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Abstract— Traffic signal control is essential for managing
urban traffic, reducing congestion, and minimizing environ-
mental impact by optimizing both vehicular and pedestrian
flow. This paper investigates the application of Reinforcement
Learning (RL) in traffic signal control within mixed traffic
environments, emphasizing the development of a synergistic
RL approach, named Advantage Actor-Critic with Maximum
Pressure (A2CMP). A2CMP leverages actor-critic techniques
in combination with real-time pressure metrics to dynamically
adjust traffic signals based on prevailing traffic conditions.
Additionally, the paper introduces a pedestrian-friendly phase-
skipping mechanism for further enhancing the efficiency of the
proposed algorithm in real-world traffic management. Simu-
lation results across diverse traffic scenarios show significant
reductions in CO: emissions and waiting time. Particularly,
A2CMP can reduce waiting time by 12% compared to other
RL-based algorithms.

I. INTRODUCTION

Managing vehicle throughput amid growing urban traffic
congestion has become a major challenge for cities around
the world. In the European Union, traffic congestion has
significant economic consequences, costing billions of euros
annually and affecting both environmental and financial
sustainability. Key contributors to congestion include the
volume of traffic entering intersections exceeding that of
traffic exiting, cross-blocking caused by downstream lane
obstructions, and green idling, where green lights occur with-
out vehicle movement [1]. Traditional traffic signal control
(TSC) systems, which were based on fixed-time intervals, are
unable to adapt to fluctuating traffic conditions. To address
this, adaptive TSC systems such as the Split Cycle Offset Op-
timization Technique (SCOOT) and the Sydney Coordinated
Adaptive Traffic System were developed [2]. These systems,
which rely on sensor data or manual adjustments, have
been successfully implemented in many cities but come with
higher costs and technical complexities. With advancements
in communication and control strategies, ongoing research
in TSC remains essential [3].

Max-Pressure (MP) control, initially developed for packet
scheduling in wireless networks [4], was first adapted for
urban traffic by [5], significantly outperforming fixed-time
controls [6]. While the MP controller offers several advan-
tages, including ease of implementation and certain stability
properties, it lacks optimality guarantees, which motivates
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the exploration of optimization-based approaches. Typically,
optimal control-based TSC frames the problem as a model-
based optimization challenge. However, these model-based
methods are often limited by assumptions that do not
adequately reflect real-world complexities [7]. In contrast,
Reinforcement Learning (RL) learns optimal strategies from
data and has the potential to overcome these limitations by
directly engaging with the dynamic nature of complex traffic
systems, making it particularly well-suited for TSC [8].

Pioneering work in single intersection RL began with
the advancement of adaptive methods [9], which was later
extended to multi-intersection frameworks [8], [10], [11].
These advancements build upon the foundation of single-
agent algorithms to explore coordinated interactions between
multiple agents [12], and existing RL-based TSC commonly
includes value-based methods such as Q-learning, policy-
based approaches like policy gradients, and Actor-Critic
methods, as reviewed in [13]. Regardless of single or multi-
agents, most RL-based TSC research has largely overlooked
the integration of pedestrian considerations, with limited
focus on active management of pedestrian signals. Given
the essential role of pedestrian signals in urban traffic envi-
ronments, neglecting their impact could result in suboptimal
signal control strategies, reduced intersection efficiency, and
even unsafe behavior, such as jaywalking due to prolonged
pedestrian wait times [14], [15], [16]. Current RL-based TSC
simulations typically synchronize green pedestrian signals
with vehicle phases [17]. However, this practice may uninten-
tionally delay right-turning vehicles, exacerbating congestion
[18]. Some studies suggest dedicated pedestrian-only phases
to improve overall throughput, but these often increase
vehicle wait times [19], [20].

Motivated by the limitations of recent advancements in
TSC, in this paper, we propose a RL-based traffic signal
control model considering both pedestrians and vehicles. Our
key contributions are: 1) A hybrid traffic signal control al-
gorithm is proposed for mixed traffic scenarios, dynamically
adjusting phase duration by integrating the MP algorithm
with RL techniques. Unlike existing RL-based TSC ap-
proaches, which enforce a minimum green period for pedes-
trian crossings regardless of pedestrian volume—potentially
reducing overall traffic efficiency—the proposed algorithm
incorporates a phase-skipping technique. Pedestrian phases
are skipped until both the aggregated waiting time and
pedestrian count reach a specified threshold, optimizing
traffic flow without compromising pedestrian needs; and 2)
a comprehensive assessment of the algorithm’s performance
was conducted in SUMO using metrics for both traffic
efficiency and environmental sustainability. Our results show
that the proposed method outperforms existing RL-based
TSC algorithms, delivering improvements for all road users.

