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Abstract

The key components in superconducting quantum computing architectures are

qubits, couplers, microwave elements and low-noise amplifiers among others. In a

variety of these subsystems, nonlinear circuit elements are an essential ingredient

which enables their functionality. In this thesis, we study two different supercon-

ducting elements used to implement nonlinear capacitors.

First we simulated a novel Josephson-junction-based tuneable nonlinear capac-

itor to couple flux qubits. Such a device implements a YY interaction, which has

the potential to enhance the performance and extend the capabilities of current

generation quantum annealers. We show that the interaction strength of the YY

coupling is on the order of MHz and tuneable across zero. We discuss experimental

realisations of this device to verify its function.

Next, we present our study of a low temperature parametric amplifier utilizing

the nonlinear capacitance of quantum phase-slip nanowires. We have fabricated

a single-nanowire and two-nanowire variants which shunt a quarter-wavelength

superconducting coplanar waveguide resonator. We characterised the nonlinear

properties of the first variant such as the power-dependent resonance frequency,

idler generation and signal gain, while in the second variant we developed a lock-in

detection method to investigate the gate voltage response and demonstrate that

the device acts as a gate-voltage-tuneable resonator.

We also report on the progress towards a fabrication process for sputtered Al
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overlap junctions in the LCN cleanroom. Back-sputter and in-situ oxide growth

techniques are developed as an alternative to shadow evaporation. These tech-

niques are better suited for large-scale integration as they do not rely on angular

deposition, but they require better control over the interfaces due to patterning the

two electrodes separately. We characterised the processes using resistance mea-

surements and characterised their low temperature properties. We show that our

junctions exhibit overdamped dynamics and the critical current is suppressed with

RF radiation.
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Impact Statement

Quantum technologies have attracted significant private and public investment,

with a growing number of startups developing the technology to transform vari-

ous industries such as finance, cybersecurity, material science and medicine. This

thesis explores the practical aspects of quantum devices including numerical sim-

ulations of a Josephson junction-based capacitive coupler, and experiments on

niobium nitride nanowires. The results presented in this work lays the ground-

work for future research directions in the areas of qubit coupling hardware and

parametric amplification, and is mainly of academic interest.

The designs and simulations of the YY coupler, as well as the experimental

methods discussed enables these circuits to be fabricated for characterisation and

verification, while providing a starting point for future circuit designs and fur-

ther development is required before the coupling element can be integrated into

commercial systems. Moreover, the feasibility study of fabricating overlap Joseph-

son junctions in our cleanroom also gives a foundation for other researchers who

wish to extend the junction interface preparation methods considered in this thesis.

Parametric amplifiers are of interest in low-temperature electronics, and for

superconducting qubit readout. In the experiments on nanowire-based parametric

amplifiers, we have found evidence for frequency mixing and gate-voltage tuneable

capacitance in our resonators, demonstrating the operation principle of this novel

device. We hope that this demonstration will stimulate future research to optimize

our design for an alternative to amplifiers based on Josephson junctions.
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Chapter 1

Introduction

1.1 Introduction

The technological advancement of digital computers has been dramatic, evolving

from the massive, room-sized machines of the 1940s such as the ENIAC, to to-

day’s compact and powerful devices such as smartphones, laptops, and embedded

systems that are ubiquitous in our everyday lives. With the advent of silicon inte-

grated circuits and progressive miniaturization of MOSFETs, digital circuits have

become not only significantly smaller in size but also substantially more complex,

enabling their vast information processing capabilities. In spite of this, they are

not well-suited for solving all types of computational problems. Certain tasks,

such as simulating large quantum systems, are thought to be computationally

intractable for classical computers[1], requiring exponentially increasing storage

space and processing time to return a solution. This limitation has motivated the

exploration of alternative computing paradigms, as solving these hard problems

could yield significant innovations in technology and deepen our understanding of

fundamental science. One such paradigm is quantum computing.

The discovery of several quantum algorithms that provide distinct computa-

tional advantages over classical ones greatly accelerated interest in quantum com-

puting. Notable early examples include Shor’s algorithm for integer factorization[2]
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1.1 Introduction

and Grover’s algorithm for searching unsorted databases[3]. Shor’s algorithm, for

example, can factor large numbers exponentially faster than classical methods, al-

lowing it to break widely used RSA encryption. Quantum computers can also be

programmed to perform quantum simulations, that is, to efficiently and accurately

predict the physical and chemical properties of materials, enabling the discovery

and design of new materials[4][5] and pharmaceutical drugs[6].

Quantum computation is carried out by manipulating quantum bits, or qubits,

which play an analogous role to bits in classical information processing. Qubit

states can be manipulated in a discrete manner, through a sequence of operations

called quantum gates, or alternatively their evolution can be carried out continu-

ously, with this approach termed adiabatic quantum computation.

Qubits have been made out of various physical systems, with the main plat-

forms being trapped ions, neutral atoms, silicon spin qubits, superconducting

qubits and photonic qubits. Among these various implementations, each has its

own advantages and drawbacks. Qubits based on natural physical systems have

the longest coherence times, as in the case of approaches based on photons, atoms

and ions which have coherence times in the order of minutes due to their weak

interactions with the environments. These systems require specialized equipment

for qubit control, and approaches to manufacture the technology at scale remains

to be proven[7][8][9]. Silicon spin qubits, on the other hand, have coherence times

up to a few milliseconds. These systems utilized nanostructures with dimensions

of a few nanometres to confine electrons. The structure is known as a quantum

dot, which behaves as an artificial atom[10]. This is an attractive candidate for

building a quantum computer due to its compact size, and the support of ma-

ture semiconductor nanofabrication techniques, with the main challenge to this

approach being the requirement of very precise control signals to operate the de-

vices[11][12]. Superconducting qubits have typical coherence times on the order of

100 µs, but are also operated with much shorter gate times, in the tens of nanosec-

onds[13]. These type of qubits are artificial atoms based on the quantum states of

2



1.2 Thesis Outline

either the charge or flux degree of freedom in a superconducting circuit, allowing

for excellent flexibility in the design and engineering of qubits, coupling elements

and other classical peripheral devices[14][15]. This thesis aims to contribute to-

wards this area of research.

Superconducting circuits have emerged as one of the most promising platforms

for building quantum computers, leading to widespread adoption by some of the

world’s largest technology companies. One of the key advantages of this approach

is the ability to leverage fabrication techniques used in conventional integrated cir-

cuit manufacturing, such as photolithography, thin-film deposition, and etching,

which can be scaled for mass production. A superconducting circuit is composed of

various elements such as capacitors, inductors, and Josephson junctions. Through

careful design and arrangement of these components, engineers can precisely con-

trol key qubit properties. These circuits can be designed to be operated in the

GHz frequency range, enabling integration with existing conventional RF elec-

tronics. To maintain their quantum properties, these circuits must be cooled to

cryogenic temperatures, typically around 10 milliKelvins, which can be achieved

using commercial dilution refrigerators. This requirement opens up a new demand

for low-temperature RF electronics, which play an important role as part of the

control and measurement subsystems for quantum processors.

1.2 Thesis Outline

This thesis is structured as follows. In Chapter 2, we give an introduction to

the background theory needed to understand the operation of superconducting

devices. We give a description of superconductivity and then introduce the con-

stitutive relations of the Josephson junction (JJ) and quantum phase-slip (QPS)

nanowire. We also discuss some relevant quantum circuits such as the Cooper pair

box, RF SQUID flux qubit and QPS transistor.
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1.2 Thesis Outline

Chapter 3 provides the context and motivation for the work presented in the

thesis. Here we describe the limitations of coupling elements currently imple-

mented in quantum annealers and the utility of a JJ-based tuneable nonlinear

capacitor. Then we provide a description of parametric amplification and discuss

the scope for a novel design of a parametric amplifier using the nonlinear capaci-

tance of a QPS nanowire.

Chapter 4 presents the numerical simulations of the tuneable YY coupler for

flux qubits. We discuss the design criteria and challenges in the physical imple-

mentation of the coupler. We described the design of an experimental test which

would allow us to verify and characterise the device.

Chapter 5 builds on the goals of Chapter 4 and presents the development of a

new fabrication process for Al-based JJs in the LCN cleanroom. We describe our

backsputtering and oxide growth methods used to prepare the JJ interface and

oxide barrier, and present experimental results from our device characterisation

in a dilution refrigerator which show that we can produce nonhysteretic JJs using

our process.

Chapter 6 concerns fabrication and measurement of two NbN-based nonlinear

resonators. The first device contains a single nanowire shunting a quarter wave-

length resonator, and I present experimental results on its nonlinear behaviour,

mixing properties and amplification. The second device is a electrostatically-gated

variant of the first, which has two nanowires. With this device we demonstrate the

periodic tuning of the resonance frequency of the device by a gate voltage which

we attribute to the nonlinear capacitance of the nanowires.

Chapter 7 we conclude the thesis with a summary and outlook of the work

presented.
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Chapter 2

Background Theory for

Superconducting Quantum

Devices

2.1 Superconductivity

First observations of superconductivity were seen when experiments in the low-

temperature lab of Kamerlingh Onnes in 1911 found that the electrical resistivity

of metals such as mercury, tin and lead suddenly disappeared when cooled be-

low a critical temperature Tc. Another characteristic property of superconductors

which marks them as a different thermodynamic state from metals is the expulsion

of magnetic fields below the critical temperature as discovered by Meissner and

Ochsenfeld in 1933.

The first theoretical efforts to understand the new state were phenomenological

theories that did not seek to provide a microscopic description, but explained the

experimental observations. One such successful model was the electromagnetic

theory of superconductors of F. and H. London[16]. To describe the vanishing

resistance and persistence of electrical current, Ohm’s law is replaced by the first

London equation,
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2.1 Superconductivity

E⃗ � Λ
Bjs
Bt , (2.1)

with the phenomenological parameter

Λ � ms

nsq2s
, (2.2)

where qs, ns, and ms are the charge, number density, and mass of the carriers and

j⃗s is the density of the superconducting current (supercurrent). On the other hand,

the expulsion of magnetic fields is a consequence of the second London equation

∇� j⃗s � �ΛB⃗, (2.3)

which leads to exponentially decaying magnetic fields within the superconductor,

∇2B⃗ � 1

λ2L
B⃗, (2.4)

where λ2L � Λ
µ0

is the London penetration depth of a superconductor.

With the development of quantum theory, it became recognized that super-

conductivity is a macroscopic quantum phenomenon, with the charge carriers de-

scribed by a phase-coherent quantum wavefunction[17]. Ginzburg and Landau’s

theory[18] was based on such an approach which describes the transition from

the normal to superconducting phase in terms of an order parameter ψpr⃗, tq �
|ψpr⃗, tq|eiφpr⃗,tq, representing a wavefunction of the superconducting electrons so

that ns � |ψpr⃗, tq|2 [19].

Another key advancement is the first microscopic theory of superconductivity,

BCS theory[20] due to Bardeen, Cooper and Schrieffer, describing the formation

of a condensate at low temperatures, where all the charge carriers in the super-

conductor occupy the same quantum-mechanical ground state. This was shown
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2.1 Superconductivity

to be possible because of the formation and condensation Cooper pairs, pairs of

electrons in a metal bound by electron-phonon interactions[21]. The pairing mech-

anism gives rise to an energy gap 2∆ which is required to create a pair of excitations

from the superconducting ground state[22][23]. This gap is temperature-dependent

but far below Tc BCS predicts ∆pT � 0q � 1.764kBTc, where kB is Boltzmann’s

constant. This has found quantitative agreement with various experiments, such

as the low-temperature specific heat of vanadium specimens[24], the absorption

of electromagnetic energy by superconducting films[25] and the tunnelling of elec-

trons across an oxide layer to a normal metal[26].

Manifestations of the quantum mechanical nature governing superconductors

have dramatic physical consequences. The macroscopic wavefunction and the fact

that charge carriers have twice the elementary charge is demonstrated in the phe-

nomenon of flux quantization within a superconducting loop, where magnetic flux

threading the loop can only take discrete values in units of the magnetic flux quan-

tum Φ0 � h
2e
, where h is Planck’s constant. From quantum mechanics, the phase

gradient of a wavefunction in the presence of a magnetic field B⃗ � ∇� A⃗ is[27]

∇φ � 1

ℏ
p ms

qsns

j⃗s � qsA⃗q, (2.5)

where ℏ � h
2π

is the reduced Planck’s constant, qs is the charge of the carrier, j⃗s

is the supercurrent density and A⃗ is the vector potential of the magnetic field.

Around a multiply-connected superconductor, the wavefunction must be single-

valued, so that upon integrating around the loop once, the phase difference must

be a multiple of 2π, and

¾
p∇φq � d⃗l � 2πn � qsΛ

ℏ

¾
j⃗s � d⃗l � qs

ℏ

¾
A⃗ � d⃗l, (2.6)

where n is the winding number of the wavefunction. For a sufficiently thick super-

conductor, taking a contour deep inside the material for which j⃗s � 0, the above

equation gives the flux quantization condition
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2.2 Superconducting Circuit Elements and Devices

Φ � nΦ0, (2.7)

where Φ0 � h
qs
. This was found to be the case with qs � 2e by the measurements

of trapped flux in thick cylindrical superconductors in 1961 by Deaver and Fair-

bank[28] around the same time as Doll and Näbauer[29]. For cases where j⃗s cannot

be taken to be zero, the condition is modified so that the quantity on the right

hand side of (2.6) called the fluxoid, is quantized, so that

nΦ0 � LkI � Φ, (2.8)

where for a loop of length l and cross-sectional area A, the quantity Lk � Λl
A

is the

kinetic inductance of the superconductor[27].

2.2 Superconducting Circuit Elements and De-

vices

2.2.1 Josephson Junctions

Josephson junctions (JJ) are to superconducting circuits what p-n junctions are

to semiconductor electronics. First theorized in 1963 by Josephson[30], the effect

was experimentally demonstrated soon after in the same year by Anderson and

Powell[31]. A JJ is a tunnel junction consisting of two superconducting electrodes

separated by a thin insulating barrier through which Cooper pairs can tunnel. The

constitutive relations for a JJ are[30]

I � Ic sinϕ, (2.9)

V � ℏ
2e

dϕ

dt
, (2.10)
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2.2 Superconducting Circuit Elements and Devices

where ϕ � φ2 � φ1 � 2π
Φ0

³2
1
Azdz is the gauge-invariant phase difference across the

JJ. When V � 0 a dc supercurrent can flow across the junction with a maxi-

mum value of Ic, while for V0 � 0 the current oscillates at the Josephson frequency

ω0 � 2eV0

ℏ � 483.6 MHz/µV. Under ac driving, such as when induced by microwave

irradiation, the IV curve exhibits steps at constant voltages. With the ac voltage

component V � V0 � V1 cos pω1tq, the phase evolves as

ϕptq � ϕ0 � ω0t� p 2e

ℏω1

q sinω1t, (2.11)

so that after using the expansion of the sine of a sine in terms of the Bessel func-

tions of the first kind, the current,

Ipϕptqq � Ic
¸
p�1qnJnp2eV1ℏω1

q sinpϕ0 � ω0t� nω1tq, (2.12)

has a dc component if ω0 � nω1, at constant dc voltages V0 � nℏω1

2e
known as

Shapiro steps in the IV characteristic[32].

Furthermore, the constitutive relations (2.9), (2.10) define a nonlinear Joseph-

son inductance

LJ � Φ0

2πIc cosϕ
, (2.13)

which is periodic in ϕ. In practical junctions, the ideal behaviour given by Eq.

(2.9) and (2.10) is supplemented by including a shunt resistance R describing the

dissipation presented in the finite voltage state, and a shunt capacitor C for the

geometric capacitance due to the separation of the electrodes[33]. This is known

as the resistively and capacitively shunted junction (RCSJ) model shown in Figure

2.1a, and the constant current bias IV characteristic is given by the solutions to

the differential equation
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2.2 Superconducting Circuit Elements and Devices

I � Ic sinϕ� C
Φ0

2π
:ϕ� Φ0

2πR
9ϕ. (2.14)

Here the bias current I is equated to the sum of currents through the ideal junc-

tion, shunting resistance and capacitance. This equation can be seen through the

lens of Lagrangian Mechanics, with kinetic energy Kp 9ϕq � CV 2

2
� C 9ϕ2

2
and poten-

tial energy Upϕq � �EJ cosϕ � IΦ0

2π
ϕ. The potential can be visualised in Figures

2.1b and 2.1c, and is known as the tilted washboard potential. Below the critical

current in Figure 2.1b, the phase oscillates about a local minimum to give zero

average voltage. On the other hand in Figure 2.1c, the bias is above the critical

current, the phase is in the running state, as it rolls down the potential, leading

to finite voltage. Rearranging (2.14), we have

i � I

Ic
� sinϕ� 1

ω2
p

:ϕ� 1

ωc

9ϕ,

� sinϕ� βc
ω2
c

:ϕ� 1

ωc

9ϕ,

(2.15)

where ωp �
b

2πIc
CΦ0

is the plasma frequency, the frequency at which the phase

oscillates about the minimum, ωc � 2πIcR
Φ0

is the characteristic Josephson frequency

with V � IcR and βc � pωc

ωp
q2 � 2πIcR2C

Φ0
is the Stewart-McCumber parameter.

When βc   1, the junction is said to be overdamped and the phase is quickly

trapped in the potential minimum when the bias current is reduced below Ic. This

results in a non-hysteretic IV characteristic as shown in Figure 2.1d for βc � 0.656

with Ic � 10 µA, R � 6 Ω and C � 0.6 pF . In the underdamped case βc ¥ 1,

the phase continues rolling down the potential, even when the bias current is less

than the critical current. The results is a hysteretic IV curve, as shown by the

normalized current-voltage characteristics for βc � 2, 20, 200 in Figure 2.1e. The

arrows indicate the direction in which the current is changed. For βc � 2, the

return current enters the zero voltage state at a lower current than the critical

current. A hysteresis loop occurs, with the size of the loop increasing with βc.
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2.2 Superconducting Circuit Elements and Devices

(a) (b) (c)

(d) (e)

Figure 2.1: (a) Circuit of the RCSJ model of the Josephson junction, the circuit

element represented by a cross is an ideal Josephson junction. (b) Low current bias

regime I   Ic leads to an oscillating phase about a fixed point. (c) Exceeding the

critical current I ¡ Ic leads to the running state. The change of phase over time

leads to a voltage. (d) Four-quadrant non-hysteretic current-voltage characteristic

in normalized units for a JJ with βc � 0.656. (e) First quadrant of hysteretic

current-voltage characteristics in normalized units of a JJ with βc � 2, 20, 200.

Figures adapated from [27].
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2.2 Superconducting Circuit Elements and Devices

2.2.2 DC and RF Superconducting Quantum Interference

Devices (SQUIDs)

DC SQUID

When a JJ is part of a superconducting loop, the phase drop across the junction

modifies the flux quantization condition (2.7) to give a relation between the to-

tal flux in the loop and phase difference across the junctions. Figure 2.2 shows

a device called the DC SQUID, consisting of two JJs in a superconducting loop,

operating based on this principle.

Figure 2.2: Device structure of a DC SQUID. The regions in grey are supercon-

ducting wires, while the black rectangles labelled J1 and J2 are tunnel junctions.

