
Optimisation of the SHiP muon
shield and event reconstruction in

the SND@LHC emulsions using
Machine Learning

Filips Fedotovs

A thesis presented to the University College of London
for the degree of Doctor of Philosophy

Department of Physics and Astronomy
University College of London

United Kingdom
October 15, 2025

Supervisor: Prof. Mario Campanelli

Co-Supervisor: Dr. Timothy Scanlon



Declaration

I, Filips Fedotovs confirm that the work presented in my thesis is my own. Where
information has been derived from other sources, I confirm that this has been indi-
cated in the thesis.

ii



Abstract

This work studies the use of machine learning techniques in high-energy physics
to increase the discovery potential of two experiments. Five different studies were
carried out within two CERN experiments: SHiP and SND@LHC, the former being
an approved proposal, and the latter having taken data since the start of LHC Run
3. These experiments, run by a largely overlapping collaboration, are designed to
measure or discover Feebly Interacting Particles (FIPs), predicted by Hidden Val-
ley theories, or neutrinos. They require very strong signal/background separation,
making them ideal testing grounds for Machine Learning techniques.

One of the key issues of the SHiP proposal is the muon shield, which is expected
to deflect muons produced by the interactions of the SPS beam on a beam dump.
In order for the experiment to reach its sensitivity to FIPs, no muon can reach the
sensitive part of the detector, leading to a very complex magnetic field structure.
Evolutionary algorithms were employed to derive an optimal magnetic shield design,
also accounting for practical factors. The SND@LHC detector, located 480 metres
away from the ATLAS collision point, behind a large amount of concrete and rock,
measures neutrinos and searches for FIPs interacting in an emulsion tracker. Neural
networks were applied to analyse high-resolution emulsion data in the presence of
noise and misalignments. Multiple aspects of the reconstruction and analysis have
been covered, including tracking, vertexing, particle classification, and momentum
estimation.

Under specific conditions, machine learning can greatly improve the performance
of standard algorithms, even if their practical implementation is far from straight-
forward...
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Impact Statement

This thesis applies machine learning (ML) techniques to enhance the discovery po-
tential of two CERN experiments: SHiP and SND@LHC, which search for Feebly
Interacting Particles (FIPs) and neutrinos. These particles are essential to exploring
physics beyond the Standard Model. The research addresses critical challenges in
these experiments, such as background suppression, complex detector design, and
the reconstruction of faint particle signals using high-resolution emulsion data.

The thesis contributes novel approaches to experimental high-energy physics, in-
cluding the use of evolutionary algorithms for optimising magnetic shielding and
neural networks for precise particle tracking, vertexing, classification, and momen-
tum estimation, using a modular and scalable architecture suitable for large datasets.
These tools not only improve the performance of SHiP and SND@LHC but are
transferable to other experiments across particle and astroparticle physics, and even
medical physics.

Educationally, this research exemplifies interdisciplinary training by combining
physics, computer science, and data analysis. It offers valuable material for graduate-
level courses in machine learning for science and can help modernise experimental
physics curricula.

ML techniques developed in this work are relevant for any domain requiring the
identification of rare patterns within large, noisy datasets. Applications include
medical imaging, radiation monitoring, industrial sensing, and defence. The ap-
proach to optimising magnetic field configurations under real-world constraints can
inspire similar solutions in engineering design and environmental shielding.

Moreover, the publics growing interest in AI and fundamental science creates a
strong foundation for outreach. This work supports communication initiatives that
highlight how artificial intelligence is revolutionising scientific discovery. It has the
potential to inspire young researchers and inform science and technology policy.

Results are already being implemented within CERN collaborations and will be
disseminated through peer-reviewed publications, conference presentations, open-
source repositories, and participation in international ML/HEP workshops. The
tools and methods are being shared with the wider scientific community to promote
reuse and further development.
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Chapter 1

Introduction

The detection of the Higgs boson in 2012[1, 2] solidified the Standard Model (SM)
of particle physics as one of the most well-established theories, accurately describing
most of the known particles and their interactions. However, substantial evidence,
among others from astrophysical observations and neutrino oscillation experiments,
suggests that the Standard Model is incomplete, with the primary issues outlined
below.

Description of gravity: the Standard Model does not include the gravitational
force, and attempts to formulate a renormalizable quantum theory of gravity so
far have failed. Rather, it is described by general relativity, another successful but
conceptually different framework. In general, these theories minimally overlap: the
SM addresses the microscopic realm, while general relativity focuses on cosmological
structures. However, conflicts arise in areas where both theories intersect. One
notable example is the cosmological constant problem[3], where the energy density
estimates of the Standard Model and the ΛCDM1 model vary significantly.

Baryon asymmetry of the universe: it is believed that at the moment of the
Big Bang, matter and antimatter were produced in equal quantities, but current
observations indicate that matter significantly dominates over antimatter. The suc-
cessful explanation of this phenomenon requires a charge-parity (CP) violation that
has been observed in numerous hadronic interactions[4, 5, 6], but its magnitude is
way too small[7] to explain BAU.

Dark matter: according to Newton’s laws of gravity and given that their visible
matter is concentrated in a central core, it is expected that the rotational velocity
of the stars in galaxies decreases with their distance to the galactic centre, with
a behaviour similar to the velocity of planets in the solar system. However, as-
tronomical studies of distant galaxies have shown[8] a different picture: the galaxy
rotation curves are flatter than expected for their observed mass distributions. Simi-
lar behaviour was observed[9] in much larger cosmological structures such as galactic
clusters. The most natural explanation for this puzzle implies that most of the ac-
tual mass of the galaxies is made up of the substance called dark matter (DM),
which does not participate in electromagnetic interactions and is invisible to us. It

1 A concordance cosmological model that naturally incorporates general relativity as a gravita-
tional theory.
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CHAPTER 1. INTRODUCTION

is widely accepted that dark matter makes up approximately 87% of all matter in
the universe[10], yet its exact nature remains unknown as none of the particles in
the Standard Model could be good DM candidates.

Neutrino masses: in the original formulation of the Standard Model, it was as-
sumed that neutrinos are massless, as there was no significant experimental evi-
dence to prove otherwise. Eventually, neutrino oscillation experiments[11, 12, 13]
have shown that neutrinos do possess masses. Their exact values are still unknown,
but they are estimated to be on the sub-eV scale[14], well below the energy resolu-
tion of modern physics detectors. A neutrino can be a typical Dirac particle and
obtain a mass within the framework of the SM using the Higgs mechanism. This
implies the values of Yukawa coupling constants on the order of O(10−12), which
are significantly lower than for their charged lepton counterparts. Not all physicists
are comfortable with this idea, and other possibilities, such as the neutrino being
a Majorana particle with a mass-generating seesaw mechanism are considered. In
any case, right-handed neutrinos (or right-handed components) must exist and mix
with ordinary neutrinos.

All of these problems suggest that although the Standard Model is a remarkable
accomplishment that has significantly improved our understanding of the universe,
its shortcomings stimulate physicists to look for a more comprehensive theory.

Starting in the 1970s, SuperSymmetry theory, commonly known as SUSY, emerged
as the foremost candidate for this new theory, predicting the presence of additional
heavy particles. The search for new particles, predicted by SUSY or other the-
ories, has motivated physicists to explore the energy frontier of particle physics
using collider-based experiments such as LEP and LHC, with the latter achieving
an unprecedented value of centre-of-mass energy of 13.6 TeV[15]. Despite this ex-
traordinary feat, no evidence of massive non-SM particles has been observed so far.
This fact alone is not sufficient to rule out new physics theories, as masses of new
particles could be so large as to be out of the reach of current colliders.

This leaves physicists with two possible paths: pushing the energy frontier further
by building colliders with higher centre-of-mass energies, or investigating new physics
searching for theories predicting light particles with small interaction rates. The
first task is extremely difficult as existing colliders are already at the peak of current
technology, and further advancements would entail significant financial and logistical
hurdles. Although there are plans for projects like the Future Circular Collider[16],
these are several decades from being operational. This fact has led more physicists to
explore other options, such as X-ray astronomy[17], precise tests of the predictions
of the SM, and exploration of other Beyond the Standard Model (BSM) theories.

Several recent BSM models incorporate the Hidden Sector (HS), which contains
light but weakly interacting particles. These particles would not have been dis-
covered already: not because they are too heavy, but because their production or
detection rate is too small. This encourages researchers to investigate the intensity
frontier, which can be probed by high interaction rates combined with low back-
ground environments. Colliders face challenges in achieving the necessary intensities
because of constraints on the bunch-crossing interaction rate. In addition to that,
crossing points of hadron colliders such as Fermilab[18] or LHC are subject to a par-
ticularly challenging background due to the complex physics of the proton-proton

2



CHAPTER 1. INTRODUCTION

collision events, resulting in reduced sensitivity to the rare interaction processes.

The ideal experimental conditions to explore this regime are found in beam-dump
fixed-target experiments, where a dense material is exposed to an intense beam of
incoming particles, leading to a large number of interaction events inside the target.
All particles with relatively large interactions with matter are absorbed, and only
neutrinos and Dark Matter particles would reach the detector. Despite the much
lower centre-of-mass energy than that of collider experiments, it compensates for
it with a higher interaction rate. Furthermore, beam-dump experiments actively
reuse existing infrastructure, such as collider injectors and tunnels, making these
experiments relatively inexpensive. A somewhat intermediate approach between
standard collider experiments and beam dumps is to have detectors located far from
a collider’s interaction point, shielded by large amounts of rock and concrete. Also
in that case, the vast majority of particles produced in the collision are absorbed,
leaving only neutral, weakly interacting particles reaching the detector.

The high-intensity, fixed-target experiments also suffer from a background that
can obscure the detection of potential signals. For highly sensitive searches, a zero
background environment is desired: a stringent requirement that necessitates con-
siderable technological advancements in experiment design, shielding, and advanced
data analysis techniques. Consequently, this necessitates more efficient data extrac-
tion, modelling, and interpretation from experiments than existing techniques can
provide. This requirement does not concern only beam dump experiments; even
future collider facilities such as HL-LHC[19] and FCC will face the same problems
with increasing luminosity and associated pile-up.

One potential solution to this issue lies within the realm of artificial intelligence
(AI), particularly its subset, machine learning (ML), which has seen significant ad-
vances in recent decades and has become increasingly successful in practical appli-
cations such as image correction[20], speech[21], and facial recognition[22].

To address this gap and explore the potential benefits of ML in practice, a study
has been carried out on two experiments focused on exploring BSM physics at the
low-background/high intensity frontier: SHiP[23] and SND@LHC[24]. SHiP, a beam
target experiment, is designed to investigate the hidden sector, and Section 3 of this
thesis will be devoted to employing evolutionary algorithms to optimise the SHiP
magnetic shield against muon background. SND@LHC[24], an experiment located
480 metres from LHC interaction point 1, aims to investigate neutrinos originating
from the LHC and to search for low-mass dark matter particles. Chapter 4 outlines
efforts to improve the quality of the reconstruction of emulsion data at SND@LHC
through the application of artificial neural networks. Both studies deal with complex
physical and machine learning concepts, the theoretical basis of which is provided
in Chapter 2. Lastly, Section 5 summarises the findings and describes a strategy for
future research.

While promising, the performance of machine learning methods depends on the
realism of the training data. Since many analyses rely on Monte Carlo simulations,
any inaccuracies in modelling physics or detector responses can affect generalisabil-
ity. However, as simulation frameworks continue to improve, the corresponding
machine learning models, such as those in this work, are also expected to become
more robust and accurate.

3



Chapter 2

Theoretical background

This chapter aims to establish a crucial theoretical foundation for the research car-
ried out in this thesis and is divided into six sections. The first section offers a
brief overview of the Standard Model, the theoretical framework for the forthcom-
ing discussions on background effects and signal signatures specific to the SHiP and
SND@LHC experiments. For a more detailed analysis of the Standard Model and
particle detection techniques, readers can consult [25, 26].

The second part will be dedicated to a discussion of the feebly interacting particles
(FIP) predicted by a variety of BSM models. The SHiP experiment aims to carry
out model-independent studies of hidden particles, focussing primarily on the heavy
neutral lepton or HNL. In contrast, SND@LHC is better suited for dark photon
searches. Therefore, these topics will be emphasised in the discussion.

The third section will primarily examine the characteristics of both SM and BSM
particles, their interactions with detection instruments, and offer a brief overview of
past experimental searches in this area.