The paper is organized as follows: Section [II| outlines the



problem statement and presents the necessary preliminaries.
Section [[II} elaborates on the proposed methodology. Section
presents the experimental setup and analyzes experimen-
tal results. The paper is finally concluded in Section

II. PROBLEM STATEMENT AND PRELIMINARIES

As illustrated in Fig. [I] we consider a single-agent TSC
problem for a four-way road intersection. Each road consists
of two lanes: the inner lanes are designated for through
and left-turning traffic, while the outer lanes accommodate
through and right-turning vehicles. Sidewalks are positioned

-
= =

!k\ X

e i‘
=

w8 |
*
-
{kﬁ
L

Four-way intersection with pedestrian crossing.

b

=)
==

=

% #

=

il
57

Fig. 1.

along the outer edges. The traffic signals at the four-way
intersection manage a total of eight vehicle lanes and four
pedestrian crossings, using six phases (as illustrated in
Fig () to approximate the overall phase space. Each vehicle
and pedestrian passing through the intersection is regulated
by the respective traffic signals. The minimum green light
duration is set based on the time needed for pedestrians to
cross safely, with fixed yellow and red clearance intervals
between green and red lights to ensure traffic safety. By
optimally assigning the duration of each traffic signal phase,
the goal is to optimize traffic flow, maximize throughput,
and minimize congestion. The intersection environment en-
compasses current phase P, phase duration D, waiting time
K, and queue length ¢. Real-time state information s; from
the environment is assumed to be available to the central
coordinator, who is responsible for traffic light control.

Next, the MP algorithm is briefly recalled as it will
be utilized in the proposed algorithm. In principle, the
MP algorithm generates a vector named pressurelist, PL,
which records the phase priorities as follows: PL =
[link;, link, link,,, link,|. The links are prioritized from high-
est to lowest and stored in the PL. As shown in Fig. 2] the
link pressure x;;(¢) counts for waiting vehicle and pedestrian
numbers from link i to j, and it is calculated by

Tij (t + 1) = T4y (t) + A5 (t)
— min{xij(t), CijSij (t)}, V(Z,]) eM

where a;;(t) represents the exogenous demand from link
1 to link j. The parameter c;; stands for the saturation
flow rate, which represents the maximum possible flow
through the link. The signal state s;;(t) takes a value of
0 or 1, corresponding to red or green phases. Additionally,
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Fig. 2. MP store-and-forward model [6].

M represents the set of all movements. Based on the
above discussion, TSC should actively consider pedestrian
lights in a simulation environment closely resembling real-
world conditions, rather than focusing solely on vehicle light
optimization. While hybrid action spaces can significantly
enhance TSC performance, actor-critic hybrid algorithms
have not yet been fully explored. In this paper, we aim to
bridge these gaps.

ITI. MAIN METHODOLOGY
A. Pedestrian-friendly signaling system

The primary goal of the pedestrian-friendly signaling
system is to dynamically adjust signal timing based on real-
time pedestrian demand, making the system responsive to
varying traffic and pedestrian conditions. Traditional pedes-
trian signals are often based on fixed timing, which can
lead to inefficiencies, particularly when pedestrian volumes
fluctuate throughout the day. In contrast, a dynamic sys-
tem can enhance traffic flow by optimizing signal timing
to accommodate both vehicles and pedestrians effectively.
When a pedestrian presses the button and remains within
a designated waiting area, the system can classify them
as “waiting” and adjust the signal timing accordingly. The
pedestrian-friendly mechanism considers the pedestrian’s po-
sition, intended crossing route, and waiting time, which
are then used to calculate and optimize signal timing. As
shown in Fig. [3] the 6 phases include straight-through and
left-turn movements, followed by an all-direction phase.
Phase 2 is subsequently succeeded by clearance intervals
before transitioning to equivalent movements in the opposite
direction. If no pedestrians meet the waiting criteria, Phases 1
and 4 are skipped, and the sequence follows the alternative
path indicated by the purple loop in Fig[3] Otherwise, the
sequence will continue to loop according to the phase number
shown in Fig. [3]

This pedestrian-friendly mechanism can be implemented
using a combination of sensors, such as LIDAR, infrared
cameras, or even smart city technologies that connect directly
with traffic management systems. By implementing central-
ized training on a single agent, the system can effectively
manage complex urban traffic scenarios.