An external magnetic field B gives rise to flux Φext through the loop. The dashed

line shows the integration contour. Figure is from reference [27].
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2.2 Superconducting Circuit Elements and Devices

The device is operated by applying an external magnetic field B, which gives

rise to flux Φext through the loop. Taking the phase drops into account when

performing the integration (2.6) around the loop and across the junction yields a

relation between the winding number of the wavefunction around the loop, n, the

phase drop across the two junctions, ϕ1 and ϕ2 and the total flux of through the

loop Φ, given by[27]

2πn � 2π

Φ0

�
Φext � Λp

» 1

2

j⃗s � d⃗l �
» 21

11
j⃗s � d⃗lq

�
� ϕ1 � ϕ2,

� 2πΦ

Φ0

� ϕ1 � ϕ2,

(2.16)

where Φ � LkI �Φext is the total flux through the loop. The DC SQUID behaves

as an effective JJ, with a flux-tuneable critical current Ic,eff pΦextq. In general,

the value of this effective critical current can only be determined by solving the

current-phase relation (2.9) for each junction and (2.16) numerically, but a simple

expression exists for the case when Lk is negligible and when the two junctions are

identical. In this case, the current through the two arms of the loop is

I � Icpsinϕ1 � sinϕ2q,

� 2Ic cospπΦext

Φ0

q sinpϕ1 � ϕ2

2
q,

(2.17)

and the effective critical current of the DC SQUID is Ic,eff � 2Ic| cospπΦext

Φ0
q|, which

can be tuned to zero. The effect of asymmetry in the junctions leads to decrease

in the modulation depth of Ic,eff [27].

RF SQUID

A variant using only a single JJ in the loop is called the RF SQUID as shown in

Figure 2.3.
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2.2 Superconducting Circuit Elements and Devices

Figure 2.3: Circuit diagram of an RF SQUID.

The flux quantization condition for this device can be obtained by setting one

of the phases in (2.16) to be zero. Considering the classical potential for the RF

SQUID, we find

Upϕq � EL

�
ϕ2

2
� βL cos pϕ� ϕextq

�
, (2.18)

with ϕext � 2πΦext

Φ0
, EL � Φ2

0

4π2L
, and βL � 2πLIc

Φ0
is known as the screening parame-

ter. The classical solution of the phase is found by minimizing the potential,

dU

dϕ
� EL rϕ� βL sin pϕ� ϕextqs � 0. (2.19)

When βL   1, the potential has a global minimum and (2.19) gives only one solu-

tion. The result is a screening current that is periodic in external flux, following

an oscillatory behaviour as shown in Figure 2.4.
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2.2 Superconducting Circuit Elements and Devices

(a) (b)

Figure 2.4: (a) Classical RF SQUID potential for fz � �0.75 and fz � �0.25. The
position of the minimum is given by the equation (2.19). (b) Self-flux curve for an

RF SQUID from solving (2.19). βL � 0.9 and EL � 155 GHz in these plots.

In the opposite case when βL ¡ 1, there will in general be multiple minima in

the potential, with it taking at low energies the form of a double-well potential

when fz � ϕext

2π
� 1

2
. This situation is illustrated for βL � 1.3 in Figure 2.5 for

fz � 0.5, fz � 0.5� δf and fz � 0.5� δf with δf � 0.005. Classically, the phase

ϕ is localised at the minimum of the well, so Figures 2.5b and 2.5c corresponds

to screening currents �Ic sinϕ flowing clockwise and anticlockwise in the loop.

These two states underlie the operating principle of a flux qubit, playing the role

of computational states, as discussed later. When treating the problem quantum

mechanically, at the degeneracy point fz � 0.5 where the minimum is degenerate

as depicted in Figure 2.5a, the energy levels become split by an amount ∆ due

quantum tunnelling across the potential barrier separating the two wells. The en-

ergy eigenstates in this case become symmetric and antisymmetric superpositions

of the two circulating current states. Biasing away from this point lifts the degen-

eracy and introduces energy asymmetry ϵ between the two states and favours one

current direction.
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2.2 Superconducting Circuit Elements and Devices

(a) fz � 0.5 (b) fz � 0.505 (c) fz � 0.495

Figure 2.5: Classical potential of the RF SQUID in the double well regime for

βL � 1.3, EL � 458 GHz.
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2.2 Superconducting Circuit Elements and Devices

2.2.3 Quantum Circuits

The discussion in the previous section treated ϕ as a continuous variable which is

valid in the case of large area junctions where EJ " EC when the phase is a good

quantum number. Even in this case, the quantum mechanical nature of the phase

can be exhibited, as shown in experiments demonstrating the quantum tunnelling

of the phase through the JJ washboard potential[34], energy quantisation[35] and

even coherent manipulation of quantum states in current-biased JJs[36]. With

increased sophistication in device fabrication techniques and experimental instru-

mentation, it has become necessary and practical to consider circuits for which

the number of Cooper pairs and the superconducting phase become quantum ob-

servables[37][38][39], obeying the commutation relation rϕ̂, n̂s � i. The quantum-

mechanical treatment of superconducting circuits is used extensively in the design

and operation of qubit circuits. The approach used is reminiscent of traditional,

classical analysis of lumped-element electrical circuits, where the voltage and cur-

rents are specified across the element terminals but in the case of quantum circuits,

the degrees of freedom in the circuit are represented by quantum operators, rather

than classical variables. As in the standard method of canonical quantization, the

classical Hamiltonian is first obtained, and the dynamical variables are then pro-

moted to canonically conjugate quantum observables[39][40]. We first illustrate

this by considering a quantum LC resonator and then discuss some important

quantum circuits relevant to the rest of the thesis.

While in classical circuit analysis the constitutive relations of the inductor and

capacitor, VL � LdIL
dt

and IC � C dVC

dt
are used, in quantum circuit analysis the time

integral of voltages and currents are more commonly used, so that the relations

become ΦL � LIL and , QC � CVC , where ΦLptq �
³t
�8 VLpt1qdt1 is the magnetic

flux in the inductor and QCptq �
³t
�8 ICpt1qdt1 is the charge on the positive termi-

nal of the capacitor. By Kirchoff’s laws at the common node, I � �IL � IC and

V � VC � VL. The energy of the LC resonator E � 1
2
LI2� 1

2
CV 2 may be expressed

in terms of the branch charge Q � ³t
�8 Ipt1qdt1 and node flux Φ � ³t

�8 V pt1qdt to
obtain the classical Hamiltonian
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2.2 Superconducting Circuit Elements and Devices

H � Φ2

2L
� Q2

2C
, (2.20)

where (Φ,Q) are the canonical position and momenta which obey Hamilton’s equa-

tions BH
BQ � 9Φ and BH

BΦ � � 9Q. In canonical quantization, the variables (Φ,Q) are

mapped to quantum mechanical operators (Φ̂,Q̂) which obey the canonical com-

mutation relations rΦ̂, Q̂s � iℏ and the quantum Hamiltonian for the LC circuit is

Ĥ � Φ̂2

2L
� Q̂2

2C
, (2.21)

which can be diagonalized in the occupation number basis, the eigenvectors of the

operator n̂ � â:â, by introducing the lowering operator â � 1?
2ℏZ pΦ̂� iZQ̂q, with

Z �
b

L
C
. One can show that

Ĥ � ℏωpâ:â� 1

2
q, (2.22)

where ω �
b

1
LC

is the resonant frequency of the oscillator and the extra ℏω
2

term

in the Hamiltonian is the zero-point energy of the oscillator.

Cooper Pair Box

The Cooper pair box (CPB)[41][42][43][44] consists of charges that are coherently

coupled from a superconducting island to a reservoir through a JJ. A gate voltage

Vg can be applied to change the electrostatic potential on the island as shown in

Figure 2.6a.
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(a) (b)

Figure 2.6: (a) Circuit diagram for a Cooper Pair Box (CPB). (b) Energy spectrum

normalized to EC for a CPB with Cg � 1 fF , Ic � 10 nA, CJ � 1.3 fF and
EC

EJ
� 29.

The electrostatic energy of an island with n Cooper pairs on the island is

E � 4ECpn � ngq2, where ng � CgVg

e
is the normalised gate charge and EC � e2

2CΣ

is the energy of a single charge held across total capacitance CΣ � Cg � CJ , in-

cluding the junction capacitance CJ . Thus, associated with this charging energy

is a term in the CPB Hamiltonian[45][46]

ĤC � 4ECpn̂� ngq2

� 4EC

¸
n

pn� ngq2 |ny xn| , (2.23)

where n is the number of Cooper pairs that has tunnelled onto the island and

n̂ � °
n

n |ny xn| is the corresponding number operator. In addition to this, coher-

ent tunnelling of Cooper pairs across the JJ contributes the Josephson coupling

term in the Hamiltonian[47],
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ĤJ � �EJ

2

¸
n

�
|ny xn� 1| � |n� 1y xn|

�
, (2.24)

so that, the circuit is described by

ĤCPB � 4EC

¸
n

pn� ngq2 |ny xn| � EJ

2

¸
n

�
|ny xn� 1| � |n� 1y xn|

�
(2.25)

Without the EJ term, the spectrum consists of parabolas which cross at ng � 1
2
.

Under the presence of weak Josephson coupling EC " EJ , the degeneracy is lifted

by 2EJ . The spectrum for EC

EJ
� 29 is calculated and plotted in Figure 2.6b.

While so far we have described the circuit in terms of the charge basis, the

analysis could have been carried out in the phase basis. Phase states are |ϕy �°
n

einϕ |ny, and one can verify that

ĤJ |ϕy � �EJ cosϕ |ϕy , (2.26)

and neglecting the electrostatic component, the current operator associated with

ĤJ is[48]

ÎJ |ϕy � 2e
dn̂

dt
|ϕy � 2e

iℏ
rn̂, ĤJ s |ϕy

� �i e
ℏ
EJ

¸
n

�
|ny xn� 1| � |n� 1y xn|

�
|ϕy

� Ic sinϕ |ϕy

(2.27)

where we recover the first Josephson junction with critical current Ic � 2e
ℏ EJ .
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Flux Qubit

The flux qubit[49][50][51][52][53] is a superconducting loop interrupted by JJs. The

simplest version is illustrated in Figure 2.7, which is a RF SQUID with a loop of

inductance L, a single JJ of critical current Ic and junction capacitance CJ .

(a) (b)

Figure 2.7: (a) Circuit diagram for a RF SQUID flux qubit. (b) Low energy

spectrum for a flux qubit with L � 0.3 nH, Ic � 1.2 µA and CJ � 24 fF .

The loop is associated with energy EL � pΦ�Φextq2
2L

, where Φ is the total mag-

netic flux through the loop and Φext is an applied external magnetic flux. By flux

quantization in a RF SQUID loop (2.16) the Hamiltonian of the flux qubit becomes

Ĥ � ĤC � ĤL � ĤJ

� Q̂2

2CJ

� Φ̂2

2L
� EJ cos p2πpΦ̂� Φextq

Φ0

q,
(2.28)

which may be seen to be equivalent to (2.21) apart from the last term. Using the

same definitions as the quantum LC oscillator, we obtain the energy spectrum by

representing and diagonalizing the Hamiltonian in the harmonic oscillator basis[54]

Ĥ � ℏωpa:a� 1

2
q � EJ

2

�
exp

�
i
2π

Φ0

c
ℏZ
2
pa� a:q

�
e
i
2πΦext

Φ0 � h.c.

�
, (2.29)
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2.2 Superconducting Circuit Elements and Devices

where h.c. is the hermitian conjugate of the first term in the parenthesis. The two

lowest energy eigenvalues are plotted for a flux qubit around the degeneracy point

in Figure 2.7b. If we retain only the two lowest energy eigenstates, the system

may be described by a two-level system,

Ĥ � 1

2
pϵσ̂z �∆σ̂xq, (2.30)

where the σ̂x and σ̂z are the X and Z Pauli matrices defined in the computational

basis {|Òy , |Óy}[39][55]. Historically, this two-level Hamiltonian describes a spin-1
2

particle under the influence of magnetic fields, where ϵ is the longitudinal field

that corresponds to the energy difference between the two spin states, and ∆ is

the transverse field which can be driven to induce spin-flips.

For a flux qubit, the computational basis states subject to preparation, ma-

nipulation and readout correspond to states of circulating currents. Thus, the

computational basis states for the RF SQUID qubit are defined in terms of the

current operator Î � Φ̂
L

and are made up of linear combinations of the energy

eigenstates, given by relation[54]

Îp |Òy � �Ip |Òy ,
Îp |Óy � �Ip |Óy ,

(2.31)

where Îp � P̂0ÎP̂0 is the current operator projected onto the low energy subspace

with projector P̂0 � |E0y xE0| � |E1y xE1|. It is also of note that the charge op-

erator Q̂ � �i
b

ℏ
2Z
pa � a:q is off-diagonal and imaginary in the computational

basis, since xm|â|ny � ?
nδm,n�1, where |ny are eigenvectors of a:a. Expanding

the charge operator matrix element in this basis,

xEi| Q̂ |Ejy �
¸
m,n

xEi|my xm| Q̂ |ny xn|Ejy ,

� �i
c

ℏ
2Z

¸
n

?
n
�
xEi|n� 1y xn|Ejy � xEi|ny xn� 1|Ejy

	
,

(2.32)
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2.2 Superconducting Circuit Elements and Devices

shows that the diagonal elements xEi|Q̂|Eiy are equal to zero, while off-diagonal

elements are in general nonzero, but imaginary. Hence, in the low energy subspace,

Q̂p � P̂0Q̂P̂0 9 σ̂y, which is a useful relation when considering capacitive coupling.
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2.3 Quantum Phase-Slip Nanowires

As the transverse dimensions of a superconducting wire approach the Ginzburg-

Landau coherence length ξGL, the wire loses its superconducting character. These

types of wires exhibit finite resistance below Tc, attributed to fluctuations in the

order parameter[56][57]. The finite voltage is generated by suppressing the magni-

tude of the order parameter at some point along the wire to zero, so that the phase

is allowed to change by �2π. Under constant current, by (2.10), these phase-slip

events occur at an average frequency 2eV̄
h
[33].

Phase slips may occur due to thermal or quantum effects. Thermally acti-

vated phase slips (TAPS) were the first to be modelled by Langer-Ambegaokar-

McCumber-Halperin (LAMH) theory[58][59] which fitted well with residual resis-

tance measurements of tin whisker crystals just below Tc[60][61]. As the temper-

ature is decreased far below Tc, experiments with thin In[62] and PbIn[63] wires

revealed a crossover point where the resistance of the wires diverges from the

LAMH prediction. As TAPS drops quickly with temperature, this resistive tail is

attributed to quantum phase slips (QPS), where the phase change is due to quan-

tum tunnelling through the free energy barrier. Later measurements of nanowires

showed that QPS can be so strong that the wire becomes insulating[64][65][66].

The tunnelling effect is analogous to the situation found in current-biased JJ

discussed earlier, where quantum tunnelling of the phase can occur between ad-

jacent minima of the tilted-washboard potential. This mechanism underlies the

experimental observations of quantum phase slips in JJ arrays[67][68][69]. Figure

2.8 shows QPS in the two cases. (a) illustrates two successive potential wells of the

JJ washboard potential, while in (b) δEps is the LAMH energy barrier, with UC

the condensation energy density, Acs the cross-sectional area of the wire and ξ the

length. In both cases, phase slips can be activated across the barrier thermally, or

may quantum tunnel through it.
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2.3 Quantum Phase-Slip Nanowires

Figure 2.8: Thermal activation and macroscopic quantum tunnelling of the phase

through a barrier for (a) Current-biased JJ. (b) Nanowire. Figures from [57].

These discoveries led to the proposal of the quantum phase-slip flux qubit[70].

Unlike a loop interrupted by a junction, the QPS flux qubit is a loop containing

a nanowire, which, unlike a loop interrupted by a junction, can only change its

phase by �2π. From the phase-flux relation given by flux quantization (2.7), this

corresponds to changing of flux in the loop by �Φ0. The Hamiltonian describing

the circuit is

ĤQPS � EL

¸
n

pn� fq2 |ny xn| � ES

2

¸
n

�
|ny xn� 1| � |n� 1y xn|

�
, (2.33)

where f � Φext

Φ0
is the magnetic flux applied to the loop, EL � Φ2

0

2L
is the inductive

energy of a flux quantum, n is the fluxoid number in the loop. Here

ES � a
l

ξ
kBTc

Rq

Rξ

expp�bRq

Rξ

q, (2.34)

is the quantum phase slip energy[71], with ξ the coherence length, l the length

of wire and a and b constants of order one. Rq � h
4e2

is the resistance quantum

and Rξ � Rn
ξ
l
is the normal resistance Rn of the wire over one coherence length.

From this we see that QPS nanowires are fabricated from disordered supercon-

ducting thin films, that is, those for which Rξ is large. Qubits based on QPS have

subsequently been demonstrated experimentally through microwave spectroscopy
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2.3 Quantum Phase-Slip Nanowires

of InOx[72] and NbN[73]-based loops. Figure 2.9 shows the result of microwave

spectroscopy of an InOx QPS flux qubit, which demonstrates the avoided crossing

near half flux due to coupling between adjacent flux states.

(a)
(b)

Figure 2.9: (a) The energy spectrum of the QPS flux qubit. (b) Two-tone spec-

troscopy data with the expected energy splitting at Φext

Φ0
� 0.5 due to quantum

phase slips induced by the nanowire. Figures from [72].

The behaviour is dual to the CPB, where instead of the number of Cooper

pairs, n labels the fluxoid number in the loop. Comparisons like this inspired

the treatment of the QPS nanowire[74] as a superconducting circuit element dual

to the JJ, with many JJ circuits having nanowire-based counterparts. The QPS

junction has insulating behaviour up to a critical voltage, leading to a constitutive

relation analogous to the first Josephson equation[74][57],

V � Vc sin p2πqq, (2.35)

where q � Q
2e

is the normalised charge difference across the nanowire and Vc � 2πEs

2e

is the critical voltage. Analogous to the Josephson inductance, a QPS nanowire

has capacitance

CNW � e

πVc cos 2πq
, (2.36)
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that is periodic in q.

Transport measurements have also demonstrated the duality, with IV curves[75][76][77]

and constant current steps under microwave irradiation[78]. The dual to the

SQUID has also been demonstrated in the QPS transistor[79][80] and QPS flux

qubits for voltage-controllable phase-slip amplitudes[81]. Figure 2.10 shows a

QPS transistor where the diamond-shaped element label is the symbol for a QPS

nanowire. Figure 2.10b shows the dual Josephson relation, with the inset demon-

strating gate-voltage tuneability for different bias voltages across the device.

(a) (b)

Figure 2.10: (a) Device structure of the QPS transistor adapted from [79] showing

the gate and bias voltage arrangement. The diamond-shaped element labelled

NW1,2 is the symbol for a QPS nanowire. (b) IV characteristics from [79]. Inset

shows gate voltage dependence for different bias voltages Vb.
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2.3 Quantum Phase-Slip Nanowires

2.3.1 Chapter Summary

To summarize, in this chapter we have introduced the theory necessary to un-

derstand circuit elements used to build superconducting and quantum circuits.

First, we described the London equations, an early phenomenological model which

sought to explain the vanishing electrical resistance and the expulsion of magnetic

fields within the body of a superconductor. We also briefly highlighted the micro-

scopic theory which governs superconductivity, BCS theory, which posits that the

superconducting state is a quantum-mechanical ground state, consisting of paired

electrons called Cooper pairs. This state is a condensate, meaning a large number

of Cooper pairs are described by a single wavefunction throughout a superconduc-

tor. This is corroborated by the observations of macroscopic quantum phenomena,

such as flux quantization in a superconducting loop.