The fourth and fifth sections describe the experiments SHiP and SND@LHC, re-
spectively, covering their physical objectives, detector components, and the relevant
software frameworks used.

The subject of machine learning will be introduced in the last part since ML has
been used to address challenges in both SHiP and SND@LHC experiments. This
will include an in-depth description of evolutionary algorithms that will be used in
Chapter 3 devoted to SHiP and the subject of deep learning that will be used in
Section 4 dedicated to the SND@LHC experiment.

2.1 The Standard Model
Since its development in the mid-20th century, the Standard Model of particle
physics offers the most successful description of known elementary particles and
all their interactions except gravity. The theory is believed[27][28] to be mathemati-
cally self-consistent up to a Planck scale, and until now, no experiment has provided
any results that would directly contradict its predictions. The Standard Model it-
self is based on the mathematical framework of quantum field theory (QFT). In
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this framework, particles are not permanent entities but excitations of underlying
quantum fields, where energy can be converted into matter and vice versa. This
makes processes such as particle creation and their mutual destruction possible. A
classic example is electron-positron annihilation, where the lepton-antilepton pair
most commonly produces two photons. In QFT, this is described by the interaction
between the electron, positron, and electromagnetic fields.

Figure 2.1: The particle content of the Standard Model, generated using data from [29].

The Standard Model of particle physics consists of two types of particles: fermions
and bosons, and three forces: strong, electromagnetic, and weak, with the latter two
unified into the framework of electroweak interaction. The interaction among these
particles and forces prior to spontaneous symmetry breaking can be described using
the Lagrangian formalism of the Standard Model:

LSM =

Nf∑
f

iψ̄fγ
µDµψf︸ ︷︷ ︸

Fermion terms

−
Nv∑
v

1

2
TrF (v)

µν F
(v)
µν︸ ︷︷ ︸

Vector boson terms

+ |Dµφ|2 − V (φ)︸ ︷︷ ︸
Scalar (Higgs) boson term

+

Nf∑
f

[− gf√
2
ν(f̄LfR + f̄RfL)]︸ ︷︷ ︸

Fermion mass terms

+h.c., (2.1)

where each term is described in more detail in the following subsections.

2.1.1 Fermions
Particles with half-odd integer spin, known as fermions, obey Fermi-Dirac statistics
and are subject to the Pauli exclusion principle. The Dirac equation describes their
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free motion, and can be expressed in the Lagrangian formalism as follows:

LD = iψ̄γµ∂µψ −mψ̄ψ, (2.2)

where ψ is the Dirac spinor field of the fermion, m is its mass, ∂µ = ∂
∂xµ is the partial

derivative with respect to one direction of space-time and γµ are the Dirac gamma
matrices.

Fermions in the Standard Model have twelve distinct varieties that can be divided
into two equally numbered groups of quarks and leptons. These two categories can be
further subdivided into three generations, each featuring particles with comparable
properties but varying masses. Most of the fermions observed in the universe belong
to the first generation, as the higher generations are heavier, unstable, and ultimately
decay into first-generation particles. The reason behind nature’s selection of this
specific arrangement remains unknown.

Leptons are fermions that do not feel the strong nuclear interaction. They can
be divided into two categories: charged leptons and neutral neutrinos. The charged
group consists of electrons that are part of atoms, as well as their heavier and less
stable counterparts, muons and taus. The neutral part of the leptonic sector is
made up of three particles called neutrinos. Neutrinos are produced through weak
interactions with charged leptons and are thus named after them: electron, muon,
and tau neutrinos. These neutrino flavour eigenstates are not the basic neutrino
mass eigenstates: as seen in neutrino oscillation experiments, each neutrino flavour
is a linear combination of the three mass eigenstates ν1, ν2 and ν3, mixing through
the following equation: νe

νµ
ντ

 =

Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

ν1ν2
ν3

 , (2.3)

where the terms Uli represent the elements of the PMNS matrix[30].

Quarks are typically heavier than leptons, and are involved in all four funda-
mental forces, including the strong interactions. According to the strong interaction
theory, quarks obey colour confinement, and in fact, they have never been observed
in isolation and always form composite structures called hadrons. The most com-
monly known hadrons are mesons, which consist of quark and anti-quark pairs, and
baryons, which are made of three quarks1 .

Most of the observable baryon matter, such as protons and neutrons, is composed
of two types of quark: an up quark and a down quark. These particles are also
components of pions, which are the most commonly observed mesons in experiments.
Heavier quarks, like charm or beauty, create metastable mesons, for example, J/ψ
or Υ, which can only be generated in multi-GeV energy events.

Similarly to leptons, the quarks’ flavour eigenstates in the weak interactions do
not match exactly their mass eigenstates, with the relationship between these states

1 Exotic multiquark states, such as tetraquarks (four quarks) and pentaquarks (five quarks), have
also been observed.
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described by the CKM matrix[31].d′s′
b′

 =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

ds
b

 . (2.4)

2.1.2 Bosons
Bosons are particles with integer spin values and obey Bose-Einstein statistics. Un-
like fermions, bosons are not restricted by the Pauli exclusion principle and can
share the same quantum state. The Standard Model recognises two types of bosons:
vector bosons with spin one and scalar bosons with spin zero.

According to the SM, the vector bosons are mediators of the three fundamental
forces: electromagnetic, weak, and strong. The motion of these particles is described
by the Maxwell-Proca equation, expressed in the Lagrangian formalism as follows:

Lkin = −1

2
TrFµνFµν , (2.5)

where Fµν is a field tensor for a particular vector boson F.

The electromagnetic force is mediated by the photon, a massless and uncharged
particle. The weak force has three propagators: the W−, W+, and Z bosons. The W
bosons are charged under the electromagnetic force and have a mass of 80.4 GeV2 .
The Z boson is a neutral particle that has a slightly higher mass of 91.2 GeV. The
strong force is propagated by the electrically neutral gluon, which acts as a "glue"
keeping the quarks together. Gluons themselves are massless, but they are charged
under the strong force and can self-interact.

The only observed elementary scalar particle in the Standard Model is the Higgs
boson. It has the highest mass of any fundamental boson, at 125 GeV, is subject
to the weak force, and it interacts with all massive particles in the Standard Model.
The discovery of the Higgs boson was pivotal in confirming the Higgs mechanism,
the mass-generating schema for most SM particles. Since the Higgs boson is a
fluctuation of the scalar field, its motion is described by the Klein-Gordon equation,
which can be expressed as:

Lkin = |Dµφ|2 − V (φ), (2.6)
where φ is the Higgs doublet, V (φ) is the scalar potential governing its self-interactions,
and Dµ is the gauge-covariant derivative defined as Dµ = ∂µ− igW

τa

2
W a

µ − ig′W
Y
2
Bµ.

Here, ∂µ is the ordinary spacetime derivative, W a
µ and Bµ are the SU(2)L and U(1)Y

gauge fields, τa are the Pauli matrices, gW and g′W are the corresponding gauge cou-
plings, and Y is the hypercharge of the Higgs doublet.

2.1.3 Interactions
According to Noether’s theorem, each symmetry corresponds to a conservation law.
This is seen in the Standard Model with the three sets of rotations: U(1)Y , SU(2)L

2 To avoid clutter, natural units in which c = ~= 1 will be used throughout the thesis.
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and SU(3) local phase transformations, which give rise to the conserved currents of
the electromagnetic, weak and strong interactions, respectively.

Electroweak interactions can be divided into two categories: neutral current
(NC) interactions, which involve electrically neutral vector bosons, and charged
current (CC) interactions, which are mediated by either positively or negatively
charged W bosons.

Following spontaneous symmetry breaking, electromagnetic and weak forces emerge
as a mixture of the hypercharge B field and the weak isospin fields W (1), W (2), and
W (3). Together, they constitute the gauge group SU(2)L×U(1)Y , where the gener-
ators for weak hypercharge and weak isospin are commonly denoted as Y and T ,
respectively. This gauge group unifies electromagnetic and weak interactions.

The interaction characteristics of the B field with a charged fermion emerge from
the requirement that the fermion’s Lagrangian remains invariant when its wavefunc-
tion phase undergoes a local phase transformation. This condition is satisfied if the
additional calibration or the so-called gauge field is introduced and its interaction
with the Lagrangian can be expressed as:

LB = −ig
′
W

2
Y ψ̄γµBµψ. (2.7)

Here, the quantity g′W represents the coupling strength of the field B and the hy-
percharge Y .

The interaction properties with the field W arise from the requirement for the
Lagrangian to be invariant under rotation in the weak isospin space, with the inter-
action Lagrangian of the form:

LWj
= −igW

2
ψ̄γµTjW

j
µψ, (2.8)

where the quantity gW represents the coupling strength of the W field and Tj is a
particular component of the weak isospin. The physical photon and Z-boson fields
arise from the following linear combinations:

Aµ = +Bµ cos θW +W (3)
µ sin θW , (2.9)

Zµ = −Bµ sin θW +W (3)
µ cos θW , (2.10)

where θW is the weak mixing angle. The observable electric charge e is represented
by the following combination:

e = g′W cos θW = gW sin θW . (2.11)

In the Standard Model, all fundamental particles except neutrinos, photons, Z
bosons, gluons, and Higgs possess an electric charge and thus take part in electro-
magnetic interactions. The fact that the gauge vector field is massless and uncharged
makes the electromagnetic force unlimited in range. The coupling gZ of the Z boson
to the fermions has the following form:

gZ = g′W cos θW = gW sin θW . (2.12)
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The coupling of the Z boson to fermions is more complicated, as its strength depends
on the chiral state of the fermion in question and varies between different types of
fermions. Interactions of Z bosons can include electrically neutral fermions, such as
neutrinos, as long as they possess the appropriate chirality. For particles, this would
be left-handed, and for antiparticles, it would be right-handed.

The two physical W bosons, W+ and W−, are involved in charged current inter-
actions, which can be represented by a combination of the two fields.

W±
µ =

1√
2
(W (1)

µ ∓W (2)
µ ). (2.13)

In the weak interaction picture, all left-handed fermions (and right-handed an-
tifermions) can be split into weak isospin doublets, which differ by one unit of
electric charge:

(
νe
e−

)
L

,

(
νµ
µ−

)
L

,

(
ντ
τ−

)
L

,

(
u
d′

)
L

,

(
c
s′

)
L

,

(
t
b′

)
L

.

Fermions with right-handed chirality, which are part of the weak isospin singlets, do
not interact with W bosons and thus are not involved in weak interactions. For this
reason, the interactions involving the W and Z bosons do not conserve parity. It
should be noted that the coupling constant gW is significantly stronger than that of
the electromagnetic force. However, the substantial masses of the W and Z bosons
limit the range of this interaction.

Electromagnetic Weak NC Weak CC Strong

γ

e

f f

Z

gZ

f f

W±

gW

f± νf±

g

gs

f f

Table 2.1: Examples of Feynman diagrams for vertices involving electromagnetic, weak neutral-
current, weak charged-current, and strong interactions.

Another important concept is the interaction of the Higgs field with vector bosons
and fermions through the weak force. It is theorised that, during the high-temperature
conditions prevalent in the early universe, the ground state of the Higgs potential
was symmetric, with a unique minimum at φ = 0. As the universe underwent cool-
ing, the form of the Higgs potential changed, causing the φ = 0 configuration to no
longer be a state with the lowest energy, thereby becoming unstable. This instability
forces the Higgs field to evolve towards and settle into one of the degenerate minima
of the new potential, a phenomenon known as spontaneous symmetry breaking. As
a result of this process, the Higgs field attains a non-zero expectation value ν and
interacts with other fields, such as the W and Z bosons, causing these particles to
obtain mass. The complete Lagrangian is quite complex and includes many terms;
below is the component that accounts for fermion masses:
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Lm = − gf√
2
ν(f̄LfR + f̄RfL), (2.14)

where gf is the Yukawa coupling of a particular fermion f . Since the coupling of the
fermion to the Higgs field is proportional to its measured mass, it can be calculated
by using the relation:

gf =
√
2
mf

ν
. (2.15)

Strong interactions arise from the requirement that the Lagrangian fermion is
invariant under rotation in color3 space. The corresponding gauge-vector boson is
a gluon. The strong force in SM is described by quantum chromodynamics theory
or shortly QCD, and its interaction Lagrangian can be expressed as:

LQCD = igAµ
aψ̄γ

µT aψ − gfabc(∂µA
a
ν)A

bµAcν − g2f eabf ecdAa
µA

b
νA

cµAdν . (2.16)

In a similar way to the electroweak interaction, the strong interaction involves a
charge-like quantity, known as g, which is only present for quarks and gluons in
the Standard Model and is thus involved in QCD processes. The strength of this
coupling is the greatest among all forces, reaching a value close to O(1) at low
energies, which is why it is called "strong".