B. Synergistic RL-based signal control

To leverage the flexibility and optimality of the RL algo-
rithm while maintaining the baseline performance of MP, a
hybrid algorithm called A2CMP is proposed, as illustrated
in Fig ] It can be seen that both the RL and MP controllers
operate concurrently to facilitate action selection. The design
of the algorithm is detailed below.
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Fig. 3.  Pedestrian-friendly signaling system for a standard four-way
intersection with eight incoming lanes.

observation

Environment

i

" Current phase
critic

Traffic state
actor
Value

Select next
estimatio action

|—' TD error 1
reward
Max pressure
controller
m -

| store

—

Phase duration

action

Travelling time

Queue &
pressure

Queue length
reduction g

e

Fig. 4. Schematic framework of the proposed A2CMP.

1) State (Observation): The state s; consists of a vehicle
matrix V,,,(t) € RIZXIzvl which represents the number
of waiting vehicles x, (with velocity under threshold) for
each lane [ € L. Meanwhile, a pedestrian matrix V,(t) €
RFILIXI2] captures the number of waiting pedestrians Tp
with f|L|, reflecting the typically smaller number of pedes-
trian pathways relative to vehicle lanes. The phase is rep-
resented by a 3D matrix N € RIPIXIPIXILI which encodes
the current phase configuration, including the current phase
P, phase durations D, and L. Transition dynamics, denoted
by probability Pr(s:11]|s¢, ut), are learned implicitly through
interactions with the environment rather than through explicit
modeling. Finally, the intersection state is defined as s; =
(Vin (1), Vp(£), ).

2) Action: The agent selects a parameterized action wu;
from the hybrid action space U € RIZIXIPl based on

the observation o;, drawing from a candidate action space
according to the policy 7(ulo). u; is then remapped to a
real-valued range, ensuring a constrained phase sequence and
duration.

3) Reward: When the environment executes the selected
action, it transitions to a new state sy and provides a reward
r¢+1 to the agent. The reward function r(s¢, u;) is designed
to reduce congestion for both pedestrians and vehicles,
with values normalized to be non-positive. Traffic flow is
optimized effectively by balancing immediate and future
rewards through a discount factor v € [0,1]. Specifically,
the reward function is designed as follows

re =W, q— W, E+rmpe 2
where ¢ = [qp, qu] T, Kk = [Kp, Ky] | With gp, g, denoting the
total queue lengths of pedestrians and vehicles, respectively,
and k,, K, represent their corresponding waiting times. The
weight vectors W, = [wy p, wq.»] " and Wy, = [wy p, Wieo] "
determine the relative importance of each component in the
reward function.Moreover, ry,, iS a component proportional
to the rank P within the prioritization list PL which accounts
for both vehicle- and pedestrian-based phase prioritization.

This reward incentivizes alignment between the actions
taken by the MP and A2C controllers. Consequently, the
proposed TSC algorithm will update by value gradient L(w)
and policy gradient L(J) as follows:

1

L(’UJ) = 7‘3 Z(Rt - Vw(gt))Q,
281 i
1 R ~
L(6) = 7B Z log ms(ut|S:) A — 5 Z s log ms(u|§y),
teB uclU

Ar = Ry — Vi (51),

3)
where V,,(5;) represents the value function and the current
total reward is R;. The policy parameters § define the
behavior policy w5, which informs action selection. The
value loss function measures the difference between the
total reward and the estimated value, while the policy loss
incorporates the advantage function A; and a regularization
parameter 3 to encourage exploration.

The pseudo-code of the proposed algorithm is given in
Algorithm [T} As it can be noticed, « is a weighting factor
that influences the contribution of the critic, while 7,, and
ns are learning rates for the critic and actor networks,
respectively. B represents the minibatch buffer that stores
collected experiences for training. The parameter T defines
the number of time steps per training episode k. R represents
the estimated return at the update time 7.