We then discussed the superconducting tunnel barrier—the Josephson junction

(JJ), in the classical regime, where the phase difference across the superconduct-

ing barrier was treated as a classical variable. Properties associated with classical

junctions are the DC- and AC- Josephson effects, Shapiro steps and the nonlinear

Josephson inductance. The RCSJ model governing practical junctions was also

discussed. From the constitutive relations, we explained the behaviours of two

types of superconducting quantum interference devices (SQUIDs). Next, we saw

that a complete quantum treatment was needed to explain the energy spectra of

two quantum circuits, the Cooper Pair Box (CPB) and flux qubit.

Last but not least, we introduced the superconducting nanowire, which shows

increased resistance below the critical temperature. The appearance of a finite

voltage is due to phase slips events, changes in the phase somewhere along the

wire by �2π, which can occur by thermal activation or quantum tunnelling. Far

below Tc when quantum phase-slips (QPS) proliferate, the behaviour is dual to the

tunnelling of Cooper pairs in JJs, with an ideal insulating behaviour. We further

demonstrated this duality with the QPS flux qubit, which behaves like a CPB and

the QPS transistor, dual to the SQUID.
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2.3 Quantum Phase-Slip Nanowires

Equipped with the superconducting device theory of the circuits, in the next

chapter, we motivate the work presented in this thesis. We start with motivating

the first part of the thesis, which concerns the implementation of YY interactions

between two flux qubits. This is in the context of quantum annealing, which

we will give an overview of, and provide a review of the qubit coupling methods

currently available in commercial annealers. As we shall see, the nonlinear capaci-

tance of the JJ in the charging regime is a good candidate for a coupler providing

the interactions desired. Next, we give a background review of the next part of the

thesis, which is an experimental study for a new prototype of a QPS-based para-

metric amplifier, utilizing the nonlinear capacitance of the QPS nanowire. Some

basic theory of parametric amplification is introduced and we give a short survey

of superconducting parametric amplifiers.
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Chapter 3

Motivation and Review

Having introduced the constitutive relations for Josephson junctions and quan-

tum phase slip nanowires and some superconducting and quantum circuits, here

we motivate the work discussed in the rest of the thesis. First, we consider the

application of the JJ in the Ec Á EJ regime, in the context of quantum annealing

(QA). We will describe QA and its physical realisation in superconducting elec-

tronics and discuss the current state of the art in annealing hardware. We then

provide background for using JJs in the charging regime as novel tuneable cou-

pling elements in a quantum annealer. Next, we motivate the experimental study

of the QPS nanowire parametric amplifier (paramp). We’ll present the principles

of parametric amplification and discuss different modes of operation in paramps

that have been explored in the literature.

3.1 YY coupler for Quantum Annealing

3.1.1 Quantum Annealing

One exciting application of superconducting quantum devices arises from exploit-

ing the manipulation of quantum states as methods of computing and information

processing. Quantum annealing (QA) is a proposed protocol for solving optimiza-

tion problems. The idea was first conceived as a variation of classical simulated
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3.1 YY coupler for Quantum Annealing

annealing, utilizing quantum fluctuations in place of thermal fluctuations in search

for the global minima[82][83]. QA is based on the Ising Model, which is a physical

model of ferromagnetism involving interactions between magnetic dipoles. In such

systems, finding the configuration of spins which minimizes the total energy is

difficult. In fact, it has been shown that there exists polynomial-time mappings

from the Ising model to NP-complete problems[84]. The implementation of QA

is thus highly desirable as a test-bed for encoding and potentially solving these

computationally difficult problems.

In QA, one has in mind a problem which can be encoded as a Hamiltonian,

which can be represented in our quantum annealer where the solution is encoded

in the ground state of the Hamiltonian. In an optimization problem, the goal is

to find the arguments of a given function which leads to the minimum of that

function. In QA, the Hamiltonian of the system plays the role of the function,

and states play the role of the arguments. The protocol relies on the adiabatic

theorem in quantum mechanics, which asserts that when a quantum mechanical

system is in its ground state, a varying Hamiltonian will lead the state to evolve

so that it remains in the ground state provided the variation is slow enough. With

a quantum annealer, the idea is to initialize the system in a trivial Hamiltonian,

with a known ground state which can be prepared a priori, and with the controls

on the annealer, change this Hamiltonian so that it reaches the problem Hamil-

tonian which encodes the problem of interest. This is operated so that the final

state remains in the ground state, and the solution is found by reading out this

state.

Commercial quantum annealers, for instance the processors manufactured by

D-Wave, are made up of a network of superconducting flux qubits. The interac-

tion between the qubits are mediated by couplers which can be sign and magnitude

tuneable. The Hamiltonian implemented is the Transverse-field Ising Model

31



3.1 YY coupler for Quantum Annealing

Hpsq � Hipsq �Hppsq � Apsq
�¸

i

σi
x

�
loooooomoooooon

Hipsq

�Bpsq
�¸

i

hiσ
i
z �

¸
i j

Ji,jσ
i
zσ

j
z

�
looooooooooooooooomooooooooooooooooon

Hppsq

, (3.1)

where s � t
tf

is a dimensionless time parameter for a total annealing time tf , and

Hi and Hp are the initial and problem Hamiltonians respectively. At t � 0, the an-

nealer is configured to give Ap0q " Bp0q which initializes the system in the trivial

ground state, where every qubit is in the superposition state |�y � 1?
2
p|Òy � |Óyq.

The Hamiltonian is then varied continuously throughout the annealing process,

until in the end Ap1q ! Bp1q and the annealer is in the ground state of the prob-

lem Hamiltonian, provided the evolution is adiabatic.

3.1.2 Hamiltonian Engineering

As the two computational basis states are the persistent current states with circu-

lating currents Ip1 and Ip2, the ZZ coupling is determined by a mutual inductance

M which gives rise to interaction energy J � MIp1Ip2. In order to implement a

tuneable mutual inductance as needed for QA, the interaction is mediated through

an additional loop containing one or more JJs. One such implementation[85] by

Harris et al. is shown in Figure 3.1. The circuit consists of three compound junc-

tion RF SQUIDs, where the single JJ of a simple RF SQUID has been replaced by

a DC SQUID, allowing in-situ tuning of the Josephson energy. Two of these RF

SQUIDs are operated in the double-well regime as flux qubits, and they are both

coupled together inductively indirectly via the third SQUID, which is designed to

be in the monostable regime with screening parameter βL   1.

When the qubits are coupled to the coupler loop of inductance L, through fixed

mutual inductancesM , the result is an effective mutual inductance M̃ � M2

L
. With

inclusion of a JJ, as in the case of the RF SQUID coupler[86] [87][88], the effective

mutual inductance is altered to M̃ � M2χ where χ � dIcp
dΦc

ext
is the susceptibility
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3.1 YY coupler for Quantum Annealing

of the coupler, which determines the screening current Icp that circulates in the

coupler loop when flux Φc
ext is applied to it.

(a)

Figure 3.1: (a) Tuneable inductive coupling of two flux qubits from [85]. The cou-

pler is an rf SQUID operated in the monostable regime with screening parameter

βL   1.

While this approach has been fruitful in the study of Ising spin glasses, demon-

strating quantum dynamics following the evolution of the Schrodinger equation,

there remains scope for the capability of annealers to be expanded, particular since

the computation represented by (3.1) is known to not be universal. This limita-

tion can be overcome by the inclusion of different coupling terms, such as terms

involving σi
xσ

j
x and σi

yσ
j
y, which would allow an annealer to simulate arbitrary

Hamiltonians[89]. The introduction of these terms also makes the Hamiltonian

nonstoquastic, which causes particular difficulty for classical solvers[90], an area

where quantum annealers may be able to prove a computational advantage[91][92].

To engineer the new interaction terms, a natural candidate comes from coupling

the charge degrees of freedom between flux qubits since Q̂ 9 σy. YY interactions

have been implemented in [93], where it was demonstrated on flux qubits coupled

with a capacitor. Although this makes the Hamiltonian nonstoquastic, a tune-
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3.1 YY coupler for Quantum Annealing

able implementation is needed to make the term programmable. Such a tuneable

differential capacitance was considered by Averin and Bruder for coupling charge

qubits[94], based on a small JJ in parallel with the qubits. The JJ is in the regime

EC Á EJ , similar to a Cooper Pair Box (CPB), but with a much higher excitation

energy so that it remains in the ground state and the coupler excited states do not

mix with the qubit computational subspace. Just like a CPB, a gate voltage can

be applied to it which periodically modulates the ground state energy, leading to

an effective capacitance Ceff � dQ
dV

[95].

(a) (b)

Figure 3.2: (a) Tuneable inductive and fixed capacitive coupling of two flux qubits.

(b) Interaction terms in the two qubit Hamiltonian extracted from measurements.

From [93].

Although analyses of the effective capacitance of a CPB coupler have been

reported in the literature, they have predominantly treated the case of mediated

coupling between charge qubits. The situation where the coupler mediates the

coupling between flux qubits is not a priori clear. Furthermore, the relation be-

tween the circuit parameters and the qubit Hamiltonian is not an obvious one,

so one must in general resort to numerical methods. This is the subject of the

next chapter where we consider numerical simulations of capacitively coupled flux

qubits.
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3.2 QPS Nanowire Parametric Amplifier

3.2 QPS Nanowire Parametric Amplifier

Before we move on to the next chapter, we will motivate the application of the

QPS nanowire in the design for a parametric amplifier (paramp) for the second

part of this thesis. With the growth of superconducting electronics as a promising

platform for quantum information and computing, ultra-low-noise amplifiers have

become indispensable components as the first stage of amplification at the out-

put end of a measurement system. They are operated at cryogenic temperatures

(�10 mK) and at the core of such an amplifier is a non-linear superconducting

element. To this end, superconducting paramp designs have so far been based

on the nonlinearity of the inductance of a JJ[96][97] or high-kinetic inductance

films[98][99][100]. Recent progress in the duality of QPS nanowire-based circuits

with their JJ counterparts, suggest paramp designs based on the non-linear capac-

itance of the QPS nanowire. This is an attractive alternative since nanowires have

a simpler, single-layer fabrication process compared to JJs, which requires precise

engineering of the oxide barrier. The high impedance of nanowire-based devices

could also prove complimentary to JJ-based electronics, opening the possibility of

using both types of paramp together depending on application, or even allowing

hybrid designs containing both JJs and nanowires to be realised.

3.2.1 Parametric Amplification

The classic example of this parametric amplification is a child on a swing. By

changing the position of their legs at specific points of the motion, the child mod-

ulates the natural frequency of the swing. By doing so at a specific frequency,

the oscillations are amplified. The same principle applies in electronics, where a

parametric amplifier consists of a resonance circuit which achieves gain by either

varying the inductance or capacitance.

Here we may make the distinction between two general types of superconduct-

ing parametric amplifiers found in the literature. The first type is a parametric
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3.2 QPS Nanowire Parametric Amplifier

oscillator where the nonlinear element is modulated directly, through a separate

control line. The amplitude of a signal obeys

:x� 2γ 9x� ω2ptqx � F cosωst, (3.2)

where ωptq is a time-dependent natural frequency of the oscillator controlled by the

pump tone of frequency ωp, and for small perturbations ω2ptq � ω2
0p1�A sinωptq.

The solutions to this equation exhibit gain for the signal, with maximum gain

occuring when ωp � 2ωs[101]. Furthermore, the system also generates sum and

difference frequencies ω�i � ωp�ωs. The difference frequency is called the idler and

is also amplified in this process when it falls within the resonance linewidth[102].

The mixing process in this mode of operation is known as three-wave mixing

(3WM), as depicted in Figure 3.3a.

(a) (b)

Figure 3.3: Figures show the frequency relationships in (a) three- and (b) four-

wave mixing processes. The signal is depicted in black, the pump in blue and idler

in red.

The second type of paramp uses the intrinsic nonlinearity of an element in

the resonator to generate amplification. These devices do not use dedicated lines

which independently drive the nonlinear element, but instead operate by pumping
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3.2 QPS Nanowire Parametric Amplifier

the nonlinear resonator near its resonance frequency. Nonlinear driven oscillators

of this kind are described by the Duffing Equation

:x� 2γ 9x� ω2
0x� βx3 � F cosωt, (3.3)

where β is a parameter which determines the degree of nonlinearity. Approxi-

mate solutions to the differential equations may be found iteratively[103] about

the harmonic solution x0 � A cos pωt� ϕq by successive integration to obtain a

series containing harmonics of ω. It may be shown the amplitude and phase of the

fundamental is related to the driving amplitude by the relation[104]

F 2 �
�
pω2

0 � ω2qA� 3

4
βA3


2

� p2γωAq2,

tanϕ � 2γωA

pω2
0 � ω2qA� 3

4
βA3

,

(3.4)

The amplitude can be solved as a polynomial in either ω or A to obtain the fre-

quency response of the oscillator being driven at ω0. The solution to equation 3.4

is plotted in Figure 3.4. As the drive amplitude increases, the minimum of ampli-

tude response starts leaning towards the left until eventually at a critical point,

Fc �
b

256γ3

9
?
3

ω3
0

|β| [104], the oscillation amplitude becomes multivalued.

Furthermore, under the application of two tones, (a pump xp, and a signal xs,

which is of much smaller amplitude) and expanding (3.3) to first order in xs, one

can show that the signal obeys

:xs � 2γ 9xs � ω2
1pA, tqxs � Fs cosωst, (3.5)

where ω2
1pAp, tq � ω2

0

�
1� A2

p

4

	�
1�

A2
p
4

1�A2
p
4

cos p2ωpt� 2ϕq
�
, where ωp is the fre-

quency of the pump. This can be recognized as the equation for a parametric

oscillator with ω2ptq � ω2
0p1 � f0 sin p2ωptqq. In this case, the amplification oc-

curs when ωp � ωs and harmonics are generated at sum and difference frequencies
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Figure 3.4: The amplitudeA and phase ϕ of the driven nonlinear oscillator response

with normalized parameters β
ω2
0
� �0.005, γ

ω0
� 0.005 for equally spaced drive

amplitude F from 0.25Fc to 2Fc.

ω� � 2ωp � ωs which is known as degenerate four-wave mixing (4WM), as shown

in Figure 3.3b.

Devices using both modes of operation can be found in the literature and in

practice, sometimes with both capabilities on the same device, though 3WM-type

devices are typically more complex due to needing specific biasing arrangements.

SQUID-based Josephson Parametric Amplifier (JPA)[96][105] are devices which

can be operated in both modes, with a simple design, consisting of a resonator

and a SQUID loop. In the 3WM mode, the DC SQUID provides the nonlinear

inductance tuneable by flux. The circuit diagram of this device is shown in Figure

3.5, where a separate pump line is used to bias and modulate the SQUID induc-

tance.

JPAs have seen widespread applications due to their quantum-limited noise

performance[106] at over 20 dB gain, with many later designs improving the am-

plifier’s performance in bandwidth and saturation power. These strategies include
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(a) (b)

Figure 3.5: (a) Flux-driven Josephson Parametric Amplifier (JPA) consisting of a

DC SQUID at the end of a resonator. A separate pump line is used to modulate the

nonlinear inductance. (b) Flux response of the resonance frequency. The paramp

is operated by choosing a fixed bias Φdc and applying pump at twice the natural

frequency of the resonator f0dc. From [105].

using SQUID arrays to make the center frequency tuneable[107] and transforming

the JPA input impedance[108]. A recent approach[109] using a combination of

these techniques demonstrated promising results towards multiplexed readout of

quantum processors. Quantum-limited amplification is needed for dispersive read-

out of superconducting qubits due to the low microwave probe powers required

to mitigate transitions out of the qubit’s two-level subspace[110]. The JPA has

excellent gain and noise performance, and with its simplicity in fabrication, it is

an attractive choice for such an application. On the other hand, JPAs typically

suffer from having low saturation powers, at around the -100 dBm level[111] and

narrow bandwidths on the order of 100 MHz.

A popular JJ-based distributed amplifier is the Josephson travelling wave para-

metric amplifier (JTWPAs)[112][113] [114]. It offers wideband amplification over

several GHz, but at the cost of increased noise. JTWPAs contain thousands of

JJs in a series array and requires periodic phase matching elements[115][116] to

achieve optimal gain. The complexity of the circuit also makes the design and

fabrication challenging.
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While the developments in JJ-based devices have had the benefit of the matu-

rity of JJ technology, QPS-based devices have only emerged relatively recently. Be-

cause of this paramps based on the nonlinear capacitance of the QPS nanowire have

so far remained unexplored. With QPS devices exhibiting higher input impedance

and with the relative ease of fabrication, they would be a valuable new tool in the

superconducting paramp design toolbox. This is the topic of Chapter 6 in our ex-

perimental study of single-nanowire and gated two-nanowire nonlinear resonators.
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Chapter 4

Numerical Simulations of

Superconducting Quantum

Circuits

As we have mentioned in the previous chapter, an implementation of a tune-

able YY interaction could enhance the performance and extend the capabilities

of quantum annealers. We also showed in the introduction that for flux qubits,

a YY interaction term in the qubit Hamiltonian arises from the coupling of their

charge degrees of freedom. In this chapter, we focus on the study of a variable

capacitor first considered for the controlled coupling of charge qubits by Averin

and Bruder[94] applied to flux qubits. The coupler has the same device structure

as a Cooper Pair Box (CPB), that is, it has a superconducting island shunted to

ground through a Josephson junction (JJ) in the charging regime (EC ¥ EJ).

To find the circuit dependences of the qubit Hamiltonian, we use a numerical

simulation and qubit reduction method discussed by Consani and Warburton[54].

First, we illustrate the method using two flux qubits coupled by a fixed capacitor

and show that the capacitive coupling gives rise to a YY interaction term in the

qubit Hamiltonian. Next, we simulate the full circuit where the two flux qubits

are coupled by the voltage-tuneable capacitor. Using the simulated results, we
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4.1 Two Flux Qubits Coupled by a Capacitor

designed a physical chip layout and discuss experimental methods that can be

used to verify the simulations presented here.

4.1 Two Flux Qubits Coupled by a Capacitor

4.1.1 Circuit Hamiltonian

To describe the method used for numerical simulation, we begin by considering the

circuit consisting of two flux qubits coupled by a fixed capacitor shown in Figure

4.1. We derive the Hamiltonian of the circuit with the help of quantum network

theory[37][38], which describes the quantum behaviour of superconducting circuits,

analogous to nodal analysis in electrical circuits.

Figure 4.1: Two flux qubits coupled by a fixed capacitor Cc.

