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Physics-Guided GAN with Manhattan Attention: A Novel Approach

for Imbalanced Bearing Vibration Fault Diagnosis
Lie Xu (徐冽), Daxiong Ji (冀大雄), Marcelo Ang, Yan Zhi Tan, Yuanchang Liu and Peng Wu

Abstract—This study introduces a novel Physics-Guided Gen-
erative Adversarial Network (PGAN) tailored explicitly for diag-
nosing rolling bearing faults under severely imbalanced datasets.
PGAN integrates domain-specific physical constraints into the
generative process, thereby enhancing both the physical realism
and interpretability of the generated data. Key innovations
include a generator conditioned on physics-based features and
random noise, the introduction of dedicated physics-guided loss
functions, and the incorporation of Manhattan Attention to
improve the extraction of essential vibration features. Extensive
experiments conducted using the CWRU and HUST datasets
demonstrate PGAN’s superior performance compared to several
state-of-the-art methods. Results indicate that PGAN significantly
mitigates the impact of dataset imbalance, achieving robust diag-
nostic accuracy even in extreme conditions. Further visualization
and comparative analyses underscore the method’s capability to
deliver highly discriminative and interpretable features.

Index Terms—Fault diagnosis, imbalanced data, physics-
guided, generative adversarial network, rolling bearing.

I. INTRODUCTION

FAULT diagnosis (FD) of rolling bearings is fundamental
to ensuring the operational integrity, reliability, and effi-

ciency of mechanical systems. Unexpected bearing failures can
result in catastrophic consequences, including extended system
downtime, substantial economic losses, and critical safety
hazards [1], [2]. A significant challenge in this domain is the
inherent imbalance in fault data collection—healthy conditions
and certain fault types typically dominate datasets, while
critical rare faults remain underrepresented. Although data-
driven approaches, particularly deep learning (DL) models,
have demonstrated remarkable advantages in bearing fault
diagnosis through their ability to automatically extract hi-
erarchical feature representations without extensive domain
expertise [3], [4], these conventional DL techniques exhibit
substantially diminished performance when confronted with
limited and imbalanced fault datasets. This imbalance creates a
pronounced bias toward majority classes while significantly re-
ducing sensitivity to minority fault classes that often represent
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the most critical failure modes [5], causing diagnostic systems
trained on such imbalanced data to frequently misclassify
rare but potentially catastrophic faults, thereby posing serious
reliability concerns in industrial applications.

To address the data imbalance problem, Generative Adver-
sarial Networks (GANs) have emerged as promising solutions
by generating synthetic samples for minority fault classes [6].
Despite this advancement, conventional GAN architectures
utilize random noise as inputs, producing synthetic samples
that lack physical interpretability and realistic characteris-
tics. This fundamental limitation significantly constrains their
practical applicability and reliability in industrial scenarios
[7]. Moreover, traditional GANs operate without leveraging
domain-specific physical knowledge, resulting in generated
samples that often deviate from realistic fault signatures and
ultimately compromise the diagnostic system’s robustness,
generalizability, and interpretability [8].

Several recent studies have explored innovative approaches
to address the challenges in bearing fault diagnosis, each
with specific strengths and limitations. A conditional GAN
(BT-GAN) was developed in [13] for predicting stress fields
in composite bolted joints, where superior performance was
achieved compared to traditional finite element methods
through multi-scale feature extraction and attention mecha-
nisms. However, BT-GAN’s effectiveness is heavily contingent
on training dataset completeness and quality, limiting its appli-
cability in scenarios with sparse or imbalanced data. A dual-
attention feature fusion network (DAFFN) was introduced in
[14] that combines Wasserstein GAN with gradient penalty
and K-means SMOTE to address imbalanced fault diagnosis in
rotating machinery. While improved classification performance
is demonstrated by DAFFN, its efficacy remains fundamen-
tally dependent on the quality of hybrid data generation and
the effectiveness of its dual-attention mechanism, present-
ing challenges in consistently handling severely imbalanced
datasets. A hybrid fault data generation technique (MBAC-
GAN) was proposed in [15] where physical bearing models are
integrated with CycleGAN to bridge the simulation-to-reality
distribution gap. Although the need for costly real-world fault
experiments is reduced by MBAC-GAN, its performance is
inherently limited by the simplified assumptions embedded in
physical models and the inability to fully capture complex
fault dynamics. A comprehensive review of hybrid physics-
based and data-driven methodologies in smart manufactur-
ing was conducted in [16], where the benefits of enhanced
interpretability, reduced computational costs, and improved
uncertainty management are highlighted. Additionally, To
tackle incremental fault diagnosis and catastrophic forgetting
in rotating machinery, an inverted transformer lifelong learning
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method with a learnable pruning mechanism is proposed in
[19]. The model embeds time-series signals from multiple
sensors and dynamically adjusts its structure through learnable
pruning, maintaining a balance between stability and plasticity
as new faults are introduced. However, achieving an optimal
balance between model accuracy and physical interpretability
remains a persistent challenge across existing approaches.

These studies collectively reveal several critical limitations
in current approaches:

1) Insufficient integration of domain-specific physical
knowledge into generative models, leading to physically
unrealistic synthetic samples;

2) Challenges in maintaining model interpretability while
achieving high diagnostic accuracy;

3) Inadequate attention mechanisms for capturing fault-
specific signal characteristics when dealing with severely
imbalanced datasets;

Recently, Physics-informed Machine Learning (PIML) has
garnered substantial attention for its capacity to seamlessly in-
tegrate prior physical knowledge into DL frameworks, thereby
enhancing both performance and interpretability [9], [10]. The
incorporation of physical constraints effectively guides neural
networks toward capturing physically meaningful features and
ensures that generated data remains consistent with known
system behaviors and physical laws [11]. Additionally, spe-
cialized attention mechanisms, such as Manhattan Attention,
have proven highly effective in selectively extracting critical
diagnostic features from complex signals, substantially im-
proving diagnostic accuracy and robustness, particularly in
noisy industrial environments [12].