The gauge group of quantum chromodynamics is SU(3), a non-abelian group, re-
sulting in the appearance of new self-interaction terms. Coupled with the significant
interaction strength, this confines the strong force to subatomic distances.

2.2 Feebly interacting particles
A variety of BSM theories involve expanding the Standard Model’s Lagrangian with
extra terms to represent a Hidden Sector (HS) of particles and interactions com-
pletely separate to those in the Standard Model. The two sectors can anyway,
couple through portal interactions:

L = LSM + Lportal + LHS. (2.17)

From an experimental physics perspective, the most intriguing term is Lportal, which
involves a feeble interaction with visible Standard Model particles and can be tested
in experiments. There are numerous proposed portals; however, in this thesis, only
renormalisable fermion, vector, and scalar sectors will be discussed on the basis of
the available literature [32, 33, 34, 35, 36, 37].

2.2.1 Fermion portal
Neutrinos are much lighter than other fermions: although their masses can be ex-
plained through an interaction with the Higgs boson, like the other fermions (Dirac

3 The term color in this context refers to the three states of the fermion color vector, which is
similar to the spin but with three elements. It should not be confused with the term colour used
in everyday life.
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mechanism), the large disparity in the Yukawa couplings between neutrinos and the
other fermions appears to be unnatural. This raises questions about the possibility
of an alternative mass-generating mechanism.

Quite a popular alternative framework to explain the smallness of neutrino masses
is the seesaw mechanism, which involves the addition of a Majorana mass term to
the neutrino Lagrangian term.

Lν = LDirac + LMajorana = −mD(νRνL + νLνR)−
1

2
mM(νcRνR + νRν

c
R). (2.18)

This expression can be rearranged into the following form:

Lν = −1

2

(
νL νcR

)( 0 mD

mD mM

)(
νcL
νR

)
+ h.c.. (2.19)

This additional term includes only weak isospin singlets and therefore it can be
safely added without breaking the gauge invariance of the SM lagrangian.

The physical states of the neutrino are represented by the eigenvalues of the mass
matrix, and assuming that mD << mM can be approximated as:

mν ≈ m2
D

mM

and mN ≈ mM . (2.20)

The left term represents the known SM light neutrino with the Dirac mass term
similar to other fermions in the SM, but the physical mass is suppressed by the
Majorana term. This hierarchy mD << mM is considered natural since mM is
a gauge-singlet Majorana mass term and can take a much larger value without
destabilising the theory.

The physical states of light SM and heavy neutrino can be written as the linear
combination of light- and heavy-mass eigenstates in the following form:

ν ≈ cos θ(νL+ν
c
L)−sin θ(νR+ν

c
R) and N ≈ cos θ(νR+ν

c
R)+sin θ(νL+ν

c
L), (2.21)

where, N denotes the physical state of the heavy neutrino, obtained as a linear
combination of the right-handed neutrino νR and the left-handed neutrino νL (and
their charge-conjugates) with mixing angle θ. This equation paints the following
picture:

• For each SM neutrino mass eigenstate νi, there is a heavier counterpart Ni

commonly called a sterile neutrino or HNL.

• Each SM neutrino mass eigenstate νi consists almost entirely of left-chiral
states and therefore can participate in weak interactions.

• On the other hand, each heavy neutrino Ni is predominantly in a right-chiral
state Ni ' νRI , and as a result, its interaction via the weak force is significantly
suppressed by the sin θ factor.

The term θ is the mixing between two mass eigenstates and can be approximated
by θ ≈ arctan mD

mM
.

In addition, if neutrinos are confirmed to be Majorana particles, meaning that they
are their own antiparticles, the lepton number would no longer be conserved in the
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Standard Model. As a result of CP violation during the creation and oscillation of
right-handed neutrinos, the lepton asymmetry is apportioned between left-handed
leptons and right-handed neutrinos. This causes the asymmetry in the left-hand
sector to be partially transformed into baryon asymmetry through rapid sphaleron
transitions occurring in the hotter, earlier phases of the universe[38]. This process
satisfies two of the conditions required by Sakharov to explain the Barion Asym-
metry of the Universe (BAU), namely baryon number and CP violation. All of the
above provides a substantial foundation for the Neutrino Minimal Standard Model
(νMSM)[39], which extends the Standard Model by incorporating a set of heavy
neutrinos for each generation. The νMSM is an elegant theory that necessitates
only minor adjustments to the existing Standard Model framework and proposes a
potential dark matter candidate N1, assuming its mass lies within the keV range.
This theory explains the anomalously small mass of neutrinos and offers a solution
to the BAU problem. Nonetheless, νMSM has several limitations:

• It relies on the basis of the unnaturalness of the Yukawa couplings of Dirac
neutrinos. Naturalness can be a useful tool in particle physics[40], but it is
not necessarily a fundamental law of nature. To date, there is no substantial
experimental evidence for the seesaw mechanism in the neutrino sector.

• Even if the seesaw mechanism exists in nature, there is no guarantee that it
will be possible to confirm experimentally: contrary to the Yukawa coupling,
the Majorana mass term mM is not constrained by the Higgs field expectation
value and can take an arbitrary number. If it is sufficiently large, it might be
inaccessible for near-future particle physics experiments.

• Even if HNLs are observed, they do not automatically explain dark matter if
they fail to satisfy the mass requirements. For sterile neutrinos as dark matter
candidates, the allowed mass window is typically estimated to lie in the range
of approximately 1 keV[41] to 50 keV[42].

• There is no evidence that neutrinos are Majorana particles; the confirmation
of this hypothesis would be the observation of neutrinoless double beta decay
(0νββ)[43].

Nevertheless, this theory is appealing from an experimental point of view, as some
of the parameter space can be probed with existing technology.

2.2.2 Vector portal
This minimal extension of the Standard Model consists of adding to its Lagrangian
two additional terms corresponding to the dark sector:

LDS = LA′ + Lχ, (2.22)

which can be expanded as:

LDS = −1

4
F ′
µνF

′µν +
m2

A′

2
A′µA′

µ −
1

2
εF ′

µνF
µν + gDA

′µ

{
ψ̄χγµψχ

i[(∂µφ
†
χ)φχ − φ†∂µφχ]

.

(2.23)
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The first term −1
4
F ′
µνF

′µν , describes a kinetic term of the new Abelian gauge field A′
µ

associated with a dark U(1)D symmetry. It is analogous to the photon kinetic term
in the Standard Model, which is why A′

µ is commonly referred to as a dark photon.
However, unlike the SM photon, the dark photon can acquire a mass through the
explicit mass term m2

A′
2
A′µA′

µ, which modifies its gauge properties and allows for
new phenomenology. The actual portal that connects the dark sector to the SM is
represented by the kinetic mixing term −1

2
εF ′

µνF
µν where ε is the coupling strength.

The last term of the equation can describe a Lagrangian of either scalar or fermion
dark matter candidates χ.

The primary advantage of the dark photon theory is that it allows for a variety of
direct and indirect detection methods but this model is not as comprehensive as the
νMSM theory, as it is unlikely to provide an explanation for the Standard Model
discrepancies that are not related to dark matter, such as the source of neutrino
masses and the baryon asymmetry of the universe. Moreover, it is less constrained
than νMSM and contains more parameters. For example, the dark photon A′ can
be either a massive or massless boson, and the dark particle χ may not be present
at all. If it is, it could be either a fermion or a scalar.

2.2.3 Scalar portal
There are many theoretical realisations of the scalar portal; here, the simplest case
will be presented with the following hidden scalar Lagrangian:

Ls =
1

2
∂µs∂

µs+
λs
4
s4 +

λhs
2

Φ†Φs2. (2.24)

The first part of the Lagrangian is a kinetic term for a scalar field s, and the second
describes the self-interaction of s with the coupling constant λs. The mass of the
particle s is acquired through the last term with the coupling parameter λhs and
can be expressed as:

ms =

√
λhs
2
v, (2.25)

where v is the Higgs vacuum expectation value.

Phenomenologically, the model predicts that s interacts with nucleons via Higgs
exchange, leading to spin-independent direct detection signals. Collider searches
also look for missing energy signatures, such as invisible Higgs decays and monojet
events at the LHC, while indirect detection efforts aim to observe gamma rays or
cosmic rays from scalar dark matter annihilation. If the scalar mass lies within the
weak scale, it behaves like a typical WIMP, whereas in the sub-GeV or ultralight
regime, it could have different cosmological implications.

The model, while simple and renormalizable, faces fine-tuning issues, particularly
in explaining why the Higgs-portal coupling remains small enough to evade direct
detection limits while still producing the observed relic abundance. Despite its chal-
lenges, the Higgs portal scalar dark matter remains one of the most straightforward
and testable frameworks for new physics beyond the Standard Model.
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2.3 Experimental methods

2.3.1 Detection of the Standard Model particles
From the detection point of view, all particles in the Standard Model can be split
into three groups: stable or quasi-stable particles that interact directly with the
detector systems through electromagnetic or strong force, unstable particles that
decay in the detector before being detected (and are indirectly observed through
their decay products), and stable but weakly interacting neutrinos.

Electromagnetic interactions

Charged fermions can be easily identified due to the three primary ways they in-
teract with the detector: ionisation, bremsstrahlung, and deflection by an external
magnetic field.

Charged particles passing through a medium can cause ionisation by transferring
their kinetic energy to the electrons in the medium. Energy loss can be accurately
modelled using the Bethe-Bloch equation:

1

ρ

dE

dx
≈ −4π~2c2α2

mev2mu

Z

A

{
ln

(
2β2γ2mec

2

Ie

)
− β2

}
. (2.26)

Most of the terms in this equation, such as Z, ~ or c, are either physical constants
or parameters that describe the chemical properties of the medium. Their values
remain constant for different materials, so the ionisation mainly depends on the ma-
terial density ρ and the mass and momentum of the incident particle, parameterised
by the variables β and γ.

Bremsstrahlung is another important energy-loss mechanism that begins to dom-
inate once charged particles reach high energies: as they pass near the nuclei of
the medium, they decelerate and emit photons. In dense materials, successive
bremsstrahlung and pair-production interactions of electrons lead to the develop-
ment of electromagnetic showers, which are fully contained and measured in elec-
tromagnetic calorimeters. This results in energy loss that can be described by:

dE

dx
≈ −4αnZ2r2e ln

(
287√
Z

)
E
(me

m

)2

, (2.27)

where all terms except E and
(
me

m

)2 relate to the chemical composition and density
of the medium. The E term denotes the energy of the incident particle, and the addi-
tional mass-dependent factor suppresses bremsstrahlung for heavier particles: since
the probability of radiation scales as 1/m2, muons and hadrons lose far less energy
by bremsstrahlung compared to electrons. This strong mass dependence makes it
straightforward to distinguish between electrons, which produce characteristic show-
ers, and muons, which traverse the calorimeters with only minimal radiative losses
and thus behave as minimum-ionising particles. Photons also cause electromagnetic
showers in the calorimeters, but, being electrically neutral, they do not leave tracks
in the tracking detectors.
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If the particle is moving in a uniform magnetic field, and the density of the medium
is small enough to allow it to travel without being absorbed, the charged particle
trajectory will change according to the Lorentz law and form a helix. For a single
charged particle, the parameters of the helix are related to the particle’s momentum
and to the value of the magnetic field according to the following equation:

p =
0.3BR

cosλ
, (2.28)

where the λ is a pitch angle, B is the strength of the magnetic field in units of
tesla, R is the radius of curvature in metres and p is the momentum of the particle,
in GeV. The trajectory curvature of the particles can be measured in the tracking
detectors. Combining this information with the energy measurement enables the
reconstruction of the particle’s full kinematic profile.

Strong interactions

While electromagnetic interactions govern the behaviour of charged leptons and
photons in the detector, hadrons interact primarily via the strong force. When
high-energy hadrons such as protons, neutrons, or pions traverse detector material,
they undergo inelastic collisions with nuclei in the medium. These interactions
initiate a cascade of secondary hadrons, which in turn interact and produce further
particles. The resulting cascade is referred to as a hadronic shower.