Here each node is assigned a node flux, given by the time integral of the voltage

Φ � ³t
0
V pt1qdt1, which plays the role of a position coordinate in classical mechan-

ics[38]. The kinetic energy term in the circuit Lagrangian is then

T � 1

2
9⃗ΦTC 9⃗Φ

� C1
9Φ2
1

2
� C2

9Φ2
2

2
� Ccp 9Φ1 � 9Φ2q2

2

(4.1)

where
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C �
�
C1 � Cc �Cc

�Cc C2 � Cc

�
(4.2)

is the capacitance matrix of the circuit. The potential energy terms are given by

UpΦ1,Φ2q �Φ1
2

2L1

� Φ2
2

2L2

� EJ1 cos p ℏ
2e
pΦ1 � Φext,1qq

� EJ2 cos p ℏ
2e
pΦ2 � Φext,2qqq. (4.3)

The conjugate variable to the node flux, the node charge can be obtained by

Q⃗ � C
9

Φ⃗, which satisfies the canonical commutation relations, rΦi, Qjs � iℏδi,j.
The Hamiltonian can then be constructed by HpQ⃗, Φ⃗q � T pΦ⃗pQ⃗qq � UpΦ⃗q, which
is, for the circuit we are considering,

H � 1

2
Q⃗TC�1Q⃗� UpΦ1,Φ2q. (4.4)

The properties of this superconducting circuit can then be obtained by solving

this Hamiltonian numerically. We may do so in the occupation number operator

basis, which represents the operators as

Q̂i � i

c
ℏ
2Zi

pâi � â:i q (4.5)

Φ̂i �
c

ℏZi

2
pâi � â:i q (4.6)
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âi �

�
�������������

0
?
1 0 0 . . . 0 0

0 0
?
2 0 . . . 0 0

0 0 0
?
3 . . . 0 0

...
...

...
...

. . .
...

...

0 0 0 0 . . .
?
n� 2 0

0 0 0 0 . . . 0
?
n� 1

0 0 0 0 . . . 0 0

�
�������������

(4.7)

where Zi �
c

C�1
i,i

L�1
i,i

is the characteristic impedance and âi is the truncated lowering

operator of the i-th harmonic oscillator mode.

4.1.2 Effective Qubit Hamiltonian

When considering superconducting circuits as being composed of qubits and cou-

pling elements, it is useful to map the full circuit Hamiltonian to a low dimensional

qubit Hamiltonian where their dynamics effectively take place. One attractive ap-

proach is using the Schrieffer-Wolff (SW) method[117][54] which involves calculat-

ing a unitary transformation which separates the high and low-energy subspaces.

This is particularly well suited in numerical simulations for calculating qubit prop-

erties as a function of circuit parameters or bias conditions.

A circuit Hamiltonian can be decomposed into an interacting and non-interacting

part, Ĥcirc � Ĥ0 � Ĥint. In the previous example,

Ĥ0 � Q̂1
2

2C 1
11

� Q̂2
2

2C 1
22

� UpΦ1,Φ2q, (4.8)

where C 1
ii � 1

pC�1qii is the reciprocal of the i-th diagonal entry in the inverse ca-

pacitance matrix. The interacting terms arise due to the off-diagonal elements

C 1
ij � 1

pC�1qij ,

44



4.1 Two Flux Qubits Coupled by a Capacitor

Ĥint � Q̂1Q̂2

C 1
12

. (4.9)

By diagonalizing Ĥ0 and Ĥint, we can construct P̂0 � °2N�1
0 |Ep0q

i y xEp0q
i |

and P̂ � °2N�1
0 |Eiy xEi| which are the projectors on the low-energy subspaces

of Ĥ0 and Ĥcirc respectively. The Schrieffer-Wolff transformation is then given

by[117][54]

Û �
b
p2P̂0 � Îqp2P̂ � Îq, (4.10)

which has the property that

Ĥq � P̂0ÛĤcircÛ
:P̂0 (4.11)

is the effective qubit Hamiltonian. For the two qubit circuits considered in this

chapter, we extract the four lowest energy levels from the full circuit Hamiltonian

using this method. The effective qubit Hamiltonian can then be represented in the

computational basis—the two persistent current states of the flux qubit—which is

a linear combination of the energy eigenbasis[54]. The general two qubit Hamilto-

nian is then

Ĥq �
¸
i,j

hijσ̂iσ̂j (4.12)

where i, j � I, x, y, z and σ̂i are the Pauli matrices. We refer to coefficients hIpi�Iq
and hpi�IqI as local terms, and hpi�Iqpi�Iq as interaction terms.
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4.1.3 Simulation Results

We perform the numerical simulation of two flux qubits coupled by a capacitor.

The flux qubits are identical and biased at half flux. The value of the coupling

capacitor is changed from -5 fF to 5 fF, and the low energy spectrum is plot-

ted in Figure 4.2. The solid coloured lines are from diagonalizing the full circuit

Hamiltonian (4.4), while the black dashed lines are the eigenvalues from the qubit

Hamiltonian, reconstructed from the Pauli coefficients shown in Figure 4.3. As

expected, in the absence of any qubit interactions, the first excited state of the

system is degenerate. As the magnitude of capacitance is increased, the energy

levels split and the splitting is determined by the coupling strength. The coupling

also has a loading effect on each qubit, manifesting as the changing X local term

in the qubit Hamiltonian as shown in Figure 4.3a. The dominant effect of the ca-

pacitive coupling is to introduce a YY interaction as we expect, with the strength

proportional to the value of the capacitance, while also introducing a much smaller

XX interaction. Figure 4.4 shows a comparison between the YY term from the

SW method and an analytical treatment using the two-level approximation from

Chapter 2. Under this approximation, the charge operator is Q̂ � | xE0| Q̂ |E1y |σ̂y,
giving hY Y � |xEp1q

0 |Q̂1|Ep1q
1 yxEp2q

0 |Q̂2|Ep2q
1 y|

Cc
, which agrees well with our numerical simu-

lation here.

Thus using this method we are able to design qubit circuits by determining the

appropriate values for the circuit components to obtain the desired qubit Hamilto-

nian. While in this case we determine the Pauli coefficients as a function of a fixed

capacitance, the method also allows us to incorporate coupling elements including

Josephson junctions with varying voltage biases. This is the subject of the next

section, where we simulate a capacitive coupler which is tuneable in-situ with a

voltage bias.
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4.1 Two Flux Qubits Coupled by a Capacitor

Figure 4.2: The energy spectrum of two flux qubits coupled by a fixed capacitor.

The value of the coupling capacitance Cc is varied in the simulation. Coloured

lines are the result of diagonalization of the full circuit Hamiltonian (4.4), while

the dashed black lines are obtained from the reduced qubit Hamiltonian. Qubit

parameters are L � 300 pH, C � 43 fF and Ic � 1.2 µA.
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(a) (b)

Figure 4.3: Pauli coefficients for the two capacitively coupled flux qubits. (a) Local

terms. (b) Interaction terms. Refer to caption of Figure 4.2 for device parameters.

By symmetry of the circuit we have hij � hji and some lines are stacked on top of

each other. We have hzI � hyI � hxz � 0 in these plots.

Figure 4.4: Plot of hY Y obtained using different methods. Blue points are from

numerical simulation using SW reduction method, while orange line is from two-

level approximation formula hY Y � |xEp1q
0 |Q̂1|Ep1q

1 yxEp2q
0 |Q̂2|Ep2q

1 y|
Cc

.

48



4.1 Two Flux Qubits Coupled by a Capacitor

4.1.4 Two Flux Qubits Coupled by the Tuneable YY Cou-

pler

In this section, we consider the tuneable capacitive coupler, first analysed by Averin

and Bruder for coupled charge qubits[94], as an implementation of a variable YY

term in the qubit Hamiltonian for two flux qubits.

Figure 4.5: Two flux qubits coupled by a voltage-tuneable capacitive coupler. The

coupler highlighted in red implements the functionality.

We simulate the circuit shown in Figure 4.5, which consists of two flux qubits

each capacitively coupled to the proposed coupling element. The voltage of the

island, on node two, can be varied through gate capacitor by an applied gate volt-

age. The Hamiltonian describing this circuit is
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H � Q1
2

2C 1
11

� pQ2 �Qgq2
2C 1

22

� Q3
2

2C 1
33

� Q1pQ2 �Qgq
C 1

12

� pQ2 �QgqQ3

C 1
23

� Q1Q3

C 1
13

� Φ1
2

2L1

� Φ3
2

2L3

� EJ1 cos p ℏ
2e
pΦ1 � Φext,1qq � EJ2 cos p ℏ

2e
pΦ2qq

� EJ3 cos p ℏ
2e
pΦ3 � Φext,3qq, (4.13)

where the subscripts on the operators label the node of the circuit, Qg � CgVg is

the gate charge, and C 1
ij � 1

pC�1qij , pC
�1qij being the i,j-th element of the inverse

capacitance matrix

C�1 �

�
���
Cq � Cc �Cc 0

�Cc Ccoup � 2Cc �Cc

0 �Cc Cq � Cc

�
��

�1

. (4.14)

The YY interaction must therefore arise from the term Q1Q3

C1
13

. But in order to

maintain proper operation, we impose several design criteria. Firstly, the coupler

is intended to remain in its ground state and its excited state does not participate

during proper operation. Thus, we require the excitation energy of the coupler

to be much higher than the qubit excitation energy. Since flux qubit excitation

energies are typically engineered in the 5 - 8 GHz range, we would want our cou-

pler excitation energy to be well above this, which we set to be at least 15 GHz.

Secondly, the flux qubits in the simulations are designed with fixed screening pa-

rameter βL � EJ

EL
� 1.3, which fixes the tunnel barrier height between the two

potential wells of the RF SQUIDs to ensure that we remain in the double-well

regime at all points in the simulation.

In normal operation, we expect the coupler to attain its maximum and mini-

mum capacitances. To see this, we show the excitation energy of the coupler as

a function of its Josephson energy, shown in Figure 4.6. In the charging regime
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4.1 Two Flux Qubits Coupled by a Capacitor

when EJ ! EC , the capacitance is given by 4e2pB2Eg

BQ2
g
q�1 [94], inversely proportional

to the ground state curvature, which is largest at zero and half gate charge. In

the cases we are considering where EJ and EC of the coupler are on the same

order however, this expression no longer holds and we must resort to numerical

simulation. Nevertheless from these considerations we expect a tradeoff between

the variability of the capacitance and the minimum gap of the coupler.

Figure 4.6: Energy spectrum of the coupler as a function of normalized gate charge.

Spectrum for different Josephson energies are plotted, equally spaced from 5 GHz

to 25 GHz with Cg � 1 fF .

Dependences on the Critical Currents of the Circuit

In the plots that follow, we consider identical qubits, and we fix the shunting ca-

pacitance of the qubits to be 1 fF , flux biases at half-flux, critical current density
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4.1 Two Flux Qubits Coupled by a Capacitor

at 1.7 µAµm�2 and a coupling capacitance with a value of 1 fF . These values

were chosen so that the qubit excitation energy was within 4 to 8 GHz when biased

at half flux, which are frequencies that are in an experimentally easily accessible

range.

We then consider the qubit critical currents from 1 µA to 2 µA and coupler

critical currents from 25 nA to 60 nA respectively. At each fixed set of circuit

parameters, we extract the YY coefficient from the coupled qubit Hamiltonian at

zero gate charge and at half gate charge, as well as the coupler excitation energy at

half gate charge. These give the maximum and minimum YY interaction strength

and minimum coupler gap respectively. Figures 4.7 and 4.8 show the dependences.

Figures 4.7a and 4.7b show that the YY interaction changes sign when going from

zero to half gate charge as expected. Furthermore, the coupler excitation energy

shown in Figure 4.8 increases with increasing coupler critical current, but decreases

with increasing qubit critical current. This could be understood as the minimum

coupler gap being tuned by the Josephson energy of the coupler, while additional

loading capacitance is introduced when increasing qubit junction sizes, lowering

the effective Ec of the coupler. The YY interaction strength is generally on the

order of a few MHz, with the largest magnitude at half gate charge. In this region,

the interaction strength could reach a magnitude of up to 20 MHz. However, if we

try to increase the interaction strength further by lowering the qubit or coupler

Ic, then due to the closing coupler gap in this region, the interaction strength will

exceed the spectral gap and the reduction method produces a spurious result[54].

In this region, the coupler excited state mixes with the qubit states and the circuit

no longer operates as intended.
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(a) (b)

Figure 4.7: Colour plot of YY interaction strength at fixed gate charge as function

of the critical current of the qubits and coupler. The colour axis shows the strength

of the YY interaction in MHz. (a) Qg � 0.5. (b) Qg � 0.

The simulation shows that there exists a regime where it is possible for the

spectrum to be sufficiently gapped while at the same time giving significant values

of the YY interaction strength. We now consider a point in the parameter space,

with parameters for the circuit as shown in Table 4.1.
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Figure 4.8: Colour plot of coupler excitation energy at Qg � 0.5 as a function of

the critical current of the qubits and coupler. The colour axis shows the energy

gap in GHz.

Circuit element Component value

Lq1,2 0.3 nH

Cq1,2 42 fF

Icq1,2 1.2 µA

Cc 1 fF

Ccoup 2 fF

Icoup 30 nA

Cg 1 fF

Table 4.1: The component values for circuit elements shown in Figure 4.5 used in

the subsequent simulations.
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We now consider the effect of varying the gate charge over one period for these

fixed circuit parameters. The interaction terms from the qubit Hamiltonian are

shown in Figure 4.9. The main contribution to the interaction between the two

qubits is the YY interaction which can be changed from -20 MHz to about 7 MHz.

In particular, it can be turned off at around Qg � 0.2. ZZ and XX terms show also

some dependence on gate charge, but are two orders of magnitude less than the

YY term, with a maximum absolute value of 0.2 MHz, while all other interaction

terms are zero. Figure 4.10 shows the effect on the qubit energy spectrum which

accompanies the YY interaction. The first and second excitation energies are

shown. When the interaction is zero, the two levels are degenerate. These energy

levels are then split by 2hY Y when we tune the interaction strength. This suggests

a method for experimental measurements as we shall see later.
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Figure 4.9: Interaction terms in the qubit Hamiltonian for circuit parameters in

Table 4.1. The interaction terms in the Hamiltonian shows a dominant YY term

that is tuneable across zero, which can be varied from -20 MHz to about 7 MHz

across the full range. ZZ and XX terms are two orders of magnitude less than the

YY term while all other interaction terms are zero.
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(a) (b)

Figure 4.10: (a) First and second excitation energy of the system with parameters

in Table 4.1. (b) Solid line shows the splitting between the first and second energy

levels of the system. Dashed line shows the twice the YY interaction strength.
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4.2 Experimental Methods

In this section, we consider experimental methods which may be used to verify our

circuit simulations presented in the previous section. We first consider a charac-

terisation of the coupler by itself, then describe a protocol for measuring the YY

interaction strength of the coupled qubit circuit. Based on these considerations, we

design superconducting chips which could be used to implement these experiments.

4.2.1 Experimental Design for Tuneable Coupler Measure-

ments

To characterise the coupling element, we consider the coupler capacitively coupled

to a superconducting resonator. This arrangement allows a portion of electromag-

netic energy to be coupled into and out of the resonator which is determined by the

coupling capacitor. Figure 4.11a illustrates the design of the experimental chip.

It shows a feedline coupled to multiple quarter-wavelength resonators of different

lengths, which multiplexes the measurement setup. Each resonator is coupled to

a superconducting island and a gate voltage is also coupled to the island via a

capacitor Cg1, which induces the charge on the island. To model this device, we

consider the lumped circuit equivalent of the resonator shown in green in Figure

4.11b. The superconducting island is node 1 in this model.

We can extract the resonance frequency using the methods described earlier.

For the simulation results that follow, the coupling capacitance is 5 fF, the res-

onator has capacitance and inductance of 366 fF and 1.66 nH respectively while

the junction has a critical current of 30 nA. Figure 4.12 shows the result of sim-

ulating the change in resonance frequency as a function of coupler gate charge.

The dashed black line is the unloaded resonance frequency of the resonator, while

the blue solid line is shifted down due to capacitive loading by the coupler which

can be tuned periodically through the gate charge. The tuning is about 15 MHz

which should be observable in experiment. As we shall see this is dependent on the
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(a) (b)

Figure 4.11: (a) Design of the experimental superconducting chip. Red: Supercon-

ducting island magnified. Yellow: Josephson junction magnified. (b) Equivalent

lumped circuit model of the coupler capacitively coupled to a microwave resonator.

junction fabrication parameters, which will determine the sizes of the junctions we

need for the coupling element to possess the desired properties.
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Figure 4.12: Resonator frequency as a function of coupler gate charge for circuit

shown in 4.11b. Dashed black line: Unloaded resonator frequency. Blue solid line:

Resonance frequency of the resonator-coupler system.
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Fabrication Considerations

In practice, these circuit parameters cannot be specified exactly and the critical

current of a Josephson junction may vary even on a single chip, widely thought

to be due to the structural properties of the oxide barrier in aluminium junc-

tions[118][119][120][121]. Taking this into consideration, we have designed our

circuits to tolerate small deviations in junction parameters.

Figure 4.13 shows the variation in the properties of our circuit with respect to

fabrication parameters. The key metrics we considered are the minimum gap of

the coupler, plotted in solid lines, and the maximum shift in the resonance fre-

quency, plotted in dashed lines. We consider both variations in the junction areas

and critical current densities, Jc.

While Jc is a process dependent parameter which depends on the properties of

the tunnelling barrier, the area is a better controlled design parameter. Thus, we

seek to choose a set of junction areas which will maximize the yield of our devices.

The red solid line shows our design requirement based on our metric. Assuming

an average critical current density of 1.5 µAµm�2 with a spread factor of two, we

designed our chip with several junction areas so that at least one would satisfy

these requirements simultaneously, indicated by the green region.
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Figure 4.13: Plot shows the simulated minimum excitation energy of the coupler

and the change in the resonance frequency of the resonator-coupler system as a

function of junction areas. Solid lines: Minimum gap of the coupler obtained from

simulation. Dashed lines: Modulation of the resonator-coupler system. Coloured

lines indicate different critical current densities Jc, while the red horizontal line

shows the minimum excitation energy and resonator modulation desired. The

green region is the range of junction areas for which the requirement is satisfied

for the range of Jc we expect from fabrication.

4.2.2 Experimental Design for Coupled Flux Qubits Spec-

troscopy

Superconducting qubit circuits are widely studied experimentally using the circuit

quantum electrodynamics (cQED) architecture[122][123], where a qubit is coher-
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ently coupled to a superconducting transmission line resonator and is used for

non-invasive quantum non-demolition (QND) measurements[124]. The name de-

rives from the study of light-matter interactions using the coupling between the

dipole moment of an atom and a single mode of electromagnetic waves using op-

tical cavities. This technique enables spectroscopic measurements of the energy

spectrum of the system which we will now describe.

4.2.3 The Dispersive Hamiltonian

Figure 4.14: A flux qubit of inductance Lq, critical current Ic and capacitance Cq

coupled through coupling capacitor Cc to resonator of inductance Lr and capaci-

tance Cr.