Motivated by these limitations and inspired by recent inno-
vations, this paper proposes a novel Physics-Guided Genera-
tive Adversarial Network (PGAN), built upon the Wasserstein
GAN with Gradient Penalty (WGAN-GP) [18] framework,
specifically designed for rolling bearing fault diagnosis under
imbalanced data conditions. Unlike traditional GAN archi-
tectures, PGAN leverages the stabilized training dynamics
of WGAN-GP while integrating physics-informed principles
directly into its architecture. The generator employs phys-
ical features as conditional inputs alongside random noise,
explicitly incorporating domain knowledge to enhance the
physical realism and interpretability of generated samples.
To enforce adherence to physical constraints during train-
ing, physics-based loss functions are introduced, augmenting
the adversarial loss with gradient penalty to ensure sample
plausibility and improve model robustness. Furthermore, the
Manhattan Attention mechanism is seamlessly integrated into
the generator, enabling efficient capture of critical vibration
features essential for accurate fault diagnosis across diverse
operating conditions.

The primary contributions of this research are summarized
as follows:

1) A novel Physics-Guided GAN is proposed that integrates
domain-specific bearing knowledge into the generative
process, producing physically realistic fault samples that
significantly improve diagnostic accuracy for minority
fault classes.

2) A comprehensive physics-based loss function framework
is developed that enforces adherence to bearing dy-
namics principles, ensuring generated samples maintain
physical consistency while addressing class imbalance
challenges.

3) A specialized Manhattan Attention mechanism is de-
signed within the generator architecture that effectively
captures critical time-frequency features of bearing
faults, enhancing feature extraction capabilities under
noisy industrial conditions.

The remainder of this paper is structured as follows: Section
II outlines the theoretical foundations of PGAN. Section III de-
scribes the detailed architecture and methods of the proposed
PGAN framework. Section IV presents comprehensive experi-
mental evaluations, verifying the effectiveness, interpretability,
and robustness of the proposed method. Finally, Section V
summarizes the findings and conclusions of this study.

II. PRELIMINARIES OF PGAN

A. Generative Adversarial Networks

Generative Adversarial Networks (GANs), proposed by
Goodfellow et al. [17], comprise two neural networks: a
generator G and a discriminator D, which are simultane-
ously trained through adversarial competition. The generator
G transforms a random noise vector z, sampled from a
prior distribution pz(z), into synthetic data samples G(z)
resembling real data, while the discriminator D evaluates both
real data samples x, drawn from the true data distribution
pdata(x), and generated samples G(z), outputting a probability
D(x) indicating the likelihood that the given input is real.
The adversarial training process is governed by the following
objective:

min
G

max
D

Ex∼pdata(x)[logD(x)]

+ Ez∼pz(z)[log(1−D(G(z)))]
(1)

This formulation incentivizes the generator to produce sam-
ples indistinguishable from real data, while the discriminator
aims to accurately differentiate between real and synthetic
samples.

B. Wasserstein GAN with Gradient Penalty

Despite their success, standard GANs frequently encounter
training instabilities and mode collapse issues. To mitigate
these problems, Arjovsky et al. [7] introduced the Wasser-
stein GAN (WGAN), which employs the Wasserstein dis-
tance—also known as the Earth Mover’s Distance—as a
divergence metric between the real and generated distributions.
The WGAN optimization problem is expressed as:

min
G

max
D∈D

Ex∼pdata(x)[D(x)]− Ez∼pz(z)[D(G(z))] (2)

where D denotes the space of 1-Lipschitz continuous func-
tions, and maintaining this Lipschitz continuity is crucial
for the stable training of WGANs. To effectively enforce
the Lipschitz constraint, Gulrajani et al. [18] introduced the
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WGAN-GP, which modifies the discriminator’s loss function
by incorporating a gradient penalty term:

L = Ex∼pdata [D(x)]− Ez∼pz(z)[D(G(z))]

+ λEx̂∼px̂

[(
∥∇x̂D(x̂)∥2 − 1

)2] (3)

where x̂ represents interpolations between real and generated
data samples, and λ controls the strength of the gradient
penalty. This additional term ensures that the discriminator’s
gradients remain close to unity, significantly enhancing train-
ing stability and convergence properties.

C. Physics-Informed Neural Networks

Physics-Informed Neural Networks (PINNs), proposed by
Raissi et al. [8], integrate physical laws—typically described
by partial differential equations (PDEs)—into the neural net-
work’s training process. By embedding these laws, PINNs
ensure that predictions not only fit observed data but also
conform to established physical principles. Considering a
general nonlinear PDE of the form:

ut +N [u;λ] = 0, x ∈ Ω, t ∈ [0, T ] (4)

where u(t, x) is the PDE solution, N denotes a nonlinear
operator parameterized by λ, and Ω is the spatial domain,
PINNs define the PDE residual f(t, x) as:

f(t, x) := ut +N [u;λ] (5)

The training of PINNs involves minimizing a combined loss
function:

Ltotal = Ldata + Lphys (6)

Here, Ldata measures the difference between model pre-
dictions and empirical data, while Lphys penalizes deviations
from the governing PDEs. Incorporating these constraints
allows PINNs to produce physically consistent and robust
predictions, particularly beneficial in scenarios with sparse
observational data.

