting that the maximum speed limit vy« and the
road boundaries are naturally enforced by the environ-
ment, therefore not repetitively addressed in the SPSF. The
RL controller is trained by using the TD3 algorithm in
stable-baselines3 [25]. The learning rate is 0.0001,
the buffer size is 10000, and the batch size is 64. v of
TD3 is 0.99 and 7 is 0.001. An Ornstein-Uhlenbeck noise
with variance 0.1 is added to action for better exploration,
and the variance is reduced by le-5 at each time step after
80000 steps. The weights in the reward function are set as
{()41,042,0[3} = {1, 1,4} and {wl,w2,w3} = {0.4,0.2, 1}.
For stable training performance, the states and actions of the
agent are normalized to [—1, 1], and the reward is normalized
to [0, 1]. The sampling time T is set to 0.1 s. The prediction
horizon for FHOCP1 and FHOCP2 is N = 10, and for SPSF
the prediction horizon is N = 20. The weights of FHOCP1
are set to Q; = {1,1,1,1,2}. The weights for FHOCP2 are
set as R; = {20, 1,1}. For SPSE, P, = 100 and P, = 1. The
risk level € = 0.01. Variance o2 = 0.01. All optimization
problems are solved by CasADi [26]. The lane width W = 4
m and the safety gap is set to dy,;, = 2 m. The initial speed
of EV is set to 25 m/s. For OV, the initial speed is randomly
selected from [21,24] m/s. Rest of vehicle parameters are
listed in Table I.

TABLE I: Vehicle Parameters

Symbol Value Description
[Tw 5/2m Vehicle Iength/width
lr 1'lf 2/2m Wheel base length
[Vmin; Ymax] (20, 30] m/s Speed range
[¥mins Ymax] [—7/4,7/4] rad  Orientation angle range
[@min, Gmax] [—5,5]m/s? Acceleration range
min, Omax) [—m/8,7/8] rad Steering angle range

B. Simulation Results

Fig. 4 shows the convergence of the episode reward mean
during training, reached after 100000 steps.

By incorporating both IDM and the game-based OV model
in RL, it can be observed from Fig. 5 that the Stackelberg
game-based OV exhibits more realistic behavior than the
IDM-based OV. Specifically, in Fig. 5a, the OV maintains

0 25000 50000 75000 100000 125000 150000 175000

Fig. 4: The episode reward mean during the training process.
The total time steps are set to 170000.

a constant speed and shows no reaction before the EV
cuts in. After the EV merges back into the initial lane, the
OV abruptly decelerates to give way to the EV, which is
both unrealistic and unsafe in practice. In contrast, Fig. 5b
demonstrates that the game-based OV initiates an interaction
with the EV when it detects the intention of the EV roughly
while the EV is ahead of the OV by half a vehicle length
(e.g., through the turn signal of the EV), yielding a more
reasonable and mild deceleration.

a’(m/s?)
6 6 &5 & o
o w N = o

1
0 10 20 30
Time (s)

(a)

Fig. 5: Acceleration of OV during an overtaking process.
(a) IDM-based OV driving behavior during overtaking; (b)
Stackelberg game-based OV driving behavior during overtak-
ing (in a noise-free setting). The left blue dashed line denotes
the moment when EV is ahead of OV by half a vehicle length
and starts merging back. The right blue dashed line denotes
the end of overtaking maneuver.

s
=

Finally, taking into account human behavior uncertainties,
the effectiveness of the proposed SPSF is shown in Fig. 6.
When the action generated by the upper RL controller is
verified as safe, the SPSF outputs the same action. When
an unsafe action occurs, the SPSF modifies it to enforce
safety constraints, as can be seen in Fig. 6c. For instance,
the steering angle, when it exceeds the allowable limits at
about ¢ = 8 s, is robustly constrained to remain within the
maximum feasible range.

V. CONCLUSIONS

This work proposes a safe control framework for au-
tonomous overtaking when uncertain human driver behaviors
are presented. In the upper RL training process, a Stackelberg
game-based OV model is incorporated in the environment
to represent the interaction between EV and OV during the
overtaking process. Moreover, for a trained agent, a SPSF
which adopts a distributionally robust chance constraint is
cascaded to the RL model to enforce collision avoidance
and other safety-related constraints under uncertain human
driver behaviors. The effectiveness of the proposed scheme is
shown via simulation case studies in a gym environment. Fu-
ture research work will consider more complex environments



(a) The vehicle trajectories during the overtaking process. The
EV is in green and the OV is in yellow. The semi-transparent

rectangles represent the vehicle history positions.
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(b) Left: the acceleration of the EV; right: the speed of the EV
and the OV.
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(c) The steering angle of the EV.
6: Vehicle trajectories, speeds and control signals during
the overtaking. The three vertical dashed lines in (b) and
(c) indicate the time instants when the EV switches to the
overtaking lane, when it start merging back, and when it
merges back into the initial lane, respectively.

including multiple OVs and lanes. Adaptive weights of the

ov

cost in the game environment will also be investigated

to capture more realistic human driver behaviors.
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