We consider a flux qubit capacitively coupled to a superconducting resonator

as shown in Figure 4.14. Using the methods described earlier in the chapter, prop-

erties of this circuit are given by the Hamiltonian:

Ĥcircuit � Q̂r
2

2C 1
r

� Φ̂r

2

2Lr

� Q̂q

2

2C 1
q

� Φ̂q

2

2Lq

� EJ cos 2πpΦ̂q � Φext

Φ0

q � Q̂rQ̂q

C 1
c

, (4.15)

where the subscripts r and q refer to the resonator and qubit respectively. Due

to the capacitive interaction, the capacitances C 1
r � Cr � Cq

Cq�Cc
, C 1

q � Cq � Cr

Cr�Cc

and C 1
c � CcpCr�Cqq�CrCq

Cc
undergo loading. In the two-level approximation of the
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qubit, the qubit charge operator becomes proportional to the σy operator and the

interaction strength between the resonator and qubit comes g �
b

2
ℏZr

|xE0|Q̂q |E1y|
2C1

c
,

where Zr �
b

Lr

C1
r
. This leads to the Rabi Hamiltonian,

ĤRabi � ℏωrpa:a� 1

2
q � ℏ

ωq

2
σz � ℏgpa� a:qpσ� � σ�q. (4.16)

For a typical set of parameters, g is of order 100 MHz, whereas the qubit frequency,

ωq and resonator frequency ωr

2π
are in the range 5�10 GHz. This allows us to apply

the rotating wave approximation by neglecting the terms which change the number

of excitations in the system, so that pa� a:qpσ� � σ�q � aσ� � a:σ�. Under this

approximation the Hamiltonian takes on the form of the famous Jaynes-Cummings

Hamiltonian[125],

HJC � ℏωrpa:a� 1

2
q � ℏ

ωq

2
σz � ℏgpaσ� � a:σ�q (4.17)

This Hamiltonian has the property that the total number of excitations n �
a:a� σ�σ� is conserved. n̂ commutes with the Hamiltonian rHJC , ns � 0, so that

only states with the same number of excitations interact. It has a simple block

diagonal form in the energy eigenbasis,

HJC �

�
�������������

H0 0 0 0 . . . 0 0

0 H1 0 0 . . . 0 0

0 0 H2 0 . . . 0 0
...

...
...

. . . . . .
...

...

0 0 0 0 . . . 0 0

0 0 0 0 . . . Hn�1 0

0 0 0 0 . . . 0 Hn

�
�������������
, (4.18)

where H0 � Eg and Hn is a 2 x 2 matrix of form
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Hn �
�
nℏωr � Eg �ℏg?n
�ℏg?n pn� 1qℏωr � Ee

�
, (4.19)

with eigenvalues E� � pnℏωr � Eg � ∆
2
q � ℏ

2

a
∆2 � 4ng2, where ∆ � ωq � ωr is

detuning.

We may further elucidate the result by applying the unitary transformation

U � expp�g
∆
pσ�a � σ�a:qq. In the dispersive limit ∆ ¡¡ g, the interaction term

can be expanded to second order using the Baker-Hausdorff lemma[126] which

simplifies to Hint � g2

∆
σ̂zpa:a� 1

2
q. The dispersive Hamiltonian now reads

Hdisp � h

�
pfr � g2

∆
σ̂zqpa:a� 1

2
q � fq

2
σ̂z

�
. (4.20)

We see that the frequency of the resonator now acquires a qubit-state depen-

dent term. The bare resonance frequency is shifted due to this interaction by an

amount δf � �g2

∆
which depends on qubit state.

Numerical Simulation

We demonstrate numerical simulation of the full circuit Hamiltonian (4.15). Here

we consider a flux qubit tuned near the flux-degeneracy point. Figure 4.15a shows

the excitation spectrum of the resonator-qubit system. The coloured lines are from

numerical diagonalization of the full circuit Hamiltonian, whereas the dashed black

lines are the bare resonator and qubit levels. Since the qubit spectrum is approxi-

mately quadratic in flux, the reduced flux effectively determines the detuning from

the resonator. We find that for a wide range of system parameters, the assump-

tions used to derive (4.20) hold, with the exception of where the bare qubit and

resonator energy levels intersect. In this resonant regime, the interaction results

in an avoided crossing, where the splitting is 2
?
ng, n being the total number of

quanta from (4.19). This is a signature in spectroscopic measurements of qubit-

resonator systems, with spectral lines revealing a pattern as seen in Figure 4.15b,
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which is often an important experimental tool to help characterise and design su-

perconducting circuits.

(a) (b)

Figure 4.15: (a) Solid coloured lines: Simulated energy spectrum of the qubit-

resonator system as a function of applied flux to the qubit. Black dashed lines:

Bare qubit and resonator frequencies in the absence of interaction. The degeneracy

is lifted by the interaction, as shown by the coloured lines. (b) A close-up of

the region where the avoided crossing occurs. Black dashed lines: Bare qubit

frequency. The qubit frequency is quadratic in flux in this range, which appear

as straight lines on this scale. Blue dashed line: Bare resonator frequency. Yellow

circles: The shifted resonator frequency, f 1r � fr�δf expected from the Dispersive

Hamiltonian (4.20). The flux qubit considered in the simulation has parameters

as in 4.1, Cr � 500 fF , Lr � 1 nH and Cc � 10 fF .
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4.2.4 Chip Design for Qubit Spectroscopy

While we may fit single-tone data to the numerical simulations as shown in Figure

4.15, there exists another method to measure the qubit transition frequencies di-

rectly using an additional RF tone to drive qubit excitations, known as two-tone

spectroscopy. As a function of drive frequency ωd, the qubit excited state popula-

tion takes on a Lorentzian shape[127],

Pe � 1� Pg � 1

2

nsp2gq2
γ1γ2 � δ2q

γ1
γ2
� nsp2gq2 , (4.21)

where γ1 � 1{T1 and γ2 � 1{T2 are the inverses of the relaxation and dephasing

times of the qubit, and δq � pωq � χq � ωd is the detuning of the shifted qubit

frequency to the drive[127]. By driving the qubit and monitoring the resonator

transmission with a probe tone ωr, one should therefore see a change in transmis-

sion when the RF drive tone is resonant with the qubit frequency i.e. δq � 0.
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(a) (b)

Figure 4.16: Experimental chip designed to determine the interaction strength for

the qubit-coupler-qubit system. (a) Close-up of the qubit. (b) Close-up of the

coupler.

68



4.2 Experimental Methods

Chip Layout and Protocol

Here we describe an approach to measure the YY interaction strength of the cou-

pled flux qubit system considered earlier in the chapter. This approach uses two-

tone spectroscopy to measure the degenerate excitation energies of the coupled

system, which is then split by the interaction. Coupled flux qubits measured using

a similar technique have been discussed in Weber et al. [88], for characterising a

tuneable inductive coupler.

Figure 4.16 shows the layout for the proposed experimental chip. A feedline

couples inductively to two separate resonators. Two resonators are used to mea-

sure each qubit, and are designed to have different resonant frequencies. The flux

qubits are capacitively coupled to the resonator and the coupler. Fluxes in the

inductive loops of qubits A and B can be tuned in-situ by applying a current

through the flux bias lines and the coupler gate charge can be tuned by applying

a voltage between the voltage bias line and ground.

Table 4.2 gives the junction areas and qubit loop sizes used in the design to achieve

the targeted circuit parameters described earlier in Table 4.1. The geometry of the

mutual inductances are simulated using ANSYS Q3D solver, which gives a mutual

inductance of approximately 20 pH between the qubit loop and the bias line.

Parameter Name Value

Ajj,q Qubit JJ area 1x1.2 pµmq2
Aloop,q Qubit loop area 100x115 pµmq2
Ajj,coup Coupler JJ area 0.2x0.2 pµmq2

Table 4.2: Table of designed geometric parameters.

Each qubit can first be characterised individually, by biasing the flux of one

near half-flux, and the other near zero. Two-tone spectroscopy can then be per-

formed on that qubit, which can be used to obtain useful information to calibrate

further measurements. The two qubits may then be biased to be resonant and the
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splitting is given by 2|hY Y |, where hY Y is the YY-interaction strength we which

to extract. The splitting is then be controlled by the gate voltage as illustrated in

Figure 4.17. When the two qubits are not interacting, the resonators read out the

qubit frequencies of each qubit individually, while when the interaction is switched

on the split levels of both resonators are read out[88].

The approximate zero coupling condition is shown in (c), where qubit A is bi-

ased at half flux, and the flux of the qubit B is swept. Assuming identical qubits,

the two levels intersect at half flux, although they can be arranged to intersect at

different points by biasing the flux of qubit A differently. Different gate charges

can then be applied which turns on the interaction. By measuring the splitting

for different charge biases, we can construct the dependence of the YY interaction

upon the charge bias, as shown earlier in Figure 4.10.
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(a) (b)

(c) (d)

Figure 4.17: Figures show the energy spectrum of the two qubits when the flux

applied to qubit A is varied about half flux. The four panels show the splitting of

the degenerate levels when the gate charge Qg is varied.
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Chapter Conclusions

In conclusion, we have simulated a tuneable capacitive coupler suitable for ap-

plications using flux qubits such as in quantum annealing. We have shown that

such a coupling element realizes a sign- and magnitude- tuneable YY interaction

which can be varied in-situ using on-chip voltage bias through a gate capacitor

applied to the coupler. The system spectrum is found from numerical simulations

of the circuit Hamiltonian and the Pauli coefficients was extracted. From these

simulations, we identify the tradeoffs one can make in the design of the circuit and

chosen circuit parameters such that the YY interaction term is tuneable across

zero through a range of about 30 MHz.

We then considered how the device can be verified experimentally, in particular

designed a chip which would allow the coupler to be characterised by itself, before

considering the problem of measuring the YY interaction strength in practice. By

considering the characterisation of the coupler, we have also identified the sensi-

tivity of the design to fabrication parameters, which we have incorporated into the

simulation. We designed our experimental chip with different Josephson junction

areas assuming a critical current density spread by a factor of two.

Finally, we discussed the cQED architecture and derived the dispersive Hamil-

tonian which describes the interaction between a superconducting resonator and

qubit. The architecture enables continuous measurement of the qubit-resonator

system. A direct approach of obtaining the qubit spectrum is by using an addi-

tional tone to excite the qubit, which changes the transmission of the resonator

probe tone. Based on these techniques, we designed a superconducting chip to

carry out qubit spectroscopy and described a protocol that can be used to exper-

imentally determine the coupling strength. These chip designs and measurement

protocols are a step towards future implementations of pairwise tuneable YY cou-

pling for flux qubits which can be integrated with ZZ coupling currently available

in quantum annealers.
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Chapter 5

Fabrication of Josephson

Junctions

In the previous chapter, we designed a new non-linear capacitive element suitable

for coupling two flux qubits. To experimentally verify the design, the next step

was to implement this design in hardware. This involves a crucial process for

fabricating a Josephson junction (JJ). Such a process often requires specialized

equipment to make the junction electrodes and oxide barrier. Even with the same

equipment, many trial runs of the process are required to calibrate the junction

parameters obtained, which may even drift over time. Moreover, there is often a

large parameter space to explore in each step during the development of a new

fabrication process. In this chapter, we determine the feasibility of fabricating JJs

using the methods and equipment available at the cleanroom in the London Centre

for Nanotechnology.

One common method of producing the Al-AlOx-Al structure of a Josephson

junction is by using a shadow evaporation technique. The technique involves a

stack of multiple layers of resist patterned as either a suspended bridge or with a

significant undercut. This is achieved by using resists of different exposure sensitiv-

ities. The deposition is usually carried out in an evaporation chamber. The resist

is designed so that at a certain angle, the deposition of the Al onto the substrate

73



Chapter 5. Fabrication of Josephson Junctions

will depend on the orientation of the sample. Due to the undercut, evaporation at

an angle results in deposition on the resist walls at specific orientations.

In recent years, there has been growing interest in developing new junction fab-

rication techniques that do not involve angle-dependent deposition. This is because

the angular dependence makes the method unsuitable for large scale wafer-scale

manufacturing as it reduces junction area uniformity[128][129][130], requiring care-

ful calibration to reduce the variability. An alternative approach which eliminates

the angular dependence altogether is to make overlap junctions[131][132][133],

which makes the two electrodes of the JJ in separate processing steps. Thus the

method does not require specialized equipment for performing angular deposition,

but instead uses standard deposition and lithography techniques. The process

however involves breaking vacuum in between the deposition steps, so preparing

a high quality interface and oxide layer becomes the main challenge of this tech-

nique. This is the subject of this chapter which explores the processes involved in

fabricating overlap JJs.
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5.1 Development of the Fabrication Process

Figure 5.1: The overview of the Josephson junction fabrication process. The

green boxes indicate processes taking place in the PVD-75 sputter system, while

the red boxes indicate photolithography steps. First row shows the deposition

and patterning of the first aluminum layer, second row shows the backsputtering

after the sample is reintroduced into the chamber, while the third row shows re-

oxidation, deposition and patterning of the second aluminum layer.

The outline of our fabrication process is as shown in Figure 5.1. Steps (a), (e),

(f), (g) and (h) highlighted in green boxes take place within the sputter chamber

under high vacuum, while steps (b), (c), (d), (i) and (j) highlighted in the red

boxes are carried out externally. Steps (a), (b), (c) and (d) describe the deposition

and patterning of the bottom electrode. First, a silicon substrate is prepared and

cleaned then aluminum deposited by magnetron sputtering. The sample after the

deposition is shown in (a). Next, the sample is then removed from the deposition

chamber for resist coating which results in (b). The resist is then exposed using

direct-write laser photolithography according to the designed layout and devel-

oped. The resist acts as an etch mask as depicted in (c), so that the aluminum
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layer at the exposed regions can be etched away and the design pattern transferred

onto it. The resist is then subsequently cleaned off using IPA and acetone solvent

solution, leaving the bottom electrode as shown in (d).

Since the two electrodes are patterned in separate steps, the bottom electrode

is exposed to the atmosphere and a native oxide layer with unknown composition

is formed, as shown in process step (e), rendering the junctions unsuitable for

making coherent quantum devices[134]. Because of this, it becomes necessary to

introduce a cleaning step to remove this layer of contaminants before re-oxidising

the bottom electrode. To achieve this, we used a backsputter cleaning technique

to remove the unwanted material from the interface as shown in step (f). Steps

(g) and (h) show the in-situ oxide growth of the bottom electrode and sputter de-

position of the rest of the metal layer. This layer is patterned similarly to the first

as shown in (i) and the S-I-S junction is formed from the overlap region masked

by the resist as shown in (j).

The fabrication process is in contrast to the double shadow-evaporation tech-

nique, where the bottom electrode, oxide layer and top electrode of the JJ are

all deposited in the same chamber under vacuum. Typically, another metal layer

containing the main features of the circuit is patterned before junction deposition.

So that in this case, since the junction leads must make contact with the metal

layer, an argon milling step is usually introduced before deposition to ensure good

contact is made between these layers.

In the next subsections, we describe each step of our fabrication process in

detail.

5.1.1 First Layer Patterning

Our Al films are grown using magnetron DC sputter deposition in the Kurt J.

Lesker PVD75 sputtering system. In magnetron sputtering, gas is flowed into a
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high vacuum chamber where it is ionized by a high DC voltage. Sputtering occurs

when the ions are accelerated towards a target of the desired material. Due to the

high energy bombardment by the incident ions, atoms of the target material break

free from the surface which travels toward the substrate where it is deposited. The

magnetron focusses the plasma near the surface of the target which increases the

sputter rate. An illustration of the sputtering process is shown in Figure 5.2.

Figure 5.2: Illustration of the sputtering process. Argon ions are accelerated to

the sputtering target. The chamber is maintained in vacuum so that the sputtered

material is deposited onto the substrate.

Our sputter system contains mass flow controllers which are capable of con-

trolling the flow rate of various gases into the chamber. Gases include argon and

oxygen which we use in sample cleaning and oxide growth respectively. We use

an aluminum target held onto one of the three 3” diameter sources. The sam-

ple holder and the target comes with controllable shutters to start and stop the

sputtering process. The sample holder also has a motor which spins the sample to

increase uniformity. It is also connected to a DC power source which allows us to

direct the plasma onto substrate for sample cleaning.

We start our process by dicing a 4” thermally oxidized silicon wafer, with 100
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nanometer thick SiO2 into 8�8 mm2 pieces using the Disco DAD 3230 Automatic

Dicing Saw. Before the diced samples are ready for further processing, they are

cleaned using acetone and isopropyl alcohol (IPA), sonicating in each for 5 min-

utes. To deposit the first Al layer, the sample is first stuck onto a carrier wafer

using Kapton tape which is then loaded onto the sample holder of the sputtering

chamber. The chamber is then pumped down to a low pressure before starting the

automated DC sputter process.

The sputtering process starts with flowing Ar gas into the chamber to a set

chamber pressure, and the power supply ramps up to the voltage set by our recipe.

Once the desired pressure and bias voltage is reached, the sputter target is cleaned

for 3 minutes, with the substrate shutter closed. After this, the substrate shutter

is opened and the Al is sputtered for a fixed time until the desired thickness is

achieved. For our particular process, the relevant sputter parameters are as follows:

Sputter parameter Value

Typical base chamber pressure 2.4e-7 Torr

Sputter pressure 2.3 mTorr

Power 500 W

Ar flow rate 10 sccm

Sputter rate 11.6 nm/min

Sputter time 4 min 30 sec

Target film thickness 50 nm

Table 5.1: Sputtering parameters for Al deposition in the Lesker PVD75 system.

The low temperature electronic properties of an unpatterned Al film were mea-

sured using the four terminal measurement technique. The sample was wirebonded

onto a sample holder, which was then mounted in the dilution refrigerator where

it was cooled down to the milli-Kelvin range. The sample was found to be su-

perconducting, with resistance dropping to zero at around 1.2K, the transition

temperature of Al. The characteristic temperature-dependence of the critical cur-
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rent was also observed.

In Figure 5.3a is the data obtained from performing temperature dependent

measurements on the Al film. The temperature is controlled by the dilution

fridge electronics which has a feedback loop which varies the electrical current

flow through a resistor in the mixing chamber plate of the fridge to achieve the

temperature set point. A triangular current waveform at �4 mA peak current

flows through the sample via one pair of electrodes, while voltage is measured on

another. The green data points indicates an increasing current, while the red indi-

cates decrease, as indicated by the arrows. The measurement shows a zero-voltage

supercurrent, until about 2.1 mA, where it jumps suddenly into a resistive state.

The critical current of the film is lower when going from the superconducting to re-

sistive state, and higher when going from resistive to superconducting state. This

could be due to resistive heating of the sample in the dissipative state. Figure

5.3b shows the measured temperature dependence of the critical current, which is

given by an approximate parabolic shape.
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(a) (b)

Figure 5.3: The low temperature electronic properties of an unpatterned Al film.

(a) Four quadrature measurement of the current-voltage characteristic of an un-

patterned Al film. Green data points: Increasing current. Red data points: De-

creasing current. (b) The critical current dependence upon the temperature for

an unpatterned Al film.
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5.1.2 Backsputter Cleaning

As the sample is transferred to different chamber for patterning, it is exposed to

atmosphere. Therefore, it is necessary to perform a cleaning step before the con-

trolled growth of the oxide layer. This cleaning step removes the native oxide layer

which develops when the sample is exposed to air, and other contaminants which

may be present at the interface due to the processing steps. This step can be per-

formed in the sputterer where the oxidation and deposition of the second layer can

take place subsequently without breaking vacuum. After the lithography of the

first layer, the sample is loaded into the sputter system again. Before the growth

of any addition material, we perform a back-sputter cleaning step. The procedure

is analogous to sputtering - Ar is flowed into the sputter chamber, and a plasma is

ignited. However, this time a DC bias voltage directs the plasma generated onto

the sample. We found that this step heats the sample holder to a temperature of

about 300C. The backsputter recipe is shown in Table 5.2.

Parameter Value

Backsputter pressure 5 mTorr

Backsputter Ar flow 18.7 sccm

RF power 100 W

DC voltage bias 500 V

Backsputter time 5 mins

Table 5.2: Backsputter parameters in the PVD75 for interface cleaning.