III. METHODOLOGY

A. Architecture Overview

The overview of the proposed PGAN architecture is pre-
sented in Fig. 1. It comprises two main components: the data
generation module and the classifier module. In the data gen-
eration module, imbalanced real data samples collected from
faulty bearings are provided as inputs to the discriminator.
Unlike traditional GANs, the generator in PGAN incorporates
physics-based conditions as inputs instead of the conventional
noise vector. During training, the discriminator updates its
network weights using a standard data-driven loss (data loss).
In contrast, the generator optimization involves a composite
loss function that includes both data loss and physics loss
terms. This physics loss, computed using specific physical
constraints elaborated in the subsequent subsection, guides the
generator to produce physically consistent synthetic data.

Fig. 1. Architecture of PGAN.

After training, the data generation module mitigates the
imbalance by generating synthetic yet physically realistic data
samples. Subsequently, the classifier module is trained on the
balanced dataset produced by the data generation module,
ultimately providing reliable diagnostic results.

B. Physics Guided Prior Knowledge

The detailed PGAN architecture comprises three main
components: the generator, discriminator, and classifier. The
generator and discriminator primarily employ fully-connected
(FC) layers, as shown in Fig. 2. Whereas the classifier consists
of convolutional (Conv) layers, max-pooling (Pool) layers, and
FC layers. Additionally, the generator integrates Manhattan
attention to extract intrinsic features effectively from each
dimension.

Physics-Guided conditions for bearing fault data include
fault frequencies specific to different fault types (inner race,
outer race, and ball faults) and the corresponding mean ampli-
tudes within fault frequency bands. The fault frequencies are
computed as follows:

• Inner race fault frequency (finner):

finner =
n

2
fr

(
1 +

d

Dpitch
cosα

)
(7)

• Outer race fault frequency (fouter):

fouter =
n

2
fr

(
1− d

Dpitch
cosα

)
(8)

• Ball fault frequency (fball):

fball =
D

2d
fr

[
1−

(
d

Dpitch
cosα

)2
]

(9)

Here, n is the number of rolling elements, fr represents the
rotational frequency, d denotes the rolling element diameter,
Dpitch is the pitch diameter, and α is the contact angle of the
bearing.

The mean amplitude within a specified fault frequency band
is calculated by:

Amean =
1

M

∑
fi∈[ffault−B

2 ,ffault+
B
2 ]

|X(fi)| (10)

where Amean denotes the mean amplitude, X(fi) is the
amplitude spectrum of the vibration signal at frequency fi,
ffault is the targeted fault frequency (inner race, outer race,
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or ball), B is the bandwidth around the fault frequency, and
M represents the total number of frequency points within the
selected band.

Unlike traditional GANs that rely solely on stochastic noise
vectors as inputs, the input to our generator, denoted as xin,
consists of a fault-frequency-based modulation sine wave.

Let t denote time and let f0 be the characteristic fault
frequency (Hz) associated with the defect under a given
operating condition. We encode the known periodic structure
through a physics-conditioned carrier

c(t) =
∑
k∈K

wk sin
(
2πkf0t+ ϕk

)
(11)

where K is the set of considered harmonic orders (e.g.,
{1, 2, 3}), wk ∈ R+ are harmonic weights, and ϕk ∈ [−π, π)
are phase offsets. In practice, {wk, ϕk} are sampled from
narrow priors to reflect modest operating variability (e.g.,
speed drift) while preserving the order structure.

Rather than synthesizing the signal directly from noise, the
generator predicts physically meaningful terms relative to the
carrier: (i) an amplitude envelope a(t) ∈ R, (ii) a phase
deviation ∆ϕ(t) ∈ R, and (iii) a sparse event map e(t) ∈ R≥0

that excites structural resonances. The generated vibration is

x̂(t) =
(
1+a(t)

)
c
(
t+

∆ϕ(t)

2πf0

)
+

(
e ∗ hθ

)
(t)︸ ︷︷ ︸

impulse-driven resonance

+ n(t)

(12)
where ∗ denotes convolution in time, (e ∗ hθ)(t) is the
resonant response obtained by filtering the event map e(t)
with a learned resonance kernel hθ(t), and n(t) is a small
stochastic excitation accounting for unmodeled noise. The
term ∆ϕ(t)/(2πf0) converts phase deviation (rad) into time
(s), yielding an FM-style modulation of the carrier.

We parameterize the resonance kernel as a sum of exponen-
tially decaying ring-downs:

hθ(t) =

M∑
m=1

bm e−t/τm sin
(
2πfr,mt

)
u(t) (13)

where M is the number of resonance modes; for each mode
m, bm ∈ R is the mode amplitude, τm > 0 is the decay
constant (s), fr,m > 0 is the resonance frequency (Hz), and
u(t) is the unit step enforcing causality. To promote physically
plausible, intermittent impacts, we regularize e(t) with an ℓ1
sparsity penalty (see next subsection).

This decomposition respects the classical impulse-excitation
view of bearing faults (impacts that excite damped reso-
nances), while the carrier c(t) anchors periodicity at orders
of f0. The generator’s capacity is thereby focused on learning
AM/FM modulation and impulse-driven resonant residuals,
rather than rediscovering periodicity from scratch.