IV. SIMULATION VALIDATION
A. Environment setup and benchmark algorithms

This paper utilizes a simulation model based on SUMO
to compare the proposed A2CMP methocﬂ Fig. |5|illustrates
the networks used in the simulation. The single intersection
is derived from a four-way intersection in downtown Wash-
ington, D.C. The network topology is directly extracted from
the OpenStreetMap dataset.

'The code for implementing the A2CMP can be accessed from GitHub
repository https://github.com/chendesong/A2CMP.git.


https://github.com/chendesong/A2CMP.git

Algorithm 1 A2CMP

1: Parameters: «, 3, v, T, |B|, N, s, PL;

2: Output: w, ¢

3: Setup: sg, 71, t=0,k=0,B=0, PL=0;

4: repeat

5 Calculate z; ;(t) using (I)

6: Append (ui(mp), z; ;(t)) to PL;
7: Exploration:
8
9

for single intersection do
: Sample u; from 7y;
10: Receive r; and s;41;
11: end for
12: Update B + B U {(t, ¢, ¢, ut, Tty St41) 1
13: Increment t <+ t+ 1, k+ k+1;
14 if ¢t =T then

15: Setup s¢, m—1, t < 0;

16: end if

17: if £ = |B| then

18: Evaluate RT, V1 € B;

19: Evaluate RT, Bonus 7,3
20: Update 7,,VL(w) using (3);
21: Update 75V L(4) using (3);
22: Initialize B « 0, k + 0;

23: end if

24: until Total timesteps reached

A d b v - i 3
Fig. 5. Network structure of a four-way single intersection in Washington,
D.C., used for numerical experiments.

In our SUMO-based TSC simulation [21], the evalua-
tion of CO; emissions is derived using models such as
the Handbook Emission Factors for Road Transport and
Passenger car and Heavy-duty Emission Model [22]. These
models accurately estimate emissions by considering vehicle
types, driving patterns, and fuel consumption. Additional
performance parameters, such as queue length and waiting
time, are obtained through the simulation’s output. By ana-
lyzing the delay and congestion metrics for both vehicles
and pedestrians, a comprehensive understanding of traffic
efficiency and environmental impact is achieved.

The traffic demand was calibrated using historical video
data from the evening peak hours, with one-hour traffic and
pedestrian flow as representative samples [23]. Four datasets
of synthetic vehicle and pedestrian flows shown in Fig [f]
were utilized to compare the differences between peak and
off-peak periods. The simulation model was based on vehicle
and pedestrian parameters provided in Table

We compared our method with five different approaches,
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Fig. 6. Configurations of four different flow demands for synthetic traffic
data in TSC experiments.

TABLE I
DEFAULT SETTINGS FOR VEHICLES, PEDESTRIANS, AND TRAFFIC
LIGHTS
Parameter | Value
Vehicle Settings
Acceleration (max accel) 2.6 m/s?
Deceleration (max decel) 4.5 m/s?

Sigma (sigma) 0.5

Length (length) 5m
Min Gap (minGap) 25 m
Max Speed (maxSpeed) 13.89 m/s

Impatience Level 0.5
Pedestrian Settings
Acceleration (accel) 1.3 m/s?
Deceleration (decel) 1.5 m/s?
Sigma (sigma) 0.5

Length (length) 025 m
Min Gap (minGap) 0.5 m
Max Speed (maxSpeed) 1.5 m/s
Impatience Level 0.5
Traffic Light Settings
Minimum Green Time (min_green) 5s
Maximum Green Time (max_green) 50 s
Yellow Light Time (yellow_time) 2s
Red Clearance Interval (clear_time) ls
Delta Time (delta_time) 5s
Max Depart Delay (max_depart_delay) 3000 s

including two RL methods, DQN and SAC, and two base-
line TSC approaches, fixed-time and SCOOT. To ensure
a fair comparison, all RL methods are trained without a
pre-training process. DQN addresses the issues faced by
traditional Q-learning and Sarsa and utilizes deep neural
networks to represent the Q function, allowing it to handle
high-dimensional state spaces and generalize effectively. In
addition, the use of replay experience and a target network
enhances learning efficiency and stability. The powerful fea-
ture extraction capabilities of deep learning make DQN more
capable of avoiding local optima and finding globally optimal
strategies. SAC is an off-policy algorithm that achieves stable
policy optimization through dual Q-networks and policy
entropy regularization. Compared to an on-policy algorithm,
SAC is better suited for complex continuous control scenar-
ios. By benchmarking against SAC, we rigorously evaluate
the performance of A2CMP in challenging environments.
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Fig. 7. Training performance and reward convergence of A2CMP and other
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Fig. 9. Comparison of CO2 emissions between the proposed A2CMP
method and established benchmarks.