Figure 5.4 shows the temperature dependence of the resistance of a metallic

contact with an area of 37.5 µm2 measured in a dilution refrigerator. The metallic

contact is made by backsputtering the first layer electrode, and depositing the

second layer without any reoxidation. The resistance shows a linear decrease with

slope of 0.038 Ω{K with temperature until about 70 K, where thermal scattering

starts to be suppressed. The low temperature resistance is then constant which is

expected from temperature independent defect scattering processes. At the critical
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temperature of aluminum 1.2K, the metallic contact undergoes a superconducting

transition, however we note that the resistance remain nonzero.

Figure 5.4: Resistance against temperature of a metallic contact with an area

of 37.5 µm2. Red line: Straight line fit with slope of 0.038 Ω{K. Yellow line:

Indicates the low temperature resistance before the superconducting transition.
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5.1.3 Oxide growth

The oxidation step determines the most crucial parameter in fabricating the JJ,

that is the critical current density, Jc. Jc decreases exponentially with increasing

oxide thickness, which makes its control challenging in a fabrication process. The

value of Jc must also be taken into account in design as it determines the physically

realisable EJ

EC
associated with the junction. Process parameters that affect the ox-

ide thickness are the oxygen flow rate, chamber pressure and the oxidation time.

There have been empirical studies based on large numbers of junctions [135][136]

which attempt to map these parameters to oxide thicknesses, which we use to base

our oxidation parameters. We have tried Al oxide growth in both the low and high

pressure regimes, eventually opting for the latter due to the improvement in the

JJ yield observed in low-temperature measurements.

The samples are sputter-cleaned for the same duration before being oxidised.

During the oxidation step, oxygen gas is flowed continuously with the vacuum valve

throttled and pump running, achieving a controllable steady-state pressure. The

recipes for the high and low pressure oxidation is presented in Table 5.3. In the

low-pressure regime, to achieve the correct dose according to the relation found in

[135], our oxidation times needed to be quite long for us to produce samples which

exhibited a non-linear IV characteristics at low temperatures. Even then, the yield

was quite low, only one in eight devices had JJ-like behaviour. Improvement in

yield was found by increasing the oxidising pressure while exposing the samples

for a shorter amount of time.

Parameter Recipe 1 Recipe 2

Oxygen flow 10 sccm 10 sccm

Oxidation pressure 2.3 mTorr 75 mTorr

Oxidation time 4.5 to 45 mins 5 mins

Table 5.3: Oxidation parameters in the low and high pressure regimes in the

PVD75.
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First we characterised the room temperature resistances of the samples on

a probe station. The samples had both bottom and top electrodes patterned,

with different processing for the interface layer. Figure 5.5 shows their measured

resistances. The highest resistances were observed for the unprocessed metallic

contacts, associated with native oxide layer due to atmospheric exposure. After

backsputtering, most of the native oxide is removed and this is reflected by the

decrease of resistances by five orders of magnitude.

Figure 5.5: The resistance of samples under different processing conditions.
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5.1.4 Direct Write Photolithography

We used photolithography to pattern the Al films. S1818 resist is spun onto the

surface of the film. Once coated, the sample is baked at 1150C for 60 seconds.

The resist is exposed in the Heidelberg DWL 66+ laser writing system. A list of

parameters used for the exposure is summarized in the Table 5.4. The sample is

developed in MF319 developer for 1m30s, in which the exposed region will dissolve.

The unexposed region masks the metal layer during the etching step, whence the

pattern is transferred onto the Al. Once etched, the sample is rinsed and inspected

under the microscope.

Parameter Value

Laser focus -20

Laser Intensity 70%

Laser Power 60 mW

Exposure Count 2

Filter 50%

Table 5.4: Direct write photolithography parameters used in the Heidelberg DWL

66+ for exposing S1818 resist.

Figures 5.6a and 5.6b show optical micrographs of the sample after pattern-

ing the first and second layer respectively. Figure 5.7 shows the developed resist

structures prior to etching the second layer.
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(a) (b)

Figure 5.6: Patterned aluminum films after (a) layer 1 and (b) layer 2 processing

respectively.

(a)
(b)

Figure 5.7: Resist masks for layer 2 features. (a) Structure of the top electrodes

and pads. (b) Zoom-in of the overlap region which forms the junction.
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5.1.5 Electron-Beam Lithography

We also fabricated some samples using electron-beam lithography (EBL). A pho-

tolithography system is limited by the wavelength of the light used by the laser,

which makes it unsuitable for writing sub-micron structures. Thus, EBL is needed

for scaling down the junction to sub-micron sizes. The samples were fabricated in

a Elionix ELS G100 system, which also writes the pattern onto the sample directly.

The EBL system is capable of producing a stable electron beam with an accel-

eration voltage of up to 100 kV. The acceleration voltage is a crucial parameter

in a EBL system as it determines the size of the electron beam. This is not the

only factor affecting the resolution however, because the electrons interact with

the material being exposed. As the electrons are incident on the resist and the

substrate, they may scatter or generate secondary electrons. Because of this, the

region outside of the intended scanned pattern receives a non-zero dose, causing an

effective broadening of the electron beam. This is known as the proximity effect.

The electron beam can be deflected within a small region, known as a field. For

features outside of the region, the stage is required to move. These movements

are calibrated by the manufacturer so that patterns on different fields are stitched

together as seamlessly as possible. The field is then written to by the beam in a

grid of dots, in the manner of a vector scan.

Just like in photolithography, choosing a proper dose for the exposure is crucial.

On the EBL system, this is adjusted by choosing a beam current, a dwell time

on each dot and the spacing between the dots. This dose is measured in units of

charge per area. The system is also capable of varying the beam current. This

allows the design to be exposed in two steps, one for micron-scale features and

one for nano-scale. A large current is used to expose the large features to speed

up the exposure, while a small current is used for writing the finer features with

precision. Tables 5.6 and 5.5 show the exposure parameters for small and large

currents. The exposed resist is then developed in a 3:1 mixture of methyl isobutyl

ketone (MIBK) and IPA for 45 seconds. Afterwards, the sample is soaked in IPA
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for 30 seconds to stop the development.

Parameter Value

High beam current 60 nA

Dot number 1,000,000 dots

Field size 1,000 µm2

Scan/feed pitch 90 nm/dot

Areal dose 1,000 µC{µm2

Table 5.5: High beam current dose settings used for EBL exposure in the Elionix

ELS G100 system.

Parameter Value

Low beam current 1 nA

Dot number 1,000,000 dots

Field size 500 µm2

Scan/feed pitch 2 nm/dot

Areal dose 600 µC{µm2

Table 5.6: Low beam current dose settings used for EBL exposure in the Elionix

ELS G100 system.
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5.1.6 Etching

After the resist has been patterned, an etching step is used to transfer the pattern

into the metal layer. Two techniques for etching were considered for this project.

First, we considered a wet etching method. This process involves immersing the

sample into a chemical etchant in a beaker, for a fixed time. For our samples,

we used a standard mixture of aluminum etchant which contains phosphoric acid,

nitric acid, acetic acid and water as etchant. The etch rate is about 1 nm/s so

for our 50 nm films we etch them for about one minute. This method results

in an isotropic etch profile, as the solution will remove the metal in every direc-

tion. This characteristic makes the process unsuitable for etching small features,

in which case a directional etch process is desired.

Reactive-ion etching (RIE) is one such technology which results in a highly

anisotropic etch. We carried out our etch in a STS Inductively-Coupled Plasma

Shallow Reactive-Ion Etch (ICP-SRIE) system. The system uses an inductively

coupled plasma where the alternating fields used to generate the high density

plasma are created by an induction coil and RF source in the vacuum chamber.

Gas is flowed into the chamber, which ionizes and forms the plasma. For Al, the

gases used are Cl2 and BCl3. Cl2 reacts with Al to form Al2Cl6 and AlCl3 which

are volatile by-products that are pumped away from the chamber, while BCl3 is

used to etch any Al oxide which may have formed on the top layer.

Table 5.7 shows the parameters used for our RIE recipe and Table 5.8 shows

the estimated etch rates of various materials from our calibration measurements.
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Parameter Value

Cl2 flow rate 18 sccm

BCl3 flow rate 5 sccm

Chamber pressure 3 mTorr

Coil power 400 W

Platen power 60 W

Etch time 35 s

Table 5.7: RIE parameters for etching Al in the STS ICP SRIE system.

Material Estimated etch rate

Al 2.2 nm/s

SiO2 0.5 nm/s

S1818 3.2 nm/s

PMMA 950 A4 4.4 nm/s

Table 5.8: RIE etch rates of different materials used in the process estimated using

the recipe described in Table 5.7.
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5.2 Josephson Junction Measurements

This section presents measurement results of JJs with junction areas in the 1 µm2

to 100 µm2 range, which can be described by the Resistive Capacitively Shunted

Junction model discussed in Chapter 2. Results discussed in this sections are

measured from samples fabricated using the EBL, RIE and oxide growth techniques

described in the previous section.

5.2.1 Experimental Setup

The measurements were performed in a dilution refrigerator at base temperature

which is about 15 mK. The fabricated chip is stuck onto a chip carrier using GE

varnish, which is an adhesive with good thermal conductivity. The chip contact

pads are then wire bonded onto the sample holder PCB which allows electrical

connections to be made to the external measurement circuit. The chip carrier

containing a wirebonded sample is shown in Figure 5.8. The sample space is

enclosed in cylindrical shields to minimize stray magnetic fields affecting our ex-

periments. The inner shield is made of aluminum, which expels magnetic field

below its superconducting transition temperature. The outer shield is Amumetal

A4K, a high permeability mu-metal alloy, which redirects magnetic fields away

from the sample space.

NbTi+Cu (Niobium-Titanium + Copper) superconducting wires are used to

connect the sample carrier to the DC lines built into the dilution refrigerator.

These DC lines are routed to the top of the fridge where it is further routed

through Fischer cables into the QDevil breakout box panels. Each wire comes out

to a BNC connector on the panel situated in our experimental rack, which serves

as the interface to our samples.

Current-voltage characteristics of the JJs are obtained using a four-point probe

measurement method. A Keithley 6220 Precision Current Source and an Agilent

34410A Digital Multimeter was used as the current source and voltage monitor.
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Figure 5.8: The chip carrier used for transport measurements of the JJs in the

dilution refrigerator. The fabricated chip is wirebonded onto a PCB, 32 mm � 36

mm in size, with a 15 mm x 15 mm square cut-out of the middle.

The source is programmed to output a four-quadrant triangular digital waveform

and the voltage is measured at each current setpoint.

5.2.2 Measured IV characteristics of JJs

Figure 5.9 shows the IV characteristics of JJs measured on the same chip. These

junctions have different junction areas, 25 µm2 and 100 µm2 respectively. The

IV curves were measured to be continuous and non-hysteretic, but show a super-

current carrying, zero-voltage state. Furthermore, the IV curves show a positive

curvature approaching the resistive state. Qualitatively, this indicates the pres-

ence of a Josephson supercurrent rather than a superconducting short. The critical

currents were estimated to be 37.5 µA and 195 µA respectively by thresholding,

using a threshold voltage of 3 µV . This gives us critical current densities of 1.48

µA{µm2 and 1.95 µA{µm2. The normal state resistances in the linear regime are
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16 Ω and 5 Ω respectively. From these measurements, we observe that the junc-

tions do not follow the Ambegaokar-Baratoff relation, instead the IcRN product is

about 2 to 3 times higher than predicted. Furthermore, by fitting to the RCSJ IV

curve using the standard junction capacitance density of 45 fF {µm2, we find the

Stewart-McCumber parameter to be βc � 27, which is different from the expected

βc ! 1 regime as we do not observe hysteresis.

Figure 5.9: Current-voltage characteristics of Josephson junctions with areas 25

µm2 and 100 µm2. The junctions were part of the same chip measured at 10 mK.

Effect of RF Radiation

The junctions were also subject to RF irradiation by an unterminated coaxial ca-

ble suspended in the sample space close to the device. A RF source is then used
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to supply the radiation at 1.391 GHz with powers ranging from -50 to -13 dBm.

This frequency was chosen as it gave the largest voltage response near the critical

current. Figure 5.10 shows the effect of RF upon the IV characteristic of the JJ

at various powers. The critical current of the device decreases as the RF power is

increased as shown in blue in Figure 5.11. Additionally, the zero-bias resistance of

the junction also increases with RF power as shown in orange in Figure 5.11. The

increase in slope in the superconducting phase can be understood in terms of the

tilted washboard model, as the phase escaping from the potential barrier. There

are two possibilities here, either the RF radiation induces quantum tunnelling of

the phase through the barrier, or it could also be a thermal effect so that local

heating at the sample induces thermal activation across the barrier. The Shapiro

steps expected at about 2.9 µV based on Equation 2.12, were not observed, how-

ever.
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Figure 5.10: Current-voltage characteristics of a JJ with area 56.25 µm2 under RF

irradiation at 1.391 GHz with applied powers ranging from -50 dBm to -13 dBm.

The critical current is suppressed as the power is increased.
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5.2 Josephson Junction Measurements

Figure 5.11: Critical current (in blue) and zero bias resistance (in orange) variation

with applied RF current. Suppression of critical current and increase in zero-bias

resistance due to RF fields coupling into junction
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5.3 Discussion and Outlook

To conclude this chapter, we have developed a fabrication process for overlap

Josephson junctions where the top and bottom electrodes are patterned sepa-

rately in a sputtering system. We have characterised the resistances of samples

with different processing conditions for the interface, in particular, using a back-

sputter cleaning technique, we were able to significantly reduce the resistance of

our metallic contacts. We were also able to perform a controlled oxide growth

in both the low and high pressure regimes. In the low pressure regime, the ox-

ide growth times needed to be quite long, for about 45 minutes, for some devices

to exhibit a nonlinear IV characteristics at low temperatures. Only one in eight

devices showed such characteristics. In the high pressure regime, we performed

the oxide growth for five minutes, and the junction yield appeared to be improved

greatly, most of the devices showed nonlinear IV characteristics. We have presented

some representative current-voltage characteristics of these junctions, measured in

a four-terminal configuration in the dilution refrigerator at 10 mK. We estimated

the junction critical current density to be between 1 and 2 µA{µm2, as needed for

the capacitive coupler design in Chapter 4. We also found that irradiation by RF

was able to suppress the critical current of the junction.

However, our junctions do not obey the Ambegaokar-Baratoff relation and have

IcRN products that are two to three times higher than theoretically predicted.

This suggests that there are additional charge transport mechanisms across the

barrier other than conduction via tunnelling, due to defects in the barrier such

as weak points and pinholes[137]. This might also explain the higher βc value

obtained from our fit to the RCSJ model. As mentioned throughout the chapter,

the engineering of the bottom electrode-oxide layer interface is crucial to deter-

mine junction properties. A common cause which degrades the interface quality

are pinholes which causes short circuits through the oxide barrier. This could be

caused by either increased surface roughness as a result of aggressive cleaning, or

insufficient coverage by the oxide layer.
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Although we were able to drastically reduce the resistance of our metallic con-

tacts from backsputtering, the measured value is still on the order of a few ohms.

This might be due to the increase in surface roughness or residual contaminants

at the interface caused by redeposition in the chamber prior to the second layer

being deposited. These causes cannot be ruled out without direct investigation

into the structure of the tunnel barrier. Nevertheless, we have only systematically

changed the backsputter time in this study, and the effect of backsputter pressure

remains unknown. For instance, an approach in [138] by interleaving periods of

cleaning with periods of rest to avoid sample heating allows sputter cleaning to

take place for a longer time than ours. They also use a higher backsputter pressure

�15 mTorr, but the system they used has a separate loadlock from the deposition

chamber.

It is clear that the interface engineering remains a challenge and the process

developed here is far from being a reliable route to high quality junctions for im-

plementing the YY coupler circuits discussed in the previous chapter. This is in

addition to design optimizations in the qubit-to-coupler and qubit-to-resonator

couplings which might deviate from the simulations due to unaccounted stray

capacitances in the geometry or systematic errors as a result of the fabrication

process. We have anticipated some of these effects in the previous chapter, by

simulating the stray capacitances to the ground plane and having designs to ac-

count for variations in JJ critical current density. Here it remains unanswered

the question as to how best to make circuits that are tolerant to the inevitable

imperfections caused by fabrication process.

In the next chapter, we shall describe the fabrication and measurement of QPS

nanowire-based devices. The QPS nanowire is dual to the JJ, but has a much

simpler structure in terms of fabrication. In particular, such interface engineering

as described in this chapter is unnecessary as the entire structure of device is

patterned in a single layer. From this perspective, devices based on nanowires are

yet another route to achieve scalable superconducting and quantum circuits.
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Chapter 6

Experiments on Quantum

Phase-Slip Nanowire Devices

As we have seen in the introductory chapters, a quantum phase-slip (QPS) nanowire

is a nonlinear capacitor. This property can be utilized as an element for a paramet-

ric amplifier. In this chapter, we report the development and experimental progress

on the application of the QPS nanowire as a parametric amplifier. First, we discuss

sample preparation and the fabrication of niobium nitride (NbN) nanowires using

electron-beam lithography (EBL) and reactive-ion etching (RIE). We then present

two variants of the prototype parametric amplifier— one with a single nanowire

shunting the superconducting resonator, and a gate tuneable variant which consists

of two nanowires in series. Next, we describe our experimental setup for carrying

out RF characterisation of the samples at milliKelvin temperatures. Finally, we

present and discuss the measurement results of both variants.
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6.1 Device Fabrication

Our devices are made out of NbN on sapphire in a single-layer process. We clean

the substrate and a thin layer of NbN is deposited, patterned and etched to form

the features of our superconducting circuit. In this section, we describe the de-

tails of this process[139], developed by Dr. Jamie Potter, who kindly provided

unpatterned NbN thin films for our devices.

6.1.1 NbN Deposition

The NbN thin film is grown on a polished sapphire wafer. The substrate was cho-

sen as it is a low loss dielectric, and it is polished to improve the surface quality

for further processing. The wafer is diced into 8 x 8 mm chips and they are first

cleaned with de-ionised (DI) water to remove carbon dust. The chips are then

placed into a beaker to be sonicated for five minutes each in acetone and then

isopropanol (IPA). They are then blow dried with a nitrogen gun and placed into

a plasma asher. The samples are ashed in O2 plasma for 2 minutes to remove any

organic materials from the substrate.

After preparing the substrates, they are transferred into a sputter deposition

system. Similar to the sputtering process described before, deposition takes place

in a chamber at high vacuum, and argon gas is flowed into the chamber where a

high voltage ionizes it. The plasma is ignited and directed towards a niobium tar-

get. To deposit NbN, nitrogen gas is introduced in addition to argon in a 1:1 ratio

which reacts with the niobium to form the compound. For our system, we first

pump the system down to a base pressure of 4 �10�7 mbar and then both gases are

flowed at 50 sccm to achieve a sputter pressure of 5 � 10�3 mbar. The power used

for sputtering is 150 W. The sample stage is water-cooled to keep the substrate

at a constant temperature and rotated to coat the sample more uniformly. These

parameters give us an estimated sputter rate of 10 nm/min. We verify this by

sputtering for one minute and measure the film thickness to be 10 nm on a step

profilometer.
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6.1.2 NbN Patterning

To pattern the film, we perform electron-beam lithography (EBL) using poly(methyl

methacrylate) (PMMA) resist as an etch mask for subsequent reactive-ion etching.