The carrier is not intended to reproduce the full fault
mechanism; it provides a low-complexity basis that anchors
the known periodicity (orders of f0). The generator focuses on
learning the physically salient variations—AM/FM, envelope
evolution, and impulse-driven ring-downs—rather than discov-
ering periodicity from scratch under extreme class imbalance.
This inductive bias reduces the hypothesis space, stabilizes

adversarial training, and remains sufficiently expressive be-
cause envelope and phase deviations can represent narrow-
band AM/FM processes in the characteristic bands, while e∗hθ

models non-sinusoidal impulsive content.
By incorporating fault-frequency-based modulation sine

waves as the generator input, the approach significantly en-
hances interpretability, as the generated signals are directly
linked to specific physical fault mechanisms. This design
also provides greater controllability, enabling precise manip-
ulation of the generative process to simulate various fault
scenarios through explicit adjustment of frequency compo-
nents and related parameters. Furthermore, the integration of
domain knowledge into the input facilitates domain-driven data
augmentation, ensuring that the synthetic signals reflect the
true nature of bearing faults rather than arbitrary patterns.
Importantly, this strategy effectively addresses the challenge
of imbalanced data by allowing the targeted generation of
minority fault samples, thereby improving the balance and
representativeness of training datasets. Collectively, these ad-
vancements lead to more transparent, robust, and practical
diagnostic models for real-world bearing vibration analysis.

C. Physics-Consistent Losses

We regularize the generator with losses that (i) enforce
envelope consistency in narrow harmonic bands around the
known fault orders, (ii) match spectral content within the
same bands, and (iii) promote sparsity of impulsive excitations.
Throughout, x(t) denotes the real (reference) vibration signal
and x̂(t) the synthesized signal introduced previously; f0 and
the harmonic index k retain their earlier meanings (character-
istic fault frequency and order, respectively).

a) Band set around the fault orders.: Let B denote the set
of narrow frequency bands centered at the harmonic locations
{kf0 : k ∈ K}. Concretely, each B ∈ B is an interval [kf0(1−
δ), kf0(1 + δ)] with a small relative half-width δ > 0 (e.g.,
3%–6%), and K is the same order set used to construct the
carrier.

b) Envelope (analytic-signal) loss.: Let H{·} be the
Hilbert transform and | · |B the restriction (band-selection)
operator that keeps only the frequency components inside B.
We compare the analytic envelopes of x and x̂ within the
bands B using the ℓ1 distance:

Lenv =
∑
B∈B

∥∥∥ ∣∣H{x}
∣∣
B
−
∣∣H{x̂}

∣∣
B

∥∥∥
1

(14)

c) Spectral (band-limited) loss.: Let Px(f) and Px̂(f)
denote the (one-sided, consistently normalized) magnitude
spectra of x and x̂, respectively, obtained from the discrete
Fourier transform with the same windowing and scaling. We
penalize band-limited spectral mismatch as

Lspec =
∑
B∈B

∥∥∥Px(f)
∣∣
B
− Px̂(f)

∣∣
B

∥∥∥
1

(15)

d) Sparsity of impulsive events.: As defined previously,
e(t) is the (nonnegative) event map that excites the resonance
kernel. We encourage impulsiveness via an ℓ1 penalty:

Lsp = ∥e∥1 (16)
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e) Total generator objective.: Let LGAN denote the
adversarial term (e.g., WGAN-GP or hinge loss) and
λenv, λspec, λsp > 0 be scalar weights. The full generator loss
is

LG = LGAN + λenv Lenv + λspec Lspec + λsp Lsp (17)

We use sinusoidal carriers as physics-conditioned basis
functions: they inject the correct order structure a priori and
let the generator devote capacity to envelope/phase modulation
and impulsive residuals. Compared to random-noise inputs,
carriers reduce search space and improve few-shot stability;
compared to band-passed noise carriers, they provide phase-
coherent references that facilitate learning of sideband spacing.

D. Detail Model Design

The processed inputs pass through two FC layers before
further extraction via the Manhattan attention mechanism [12],
defined as:

Attention(Q,K, V ) = softmax
(
−∥Q−K∥1√

dk

)
V (18)

Here, Q, K, and V represent query, key, and value matrices,
respectively, and dk is the dimensionality of the key vectors.
The Manhattan distance ∥Q − K∥1 emphasizes prominent
features from the input data.

The discriminator subsequently distinguishes real from syn-
thetic samples, enabling the generator to produce realistic,
physically consistent data.

In the classifier component, one-dimensional convolutional
(1-D Conv) layers are utilized to extract features from balanced
datasets produced by the data generation module. Feature
extraction using convolution is expressed as:

h
(l)
j = f

(
m∑
i=1

h
(l−1)
i ∗W (l)

ij + b
(l)
j

)
(19)

where h
(l)
j indicates the j-th feature map of the l-th convo-

lutional layer, h(l−1)
i is the i-th input feature map from the

previous layer, W (l)
ij denotes the convolution kernel connecting

input and output feature maps, b(l)j represents the bias term,
m indicates the number of input feature maps, and f(·) is
an activation function. In this study, ReLu is chosen as the
activation function.

Each Conv layer is followed by a max-pooling layer to
reduce dimensionality and computational complexity while
retaining crucial features. The detailed model configurations
are shown as Table I and II. In Table II, BN means 1d batch
normalization, MP(2) means 1d Max Pooling with kernel size
2.

E. Training Procedure

The training of the proposed PGAN involves optimizing
three distinct loss functions: the generator loss, discriminator
loss, and classifier loss. The PGAN model adopts the WGAN-
GP as its fundamental GAN framework.

TABLE I
GENERATOR AND CRITIC LAYER CONFIGURATIONS.