For the five controllers mentioned, we assess traffic signal
performance using queue length and CO; emissions as
metrics. The action interval is set to 5 seconds, with each
run consisting of a one-hour simulation. Results are reported
as the average of the last 5 runs during testing.

B. Simulation Results

For illustrative purposes, we begin by presenting results
using data from the low-peak period, as shown in Fig. [6]
To reveal the benefit of the pedestrian-friendly signaling
system, the proposed A2CMP is compared with the same
TSC but without such a signaling mechanism (as such, only
the signals for the vehicles are controlled while the signals
for the pedestrians simply follow). The results show that
the proposed solution can save 4.65% waiting time for both
vehicles and pedestrians. In the following, the pedestrian-
friendly mechanism is integrated in all benchmark methods
for a fair comparison.

The convergence comparison is performed by calculating
the average reward of the agent,r = % Z;‘F:_Ol r¢, in each
training episode, which quantifies the task completion level.
A2CMP begins to gradually converge during episode 4, with

a convergence speed slightly slower than the DQN algorithm
shown in Fig. [7] However, the results of A2CMP after con-
vergence are more stable compared to SAC and DQN. This
increased stability can be attributed to the inherent advantage
of the A2CMP algorithm, which combines the benefits of the
actor-critic architecture with a more refined pressure control
mechanism. This combination helps in reducing the variance
of policy updates, leading to smoother and more consistent
performance after convergence.

In terms of actual CPU computation time, A2CMP re-
quires approximately 33 seconds per run, while DQN takes
around 20 seconds. SAC, due to its complexity, needs about
5 minutes to complete a single run. In Fig. A2CMP
outperforms the existing fixed-time traffic signal control by
reducing the total waiting time by 91%. These results are
averaged over multiple evaluation episodes to ensure statis-
tical reliability. It also shows significant improvement over
SCOOT. When comparing with other RL-based algorithms,
the waiting time of the A2CMP is 15% less than DQN and
40% less than SAC. From an environmental perspective, the
reduction in CO5 emissions is not as obvious as the reduction
in waiting time. Specifically, although the RL algorithm
can save about 25% of CO2 emissions compared to fixed-
time control, the CO5 emissions produced by the three RL
algorithms are largely similar. This can be attributed to two
main factors: marginal benefit and vehicle technology. First,
once traffic flow optimization reaches a certain threshold, the
marginal gains in reducing CO2 emissions diminish. Second,
simulation does not account for renewable vehicle models,
which may limit the observed emission reduction, even with

optimized traffic flow.
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Fig. 10. Validation results comparing the proposed A2CMP method with
SAC and DQN under different flow demand scenarios.

Fig. [I0] illustrates the performance of three RL TSCs
across four different traffic flow scenarios given in Fig. [6]
The primary metrics evaluated include the total wait time
of road users at intersections. The data on total waiting time
and total queued number align well. In low-density scenarios,
A2CMP and DQN perform similarly, both outperforming the
SAC algorithm. In high-density scenarios, A2CMP generally
surpasses DQN. In conditions of excessive traffic saturation,
DQN slightly outpaces A2CMP in terms of traffic through-
put. The lag in response exhibited by A2C is a key factor
contributing to its suboptimal performance in highly discrete
environments. From a sustainability perspective, A2CMP
marginally surpasses other algorithms. Specifically, A2CMP
can cut CO4y emissions by 1.84% and 4.70% compared to
DQN and SAC, respectively. Overall, A2CMP proves to be
a reliable algorithm, delivering the best overall performance
across the four metrics in single intersection scenarios.