Hadronic showers typically consist of a mixture of charged and neutral pions,
kaons, protons, and neutrons, as well as electromagnetic sub-showers from the decay
channel π0 → γγ. Because of this mixed composition, hadronic showers are generally
broader and less predictable than electromagnetic showers.

To contain and measure these cascades, detectors employ hadronic calorimeters
(HCALs), usually placed outside the electromagnetic calorimeters. The HCALs
measure the total energy deposited by the shower, allowing reconstruction of the
incident hadrons energy.

In collider environments, collimated groups of hadrons originating from a single
quark or gluon appear as jets. Jet reconstruction and identification play a central
role in many physics analyses. However, due to the presence of electromagnetic
sub-showers and detector resolution effects, jets can occasionally be misidentified as
isolated electron or photon signals. This represents an important source of back-
ground in searches involving leptonic final states.

Prompt decays

The high-mass particles, including the Higgs boson, the massive vector bosons, and
the tau lepton, do not have sufficient lifetimes to interact with detector components
directly but disintegrate into a set of lighter SM particles, creating a decay vertex. By
reconstructing the daughter particles and measuring their kinematics, it is possible
to establish the mother’s particle type and its invariant mass.
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W boson Z boson Tau Higgs

W

f1

f ′
2

Z0

f−

f+

W−

τ−

ντ

f−

ν̄f

H

γ

γ

Table 2.2: Examples of the Feynman diagrams depicting the prompt decay of massive SM particles.

Neutrinos

One of the most interesting yet challenging groups of particles to detect is the neu-
trinos, as they only interact with matter via a weak force. In collider detectors such
as ATLAS, the presence of neutrinos is indirectly reconstructed from the measured
total momentum imbalance of the other measured particles. This technique is useful
for identifying events containing neutrinos, but it is not ideal for neutrino studies:
only the transverse missing energy of the event is recorded, and neutrinos escape the
detector without interacting with it, so their properties cannot be really studied.

An alternative method to detect neutrinos is to construct a specialised detector
that can reconstruct NC or CC interactions caused by neutrinos, examples of which
are depicted in the diagrams below.

CC interaction CC interaction NC interaction NC interaction
(Lepton only) (Neutrino-Nucleus) (Lepton only) (Neutrino-Nucleus)

W±

νl l∓

νll∓

W±

νl l∓

qq′

Z0

νl νl

ll

Z0

νl νl

qq

Table 2.3: Examples of the Feynman diagrams depicting the neutrino interactions on the elemen-
tary particle level.

To be able to detect even a small number of neutrinos, the target in neutrino detec-
tors is usually extremely large in volume or made from high-density materials like
lead or tungsten.

When a neutrino interacts within the detector, it can be observed through sev-
eral methods. Detectors such as Super-Kamiokande[44], which use a liquid tank,
identify neutrinos by detecting and amplifying light from Cherenkov radiation. This
radiation is produced when the particles from the neutrino interaction exceed the
speed of light in the tank’s medium. The amplification process is facilitated by
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photomultiplier tubes installed on the walls of the tank.

The approach that will be used in both the SHiP and SND@LHC experiments,
on the other hand, involves studying neutrinos by directly detecting the products
of the neutrino interaction with the detector target, either by using scintillators or
nuclear emulsion detectors. The latter employs photographic films with micromet-
ric resolution that record charged particle tracks as sequences of silver grains. After
exposure, the emulsions are chemically developed, and modern automated scanning
systems reconstruct the three-dimensional trajectories, enabling precise measure-
ments of interaction vertices and short-lived particle decays. The signal signature
of the neutrino interaction event depends on:

• The propagator: in CC interactions involving W bosons, a new lepton is
always produced, whereas, in NC interactions, only momentum transfer occurs
between the incident neutrino and the target particle via the Z boson.

• Flavour configuration: in CC interactions, the neutrino flavour determines
the type of new lepton formed and the flavour transition of the target particle.
These probabilities can be computed using the PMNS and CKM matrices for
nuclear interactions. For instance, when a muon neutrino interacts with a
target down quark through a charged interaction, it typically emits a muon
and changes the down quark’s flavour to an up quark, thereby conserving
charge, lepton number, and baryon number.

In addition to the interaction physics involved in neutrino events, the kinematics
of the process is also critical, particularly for nuclear interactions. If the energies
involved are low, then the incident neutrino merely passes momentum to the tar-
get quark system. These are generally the cases of quasi-elastic scattering (QES)
when CC scattering occurs, or elastic NC scattering (ES), with the latter practically
impossible to detect because of the absence of any detectable interaction products.

However, if the energy of the incident neutrino is sufficiently high, it can result
in a more violent event: since the quarks shown in the Feynman diagrams in Table
2.3 are generally confined within either a neutron or a proton, their displacement
leads to the hadronisation process with multiple hadrons emerging as a result of this
interaction. These types of events are characterised as deep inelastic scattering or
DIS processes that can occur for both the CC and NC interaction modes and can
be easily distinguished by the presence or absence of the leading lepton, allowing
the measurement of the CC/NC ratio.

2.3.2 Detection of the feebly interacting particles
Experimental searches of HNL

HNL, like neutrinos, can be produced in decays of real or virtual W and Z bosons,
so HNL searches are usually performed in collider mode in the case of real vector
bosons or fixed targets for virtual ones.

The second important factor in the search for HNLs is detector hardware and soft-
ware, which should satisfy the following requirements:

• Efficient decay particle identification: the are two main channels of HNL
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W boson channel: Z boson channel:

W−
ν̄µ/N

W−

fin

fout

µ−
e−/µ−

ν̄e/ν̄µ

e+/µ+

Z0 N
N

W−

W−
f−

f+

e+/µ+

e+/µ+

e−/µ−
ν̄e/ν̄µ

q q′

Table 2.4: Examples of the hypothetical HNL chain via Z and W boson channel.

decay: leptonic through the N → νll
±l∓ chain and the hadronic channel

N → l±qq′. Identifying the type and charge of particles is essential in order to
accurately reconstruct the decay topology. The branching ratio of the hadronic
channel N → l±qq′ can reach ≈ 70% of the total number of HNL decays, and
therefore, the ability to reconstruct and identify mesons is highly desirable.

• Sufficient detector size: the HNL, as a weakly interacting particle, can
travel a significant macroscopic distance before undergoing decay and, there-
fore, will escape detection if the size of the fiducial volume is insufficient. The
tracking and vertexing software should be able to identify displaced tracks
and vertices, which is a significant indication of HNL decay. Additionally, it
should be able to detect prompt decays as well.

• Efficient triggering system: additional requirements include triggering
events by missing energy or leptons with large momentum.

Many background processes can mimic the HNL signal features. These include
misidentified metastable mesons, cosmic muons, and random track pairs that are
mistakenly reconstructed as vertices.

In recent decades, numerous searches have been carried out using various exper-
imental facilities, but to date, no conclusive detection of HNLs has been reported.
However, these efforts have greatly restricted the possible phase-space allowed for
these particles. Typically, this can be represented as a two-dimensional scatterplot
where the particle mass is plotted on one axis and the interaction strength on the
other. This plot can be broadly separated into four distinct quadrants.

Upper-left quadrant: these are low-mass (below 3 GeV) particles with relatively
strong coupling to existing SM particles. This is the easiest sector to probe, as it
does not require high energies nor large luminosities. Unsurprisingly, this is the first
sector that has been extensively probed by various experiments such as PS191[45],
CHARM[46] and NuTev[47].
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Figure 2.2: The parameter space of the hypothetical Heavy Neutral Lepton (HNL) and the shaded
areas that were excluded by theoretical limits or experiments in the past. Note that only HNL
coupling with a muon neutrino is explored in this plot. Taken from [23].

Upper-right quadrant: these are also strongly interacting particles, but with
a higher mass of up to 500 GeV. Their production requires higher centre-of-mass
energies that can be obtained in collider experiments, such as the Large Electron
Positron Collider (LEP) or LHC, where the centre-of-mass energy can reach 13 TeV.
Numerous experiments such as L3[48], Delphi[49] and ATLAS[50] have probed this
sector, but apart from a few statistical flukes such as the 750 GeV diphoton excess
at LHC [51], no evidence of the new physics has been discovered.

Lower-left quadrant: this parameter space covers particles with low coupling and
masses below 10 GeV. This area can be effectively constrained by various cosmo-
logical and physical models that set the limit on the value of the lowest coupling
strength. The rest of the space can be probed by fixed-target experiments that
provide sufficiently high statistics and a low-background environment. The SHiP
experiment[23] aims to probe an unexplored domain of weakly interacting particles
with masses up to O(101) GeV.

Lower-right quadrant: this parameter space covers weakly interacting high-mass
particles. This is the most challenging domain of parameter space, which is beyond
the reach of modern experimental equipment. Fixed-target experiments are limited
by the mass of particles, such as b quarks, which could decay into HNLs. Collider ex-
periments lack intensity because of the limits on the frequency of the beam crossing
that generates the interaction. In addition to insufficient luminosities, the analysis
of the interaction environment in hadron colliders is challenging because of the high
QCD background produced by the proton-proton collisions. Electron-positron col-
liders, such as LEP, generate cleaner interaction events; however, their attainable
centre-of-mass energies are much lower than those of their hadron counterparts, due
to the high synchrotron energy losses. Another significant limitation of current col-
lider experiments, such as ATLAS[52] and CMS[53] is their small detection volumes
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designed primarily to reconstruct prompt decay events. This enables most hypo-
thetical weakly interacting particles in this area of the parameter space to escape
the apparatus undetected.

Experimental searches of the dark photon

Numerous techniques can be employed to detect dark photons:

• Resonance searches: the process A′ → l+l− is investigated by measuring
the four-momentum of the produced leptons and looking for bumps in the in-
variant mass spectrum. Provided good mass resolution and substantial noise
suppression, the dark boson can be identified by a narrow peak over the con-
tinuous background spectrum.

• Missing energy/mass: this method investigates the process A′ → χχ that
can occur if the dark photon A′ couples with dark sector particles and at
least one of them is lighter than mA′

2
. The signal signature consists of the

reconstructed missing energy that has been carried away by the escaping dark-
matter particles. This method requires a complete reconstruction of the initial
and final states of the SM particles, including their energy and momentum.

• Detection of scattering processes: this technique requires the presence of
particles χ in the dark sector and investigates it by examining the scattering
event χe− → χe− and reconstructing the electromagnetic shower that was
created by the deflected electron.

While in the HNL case, the search parameter space is based on two variables: the
HNL mass and its coupling, in the dark-photon case, the picture is more complicated:
In addition to the dark photon mass mA′ and its coupling ε, the mass and coupling
of the hypothetical hidden particle sector χ also have to be considered making the
search parameter space 4-dimensional.

Experimental searches for scalar dark matter

The expected experimental signature depends on the particular realisation of the
theory; some of the examples are mentioned below:

• Invisible Higgs boson decay: the existence of hidden particles is inferred
from the measurement of the Higgs branching ratio Γ(h → ss). This method
has substantial discovery potential due to its model independence, but the
observation of the Higgs invisible decays on its own will not constitute strong
proof of dark matter detection.

• Dark matter annihilation: in this method, a signature 〈s〉s→ γγ or 〈s〉s→
ff̄ is used to infer the interaction of the scalar particle s with the dark matter
particles in the universe 〈s〉.

• Detection of scattering processes: this method is similar to the scattering
technique which was described for the dark photon, but in this particular case,
a DIS is considered, where the quark in the nucleus gets displaced by the dark
scalar particle, producing a hadronic shower. The interaction is mediated by
the Higgs boson h, which couples to the s and the SM quark. Given the need
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Scalar DM annihilation process: Scalar DM DIS:

h

s

γ

γ

〈s〉

s h

s s′

N ′N

Table 2.5: Feynman diagrams depicting hypothetical scalar dark matter signal signatures.

for several assumptions, it is difficult to accurately predict the result of the
process.

2.4 The SHiP experiment

2.4.1 Overview
The Search for Hidden Particles experiment, or SHiP, is expected to be exposed to
a secondary proton beam from the CERN Super Proton Synchrotron facility (SPS)
hitting a fixed target with a rate of up to 4×1019 protons a year[54]. The experiment
is designed to maximise beauty and charm-meson production, the decay products
of which could decay into hidden sector particles such as heavy neutral leptons.

Figure 2.3: Overview of the SHiP experiment. Taken from [54].