Net/Layer Out Dim Activation/Notes

Gen: FC1 128 ReLU; input: Physics guided wave
Gen: FC2 256 ReLU
Gen: ManhAttn 256 Softmax; param: 256-d
Gen: FC3 1024 –

Critic: FC1 256 LeakyReLU; input: 1024
Critic: FC2 128 LeakyReLU
Critic: FC3 1 –

TABLE II
CLASSIFIER CONFIGURATIONS.

Layer Channels Kernel Activation Notes

Conv1d 1→16 7, p=3 ReLU BN, MP(2)
Conv1d 16→32 5, p=2 ReLU BN, MP(2)
Conv1d 32→64 3, p=1 ReLU BN, MP(2)
Flatten – – –
FC1 8192→128 – ReLU Dropout(0.5)
FC2 128→4 – –

Fig. 2. Architecture of generator and discriminator in PGAN.

1) Discriminator Loss: The discriminator is trained to dis-
tinguish real from synthetic data accurately. Its loss
function is purely data-driven, defined by the standard
WGAN-GP objective:

LD = Ez∼pz(z)[D(G(z))]− Ex∼pdata(x)[D(x)]

+ λgpEx̂∼px̂

[
(∥∇x̂D(x̂)∥2 − 1)2

] (20)

where G(z) denotes the synthetic data generated from
noise vector z, x represents real data samples, x̂ is the
interpolated sample between real and generated data,
and λgp is the gradient penalty coefficient enforcing the
Lipschitz constraint.

2) Generator Loss: The generator aims to produce data
indistinguishable from real samples while adhering to
physical constraints. The details about generator loss has
been discussed in (17).

3) Classifier Loss: The classifier is optimized using bal-
anced synthetic and real data from the generation mod-
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ule. The classifier loss is purely data-driven, defined
using the standard cross-entropy loss function:

LC = − 1

N

N∑
i=1

K∑
k=1

yik log(ŷik) (21)

where yik is the true label and ŷik denotes the predicted
probability for class k, and K represents the number of
classes.

Algorithm 1 provides detailed pseudo-code describing the
training procedure of PGAN:

Algorithm 1 Training Procedure of PGAN
Require: Real imbalanced dataset X , physics conditions,

batch size N , coefficients wdata, wphys, λgp, epochs T
1: for epoch = 1 to T do
2: for each batch do
3: Sample real data x ∼ pdata(x)
4: Sample physics guided wave z ∼ pz(z)
5: Generate synthetic data x̂ = G(z)
6: Update discriminator by minimizing LD

7: Compute joint loss for generator LG

8: Update generator by minimizing LG

9: end for
10: end for
11: Generate balanced dataset using trained generator
12: for epoch = 1 to Tclassifier do
13: for each batch do
14: Sample balanced data
15: Update classifier by minimizing LC

16: end for
17: end for
18: return Optimized Generator, Discriminator, Classifier

Through the outlined training procedure, PGAN effectively
integrates data-driven and physics-guided learning, enhancing
diagnostic performance in scenarios with imbalanced datasets.

IV. EXPERIMENTAL VALIDATION

In this section, two public real failure bearing datasets are
used to validate the effectiveness of the proposed method.

A. Dataset Description

In this study, two benchmark datasets, the Case Western
Reserve University (CWRU) dataset [20] and the Hanoi Uni-
versity of Science and Technology (HUST) dataset [21], are
employed to evaluate the proposed PGAN method.

CWRU Dataset: The CWRU dataset is widely recognized
for bearing fault diagnosis and was collected by the Bearing
Data Center at Case Western Reserve University. It comprises
vibration data captured at four rotational speeds (1797, 1772,
1750, and 1730 r/min) and covers faults of varying diameters
(7, 14, and 21 mils) occurring at different bearing positions,
including ball, inner race (IR), and outer race (OR). For
this study, the dataset has been categorized into four distinct
classes: normal, ball fault, inner race fault, and outer race fault.

Fig. 3. CWRU dataset acquisition bench.

Fig. 4. HUST dataset acquisition bench.

Table III details the dataset used in this experiment, while the
test bench used for data acquisition is illustrated in Fig. 3.

HUST Dataset: The HUST dataset is a recently developed
dataset for bearing fault diagnosis, gathered by the School of
Electrical and Electronic Engineering at Hanoi University of
Science and Technology. It consists of vibration data from
various ball bearing models (ID 6204, 6205, 6206, 6207,
and 6208 from KG Bearing India) featuring typical single
faults: inner race fault, outer race fault, and ball fault. Detailed
specifications are shown in Table IV, and the corresponding
experimental setup is presented in Fig. 4.

TABLE III
DETAILED INFORMATION OF DATASET CWRU

Fault type Label Fault diameter
(mil)

Fault
position

Load
(HP)

Speed
(r/min)

Normal 0 - - 1 1797
Inner race 1 7/14/21 - 1 1797

Ball 2 7/14/21 - 1 1797
Outer race 3 7/14/21 6 o’clock 1 1797

TABLE IV
DETAILED INFORMATION OF DATASET HUST

Fault type Label Fault diameter
(mm)

Fault
position

Load
(HP)

Speed
(r/min)

Normal 0 - - 1 1496
Inner race 1 0.2 - 1 1492

Ball 2 0.2 - 1 1496
Outer race 3 0.2 - 1 1492
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B. Experimental Settings

To simulate realistic imbalanced conditions, data prepro-
cessing is applied. Specifically, half of the available normal
data samples are included in the training dataset, whereas
fault data are intentionally underrepresented according to
various predefined proportions (1:4, 1:10, 1:20, 1:25, 1:50, and
1:100 relative to normal data). Remaining samples from both
categories are reserved exclusively for evaluating the classifier
performance.