To further evaluate the performance of the proposed



TABLE I
COMPARISON OF ALGORITHMS ACROSS TwO CITIES

Controller | City Total CO; emis-
waiting sions (kg/s)
time (min)

Monaco 313.7 6.5

DON London 176.8 4.4

Monaco 379.6 6.5
SAC London 210.5 4.1
Monaco 273.9 6.4

A2CMP
C London 157 4.3
Monaco 10324 8.7

T
SCO0 London 711.5 59

. . Monaco 12159 10.2

Fixed Time |4 Gon 839 6.9

A2CMP across different road intersection configurations, we
conducted tests at a three-way intersection in London and a
five-way intersection in Monaco. The comparative results are
shown in Table[[ll The vehicle dataset for Monaco is obtained
from SUMO scenarios [24], while the London dataset is
derived from traffic signal camera data [25]. The results
obtained align closely with the observations from previous
results. Moreover, A2CMP and DQN are computationally
efficient in all case studies, enabling faster decision-making
than other RL-based approaches. These findings validate
the superior performance and robustness of the A2CMP
algorithm compared to conventional RL-based traffic man-
agement approaches, highlighting its potential for effective
real-world implementation in mixed-traffic environments.

V. CONCLUSION AND FUTURE WORK

The key contributions of this paper include the de-
velopment of a pedestrian-friendly signaling system and
the A2CMP algorithm, which combines DRL and MP, to
optimize traffic signal control in complex urban settings.
A2CMP effectively reduces queue lengths, CO5 emissions,
and overall waiting time, all while maintaining acceptable
computational costs, proving to be a robust and adaptable so-
lution for urban traffic management. The results demonstrate
A2CMP’s superiority over traditional and other RL-based
methods, though there remains room for improvement under
conditions of excessive congestion. Future research will
explore the real-world applicability of A2CMP, particularly
its performance in handling complex traffic scenarios such as
accidents and signal noise, which have not been addressed in
this paper. These advancements will be crucial for developing
efficient and safe intelligent transportation systems in real-
world environments.

REFERENCES

[11 H. Wei, G. Zheng, V. Gayah, and Z. Li, “A survey on traffic signal
control methods,” arXiv preprint arXiv:1904.08117, 2019.

[2] R. Zhu, S. Wu, L. Li, P. Lv, and M. Xu, “Context-aware multiagent
broad reinforcement learning for mixed pedestrian-vehicle adaptive
traffic light control,” IEEE Transactions on Intelligent Transportation
Systems, no. 1, pp. 1-10, 2022.

[3] L. Li, Y. Lv, and E-Y. Wang, “Traffic signal timing via deep rein-
forcement learning,” IEEE/CAA Journal of Automatica Sinica, vol. 3,
no. 3, pp. 247-254, 2016.

[4]

[5]

[6]

[7]

[8]

[9]
[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” IEEE Transactions on Automatic Control,
vol. 37, no. 12, pp. 1936-1948, 1992.

P. Varaiya, “Max pressure control of a network of signalized inter-
sections,” Transportation Research Part C: Emerging Technologies,
vol. 36, pp. 177-195, 2013.

X. Wang, Y. Yin, Y. Feng, and H. X. Liu, “Learning the max pressure
control for urban traffic networks considering the phase switching
loss,” Transportation Research Part C: Emerging Technologies, vol.
140, p. 103697, 2022.

H. Zhao, C. Dong, J. Cao, and Q. Chen, “A survey on deep rein-
forcement learning approaches for traffic signal control,” Engineering
Applications of Artificial Intelligence, vol. 133, p. 108100, 2024.

M. Yazdani, H. Parineh, M. Sarvi, S. Asadi Bagloee, N. Nassir, and
J. Price, “Intelligent vehicle pedestrian light (IVPL): A deep rein-
forcement learning approach for traffic signal control,” Transportation
Research Part C: Emerging Technologies, vol. 125, p. 102942, 2023.
R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning.
Cambridge: MIT Press, 1998, vol. 135.

Y. Chen and C. G. Cassandras, “Adaptive traffic light control for
competing vehicle and pedestrian flows,” in 2024 European Control
Conference (ECC), 2024, pp. 1875-1880.

P. Agand, A. Iskrov, and M. Chen, “Deep reinforcement learning-
based intelligent traffic signal controls with optimized co2 emissions,”
in 2023 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). 1EEE, 2023.