Although similar fixed target experiments have been performed in the past, their
exploration domain was limited to masses below 450 MeV in PS191[55] or to HNLs
with couplings to active neutrinos |Uµi

|2,|Uei |2 above 10−7 (CHARM[56]). SHiP aims
to accumulate 2 × 1020 protons on the target in 5 years of operation while keeping
the background levels at approximately 0.1 events, achieving the required sensitivity
to probe weakly interacting particles with couplings |U |2 up to 10−10 (for HNL) and
masses reaching 5 GeV[57].
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The SHiP detector is proposed to be installed in the Experimental Cavern North
3 (ECN3): an experimental underground cavern at CERN, located at the end of the
P42 beam line[58]. The overall layout of SHiP is presented in Figure 2.3 and can
be divided into two main parts. The first section acts as a "frontline" that absorbs
protons and reduces the accompanying SM background. It is made of the following
components: a molybdenum-tungsten target, a hadron absorber, and the active
muon shield or AMS that sweeps muons originating from the target out of detector
acceptance. The second part consists of two detecting apparatuses: The scattering
and neutrino detector, or SND, which focuses on the low mass dark matter sector;
and the Hidden Sector Decay Spectrometer or HSDS for short. The HSDS is a
system of the following components: a decay volume with a pressure of 10−6 bar
where hidden particles are expected to decay; the straw tracker, which reconstructs
the decay vertex kinematics; and the Particle ID, which consists of electromagnetic
calorimeters and muon detectors. The Particle ID facilitates the recognition of
particles that originate from decays and helps to differentiate between various hidden
sector models[54].

Since SHiP is not expected to collect data until 2032[59][60], the SHiP data analysis
at the time of writing (2025) uses simulated data within the FairShip simulation en-
vironment, which is based on the FairRoot software framework[61]. Primary proton
collisions are generated using Pythia8[62], the particle interactions with surrounding
material are simulated by GEANT4[63] and the neutrino interactions are modelled
with GENIE[64].

2.4.2 Target complex
The SHiP target complex plays a vital role in the experiment, aiming to enhance
the production of heavy mesons while reducing unwanted neutrino and muon back-
grounds. Besides fulfilling physics requirements, the target must also manage energy
dilution, provide effective cooling, and offer radiation shielding due to the high beam
power, which can reach up to 350 kW and peak at 2.56 MW per spill. This makes
the SHiP production target one of the facility’s most demanding challenges.

The desired performance is achieved with a longitudinally segmented hybrid target
composed of blocks with four interaction lengths (58 cm) of a titanium-zirconium-
doped molybdenum alloy in the core of the shower, followed by six interaction lengths
(58 cm) of pure tungsten. These blocks are interleaved with sixteen 5-mm slits
for water cooling. To adhere to material limits on thermomechanical stress, the
thickness of each slab, along with the positioning of each cooling slit, has been
optimised to ensure uniform energy distribution and adequate energy extraction.
The total dimensions of the target are 1.2 m long with transverse dimensions of 30
× 30 cm2 to maximise shower containment.

The target pile is assembled within a compartment featuring dual walls. The inner
chamber facilitates significant water circulation between the target slabs, maintain-
ing a pressurised cooling system between 15 and 20 bars to elevate the boiling point.
An anticipated flow rate is 180 m3 per hour. The outer vessel offers a primary helium
circulation around the inner container, creating an inert environment to diminish
corrosion while also forming a protective layer that can detect any potential water
leaks from the internal vessel. Connections and hooks are incorporated into the
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design to allow for full remote operation using the target area’s crane.

2.4.3 Scattering neutrino detector
The SHiP neutrino target is designed to detect and reconstruct neutrino interac-
tions using the Emulsion Cloud Chamber (ECC) technique, previously employed in
experiments such as OPERA and DONUT.

The ECC structure alternates nuclear emulsion films with dense lead plates, en-
suring precise charged-particle tracking while enhancing neutrino interaction prob-
ability. The target is modular and consists of individual units called bricks, each
containing 57 emulsion films interleaved with 56 lead plates. These bricks provide
micrometric spatial resolution, allowing the reconstruction of neutrino interaction
vertices and the identification of secondary decay products. The ECC approach is
particularly effective for detecting ντ interactions by identifying the short-lived tau
lepton and its subsequent decay into electrons, muons, or hadrons.

Additionally, the target includes a Compact Emulsion Spectrometer (CES), which
improves charge identification by tracking the deflection of charged particles in a
magnetic field generated by the Goliath magnet and is crucial for distinguishing
neutrinos from antineutrinos.

Figure 2.4: Left: Schematic representation of the sagitta measurement using the CES. Right:
Photograph of the Goliath magnet. Taken from [65].

The modular target structure is arranged in multiple walls, interleaved with planes of
electronic detectors that provide precise timing information and identify the specific
brick where the interaction occurred. The ECC data is collected by a high-speed
emulsion scanning system, which utilises advanced automated microscopes. This
system is designed to handle the large volume of data expected from SHiP, allowing
efficient extraction of neutrino interaction events.

2.4.4 Active muon shield
One of the biggest challenges facing the SHiP experiment is to achieve a low back-
ground environment. It is estimated that a second-long SPS spill contains, on aver-
age 4× 1013 protons that will give rise to a cascade of hadrons such as π, K, ω and
charm mesons at the target. The hadrons themselves can be blocked by a 5-meter-
thick iron absorber; however, their decay products pose a more serious problem.
In the case of a one-second spill, up to 1011 muons can be produced. Muons are
particles that can easily penetrate materials such as iron and travel long distances
with minimal energy loss. However, since they are charged, they can be diverted
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from the detector by using a magnet if the integral of the magnetic field over the
muon path

∫
B dl is sufficient.

Figure 2.5: Left: Simulated distribution of transverse momentum versus momentum of muons
weighted to one proton spill. Right: The illustrated principle of muon shield operation. Different
magnetic polarities are indicated with blue/green colour. Solid and dotted lines represent muon
trajectories of 350 GeV and 50 GeV, respectively. Taken from [66].

Unfortunately, the same magnet can have a different effect on leptons with lower
momentum, causing them to bend back in the direction of the detector as they
pass through the "return" field. To counteract this, a second magnet with oppo-
site polarity can be added, thus deflecting the lower-momentum muon once more.
This idea is not new: the DONuT experiment has used a two-magnet system to re-
move high-momentum muons from detector acceptance[67]. The SHiP experiment
is expected to accumulate a much larger number of protons on the target than the
DONuT (around 3.6 × 1017), requiring more stringent requirements on the muon
rate in SND and HS. This implies a more complex shield shape to deflect muons
with a wide range of kinematics. Because of the complex physics involving muon
propagation through the magnet shield, there is no analytical solution available that
could predict how the shield will behave under certain experimental conditions.

2.4.5 Hidden Sector Decay Spectrometer
The Hidden Sector Decay Spectrometer is designed to search for FIPs by using two
main components: a veto-protected, depressurised background-free environment for
their decay and the particle detection and identification complex. Its layout follows
the established schema in experimental particle physics: a charged particle tracker
for trajectory reconstruction, followed by an electromagnetic calorimeter (ECAL)
and hadronic calorimeter (HCAL) for energy measurements, and concluding with a
muon detector to detect and identify the energetic muons. A detailed description of
each detector component and its role in the HSDS follows below.

Upstream veto tagger

The Upstream Veto Tagger (UVT) is located between the tau neutrino detector and
the vacuum vessel with the main goal of significantly reducing contamination from
unwanted particles while preserving high efficiency for signal detection.

One of the primary roles of the Upstream Veto Tagger (UVT) is to reduce the
backgrounds from neutral kaons produced upstream of the vessel down to negligible
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levels. Additionally, the UVT provides muon vetoing, preventing high-energy muons
from entering the vacuum vessel through the front window and causing unwanted
interactions. These backgrounds mainly arise from neutrino and muon interactions
upstream, particularly in the passive materials of the tau neutrino detector. While
the tau neutrino detector’s muon system can detect some of these interactions, it is
not optimised for vetoing, necessitating the dedicated UVT system. It also provides
an additional layer of veto redundancy, ensuring the robustness of the hidden sector
physics searches conducted in SHiP.

The UVT is constructed with plastic scintillator bars designed to span a 4×12 m2

area. There are 120 scintillator bars organised in one horizontal layer. Each bar is
4 metres in length, 12 cm in width, and 1 cm in thickness, featuring wavelength-
shifting (WLS) fibres for enhanced light collection. These WLS fibres extend along
the entire length of each bar and are connected at both ends to silicon photomulti-
pliers (SiPMs), which ensure optimal photon detection and clear signal conversion.

The electronics are housed upstream of the detector, ensuring easy accessibility for
maintenance while minimising interference with the detectors active volume. The
support structure is designed to minimise passive material, preventing the secondary
scattering of muons back into the decay volume. Additionally, the detector’s design
ensures no material extends laterally beyond |x| = 2 m, preventing interference with
the muon flux.

Due to the substantial muon flux in SHiP, it is crucial to employ a high-precision
timing system to distinguish actual physics events from background noise. As such,
UVT readout electronics are considered to facilitate rapid processing and exact
timing measurements, achieving high detection efficiency (99.9%) and quick response
times (≈ 1 ns resolution) with minimal dead time (≈ 0.01%). With the capability
to support a signal rate of up to 100 kHz, the UVT can manage high event rates
without compromising performance, which is vital for sustaining low noise levels
while ensuring a high rate of background rejection.

HSDS vacuum vessel

The HSDS vacuum vessel in the SHiP experiment plays a crucial role in ensuring a
low-background environment for new physics searches. It is designed to be depres-
surised to 10−6 bar, minimising neutrino and muon interactions with residual air.
The vessel integrates a liquid scintillator-based background tagger, providing nearly
full solid-angle coverage to detect and reject background events.

The vacuum vessel features an elliptical cross-section (10 m vertical, 5 m horizon-
tal) and spans 62 m in length, comprising a 50 m decay volume followed by a 12 m
magnetic spectrometer. The elliptical shape helps deflect muon flux, focused by the
upstream muon shield in the horizontal plane, away from the beam axis, improving
background suppression. To withstand external atmospheric pressure (1 bar), the
vessel has a ≈ 3 cm thick structural wall reinforced with transverse (1 m pitch) and
longitudinal (1.5 m pitch) ribs, creating segmented cells for liquid scintillator con-
tainment. A finite element analysis has been conducted to optimise wall thickness
and structural stability.

The vessels end lids consist of 8 mm thick aluminium membranes, welded to the
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Figure 2.6: A layout of the baseline vacuum vessel. Taken from [65].

strong inner shell. Additionally, a 300 mm liquid scintillator layer in front of the
entrance window enhances background tagging capabilities. Five large prismatic
openings allow the insertion of tracking detectors without obstructing the decay
volume. The first tracking station, located 5 m from the entrance, serves as a veto
for residual background events, while four more stations downstream contribute to
the magnetic spectrometer.

To attain the necessary low-pressure environment within the vessel, a vacuum
system is equipped with oil-free screw pumps, Roots blowers, and turbomolecular
pumps that utilise magnetic levitation. This setup ensures a 10−6 bar pressure level,
equivalent to 0.1 Pa. The pumping sequence involves an initial evacuation (1-10 Pa)
via screw pumps, followed by high-vacuum evacuation using turbomolecular pumps.

Surround Background Tagger

The Surround Background Tagger (SBT) is a critical component of the SHiP exper-
iment, designed to detect and veto background particles entering the decay volume.
It surrounds the vacuum vessel with a liquid scintillator-based detector, providing
near-complete coverage to distinguish genuine signal events from background inter-
actions. The tagger enhances the background rejection capability, allowing precise
identification of muons and neutral particles. The SBT utilises liquid scintillators
as the detection medium, benefiting from their high efficiency, low energy threshold,
and fast response time (≈ 5 ns decay time). The scintillators consist of a solvent
(LAB, PXE, or PC) and a fluor (PPO or PMP) to optimise light yield, transparency,
and emission spectra. The LAB+PPO mixture is preferred due to its high light yield
(≈ 10,000 photons/MeV), low auto-absorption, and industrial availability.

The SBT is embedded within the double-walled vacuum vessel structure, with 30
cm thick scintillator layers divided into 863 segments. Each section is instrumented
with two large-area photodetectors, either traditional 8-inch PMTs or Wavelength-
Shifting Optical Modules (WOM), which use wavelength-shifting materials to en-
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hance photon collection. The WOM technology, originally proposed for IceCube,
offers a cost-effective and modular alternative to large-area PMTs.