Data segmentation is performed using a window length of
1024 samples, resulting in 500 segments for normal data. Fault
data are segmented proportionally based on the established
imbalance proportions. The testing dataset includes 500 seg-
ments for each class, providing a comprehensive evaluation
framework consisting of 2000 test samples (4 classes × 500
segments per class).

Model hyperparameters are optimized using grid search
based on validation set performance, aiming to maximize di-
agnostic accuracy. Optimal parameters and their search spaces
are presented in Table V. Across datasets, the response sur-
faces were smooth around the recommended region, indicating
low hyperparameter brittleness. Accuracy rose when moving
from negligible envelope consistency to moderate levels and
then plateaued near λenv≈1.0, while excessively large values
conferred no consistent benefit and could slightly depress
overall accuracy. Increasing the spectral band weight improved
minority-class up to about λspec ≈ 0.3, beyond which gains
diminished and occasional trade-offs in macro-F1 emerged.
For the sparsity prior, λsp=10−3 reliably suppressed spurious
textures without attenuating salient transients; stronger regu-
larization tended to over-constrain the generator. Regarding
WGAN-GP stability, five critic steps with a gradient penalty
of λgp = 10 achieved a favorable balance between stable
adversarial dynamics and computational cost, whereas fewer
penalties increased volatility and more critic steps yielded
negligible accuracy improvements. Expanding the carrier from
a single harmonic to a tri-harmonic set (1, 2, 3) enhanced sep-
arability of fault signatures—particularly for rolling-element
and inner-race classes—without the noise amplification typ-
ically associated with higher-order expansions. Additionally,
each experiment is conducted ten times to mitigate random
initialization effects, and the average performance is reported.

C. Results

The diagnostic performance of the proposed PGAN under
different data imbalance conditions is summarized in Table
VI and Table VII. The analysis of the results demonstrates
that model performance is significantly impacted by class
imbalance. Both datasets initially exhibit high accuracy, pre-
cision, and recall at mild imbalance levels (1:4, 1:10), with
metrics consistently above 99%. However, as the imbalance
intensifies, performance notably deteriorates, with the HUST
dataset experiencing a sharper decline than CWRU, reflecting
lower robustness. Particularly at extreme imbalance (1:100),
accuracies drop to 81.12% for CWRU and 74.35% for HUST,
accompanied by higher variability.

TABLE V
SEARCHING SPACE AND OPTIMAL HYPERPARAMETERS OF THE PGAN

Hyperparameters Searching space Optimal

Input size 1×1024 (fixed)
Batch size 32/64/128 64

Max epochs 100 (fixed)
Optimizer Adam (fixed)

Learning rate 1e-3/1e-4/1e-5 1e-4
Number of hidden
nodes in generator

[32, 64]/[64, 128]/
[128, 256]

[128, 256]

Number of convolution
kernels in classifier

[32, 64]/[64, 128] /
[128, 256]

[128, 256]

Envelope loss weight 0.3/1.0/3.0 1.0
Spectral loss weight 0.1/0.3/1.0 0.3

Sparsity of impulsive events 1e-4/1e-3/1e-2 1e-3
Gradient penalty 1/5/10 10
Harmonic orders [1]/[1, 2]/[1, 2, 3] [1, 2, 3]

Confusion matrices in Fig. 5 and Fig. 6 further illus-
trate classification results across various imbalance scenarios.
Normal state samples achieve consistently high classification
accuracy (approximately 100%) due to adequate training data
availability. Misclassification predominantly occurs between
inner and outer race fault conditions, attributed primarily to the
similarity in fault-induced vibration signatures and insufficient
discriminative physical prior knowledge.

TABLE VI
PERFORMANCE METRICS (MEAN/STD) FOR CWRU UNDER DIFFERENT

PROPORTIONS

Proportion Accuracy Precision Recall

Mean Std Mean Std Mean Std

1:4 99.99% 0.01 99.99% 0.01 99.99% 0.02
1:10 99.78% 0.59 99.66% 0.91 99.87% 0.34
1:20 99.21% 2.19 99.49% 1.26 98.73% 3.69
1:25 96.84% 4.89 96.81% 4.58 97.12% 4.54
1:50 92.71% 3.37 92.12% 3.94 91.87% 4.27

1:100 81.12% 5.61 76.69% 13.02 78.29% 10.82

TABLE VII
PERFORMANCE METRICS (MEAN/STD) FOR HUST UNDER DIFFERENT

PROPORTIONS

Proportion Accuracy Precision Recall

Mean Std Mean Std Mean Std

1:4 99.97% 0.07 99.96% 0.07 99.96% 0.07
1:10 99.17% 1.15 99.22% 1.04 99.17% 1.15
1:20 88.30% 2.32 89.32% 1.94 88.30% 2.32
1:25 88.09% 5.85 88.35% 8.13 88.09% 7.77
1:50 79.14% 6.23 82.32% 9.04 79.14% 6.23

1:100 74.35% 6.36 81.43% 9.64 74.35% 6.36

These findings underscore PGAN’s ability to effectively ad-
dress imbalance challenges in fault diagnosis tasks, reinforcing
the advantages of integrating physics-informed learning into
data-driven frameworks.