The EBL process used for this is a two-beam current method with a larger 20 nA

beam current for gross features and smaller 500 pA current for the nanowires. We

spin-coated PMMA 950 A2 resist onto the sample and baked for 5 minutes at

1800C. The sample is then loaded into the Elionix ELS G100 system, where the

resist is exposed in a pattern determined by the user’s design. The parameters are

shown in Tables 6.1 and 6.2 for the large and small current exposures. After the

exposure has completed, the resist is ready to be developed in a mixture of methyl

isobutyl ketone (MIBK) and IPA in a 3:1 ratio for 30 seconds. The sample is then

soaked in IPA for a further 30 seconds to stop the development.

Parameter Value

High beam current 20 nA

Dot number 500,000 dots

Field size 250 µm2

Scan/feed pitch 60 nm/dot

Areal dose 800 µC{µm2

Table 6.1: High beam-current dose

settings used for EBL exposure in the

Elionix ELS G100 system.

Parameter Value

Low beam current 500 pA

Dot number 500,000 dots

Field size 250 µm2

Scan/feed pitch 1 nm/dot

Areal dose 800 µC{µm2

Table 6.2: Low beam-current dose

settings used for EBL exposure in the

Elionix ELS G100 system.

The sample is then transferred into a reactive-ion-etcher. For our recipe, we

use CHF3 and SF6 to etch NbN, flowed at a rate of 35 sccm and 14 sccm respec-

tively. The chamber pressure is maintained at 100 mTorr during the process. An

RF power of 100 W is used to ignite the plasma and is directed by a DC bias

voltage of 185 V towards the sample, which is in contact with a sample holder
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water-cooled to 200C throughout the etch. We first prime the chamber by running

this recipe without the sample to prepare the surfaces of the chamber to improve

the consistency of the etch recipe. To etch the sample, we load it into the process

chamber and pump the chamber to base pressure. When that is completed, the

automated etch process is then run.
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6.2 Chip Design and Variants

6.2.1 Single-Nanowire Device

The first device variant is comprised of a feedline capacitively coupled to a quarter

wavelength resonator. The resonator is shunted with the nanowire at its open-

circuited end, where the amplitude of the voltage standing wave is maximum.

This variant of the device was designed and fabricated by Dr. Freya Johnson. The

device layout, shown in Figure 6.1, is designed using GDSII layout editor KLayout

as depicted in the top row.

The blue box indicates the location of the nanowire, where a close-up is shown

in the top right figure. The grey layer in the layout are parts exposed to the elec-

tron beam in the EBL system. The bottom row figures show scanning electron

microscopy (SEM) images of the device after fabrication. The light grey areas

show the exposed sapphire substrate after the NbN layer, shown in dark grey, has

been etched. The yellow box shows a close-up of the nanowire which was measured

to be about 30 nm in width, consistent with previous runs using the same method

which had a linear offset to the fabricated width from the designed values[139].

The nanowire length is designed to be 200 nm. The rest of the CPW dimensions

of the layout are shown in Table 6.3.

Parameter Value

Feedline Width, wf 50 µm

Feedline Gap, sf 30 µm

Coupling Capacitor Length, lc 50 µm

Resonator Width, wr 10 µm

Resonator Gap, sr 5 µm

Table 6.3: Designed CPW dimensions for the feedline, resonator and coupling

capacitor to the resonator.
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Figure 6.1: Design and scanning-electron micrographs of the single-nanowire de-

vice. Top left: Designed GDSII layout of the single-nanowire device showing

the feedline capacitively coupled to a quarter-wavelength resonator. The regions

shaded in grey correspond to those parts of the film which will be etched away.

The blue box indicates the location of the nanowire. Top right: A close-up of the

nanowire in the layout. Bottom left: SEM image of the fabricated device. Portions

of the feedline and quarter-length resonator can be seen. Bottom right: A close-up

of the yellow box shows the nanowire.

The capacitance of our resonator is estimated for our geometry using an analyt-

ical model derived from conformal mapping techniques[140][141]. The capacitance

per unit length of a coplanar waveguide with centre conductor width w, separated

from lateral ground planes by a gap s is

Cl � 4ϵ0ϵeff
Kpk0q
Kpk10q

, (6.1)
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where k0, k
1
0 are related to the geometry through

k0 � w

w � 2s
,

k10 �
b
1� k20,

(6.2)

and K is the complete elliptical integral of the first kind. The effective permittiv-

ity in general also depends on the geometry, but for our case is well approximated

by ϵeff � 1�ϵ1
2

, where ϵ1 is the permittivity of the substrate[141]. The inductance

of the line is mostly dominated by kinetic inductance, and inferred from previous

characterisation of NbN thin film resonators[139]. The coupling capacitance, Cc,

between the feedline and resonator, is simulated using Ansys Electronics Desktop

3D Electrostatic Analysis and found to be 0.58 fF .

Based on these estimates, we predict that the resonator has capacitance per

unit length, Cl � 135 pF/m and inductance per unit length, Ll � 27 µH/m. We

proceed by calculating the transmission line parameters of the resonator. From

our estimates, the resonator has a characteristic impedance of Z0 �
b

Ll

Cl
� 450 Ω,

the wavenumber is β � ω
?
LlCl � 377f m�1 where f is the operation frequency

in GHz. Neglecting losses, the input impedance at node 1 as shown in Figure 6.2a

can be found to be

Zin � jZ0
pbc � bNW q tan βl � 1

bcp1� bNW tan βlq , (6.3)

where bi � ωZ0Ci, is the normalized susceptance of the capacitor Ci. The mag-

nitude of Zin is plotted as a function of frequency in Figure 6.2c where the black

dashed line shows the resonance condition, which occurs when the input impedance

is zero. The nanowire is indicated by the diamond-shaped symbol and we use

CNW � 40 aF in these simulations. The blue line is direct plot of relation (6.3),

while the orange line is a plot of the input impedance, where the resonator is re-

placed with its lumped circuit equivalent, with C � π
4ω0Z0

and L � 1
ω2
0C

where ω0
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is the unloaded resonance frequency of the resonator, in the absence of coupling.

This justifies the replacement of the transmission line resonator with the LC res-

onator as depicted in Figure 6.2b. Furthermore, from the relationship between

the impedance matrix and scattering matrix of a two port[142], we find that the

transmission coefficient is simply S21 � 2

2� Z0
Zin

, which is plotted in Figure 6.2d.
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(a) (b)

(c) (d)

Figure 6.2: (a) Circuit model of the device at the node where the single-nanowire

device couples to the feedline through coupling capacitor Cc. Here the impedance

of a distributed-element resonator is shown and the nanowire is represented as a

tuneable capacitor. (b) Circuit model of device with the resonator is replaced by its

lumped-element equivalent. (c) Plot of the input impedance at node 1 calculated

using the distributed-element impedance of the resonator (in blue) and using the

lumped-element equivalent (in orange). Lines are stacked on top of each other.

(d) Calculation of |S21| from the input impedance in the lumped-element model.
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6.2.2 Gated Double Nanowire Device

The second variant we have fabricated is just like the first, except the single

nanowire has now been replaced by two nanowires. The node connecting the

two nanowires is a superconducting island that is made large enough to prohibit

phase-slips. It is capacitively coupled to a gate electrode which allows us to apply

a voltage that induces charges on the island. Figure 6.3a illustrates the layout

of the device, where the blue box is enlarged in Figure 6.3c. The red layer is to

be exposed, and the remaining black features represent the superconductor and

nanowires. The SEM image of the completed device after fabrication is shown in

Figure 6.3d. Following our discussion of the single nanowire case, the equivalent

circuit of this device is shown in Figure 6.3b.

The capacitances from the island to other parts of the circuit have also been

model using Ansys Electronics Desktop 3D Electrostatic Analysis, with Ci,gate �
37 aF and Ci,ground � 76 aF .
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(a) (b)

(c) (d)

Figure 6.3: (a) Designed GDSII layout of the gated double nanowire device. The

gate electrode is partially shown. Blue box shows the location of the two nanowires.

(b) Circuit model of the device. An external voltage Vg is shown being applied

through the gate electrode and gate capacitor Cg. (c) A close-up of the designed

nanowires. The island between the two nanowires is coupled capacitively to the

gate electrode. (d) SEM image of the gated double nanowire structure.
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6.3 Experimental Setup

Here we describe the experimental setup used to obtain the subsequent measure-

ment results. All our measurements are performed in an Oxford Instruments Triton

500 Dilution Refrigerator normally operated at 15 mK in the LCN Lab 2.06.

After fabricating the devices, they are mounted onto a sample box using GE

varnish, which is an adhesive that maintains good thermal conductivity at cryo-

genic temperatures. The sample box contains a printed circuit board (PCB), which

routes the signal from the sample to the external measurement apparatus. The

sample box is also lined with Eccosorb, an absorber of electromagnetic energy.

Wirebonds are placed to make the necessary connections from the sample to the

PCB. The box is then covered and mounted onto the copper bracket that hangs

from the mixing chamber plate of the dilution fridge. The sample space is then

enclosed in two cylindrical shields to minimize stray magnetic fields affecting our

experiments. The inner shield is made of aluminium, which expels magnetic field

below its transition temperature. The outer shield is Amumetal A4K, a high per-

meability mu-metal alloy, which redirects magnetic fields away from the sample

space.

RF signals in and out of the fridge are carried by semi-rigid coaxial lines as

illustrated in Figure 6.4. The input line is heavily attenuated to reduce any noise

generated by black body radiation which can couple to the input of sample. There

is 60 dB attenuation in total, with 20 dB attenuators placed on the input line at

the 4 K, 1 K and 100 mK stages. Additionally, the semi-rigid coaxial cables intro-

duce about an extra 5 dB attenuation per stage, or 25 dB in total. To detect these

weak signals through our samples, we place a travelling wave parametric amplifier

(TWPA) right at the sample output which provides around 25 dB gain. This acts

as a low noise amplifier which boosts our signal-to-noise ratio for further amplifi-

cation at the later stages. The TWPA requires a pump tone which is supplied by

a Rohde & Schwarz SGS100A RF source. An additional RF line is used to supply

the pump to the TWPA, which is coupled to it via a directional coupler in the
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sample space. The input and output to the TWPA are connected to cryogenic

RF isolators which ensure that external noise does not propagate down into the

TWPA from the output line, and that any signals at the input of the TWPA are

not reflected back into the sample. A high electron mobility transistor (HEMT)

on the 4 K plate provides another 20 dB gain.
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Figure 6.4: Experimental setup inside the Oxford Instruments Triton 500 Dilu-

tion Refrigerator. The input and output RF lines are shown connected to our

device-under-test (DUT) inside the sample shields. A filtered voltage bias line is

connected to our sample box, which is used to apply the gate voltage.
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6.4 Measurement Results

6.4.1 Single-Nanowire Device Measurements

Low Power Resonance Curve

First we present the measurements of the transmission coefficient S21 through the

single-nanowire device using the Keysight E5080A ENA Vector Network Analyzer.

For a resonator in a notch configuration, the resonance curve is given by[143][144]

S21pfq � aeiαe�2πifτ

�
1�

p Ql

|Qc|e
iϕq

1� 2iQlp f
fr
� 1q

�
, (6.4)

where τ is the phase delay, α is the initial phase of the signal, and a is the atten-

uation (or gain) of the signal. These all account for parameters external to the

resonator. The square bracketed expression is the S21 of an ideal resonator for

this configuration. The probe frequency is f and resonance frequency is fr. The

loaded quality factor is Ql and the coupling factor is Qc � |Qc|eiϕ. The phase

factor eiϕ accounts for the asymmetry of the resonance as a result of impedance

mismatches in the input and output lines. This model is also used as the basis for

fitting algorithms developed in [143], based on the resonance circle on the complex

S21 plane.

Figure 6.5 shows the magnitude and phase of the S21 through the single-

nanowire device. The cyan dots are measured VNA data and the solid red lines are

from the fit. In this measurement, the VNA source power is -50 dBm. From the

fitting model, we extract a resonance frequency of 5.0552 GHz and intrinsic quality

factor of 9800. The resonance frequency is lower than the designed value of the

quarter-length resonator, which is in the range of 6 to 7 GHz. The intrinsic quality

factor, Qi we find is about an order of magnitude lower than typical superconduct-

ing resonators reported in the literature. Even some NbN resonators fabricated in

our cleanroom before had exhibited Qi ¡ 105, while other resonators with intrinsic

quality factors on the order of 103 have also been observed, attributed to potential
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contamination in the sputtering chamber[139].

(a) (b)

Figure 6.5: Cyan dots show the measured S21 magnitude and phase of the gated

device at -50 dBm VNA power and red curves show fit to the data using algorithm

from [145].

(a) Magnitude of the S21. (b) Phase of the S21. The measurements are taken at 10

mK in a dilution fridge and the device is enclosed in a sample shield to minimize

unwanted coupling to stray fields.

114



6.4 Measurement Results

Nonlinear Power Dependence

The power dependence of the resonator was measured using a VNA, with pow-

ers from -50 dBm to -25 dBm in 1 dBm steps. The results are shown in Figure

6.6. Figure 6.6a shows a colour plot of the S21 magnitude from 5.05 GHz to 5.06

GHz with increasing VNA power in the vertical axis. Figure 6.6b shows a selec-

tion of these curves at different powers, demonstrating the decrease in resonance

frequency by about 4 MHz as the power increased by 20 dB. This behaviour is

characteristic of the driven Duffing oscillator discussed in the introduction, where

the critical power occurs at -45 dBm, above which the resonance curve starts to

distort.

(a) (b)

Figure 6.6: Single-tone power dependence of the single-nanowire device. (a) Mea-

surement of the power dependence of the S21 magnitude of the single-nanowire

device. (b) S21 magnitude of the device for powers from -45 dBm to -25 dBm with

a 5 dBm spacing.
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Mixing

Figure 6.7 shows the VNA measurement of the single-nanowire device with a pump

tone applied through a directional coupler. The pump frequency is varied in this

measurement as shown in the vertical axis. The VNA power is -40 dBm and

the pump power is -30 dBm (which includes coupling losses from the directional

coupler). The pump tone is applied in a 10 MHz bandwidth centered at 5.055

GHz, which can be seen across the diagonal of the figure. To obtain the plot as

shown, a pump frequency is set, then the VNA frequency is swept from 5.05 GHz to

5.06 GHz. When the pump frequency is near resonance, the resonance frequency

changes discontinuously. It decreases suddenly, and as the pump frequency is

further detuned, the resonance frequency returns to its original value, another

indication of the nonlinearity in the resonator as seen earlier.

Figure 6.7: Pump-power dependence of the single-nanowire device in a two-tone

experiment. Measurement of the S21 magnitude in response to an additional tone

applied near the resonance frequency.

The VNA source and receiver frequencies are identical in this experiment, which

means that only the transmission at this selected frequency is being measured. In

order to measure any mixing products as a result of the interaction between the

signal and pump tones, we measure the power spectrum of the device output. We
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perform this experiment by combining the two tones through a directional coupler

as before and measuring the output power using an Advantest R3271A Spectrum

Analyser. Firstly the pump-power dependence is investigated. The pump tone is

chosen to be near the resonance, fixed at 5.054 GHz, and the signal tone is set to

be at a fixed detuning of +100 kHz from the pump. The signal tone is applied

at a fixed power at -25 dBm, while the pump power is varied from -20 dBm to

5 dBm. Figure 6.8a shows the appearance of an idler tone as the pump power

exceeds about -2 dBm. The idler and signal components are symmetric about the

power tone, with the idler frequency being at fi � 2fp � fs.

(a) (b)

Figure 6.8: (a) Measurement of the pump-power dependence of the idler tone when

the detuning between the signal and pump tones is fixed at 100 kHz.

(b) Measurement of the pump-frequency dependence of the idler tone. The de-

tuning between the signal and pump is fixed, but both are swept across a broad

frequency range.

Next, we investigate the frequency dependence of this effect. For this measure-

ment, the pump and signal tones are kept at a fixed detuning of 100 kHz, while

both are swept across a 1.5 GHz bandwidth. The pump power is fixed at 3 dBm,

and the signal power at -25 dBm. The spectrum analyser then measures around

a 1 MHz bandwidth centered on the pump frequency. Here we characterise the

gain, which is obtained by subtracting the two-tone spectrum from the control

117



6.4 Measurement Results

Figure 6.9: Measurement of the signal gain of the single-nanowire device. The

data is a horizontal slice of the data in Figure 6.8b. The pump frequency is 5.054

GHz, pump power is 3 dBm, and the signal power is -25 dBm.

consisting of only the signal without any applied pump. The result is shown in

Figure 6.8b and we see that the idler power is highest around the vicinity of the

resonance frequency of the device, where the gain is about 5 dB. In Figure 6.9 we

show a horizontal cross-section of the plot in Figure 6.8b at a pump frequency of

5.054 GHz where the idler gain is maximum.

Thus, we see that the mixing effect is most prominent in the spectral vicinity of

the resonator and combined with the new generated frequency component, these

results strongly suggest that a degenerate four-wave mixing process is induced

by the nonlinear resonator. Although this is the case, we cannot yet attribute

this nonlinearity to the nanowire capacitance, as there may be other sources of

nonlinearity, such as in the kinetic inductance of the film, which has the same

character, driven nonlinear by a large current. To show that the nanowire is

responsible for this behaviour, in the next section we present results of experiments

on a variant of this device, containing two nanowires and an island, to which a

gate is capacitively coupled. This allows us to set the voltage across the nanowires

directly.
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6.4.2 Gated Double Nanowire Device Measurements

In this section we present measurements of the gate tuneable response of the gated

double nanowire device. First we characterise the device using a VNA as before

in the absence of any applied gate voltage. The power dependence is shown in

Figure 6.10a. We found that the resonance frequency of this device was much

lower than expected, resulting in lower transmission, band-limited by the circula-

tors and HEMT at the output stage. The resonance frequency is 3.5475 GHz, with

an intrinsic Q-factor of 4255, obtained from the fitting routine described earlier.

(a) (b)

Figure 6.10: (a) Measurement of the pump power dependence of the S21 magnitude

of the gated double nanowire device. (b) S21 magnitude of the device for powers

from -10 dBm to 5 dBm with a 5 dBm spacing.

Lock-In Detection

Next, we measure the response of the resonator as a voltage is applied to the gate

of the device. We used a lock-in detection scheme, referenced to the frequency of

the voltage applied to the gate, to improve the signal-to-noise ratio of our mea-

surement. The measurement setup is shown in Figure 6.11. A continuous wave

(CW) is generated by an R&S SGS100A SGMA RF source, which is split by the
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power splitter. One output of the power splitter drives a MM1-0312HS Marki

Microwave RF Double Balanced Mixer, while the other output is attenuated to

a suitable power level by a programmable Vaunix LabBrick LDA 5018V Digital

Attenuator to be sent through the feedline of our device-under-test (DUT). The

frequency of this signal is set to be close to the operating frequency of the device

around fsig � 3.545 GHz. A Keithley 3390 Arbitrary Waveform Generator (AWG)

supplies the sinusoidal voltage waveform that is applied to the gate contact, which

is at a lower frequency at fAWG � 75 Hz. If the device responds non-linearly

to the oscillating voltage, the amplitude of the output signal will be modulated,

producing sidebands at fsig � fAWG, which are then demodulated by a double-

balanced mixer, with the LO supplied from the same RF source as the signal. The

resulting output of the mixer is then the envelope of the modulated signal, which

is detected using a lock-in amplifier phase-locked to the AWG signal.