The SBT infrastructure includes storage, purification, and transport systems to
maintain oxygen-free conditions, preventing scintillator degradation. The on-site
system features nitrogen purging, stainless steel tubing, and hydrostatic pressure
balancing to ensure uniform filling and operation.

The spectrometer tracker

The spectrometer tracker in the SHiP experiment is designed to reconstruct charged
particle tracks from hidden particle decays with high efficiency while effectively
rejecting background events. It plays a crucial role in momentum measurement,
vertex identification, and event selection, ensuring that only true signal events are
considered. The spectrometer rejects background by leveraging:

• Vertex reconstruction: ensures tracks originate from hidden particle decays.

• Invariant mass and flight direction constraints: suppresses random track com-
binations.

• Timing measurements from tracking detectors: assists in eliminating the com-
binatorial background.

The spectrometer consists of a large aperture dipole magnet and four tracking sta-
tions, arranged symmetrically around the magnet to provide optimal coverage. The
fifth veto station is placed just downstream of the vacuum vessel entrance lid to
reject upstream-generated background tracks.

Figure 2.7: Spectrometer layout. Left: Position of the tracking stations (each with four views)
and dipole magnet overlaid with magnetic field component Bx as a function of z. Right: 3D view
of the spectrometer as implemented in the FairShip simulation. Taken from [65].

The magnet has a horizontal gap of 5 m, a height of 10 m, and a length of 5 m,
generating a magnetic field of up to 0.14 T at its peak. The field integral between
the second and third tracking stations is approximately 0.65 Tm, enabling precise
momentum measurements.
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The tracking stations are separated by 2 m, with a five-metre gap between stations
2 and 3, ensuring a sufficient lever arm for momentum measurement. Each tracking
station consists of four measurement views (Y-U-V-Y). Y views measure the vertical
coordinate, and U and V stereo views are rotated at an angle ±θstereo, allowing for
transverse x-coordinate measurements.

The system utilises straw tube tracking technology, a reliable method for precise
tracking in low-pressure settings, effectively providing high-resolution measurements
while minimising material interactions. Each straw tube tracker consists of very thin
polyethene terephthalate (PET) straws to reduce multiple scattering, each with a
length of 5 metres and an outer diameter of 9.83 mm, featuring a 30 µm gold-plated
tungsten wire centred for charge collection. An essential design feature is ensuring
gas-tightness, as the system operates in a vacuum to reduce neutrino interactions.

The readout electronics for the straw tube tracker are designed for high-speed data
processing with minimal power consumption. The system includes:

• Front-End (FE) boards for signal amplification, shaping, and discrimination.

• CITIROC ASICs or FPGA-based digitisers for hit timing and signal digitisa-
tion.

• High-speed Ethernet-based DAQ system for efficient data transmission.

On average, each straw provides a signal gain of several 104, with a drift time reso-
lution anticipated to be around 3-4 ns. This allows for precise tracking, with simu-
lations conducted using GEANT4 and FairShip, indicating a momentum resolution
of less than 1% for momenta below 50 GeV.

Calorimetry

The SHiP calorimeter system is a high-precision, cost-effective solution for particle
identification, energy measurement, and background suppression. It is made of an
electromagnetic calorimeter (ECAL) and a hadronic calorimeter (HCAL). These
calorimeters ensure precise electron, photon, and pion detection and complement
the tracking system for accurate event reconstruction.

The ECAL, positioned right after the timing detector, is optimised for elec-
tron/photon energy measurements in the 0.370 GeV range, achieving an energy
resolution better than 10%. It is essential for correctly identifying electrons and pi-
ons in order to separate the anticipated signal decay HNL → e±π∓ from the main
background channels such as K0

S → π+π− and K0
L → π+π−π0. The ECAL employs

a so-called "shashlik" technology, consisting of lead-scintillator sampling layers with
wavelength-shifting (WLS) fibres and fast photodetectors. The elliptically shaped
ECAL matches the tracking systems acceptance, ensuring optimal efficiency.

The HCAL, placed immediately after the ECAL, is designed to separate pions
from muons, particularly in the low-momentum region (p < 5 GeV), where standard
muon detectors may have limited efficiency. It consists of sampling modules with
alternating layers of iron absorbers and polystyrene scintillators, arranged in two
longitudinal sections for improved pion/muon separation. The first section (H1)
contains 18 sampling layers, while the second section (H2) has 48 layers, maximising

28



CHAPTER 2. THEORETICAL BACKGROUND

pion suppression while maintaining high efficiency for muons. The total calorimeter
length is about 3.3 metres, corresponding to approximately 6.2 hadronic interaction
lengths (λI).

Both calorimeters share a common readout system, featuring fast ADCs, FPGAs,
and gigabit Ethernet links for real-time data processing. The front-end electronics
are optimised for precise timing (ns-level resolution) and energy extraction. To en-
sure long-term stability and accuracy, an in-situ calibration system is employed using
cosmic muons and decaying in-flight electrons, allowing continuous adjustments to
maintain detector performance.

Muon detector

As implied by its name, the purpose of the SHiP muon detector is to identify muons
from signal decays while efficiently rejecting background events, particularly those
involving pion misidentification. It works in coordination with the electromagnetic
(ECAL) and hadronic (HCAL) calorimeters to enhance muon-hadron separation.
The system is designed to detect muons with high efficiency (≈ 99%) and minimise
pion misidentification below 0.1% over a wide ≈ 3-100 GeV momentum range. The
latter is a key challenge, mitigated through a combination of calorimeter energy
deposition analysis and precise hit pattern recognition in the muon system. The
system is also capable of operating in veto mode, rejecting hadrons by ensuring they
leave no hits in the muon layers.

Figure 2.8: Muon detector layout: green thick layers are the passive iron filters and grey thin layers
are the active modules. Taken from [65].

The detector consists of four active tracking stations interleaved with three iron
filters, ensuring that only high-energy muons penetrate all layers while hadrons are
absorbed. Each station spans an area of 6 × 12 m2, providing large-area coverage.
The calorimeter system contributes 6.7 nuclear interaction lengths (λI), while the
muon filters add another 10.2 λI for further particle differentiation.

The active layers use extruded plastic scintillator strips with wavelength-shifting
(WLS) fibres and SiPM readout, a robust and cost-effective technology employed in
neutrino experiments like MINOS, T2K, and Belle II. The detector includes 3,840
strips (510 cm wide, 3 m long, 12 cm thick) arranged in horizontal and vertical
orientations, ensuring precise tracking. Each scintillator bar is read out at both
ends, enhancing light collection and timing accuracy. The total system comprises
7,680 SiPMs, ensuring high granularity and redundancy.
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The data acquisition (DAQ) system processes approximately 3.5 MB/s of zero-
suppressed data. The readout electronics consist of 7,680 channels, grouped into
240480 boards, with signals transmitted through 20 Ethernet links. The system em-
ploys SiPMs from manufacturers like Hamamatsu, KETEK, and SensL, with ongoing
R&D to optimise bias voltage control, temperature compensation, and calibration
using pulsed LEDs.

Trigger and the data acquisition

The SHiP DAQ system is designed to handle the triggerless readout of all sub-
detector data, enabling real-time event processing. Unlike traditional trigger-based
systems, SHiP implements a fully software-based trigger on an Event Filter Farm
(EFF), where all raw detector data is sent via a high-speed Ethernet network and
processed in real-time. The system architecture is inspired by the LHCb trigger
upgrade but benefits from lower data rates and the ability to use commercial net-
working hardware instead of radiation-hardened custom components.

The Timing and Fast Control (TFC) system generates the clock and synchroni-
sation signals, ensuring consistent data acquisition across all sub-detectors. Each
front-end (FE) module digitises signals and sends them in time-stamped frames
(100 ns slices), which are grouped into Multi Event Packages (MEPs) before being
transmitted to the EFF for event reconstruction. The EFF performs real-time track
reconstruction and event selection, reducing the data volume before storing events
in the CERN central archive. The DAQ system is designed for 5 Gbps bandwidth,
handling a 100 kHz event rate with only three high-performance servers.

The Experiment Control System (ECS) oversees detector configuration, monitor-
ing, and run control, integrating slow control (hardware monitoring) and fast control
(DAQ operations). A separate monitoring farm (MF) provides real-time feedback
on data quality. The SHiP trigger software runs on the EFF, using advanced C++
reconstruction algorithms to identify physics events while minimising background.
The system is designed to store ≈ 1 PB of data per year, with an emphasis on
efficient processing and minimal dead time, making it a highly scalable and cost-
effective DAQ solution for long-term operation.

2.5 SND@LHC experiment

2.5.1 Introduction
SND@LHC is a compact and standalone experiment at CERN designed to study
neutrinos produced at LHC. The experiment is stationed in the unused T118 tunnel
located 480 metres downstream of the ATLAS interaction point (IP1). This location
enables the reduction of the SM background from IP1 and to probe the high-energy
neutrinos in the pseudo-rapidity ranges that are not accessible to existing experi-
ments such as ATLAS, CMS and LHCb.

The first official expression of interest was submitted by the SHiP collaboration
to LHCC in February 2020[68], followed by the letter of intent[69] in August of the
same year. The technical proposal[70] was submitted in February 2021, which was
quickly followed by the installation of the detector on the T118 during the Long
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Figure 2.9: Overview of the SND@LHC experiment. Taken from [23].

Shutdown 2. It started accumulating data in April 2022, and the first observation
of eight neutrino CC interaction candidate events was reported in May 2023[71].
LHC Run 3, which is scheduled to take place between 2022 and 2026, is expected to
produce a total of 300 inverse femtobarns of data and detect up to ≈ 400 neutrinos.

In addition to the SND@LHC, there is another experiment with similar goals and
design called FASERν[72]. The primary distinction between these projects is the
position of the detectors in relation to the IP1 point: FASERν is located along the
beam collision axis in tunnel T112, allowing it to explore the pseudo-rapidity range
η > 9, which is mainly composed of neutrinos from pion and kaon decays. On the
other hand, SND@LHC is located off-axis with a pseudo-rapidity range of 7.2 < η
< 8.6, making it more sensitive to neutrinos produced in heavy-flavour decays, such
as charm. In addition to the location aspect, the FASERν target has a mass of 1.2
tons, which is higher than that of SND@LHC (810 kg), resulting in a significantly
higher neutrino yield[73].

The two experiments, by taking measurements in different η regions, allow a more
accurate assessment of machine backgrounds and systematic errors in the calculation
of neutrino fluxes. This is possible because both experiments use the same simulation
tools, which makes it possible to directly compare the results obtained in neutrino
studies.

2.5.2 Detector layout
The SND@LHC is a hybrid device that combines two distinct technologies: nu-
clear emulsions and electronic sensors. The nuclear emulsion part plays the role of
the high-resolution vertex detector, which can reconstruct charged particles with
micrometric resolution. The electronic detectors complement the emulsion cham-
ber by providing additional information about neutrino interaction vertices, such as
the hadronic and electronic shower energy, timestamp of the events, and whether a
muon has been emitted in the process. This configuration enables the experiment
to identify all three neutrino flavours and detect the presence of FIPs.
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Figure 2.10: The frontal (left) and side (right) projection of the SND@LHC detector schematic
layout. Taken from [71].

The concept is not new and is heavily based on the designs of OPERA[74] and
of the SND detector at SHiP[23], from which some of the hardware elements, such
as SciFi target trackers and tungsten plates, have been reused. This strategy has
helped reduce the overall detector cost and keep the installation and commissioning
of the apparatus on schedule.

The modular configuration of the SND@LHC detector allows its emulsion and
electronic systems to operate independently, which has enabled the SND@LHC col-
laboration to detect muon neutrinos by using electronic detectors alone. Function-
ally, the SND@LHC detector can be split into three parts: the veto system, the
target, and the hadronic calorimeter combined with a muon detection unit.

Veto system

The Veto system consists of two parallel planes with a gap of 4.3 cm. Each plane
is made of seven 1 × 6 × 42 cm3 stacked EJ-200 scintillating bars that are read at
both ends by silicon photomultipliers or SiPMs.

As the name suggests, the veto system detects and tags incoming charged particles
originating outside of the detector so that their tracks can be rejected at the data
acquisition stage. This is done to suppress background from the muons originat-
ing from IP1 so that they do not contaminate the experimental detection channels
involving muon track signatures.