D. Comparisons and Discussions

To comprehensively evaluate the effectiveness of the pro-
posed PGAN, comparisons are performed with several state-
of-the-art methods, including CMDGAN [22], CDCGAN [23],
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Fig. 5. Confusion martics on CWRU with different proportions. (a)1:4 (b)1:10
(c)1:20 (d)1:25 (e)1:50 (f)1:100

Fig. 6. Confusion martics on HUST with different proportions. (a)1:4 (b)1:10
(c)1:20 (d)1:25 (e)1:50 (f)1:100

DeepSMOTE [24], and DCWDN [25]. Among these meth-
ods, CMDGAN and CDCGAN are GAN-based techniques
designed for handling data imbalance issues; DeepSMOTE
leverages deep learning-enhanced SMOTE for data augmenta-
tion, and DCWDN utilizes an AutoEncoder-based architecture.
Additionally, classical GAN-based methods such as standard
GAN, Conditional GAN (CGAN), and WGAN-GP are in-
cluded to validate the improvements brought by PGAN.

For fair and consistent comparisons, vibration signals for
all methods undergo identical preprocessing steps. The mean
diagnostic accuracy of 10 times test for varying data imbalance
proportions on both CWRU and HUST datasets is reported in
Tables VIII and IX, respectively.

From Table VIII, it is evident that the proposed PGAN
consistently outperforms the comparison methods across all
imbalance proportions on the CWRU dataset. Specifically, at
moderate levels of imbalance (proportions of 1:4 to 1:25),
PGAN achieves superior diagnostic accuracy, clearly bene-
fiting from the integration of physics-informed constraints.
Under extremely severe imbalance conditions (proportions of

1:50 and 1:100), PGAN maintains relatively high accuracy
(92.71% and 81.12%, respectively), significantly exceeding
other approaches. The DCWDN method, although competitive
at lower imbalance proportions (1:4 and 1:10), exhibits sub-
stantial accuracy degradation at higher imbalance levels (1:20
and beyond). Other GAN-based methods and DeepSMOTE
display consistently lower accuracy, highlighting limitations
in effectively addressing extreme imbalance situations.

Similarly, analysis of results from the HUST dataset in
Table IX reveals comparable trends. PGAN achieves excellent
accuracy at mild imbalance levels (1:4 and 1:10), clearly
outperforming all comparative methods. As imbalance sever-
ity increases, PGAN maintains strong performance, although
it is slightly surpassed by DCWDN at the proportion of
1:50 (79.15% vs. 80.96%). However, PGAN outperforms all
methods, including DCWDN, under the most challenging
condition (1:100), achieving an accuracy of 74.35%. Other
comparative methods experience significant performance drops
at higher imbalance levels, further reinforcing the robustness
and adaptability of the physics-informed constraints integrated
within PGAN.

Fig. 7 illustrates the ablation study results for the proposed
method and its variants across varying degrees of class im-
balance (normal:fault ratios of 1:4, 1:10, 1:20, 1:25, 1:50, and
1:100). Each subplot in the figure presents the test accuracy
of four models:

• Proposed method (blue): The full model incorporating
both physics-guided and attention mechanisms.

• Without physics guided (orange): The model excluding
the physics-guided module.

• Without attention (green): The model without the at-
tention mechanism.

• Vanilla WGAN-GP (red): The baseline, which lacks
both the physics-guided and attention modules.

As the class imbalance becomes more severe, from 1:4 to
1:100, all models demonstrate a decline in accuracy. How-
ever, the magnitude of this decline varies significantly across
models.

Across all imbalance settings, the proposed method (blue
bar) consistently achieves the highest accuracy. This demon-
strates the effectiveness of jointly leveraging physics-guided
constraints and attention mechanisms, particularly for chal-
lenging, highly imbalanced datasets.

The removal of the physics-guided module causes a no-
ticeable reduction in accuracy at all imbalance ratios, with
the performance gap widening as the data becomes more
imbalanced. Omitting the attention mechanism also results in
accuracy degradation, though the drop is generally less severe
than when physics guidance is removed. The vanilla WGAN-
GP (red bar), lacking both modules, consistently yields the
lowest accuracy, especially in extreme imbalance cases (1:50,
1:100).

For attention mechanism ablations, as shown in Fig. 8,
across all imbalance settings, Manhattan attention attains the
highest accuracy, with SE attention second and vanilla self-
attention slightly worse. The margin is small for mild imbal-
ance (1:4–1:20) and widens modestly as imbalance increases
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TABLE VIII
COMPARISONS ON CWRU WITH DIFFERENT PROPORTION (10-RUN AVERAGE ACCURACY)

Proportion Proposed method GAN CGAN WGAN-GP CMDGAN CDCGAN DeepSMOTE DCWDN

1:4 99.99% 99.91% 99.31% 98.69% 97.82% 98.96% 97.57% 99.60%
1:10 99.78% 95.05% 91.48% 89.62% 91.31% 93.95% 89.53% 99.06%
1:20 99.21% 89.13% 83.88% 83.13% 85.00% 86.20% 84.30% 85.30%
1:25 96.84% 86.54% 80.46% 79.23% 84.70% 82.68% 81.19% 76.34%
1:50 92.71% 81.07% 75.22% 72.57% 74.55% 78.17% 76.81% 72.32%

1:100 81.12% 77.16% 66.26% 70.19% 59.97% 64.60% 67.72% 70.47%

TABLE IX
COMPARISONS ON HUST WITH DIFFERENT PROPORTION (10-RUN AVERAGE ACCURACY)

Proportion Proposed method GAN CGAN WGAN-GP CMDGAN CDCGAN DeepSMOTE DCWDN

1:4 99.97% 93.31% 93.87% 93.01% 95.82% 95.08% 91.63% 94.73%
1:10 99.17% 80.80% 73.41% 72.16% 82.92% 82.62% 79.18% 91.07%
1:20 88.30% 65.22% 62.85% 62.42% 75.75% 71.64% 72.78% 88.33%
1:25 88.09% 63.47% 60.58% 58.06% 72.74% 68.20% 69.10% 86.39%
1:50 79.15% 57.72% 56.12% 55.70% 55.90% 64.87% 57.26% 80.96%

1:100 74.35% 57.27% 50.39% 46.16% 43.25% 54.96% 36.26% 68.35%

Fig. 7. Ablation study results for the proposed method and its variants under
different data imbalance ratios.