W. Genders and S. Razavi, “An open-source framework for adaptive
traffic signal control,” Journal of Transactions on Intelligent Trans-
portation Systems, vol. X, no. X, August 2019, arXiv:1909.00395.

V. Gayah, H. Wei, and G. Zheng, “Recent advances in reinforcement
learning for traffic signal control: A survey of models and evaluation,”
ACM SIGKDD Explorations Newsletter, vol. 22, no. 2, pp. 12-23,
2020.

Y. Chunhui, M. Wanjing, H. Ke, and Y. Xiaoguang, “Optimization of
vehicle and pedestrian signals at isolated intersections,” Transportation
Research Part B: Methodological, vol. 98, pp. 135-153, 2017.

M. M. Ishaque and R. B. Noland, “Trade-offs between vehicular
and pedestrian traffic using micro-simulation methods,” Transportation
Research Part A: Policy and Practice, vol. 41, no. 9, pp. 857-873,
2007.

Q. Yang and R. F. Benekohal, “Multi-objective traffic signal optimiza-
tion for emissions reduction and delay minimization using evolutionary
algorithms,” Transportation Research Part C: Emerging Technologies,
vol. 19, no. 1, pp. 82-98, 2011.

R. Zhu, S. Wu, L. Li, P. Lv, and M. Xu, “Context-aware multiagent
broad reinforcement learning for mixed pedestrian-vehicle adaptive
traffic light control,” IEEE Internet of Things Journal, vol. 9, no. 20,
pp. 19694-19705, 2022.

T. Wu, P. Zhou, K. Liu, Y. Yuan, X. Wang, H. Huang, and D. O. Wu,
“Multi-agent deep reinforcement learning for urban traffic light control
in vehicular networks,” IEEE Transactions on Vehicular Technology,
vol. 69, no. 8, pp. 8243-8256, 2020.

W. Ma, Y. Liu, and K. L. Head, “Optimization of pedestrian phase pat-
terns at signalized intersections: A multi-objective approach,” Journal
of Advanced Transportation, vol. 48, no. 8, pp. 1138-1152, 2014.

K. Xu, J. Huang, L. Kong, J. Yu, and G. Chen, “Pv-tsc: Learning to
control traffic signals for pedestrian and vehicle traffic in 6g era,” IEEE
Transactions on Intelligent Transportation Systems, vol. 24, no. 7, pp.
7552-7563, 2023.

M. Noaeen, A. Naik, L. Goodman, J. Crebo, T. Abrar, Z. S. H. Abad,
A. L. C. Bazzan, and B. H. Far, “Reinforcement learning in urban
network traffic signal control: A systematic literature review,” Expert
Systems with Applications, vol. 199, p. 116830, 2022.

O. Pribyl, R. Blokpoel, and M. Matowicki, “Addressing eu climate
targets: Reducing co2 emissions using cooperative and automated ve-
hicles,” Transportation Research Part D: Transport and Environment,
vol. 86, p. 102437, 2020.

D. of Columbia Government, “2020 traffic volume dataset,” https:/
opendata.dc.gov/datasets/DCGIS::2020- traffic- volume/about, 2020.
C. Sommer, D. Eckhoff, R. German, and F. Dressler, “A survey
of networking solutions in commercial road traffic telematics,”
IEEE Communications Surveys & Tutorials, vol. 15, no. 3, pp.
786-797, 2013, accessed: Aug. 29, 2024. [Online]. Available:
https://sumo.dlr.de/docs/Data/Scenarios.html

Department for Transport, “Road traffic statistics,” https://www.gov.
uk/government/collections/road- traffic-statistics, accessed: Aug. 28,
2024.


https://opendata.dc.gov/datasets/DCGIS::2020-traffic-volume/about
https://opendata.dc.gov/datasets/DCGIS::2020-traffic-volume/about
https://sumo.dlr.de/docs/Data/Scenarios.html
https://www.gov.uk/government/collections/road-traffic-statistics
https://www.gov.uk/government/collections/road-traffic-statistics

	Introduction
	Problem Statement and Preliminaries
	Main methodology
	Pedestrian-friendly signaling system
	Synergistic RL-based signal control
	State (Observation)
	Action
	Reward


	Simulation Validation
	Environment setup and benchmark algorithms
	Simulation Results

	Conclusion and Future work
	References