Although the rock surrounding the T118 tunnel filters most of the external back-
ground, muons, due to their high permeability, are highly abundant in detector
acceptance with expected fluxes of up to ≈ 2 × 104 cm−2 fb. Therefore, to achieve
a zero background environment in the SND@LHC detector volume, the overall ef-
ficiency of the veto system should ideally be equal to 100%. In practice, there is
always a level of small inefficiency: in 2022, its value was estimated to be around
4.5× 10−4[71], sufficient for the physics goals of the experiment.

Target

The target section consists of five 390 × 390 mm2 walls with an overall mass of
830 kg. Each wall is made of four Emulsion Cloud Chambers (ECC) followed by a
scintillating fibre (SciFi).

Each ECC unit is made of 60 nuclear emulsion films interleaved with 59 one-
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millimetre thick tungsten plates. The tungsten plates act as the target material,
where the incoming neutrinos participate in the CC and NC interactions with the
constituent nuclei.

SciFi is an important part of the detector as it complements the emulsion system
with additional time and spatial information. It also acts as the sampling hadron and
electromagnetic calorimeter, enabling energy measurements of deposited showers.
Each SciFi station is made up of two 40 × 40 cm2 planes with alternating x and y
views. Each view consists of six densely packed, staggered layers of Kuraray SCSF-
78MJ scintillating fibre glued together. As the particle crosses the x- and y- views,
it produces light which is read out by a pair of SiPM arrays.

Combining the information from these two subsystems allows reconstruction of
the path of the charged particles with a resolution of the order of ≈ 150 µm.

Hadronic calorimeter and a muon detection system

The main purpose of this detector part is to identify muons and measure the energy
of the hadronic jets. It can be divided into two parts: the first five stations or
upstream (US) are used as a particle timing detector, and the last three stations or
downstream (DS) provide muon tracking information.

Each US station is made of three stacked iron blocks FT822 (80 × 20 × 20 cm3)
that act as passive material. Each set of blocks is accompanied by a scintillating
detector plane. Constructionally, they are similar to the veto system: it is a set of
ten stacked horizontal 82.5 × 6 × 1 cm3 scintillator bars, each read out at both ends
by eight Hamamatsu S14160-6050HS SiPMs.

The DS part of the detector also uses the same iron block configuration as the
US but has two layers of thinner scintillating bars: one with horizontal alignment
and one with vertical alignment. This configuration is capable of providing tracking
information, although with a coarse resolution of ≈ 1 cm. Because the frontal cross-
section of the DS has a rectangular shape, the dimensions of the scintillating bars
are different. The horizontal planes consist of 60 bars each measuring 81 × 1 × 1
cm3 each read out by a single Hamamatsu S14160-6050HS SiPM on both sides, and
the vertical planes consist of 60 bars of 60 × 6 × 1 cm3 with each bar read out by
a single SiPM located at the top.

2.5.3 Software
The software components of the SND@LHC experiment can be divided into three
different categories: detector control systems, data acquisition or DAQ, and offline
analysis.

Detector control system

The detector control system, or DCS, monitors the environmental parameters of the
detector such as the temperature and humidity of the emulsion detector and the
current flow of electronic components.

Although the DCS does not produce any experimental data, it plays a crucial role
in maintaining the optimal environmental conditions of the SND@LHC detector

33



CHAPTER 2. THEORETICAL BACKGROUND

that affect the volume and quality of the taken data. Certain components, such
as emulsion films, must be kept at temperatures below 15 degrees Celsius to avoid
deterioration effects. This is achieved through the control of complementary "life-
support" subsystems such as the chiller and evaporator, and safety interlocks that
disable the SciFI electrical system in case of overheating.

Data acquisition

The DAQ is responsible for collecting signals from the electronic sensors of the
detector and converting them into a digital form that can be recorded and stored
as structured data. This is quite a complex process that involves many physical
components, which are listed below:

• 36 DAQ boards that are based on the Mercury SA1 module from Enclustra.
They read and digitise the signals from SiPMs and send the result to a server.

• The Trigger Timing Control (TTC) crate is responsible for connecting with the
Beam Synchronous Timing (BST) system. It obtains data from the BST, such
as the bunch crossing and revolution frequency of the LHC, the GPS absolute
time, and the beam parameters. This information is used to synchronise the
DAQ boards and add meta-information to the recorded physics data regarding
the conditions of the LHC run.

• The dedicated DAQ server4 receives all recorded hits from each DAQ board
and groups them into data clusters called events. The online software noise
filter is used to assess events based on certain topological criteria, such as
the hit distribution across the detector plane. Events that pass the selection
are recorded in ROOT[75] format on a local disk and eventually transferred
to EOS5 , from which they can be used for further data analysis. The num-
ber of events per second that get recorded varies and depends on the LHC
instantaneous luminosity: in 2022 it has been reported[71] to be 5.4 kHz.

It should be noted that DAQ only deals with information from electronic systems
and does not interact with the emulsion detector. The ECC accumulates the data
passively by being exposed to charged particles and the formation of silver halide in
the emulsion plates. This necessitates a different offline digitisation process, which
will be discussed in the following section.

Offline Analysis

Due to the complex nature of the experimental setup of SND@LHC, numerous
software packages are required to perform various tasks such as simulation, recon-
struction, and high-level analysis of observed events.

Many of these have been developed and enhanced in recent years, forming ro-
bust software frameworks that can be used for a variety of experiments. These
can be classified into three categories: simulation frameworks, event reconstruction
software, and data analysis tools.

4 Located at building 2175 at CERN.
5 EOS is a disk-based, low-latency storage service used in CERN for data storage.
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Simulation frameworks are essential in experimental particle physics, as they en-
able the modelling of a variety of experimental elements, such as the expected Stan-
dard Model and instrumental backgrounds, as well as the corresponding detector
response. Most particle physics detectors initially exist as virtual constructs which
can undergo years of rigorous performance studies and optimisation before their
physical construction. The simulation ecosystem used in the SND@LHC experi-
ment consists of:

• The DPMJET[76] event generator is used to simulate the LHC process p+p→∑N
i Xi where N number of decay products Xi have been generated.

• The FLUKA simulation framework emulates the passage and energy loss of the
decay products from IP to the T118 tunnel, since the geometry and chemical
composition of the penetrated medium are known a priori. The main result
of the simulation is the expected rate of incoming particles and their spectra
in the T118 tunnel.

• Using the results of the previous step, the Genie[64] simulates neutrino inter-
actions with the detector material. In addition to Genie, particle guns using
Pythia[62] are used to generate specific background-producing events.

• The Geant4 toolkit is used to simulate the movement of particles in the
SND@LHC and their interaction with the detector components.

For convenience and consideration of the specific details of the SND@LHC, the last
two steps are handled by the sndsw toolkit[77], which includes the relevant software
libraries and the virtual geometry of the detector.

The final output of the simulation steps is produced and saved in a ROOT format
similar to that during DAQ: the only difference is the additional truth information
generated by the simulation. No additional preparation is required for the data from
the electronic detectors, regardless of whether they are from DAQ or simulation,
since the events have already been reconstructed and are ready for analysis.

As with most of the experiments at CERN, the bulk of the data analysis and
visualisation can be performed using the ROOT data analysis framework. The
SND@LHC collaboration uses its derivative: the sndsw toolkit, which is based on
the FairRoot software framework[61]6 .

2.5.4 Emulsion vertex detector
Nuclear emulsion

The SND@LHC vertex detector is composed of a nuclear emulsion, a technology
that has been around for a long time. This section will provide a brief review based
on [78, 79, 80] of the emulsion technology, its principles, evolution, shortcomings,
and advantages that provide a valuable context for subsequent research.

The composition of the nuclear emulsion is similar to that of the film used in com-
mercial photography and consists of silver halide crystals immersed in gelatin. The

6 FairRoot itself is a derivative of the ROOT Data Analysis Framework programme developed
at CERN.
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Figure 2.11: Left: Silver bromide crystals as seen with an electronic microscope. Right: An
example of a latent image of the track left by the ionising particle. Taken from [79].

exact type of silver halide varies from film to film depending on the requirements.
Typically, nuclear emulsions in particle physics are made of silver bromide (AgBr)
with a small fraction of iodine. The AgBr crystal functions as a semiconductor,
featuring a band gap of approximately 2.7 eV. When a charged particle travels
through the crystal, it excites electrons from the valence band to the conduction
band. Through the artificial chemical process known as sensitisation, the AgBr
crystal acquires a positively charged sensitisation centre that serves as a shallow
21-25 meV trap, inhibiting electrons from returning to the valence band. Once the
electron is captured, the sensitisation centre acquires a negative charge, which then
attracts migrating positively charged interstitial silver ions. These ions interact with
the trapped electron through the chemical ionic process Ag+ + e− → Ag. After the
sensitisation centre donates the electron, it regains its positive charge and is ready
to trap another electron.

This process can be repeated multiple times until an aggregate of multiple sil-
ver atoms is formed on the crystal. A cluster of four or more silver atoms is
considered developable, and the sensitisation centre at this stage forms a so-called
latent image centre. These chemical changes are too subtle to be seen with the
naked eye; however, amplification of the signal can be achieved by a development
procedure. It involves immersing the emulsion in a solution consisting of a re-
duction chemical that interacts with the latent image sites through the reaction
Red+ nAg+ ⇔ nAg+Ox+mH+, where Red and Ox are the developing agent and
the oxidised developing agent, respectively; n is the number of ions and m is the
number of hydrogen ions produced. This is a discriminatory reaction that mainly
acts on the latent image sites, leaving the silver halide crystals that were unaffected
by the passing charged particles intact. These are removed by the fixing procedure,
leaving the metallic silver deposits alone.

Due to the high power ≈ 108 of development amplification, the silver grains are
large enough to be observed with the optical microscope. Each silver halide crystal
has a limit of detection efficiency of ≈ 17%, well below 100%, which requires a higher
ratio of silver to gelatin and finer silver halide crystals compared to commercial
photographic films.

Despite the need for chemistry expertise to create and develop emulsions, it was
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a simple enough process to be employed as far back as the 19th century to dis-
cover radioactivity [81]. The ease of use of the photographic technique made it
a desirable choice for particle physics experiments conducted in the mid-twentieth
century studying cosmic rays at higher altitudes (mountain, rocket, and air balloon
experiments), which resulted in the discovery of particles such as π and K mesons.

As particle physics entered the era of particle accelerator experiments in the second
half of the century, emulsion detection technology started experiencing a gradual
decline in usage in favour of electronic detectors. This was for numerous reasons:

• Absence of timing data: unlike the majority of electronic detectors, emulsions
cannot assign timestamps to each track. Instead, they integrate all tracks dur-
ing an exposure into one dataset, complicating the disentanglement of physics
events during data analysis.

• Effect of the emulsion on the charged particle path: the emulsion is a dense
material that significantly influences the path of the charged particles due to
the effects of Coulomb repulsion. This particularly affects the trajectory of
the low-momentum particles, making them highly nonlinear and difficult to
reconstruct.

• The handling of the emulsion requires a level of care that includes humidity
and the temperature regime. Incorrect handling can cause various unwanted
effects, such as fog, which is caused by false activation and crystallisation of
silver halides, leading to unwanted noise in the developed film.

• Initially, the emulsion detector devices were made of a single film plate, and
to reconstruct the whole event, the emulsion had to be sufficiently thick. In
the 1940s-1950s numerous attempts were made to increase the thickness of
emulsion from a typical 50-100 µm to 500-1000 µm with some exceptional
attempts to create 2000 µm thick films. This was still insufficient to contain
the entire track of the particles, and the increase in thickness led to difficulties
in scanning at the processing stage.

• Scanning the emulsion was a time-consuming and laborious task. This was
bearable in experiments with low intensity that involved the observation of rare
cosmic ray events, but in studies with higher luminosity from accelerators, this
has become a major impediment.

However, the work on emulsion technology did not stop entirely, and a significant
amount of effort has been spent to overcome at least some of these challenges. The
first major breakthrough[82] that occurred in the 1950s was a solution to the film
thickness problem: the Emulsion Cloud Chamber detector or ECC for short. Instead
of increasing the thickness of the emulsion, a set of emulsion plates is interleaved
with passive material layers, usually made of plastic or metal plates. By orienting
the box so that the emulsion films are perpendicular to the incoming particles, it
is possible to reconstruct their complete path by piecing together their imprints in
consecutive emulsion films. In combination with the high crystal granularity of the
constituent emulsion films, this technique has allowed experimenters to achieve an
exceptionally high tracking resolution down to 1 µm.