Figure 6.11: Schematic of the measurement setup for lock-in detection of the

response of the device.
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Input and Output Signals

The voltage supplied by the AWG can also be offset. Since the nanowires are

voltage-tuneable capacitors, we can extract the capacitance change from the changes

in resonator frequency. An example voltage waveform is shown in Figure 6.12, with

an oscillating part that is fixed in frequency and amplitude, and an offset which

changes stepwise over time.

Figure 6.12: Illustration of the waveform used to perform voltage dependence

measurements. The signal contains an oscillating part for phase sensitive detection

and an offset which biases the device at different points of the voltage response

curve.
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Magnetic field response

If the oscillating voltage is small enough, the change in the resonance should be

linear and hence the output voltage as a function of frequency should resemble

the derivative of the transmission curve. Before we measured the electric field

response of the device, we first verified the measurement technique by using a coil

attached to the sample box, which produces a magnetic field when a current is

sourced through it. A 1 kΩ resistor is connected in series with the AWG. The

response of the device to applied field is large, which aids in the verification.

Figure 6.13 shows the comparison of the transmission curve data to the mea-

sured amplitude using lock-in detection. Figure 6.13a shows the normalized output

voltage measured by the VNA and Figure 6.13b is its numerical derivative. Figure

6.13c is the magnetic field response of the device when the offset voltage is fixed

at zero. The RF power used is 18 dBm, with the variable attenuator set to 37 dB.

Including the power loss from the power splitter, the power to the input line is -22

dBm for this measurement, deep into the linear regime of the resonator. The oscil-

lating voltage is set to 0.1 V peak-to-peak, corresponding to an oscillating current

of 0.1 mA peak-to-peak. Figures 6.13b and 6.13c show identical features, namely

a large peak corresponding to the first steep negative slope of the resonance dip

and another smaller peak, corresponding to the shallower rising edge, with a drop

to zero between the two peaks corresponding to the turning point of the curve.

The measured magnitude response is not centered on the same frequency as the

curve in Figure 6.13b, but is instead about 500 kHz lower.
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(a) (b)

(c)

Figure 6.13: Comparison between the numerical derivative of the resonance curve

and the magnetic field response. (a) The normalized output voltage obtained

from VNA |S21| magnitude measurement of the gated device at a source power

of -10 dBm. (b) The numerical derivative of the curve in (a). (c) The measured

amplitude response of the device to a 0.1 mA peak-to-peak oscillating current

using the lock-in detection scheme at zero bias current.
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We then applied an offset current to the coil and measured the change in res-

onance curve. This current is first applied using a Keithley 6220 precision DC

current source and a VNA is used to measure the S21 magnitude at a power of

-10 dBm. Then using our lock-in setup, we vary the offset current in addition to

the oscillating current applied to the coil. The results are presented in Figure 6.14

which show qualitative agreement, with similar hysteretic characteristics in both

cases when the direction of current is changed.

(a) (b)

Figure 6.14: Four-quadrant offset current waveform is applied to the sample coil

to obtain the data shown in the figures. The measurement starts from the bottom

of the figure and ends at the top. (a) VNA measurement of the magnetic field

response of the device. (b) Measurement of the magnetic field response of the

device using lock-in detection.

Thus in this section we have validated the measurement principle using lock-

in detection. We showed that the measured amplitude by the lock-in amplifier

has a strong signal in the spectral vicinity of the resonance frequency of the de-

vice. Furthermore, we demonstrated that the measured amplitude is related to

the derivative of the output voltage with respect to RF frequency. We then are

able to monitor changes in resonance frequency using this method. We use this

technique to measure the electric field response next.
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Electric field response

We characterise the electric field response of the gated double-nanowire device us-

ing the lock-in detection technique demonstrate in the previous section, but this

time, the voltage is applied to the on chip gate bias line. We first demonstrate

voltage sensitivity of the device as shown in Figure 6.15. The peak-to-peak oscil-

lating voltage used for this measurement is 0.2 V and the RF power at the device

input is 2 dBm. Figure 6.15a is the S21 data of the device at -1 dBm VNA power,

and Figure 6.15b is the modulus of the numerical derivative of this curve. Fig-

ure 6.15c and 6.15d are the magnitude and phase of the signal measured by the

lock-in amplifier at a fixed offset voltage of zero. As before, the magnitude signal

resembles the modulus of the derivative curve. The measured phase changes by

1800 when the slope changes sign. The strong signal near the resonance frequency

shows that the resonator does responds to the oscillating voltage.

125



6.4 Measurement Results

(a) (b)

(c) (d)

Figure 6.15: Comparison between the numerical derivative of the resonance curve

and the electric field response. (a) Normalized output voltage obtained from VNA

|S21| magnitude measurement shown in linear scale at a source power of -1 dBm.

(b) Derivative with respect to frequency of the smoothed-out S21 curve. (c),(d)

Measured magnitude and phase of the voltage response using the circuit of Figure

6.11 as a function of frequency at fixed bias voltage.
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Voltage Periodicity

In this section we demonstrate the periodic tuning of the resonator with applied

offset voltage. In the measurements that follow, the input RF power is 2 dBm and

the peak-to-peak voltage is 200 mV. Figure 6.16 shows the signal measured by the

lock-in detector, plotted as magnitude and phase in the colour axis. The x-axis

is the signal frequency which is varied by 3 MHz from 3.546 GHz to 3.549 GHz,

while the voltage offset is varied in the y-axis. The local minimum between the

two peaks in the magnitude changes by about 1 MHz as the voltage is tuned by

160 mV, coinciding with the points where the phase signal changes by 1800. The

data shows periodicity in both measured magnitude and phase as shown in Figures

6.16c and 6.16d, where we take a vertical slice of the data at a fixed frequency

of 3.5473 GHz. In our experiments, we found that the results are independent of

whether the frequency or the voltage offset is swept first, nor is it dependent on

which direction the voltage offset is being swept.
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(a) (b)

(c) (d)

Figure 6.16: (a),(b) Measured magnitude and phase of the voltage response of the

gated device by the lock-in amplifier as a function of voltage offset in the y-axis

and frequency in the x-axis. (c),(d) Vertical sections of the figures in (a),(b) at a

fixed frequency.
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The periodicity is more apparent when plotted instead in the quadrature repre-

sentation. Figure 6.17 shows the X and Y quadratures of the received signal. The

vertical slices in Figures 6.17c and 6.17d show clear oscillatory behaviour in the

voltage offset with a single period. This is as opposed to the magnitude response,

which is always positive and hence contains frequency components at twice the

oscillation frequency. We then take the FFT of these signals, as in Figure 6.18 to

obtain the voltage period of 292 mV.

(a) (b)

(c) (d)

Figure 6.17: (a),(b) Measured X and Y quadratures of the voltage response of

the gated device as a function of voltage offset in the y-axis and frequency in the

x-axis. (c),(d) Vertical sections of the figures in (a),(b) at a fixed frequency.
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(a) (b)

Figure 6.18: Fast-fourier transform of the data from Figures 6.17c and 6.17d. A

single peak is shown in both quadratures which gives a voltage period of 292 mV.
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Analysis and Discussion

Since the quadrature data corresponds to the signed derivative of the resonance

curve, in this section we analyse the integrated X and Y quadrature data to extract

the resonator parameters. The integrated data is shown in Figure 6.19.

(a) (b)

(c) (d)

Figure 6.19: (a),(b) Integrated X and Y quadratures of the voltage response as a

function of voltage offset in the y-axis and frequency in the x-axis. (c),(d) Vertical

sections of the figures in (a),(b) at a fixed frequency.
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Figure 6.20 shows a selection of resonance curves from Figure 6.19a when the

offset voltage is changed by 100 mV. The resonance frequency is shifted by 0.5

MHz.

Figure 6.20: Resonance curves extracted from the lock-in measurement for various

offset voltages.

From these curves, we are able to extract the resonance frequency and full

width at half maximum (FWHM). To extract the resonance frequency fres, we

find the minimum point of each curve at fixed offset voltage. We determine the

FWHM by first finding the 3 dB point. The curves we obtain are in general quite

asymmetric, so for simplicity, we determine the peak of the curve ∆V to be the

difference between the maximum and minimum of the curve. The 3 dB point,

f3dB, then occurs at ∆V?
2
above the minimum point of the resonance curve. We

then calculate the FWHM as 2pfres � f3dBq. Figure 6.21 shows an example of the

determination of the resonance and 3 dB points.
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Figure 6.21: Resonance frequency and FWHM extraction. Red crosses labelled ’0’

and ’1’ are the resonance and 3 dB points respectively.

The extracted fres and FWHM are plotted in Figure 6.22, extracted from the

Y quadrature data over an offset voltage range of 1 V. The plot shows the pe-

riodic tuning of the fres and FWHM. Correlated with the increase in fres is the

broadening of the resonance dip. The plot shows a lower bound of the resonance

frequency at around 3.547 GHz, which changes by about 1 MHz, although some

data points indicate that the change exceeds our measurement range. The FWHM

at the lower fres is around 0.5 MHz, and increases to about 2 MHz when the fres

is maximized.

We interpret our gated-nanowire device as an effective single nanowire, with

a charge tuneable critical voltage, analogous to the DC SQUID. Critical voltage

modulated by a gate voltage was experimentally observed in studies on the QPS

transistor[79][146] which is dual to the DC SQUID, and the arguments for the

DC SQUID could be applied to the case here. For charges Q1 and Q2 across the

each nanowire, the net charge on the superconducting island at Qg gate charge is

133



6.4 Measurement Results

Figure 6.22: Periodic modulation of the resonance frequency (in black) and FWHM

(in red) extracted from Y quadrature data due to the offset voltage.

Q2 �Q1 �Qg � 2en. The voltage across two identical nanowires is then given by

V � Vcpsin 2πq1 � sin 2πq2q,

� 2Vc cos pπQg

2e
q sin p2πpq1 � q2qq,

(6.5)

where qi � Qi

2e
and the effective critical voltage of the ideal QPS transistor is

Vc,eff � |2Vc cos pπQg

2e
q|. The differential capacitance of the QPS transistor is thus

C � C 1
0pQgq

cos p2πpq1 � q2qq , (6.6)

where C 1
0pQgq � e

πVc,eff
� e

π|2Vc cos pπQg
2e

q| . Asymmetry in the nanowires decreases the

depth of modulation of the effective critical voltage, with the highly asymmetric

limit, a � Vc2

Vc1
! 1, giving Vc,eff � Vc1

�
1� a cos pπQg

e
q
�
[79]. The tuning of the

capacitance explains qualitatively the changes we observe, but the data does not

follow the simple sinusoidal dependence. Furthermore, the period of the critical

voltage implies that Cg is of order 1 aF.
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To conclude this section, we present some characterisation of the measurement

in the form of input RF power and peak-to-peak voltage dependence Vpp. We have

so far demonstrated periodic tuning of the resonator in the high power regime, as

this resulted in the data with a better signal-to-noise ratio. Figure 6.23 show the

X and Y quadrature data for an experiment at a fixed frequency of 3.5475 GHz

and Vpp � 0.2 mV. The digital attenuator which controls the amount of power sent

to the input line is calibrated so that 10 dB corresponds to an input power of 0

dBm. Thus we see that with an input power of -10 dBm (20 dB attenuation) a

periodic modulation of the response is still observable albeit with a much weaker

received signal. This is well in the linear regime and we also note that since the

response is frequency dependent, the received signal might improve at a different

set point.

(a) (b)

Figure 6.23: X and Y quadrature of the response of the gated device at a fixed RF

frequency of 3.5475 GHz and Vpp � 0.2mV .
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Lastly, Figure 6.24 shows four different runs of our experiments to determine

the Vpp dependence of measurements. To obtain this result, we set a RF frequency

of 3.5475 GHz and input RF power of 0 dBm, and varied the Vpp as shown on the

y-axis of these plots. The voltage offset is also varied to observe the periodicity for

each Vpp. The plots show that the periodicity is approximately independent of the

value of Vpp. In the course of making these measurements, we observed random

period-halving events and this is shown in Figures 6.24b, c and d. Figures 6.24b

and 6.24c are the same measurement taken at two different times. We see that

the period which was taken to be �300 mV before, which occurs around Vpp � 30

mV to 60 mV has reduced to �150 mV at other parts of the figure. This is not

a systematic effect of changing Vpp, but occurs randomly. Figure 6.24d shows a

close-up of this effect. The change in period is possibly an observation of single

charge tunnelling onto the island[147][148], which might be a source of noise for

our measurements.
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(a) (b)

(c) (d)

Figure 6.24: Effect of decreasing the peak-to-peak voltage of the measurement

on the periodicity. (a) (b) and (c) Two runs of the same measurement with the

same parameters. The halving of the periodicity occurs at random locations. (d)

Measurement over a smaller voltage range showing a close-up of the random period

switching.

137



6.5 Discussion and Outlook

6.5 Discussion and Outlook

In conclusion, we have fabricated two variants of a nonlinear resonator—one shunted

by a nanowire, and a gate-tuneable variant which consists of two nanowires. For

the first device, we demonstrated that it behaves as a driven Duffing oscillator,

where the resonant frequency shifts lower with increasing power. We then applied

two tones to the sample, a signal at frequency fs and a pump at frequency fp

and measured the generated idler tone at fi � 2fp � fs, indicating a degenerate

four-wave mixing process. The idler tone is most prominent near the resonance

frequency of the device and the maximum signal gain we found was 5 dB. While we

demonstrated that our device is a nonlinear resonator, we have not yet identified

the source of nonlinearity.

To show that the effect is due to the nanowires, we fabricated and characterised

a gated variant of the device, containing a superconducting island capacitively cou-

pled to a gate voltage bias line. We used a lock-in detection method to investigate

the sensitivity of the device to the applied voltage. We first verified the lock-in

detection method using the known magnetic response of the device. Subsequently,

we exhibited a periodic tuning of the resonant behaviour as the offset voltage is

varied. The period was determined to be 292 mV and the resonant frequency

was tuned by �1 MHz. We suggest that the periodic behaviour is a result of the

effective critical voltage modulation of our nanowires. We have also seen evidence

for single-charge tunnelling onto the island when performing the experiments.

There remains a few outstanding questions yet to be answered in this chapter.

The first is the differences in resonance frequencies between the single and double

nanowire variants. While this may be attributed to the differences in impedance

seen by the resonator in both cases, it has been difficult to rule out the difference

in thin film properties. Second, the effective gate capacitance implied by the pe-

riodicity we observed is two orders of magnitude lower than the designed value.

This may be due to additional capacitances to ground which we have neglected

in the network, perhaps due to the capacitance of one or both of the nanowires.
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Hongisto and Zorin[79] also report unexpectedly large periodicity in their sample

and attribute this to a superconducting island within the nanowire itself that the

gate is coupled to. Moreover, the resonance frequency and FWHM data extracted

give only qualitative agreement with the model we described and deviations from

this model have not been fully understood. Lastly, we have not yet characterised

the three-wave mixing properties of the gated device before the end of this project.

We have so far demonstrated possible routes to realizing a nanowire-based dual

to the JPA. However the performance of our devices are still far from the current

state-of-the-art JPAs and JTWPAs described in Chapter 3. A number of opti-

mizations in our design could help close the gap. The feedline-resonator coupling

and the impedance matching to the external circuit are two design elements which

can be improved further. A higher nanowire uniformity could also help achieve

resonant frequency modulation over a wider range.

With the two-nanowire device, we demonstrated a voltage-tuneable resonator.

Tuneable resonators are not only a core element in quantum-limited amplifiers,

but in other quantum technologies such as in qubit readout architectures and

long-range qubit coupling elements. Conventionally, they are implemented us-

ing SQUIDs and controlled using external magnetic fluxes, which are difficult

to confine, making cross-talk an issue especially in larger, more complex sys-

tems. Electrostatic controls have the potential to overcome some of these is-

sues, with recent publications in the literature implementing this function using

hybrid superconductor-semiconductor devices[149] and graphene Josephson junc-

tions[150]. Our work presented here, using superconducting nanowires, represents

a novel approach, with a readily scalable fabrication process which can potentially

be incorporated into a variety of quantum circuits.

139



Chapter 7

Conclusions and Outlook

Overall, the work presented in this thesis contributes to the expanding repertoire

of superconducting quantum devices by addressing both the design aspects and

practical implementation of nonlinear capacitors which includes qubit Hamiltonian

engineering, JJ fabrication process development, and design and measurements of

QPS nanowire-based circuits. To conclude, we summarize the main findings of

this work and offer a brief outlook on potential directions for future research.

In Chapter 4 we considered the implementation of a YY coupler by numeri-

cally simulating the Hamiltonian of two flux qubits coupled to a tuneable capacitive

coupler. As described in the review chapter, these interactions have the potential

to enhance the performance of the current generation of quantum annealers, and

also enable the representation of a larger class of Hamiltonians. We used quantum

circuit analysis and qubit reduction method based on the Schrieffer-Wolff transfor-

mation to determine the circuit parameters required for an implementation of the

device. We considered the sensitivity of the coupler to variations in fabrication,

designed a circuit layout for an experimental chip and described measurements

that can be carried out to verify our design. One obvious direction for extending

this work is to fabricate and test the circuit in practice. Compatibility with other

types of flux qubit designs and extensions to the coupler design could also be in-

vestigated.
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In Chapter 5 we developed a fabrication process to produce overlap Josephson

junctions in the LCN cleanroom. The main contributions here are the development

of backsputtering and oxide growth techniques in our sputter deposition system.

We characterised junctions under different processing conditions using resistance

measurements and demonstrated the ability to change the interface properties of

our methods. We also presented and analysed low temperature transport mea-

surements of the junctions, and showed that they exhibited the characteristics of

a nonhysteretic JJ. There is a lot of room for improvement in the methods con-

sidered here. In this initial study, we only used indirect methods to determine

the properties of the junction interfaces, but its exact composition and structure

is unknown. This can be studied using Transmission Electron Microscope (TEM)

for inspecting the barrier quality to help understand how to better optimize our

process. Furthermore, there is also scope for designing a better junction mea-

surement setup for the low temperature experiments. A multiplexed arrangement

will be better suited to allow for a larger number of devices to be characterised

at a time, and enable better filtering on the shared leads needed for measuring

nanoscale junctions.

Finally, in Chapter 6 we presented the experimental work on using quantum

phase-slip nanowires as nonlinear capacitors for parametric amplification. Two

variants were considered, one with a single nanowire, and another consisting of

two nanowires with an island to which a voltage is applied through gate capaci-

tor. The first device demonstrated all the indications of a nonlinear resonator and

showed gain of 5 dB induced by a degenerate four-wave mixing process. For the

second variant we developed and verified a lock-in detection method and demon-

strated periodic tuning of the resonance frequency by the gate voltage. This proof

of principle lays the groundwork for using QPS nanowires as nonlinear capacitive

elements in superconducting RF electronics. Remained to be shown is the mixing

properties the gated variant of the device. Particularly, parametric amplification

by three-wave mixing, which this design enables, has not been verified experimen-
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tally. This can be carried out by setting up a bias-tee near the sample space, which

will allow both DC biasing and RF driving at the gate. A thorough and careful

analysis of our experiments here could also be of great benefit to help understand

how the designs can be further optimized for gain, noise performance or bandwidth

as needed in a specific application. An interesting research direction could be to

design and implement a travelling-wave amplifier based on a series array of QPS

nanowires.
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