(1:25–1:100), indicating that Manhattan attention confers ro-
bustness when minority data are scarce. We attribute this
advantage to an inductive bias that aligns with bearing-fault
physics: Manhattan attention imposes an explicit L1 distance
decay (and, in our implementation, cycle-aware biasing), priv-
ileging dependencies within and across neighboring periods.
This stabilizes training, preserves AM/FM structure and side-
band spacing, and suppresses spurious long-range couplings
that vanilla self-attention can learn under limited data; SE at-
tention, being channel-wise recalibration, lacks temporal/phase
selectivity. The advantage remains modest because the over-
all framework already embeds strong physics priors (carrier
construction plus band-limited envelope/spectral losses), the
data exhibit relatively signatures, and evaluation uses accuracy
with ceiling effects, collectively reducing separability among
attention variants.

Fig. 8. Ablation study results for attention mechanisms under different data
imbalance ratios.

E. Comprehensive Diagnostic-Sensitive Evaluation

To deeply evaluate the diagnostic quality of generated vibra-
tion signals, we propose a diagnostic-sensitive, harmonically
weighted evaluation metric that quantitatively assesses the
similarity between generated and real signals at all harmonic
frequencies of the characteristic fault frequency within 0–4000
Hz.

Specifically, for a given characteristic fault frequency f0,
we extract its N harmonics {fn = nf0 | fn ≤ 6000, n =
1, 2, . . . , N}. At each harmonic frequency fn, we compute
several normalized, dimensionless diagnostic-sensitive features
for both the real and generated signals: (1) the energy ratio in
the frequency band [fn−∆f, fn+∆f ] (where ∆f is typically
set to 30 Hz), (2) the ratio of the main peak to the mean in the
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same band, (3) the kurtosis, and (4) the impulse factor after
bandpass filtering and normalization. For each feature k, the
absolute difference between the real and generated signals is
calculated at each harmonic.

To reflect the actual diagnostic importance of each har-
monic, we use the energy distribution of the real signal in
each harmonic band as a weight wn, defined as

wn =
En∑N
i=1 Ei

, (22)

where En is the envelope spectrum energy of the real signal
in the band [fn − ∆f, fn + ∆f ]. The final comprehensive
diagnostic-sensitive evaluation score S is then calculated as

S =

N∑
n=1

wn ·
K∑

k=1

∣∣∣F (real)
n,k − F

(gen)
n,k

∣∣∣ , (23)

where F
(real)
n,k and F

(gen)
n,k denote the k-th normalized feature

(energy ratio, peak-to-mean, kurtosis, impulse factor) of the
real and generated signals at the n-th harmonic, respectively.

Table X reports the comprehensive diagnostic-sensitive eval-
uation scores for different generative models.

TABLE X
COMPREHENSIVE DIAGNOSTIC-SENSITIVE EVALUATION SCORE FOR

DIFFERENT METHODS (LOWER IS BETTER)

Method Score

Proposed 2.992
w/o Attention 3.698
w/o Physics-Guided 4.067
WGAN-GP (Baseline) 8.241

From Table X, it can be seen that our proposed physics-
guided and attention-augmented GAN achieves the lowest
comprehensive evaluation score, indicating that the generated
signals most closely match the real signals in all diagnosti-
cally relevant harmonic bands. The ablation studies show that
removing the attention mechanism or the physics-guided con-
straint both lead to increased scores, reflecting a reduction in
diagnostic relevance and feature fidelity. The baseline WGAN-
GP model yields the highest score, suggesting that without any
diagnostic guidance, the generated signals fail to accurately
reconstruct key fault-related characteristics, especially in the
principal and lower-order harmonics that are most critical for
fault identification. These results validate the effectiveness of
our method in generating diagnostically sensitive and physi-
cally consistent vibration signals.

V. CONCLUSIONS

This paper introduced a novel PGAN specifically designed
for rolling bearing fault diagnosis under severe data imbal-
ance conditions. The proposed PGAN significantly advances
beyond conventional GAN models by explicitly integrating
domain-specific physical knowledge into the generative pro-
cess. This approach not only enhances the physical realism
and interpretability of synthesized data but also substantially
mitigates the detrimental effects of dataset imbalance. Ex-
perimental validations performed on the CWRU and HUST

bearing datasets confirmed the superior performance of the
proposed PGAN compared to state-of-the-art methods. Results
indicated that PGAN consistently maintained high diagnos-
tic accuracy, even under extreme imbalance conditions (up
to a 1:100 imbalance proportion), demonstrating significant
robustness and adaptability. Furthermore, feature visualization
and comparative analyses emphasized the enhanced discrimi-
native capabilities and interpretability provided by the physics-
informed constraints and Manhattan Attention. Future research
directions may explore further optimization of physics-based
constraints, extension of the method to other industrial fault
scenarios, and integration with real-time diagnostic platforms
for broader practical applicability.
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