The second significant milestone was the development of the tomographic read-out
technique by the Nagoya group in Japan in 1974[83]. The key idea of the procedure
is to sample multiple images of the same emulsion layer using an optical microscope,
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with each shot having a different focal plane depth. These snapshots can then be
superimposed to produce a mini 3-D image of grain formations in the layer where
grain clusters are subject to the track fit. The ones that pass the detection threshold
are reconstructed as tracks with their attributes, such as fit quality and slope angle.

The main principles behind this technique are still used today; however, many
aspects of the digital technology boom, such as CCDs and faster electronics, have
greatly improved the speed and quality of scanning systems. For example, one of
the earlier track selector systems, TS(1983), could scan around 0.03 cm2 of emulsion
per hour, while in 2015 the HTS system achieved a scanning speed of 4700 cm2/h,
which represents a factor of ×150k improvement over the first generations[79].

Although nuclear emulsion has never become a mainstream particle physics de-
tector technology, it is still widely used in physics experiments that require a par-
ticularly high spatial event resolution, which is beyond the capability of electronic
detectors. Neutrino experiments are one of the main benefactors of this technol-
ogy, as ECC-based detectors are well suited to reconstruct short decay topologies
involving short-lived particles such as charm mesons and tau leptons. Due to these
qualities, nuclear emulsions were instrumental in the first observation and study of
tau neutrinos in experiments such as DONuT and OPERA and, for the same reason,
play an important role in the SND@LHC project.

Detector layout

The emulsion detector in the SND@LHC consists of five slightly separated walls,
each with a thickness of approximately 78 mm. Originally[69], each wall was envi-
sioned to host a single ECC unit with a surface area of 400 × 400 mm2 to maximise
the acceptance of incoming neutrinos. Eventually, this idea was discarded to ac-
celerate detector construction and avoid potential problems: nuclear emulsion films
of this large size have never been produced and would require additional R&D and
validation efforts. Instead, the collaboration has opted to use four smaller ECC cells
with an area of 192 × 192 mm2 each, making a total of 20 ECC units per detector.
This setup leads to a decrease in the detection area between adjacent cells, but it is
more feasible in terms of implementation.

Figure 2.12: The layout of the SND@LHC emulsion detector. Taken from [70].

Each ECC brick is a highly evolved version of the ECC detector described pre-
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viously and is made of sixty 310 µm thick emulsion films interleaved with 59 one-
millimetre thick metal layers made of tungsten. The tungsten plates act as an
individual high-density target, maximising the neutrino/FIP interaction rate per
unit of volume, whereas the emulsion films record the passage of the charged decay
products. The emulsion film itself is a composite structure made of two 70 µm thick
emulsion layers separated by the plastic base.

This setup makes ECC a precise tracking device with sub-micrometric spatial and
milliradian angular resolution. In addition to the tracking capabilities, the ECC as
a whole acts as a fine sampling electromagnetic calorimeter well adapted to mea-
surements of electromagnetic showers.

To protect the emulsion films from light exposure, humidity, and other environ-
mental factors, the ECC is assembled inside the aluminium box, which is then tightly
sealed before the brick is installed in the SND@LHC detector.

Figure 2.13: An illustration of the emulsion brick element. Thin red and grey lines represent the
trajectory of the tracks and thick blue lines indicate the microtracks that end up in the raw data.

Data acquisition process

As mentioned above, the acquisition of data from the emulsion detector follows a
different protocol from that of electronic detectors and is a complex procedure made
up of multiple steps.

Extraction: the ECC units are ready for extraction once they are exposed to a
sufficient flux of incoming particles. The SND@LHC technical proposal postulates a
replacement every 25 fb−1; this must occur during the scheduled LHC technical stop
when the radiation levels in the T118 tunnel are safe for maintenance personnel.
After extraction, the emulsion films are sent to the CERN dark room facility for
chemical treatment.

Chemical development: the chemical development of the SND@LHC emulsion
films is carried out in the designated dark room at CERN that has all the required
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facilities, such as development tanks, climate control, and chemical disposal. Film
development itself consists of five steps:

1. Development: attempt to convert the silver clusters into visible metallic silver
grains. For this purpose, a Fujifilm developer solution that was originally
customised for the OPERA experiment is used.

2. Stop the development with acetic acid once it is deemed sufficient.

3. Fix: remove all remaining residual silver halide crystals with the custom Fu-
jifilm fixer7 .

4. Wash: remove all silver thiosulfate complexes from the emulsion with water.

5. Thickening: restore the emulsion film to its original thickness with the use of
glycerine and the Fujifilm Driwell solution.

Once the films have developed, they are ready to be transported to a scanning
laboratory for microscopy.

Emulsion readout: there are four stations dedicated to scanning the SND@LHC
emulsion plates: Bologna[84], Lebedev Institute[85], Napoli[86] and CERN. Each of
these stations employs a microscope equipped with a computer-controlled monitored
stage, which can move along both the x- and y-axes.

Figure 2.14: Scanning stations distributed across four locations.

In addition to the horizontal movement, the microscope can adjust the focal plane
of the objective lens through the thickness of the whole emulsion, which enables the
creation of a sequence of tomographic images of each field of view at equally spaced
depth levels.

To make the optical path homogeneous in the film, the lens is immersed in oil
with the same refraction index as the emulsion. These sequences are processed and
analysed by the vision processing board in order to recognise aligned clusters of
dark silver crystals produced by charged particles along their trajectories, which are
reconstructed as micro-tracks.

The final step of the emulsion readout is to find suitable pairs of microtracks from
two different emulsion layers within a single plate that could be associated with a
path of the same particle. These pairs are generally referred to as hits or base tracks.
In contrast to single point-like pixels in electronic detectors such as ATLAS, the hit

7 Fujifilm UR-F1
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in the context of ECC detectors is a more complex object. It is represented by the
vector in the 5-dimensional space that can be defined by five variables: x, y, z, tx,
and ty. The first three elements are the spatial coordinates of the point at which
the base track crosses the middle of the plastic base. The last two variables are used
to parameterise the change of the x and y coordinates of the base track line with
respect to the z-axis.

Along with the geometrical information, an additional set of metadata is recorded
for each base track, such as the total number of micro-track clusters, pixel intensities,
and the chi-square goodness of base-track line fit. The total scanning speed depends
on the laboratory but is expected to reach 180 cm2 per hour[70].

Emulsion film alignment: once all plates of a given ECC brick have been scanned,
the output data must be assembled to build a three-dimensional data model of the
hits. Because each emulsion plate should have the same thickness and size, its base
track sets are arranged in the same order as during the data-taking process in the
target.

Unfortunately, this is not a straightforward task. The precision of the stacking
films in the brick assembly is limited to approximately 50÷100µm[87], and the films
can be distorted from their original spatial configuration due to external factors such
as humidity and temperature during the data-taking stage. The tracking precision
is not sufficient due to the low quality of the raw assembled hit data. This is a
common problem for ECC detectors: unlike electronic detectors, where the relative
positions of the detector layers are fixed and well-known, each emulsion unit will
have its own unique set of distortion transformations.

To compensate for these effects, an alignment procedure is performed on the ECC
data, the main objective of which is to transform the hit coordinates so that their
relative coordinate configuration is matching the one maintained during the data
taking as closely as possible. The procedure consists of an iterative pattern-matching
procedure computing the parameters of the transformations:xb

yb

 =
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 , (2.29)

where xf and yf are single film track coordinates and xb and yb are the corresponding
aligned ones.

A least squares fit is applied after maximising the number of matching pairs within
predefined positions and the slope tolerances measured in particular areas of the
emulsion film8 . The main objective of the procedure is to calculate the parame-
ters of the shift and rotational transformations of the hit coordinates at which the
average least squares fit is optimal. By applying the above procedure to each pair
of consecutive films, the relative displacements along the x-, y-, and z-axes can be
reduced to a few µm, which is sufficient for the tracking procedure.

8 Usually these areas are the corners of the emulsion plate.
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Figure 2.15: Visualisation of a reduced sample of Run 0 data generated by the DAQ process. Grey
areas indicate plate locations, while lines show base tracks with spatial and angular information.
The dataset has been downsampled for illustration purposes and does not represent typical occu-
pancy.

Standard data reconstruction process

The size of the data generated by the DAQ process is enormous: even the emulsion
detector used in Run 0 that has the lowest integrated luminosity of ≈ 0.46 fb−1 has
a typical hit density reaching O(105) cm−3. The overwhelming majority of these
hits are caused by the background events, with less than 1% belonging to the signal.

The task of the data reconstruction process is to create a data representation that
would assist in the efficient discrimination of background and signal events. This
process can be divided into three distinctive phases:

1. Tracking: identify and assemble the suitable series of hits that could be
created by the same particle into volume tracks9 .

2. Vertexing: identify the group of two or more tracks that seem to originate
from the same point in space and that can be associated with particle decay or
interaction. These groups of tracks are clustered into higher-order structures
called vertices.

3. Event building: particles originating from one vertex can undergo subse-
quent decay or interaction, creating a secondary vertex in the detector data.
The task of the event-building exercise is to group suitable vertex candidates
into events that provide a holistic view of the particular physical process.

The standard tracking for the SND@LHC experiment is performed using a software
framework called FEDRA[88] originally developed for the OPERA experiment. It
consists of multiple shared libraries of C++ classes and routines that perform var-
ious steps of data reconstruction, including tracking and vertexing. Tracking is a

9 The term volume is used to distinguish higher-order tracks that are made of multiple base
tracks in emulsion.
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relatively complex procedure that involves processing large amounts of data and can
be split into four steps.

1. Data selection: only base tracks with more than 20 silver grain clusters per
microtrack pair and a chi-square value from the fit of two matching microtracks
that is less than 2.4 are utilised for tracking. At the time of writing this thesis,
optimisation is ongoing to make a more thorough selection based on other base
track parameters, namely tx and ty.

2. Seeding: the seeding step selects all possible pairs of adjacent base tracks
that meet the spatial and angular acceptance criteria. These seeds serve as a
trigger for the next step.

3. Track propagation: the seeds of the previous step are used as a starting
point for the track propagation procedure. This is the iterative algorithm,
which uses an adapted version of the Kalman filter[89] and at each propa-
gation step performs three operations: filtering, prediction, and update. Fil-
tering involves building an estimated representation of the particle trajectory
parameters at each plate based on previous measurements. These include the
coordinates and angle components at which the track is expected to traverse
in a given plate. The uncertainties associated with the variables are also es-
timated and encoded in the covariant matrix. Since the SND@LHC emulsion
vertex detector is free of any externally induced magnetic fields, the track’s
interception parameters at the next plate are predicted by using an equation
of a straight line in a three-dimensional space. If a hit is found on the next
plate that is close enough to the prediction, it will be measured and added to
the track. The magnitude of the alteration to the current state is determined
by the discrepancy between the measured and estimated parameters of the
hit, as well as the covariance matrix. The larger the difference, the less the
adjustment. If no hit is found at the next plate, then the prediction is extrap-
olated to the next plate: the detection efficiency of the emulsion plate is less
than 100% and therefore one or two gaps10 are tolerated before suspending
the propagation procedure. Once propagation finishes, a smoothing procedure
is applied: using the state calculated at the last step, it retrospectively recal-
culates the estimated track parameters and their residuals at previous points
to calculate the overall quality of the track fit.

4. Final output: once all seeds have been utilised, each group of hits is assigned
a numerical tracking identifier, as well as its fit value. If a hit has not been
included in any track, it will not have any tracking information; however, it is
still kept in the data for potential re-tracking procedures or examinations of
the reconstruction effectiveness.

In addition to tracking, FEDRA performs a vertexing procedure11 using volume
tracks generated from the previous step. The main purpose of the vertexing proce-
dure is to identify a set of tracks that represent the decay products of a common
mother particle. This group of tracks is identified by analysing their trajectories: if
all tracks within a group with sufficient certainty seem to be emerging from a small

10 Commonly called ’holes’ in the experimental particle physics.
11 FEDRA uses libVt++ libraries originally written for Hera-B.
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Figure 2.16: A visualisation of a reduced sample of Monte Carlo-generated data which has under-
gone FEDRA tracking. Two images show the same data from different points of view. The dataset
has been downsampled for illustration purposes and does not represent typical occupancy.

point in space in a fiducial volume of the detector, then it can be classified as a
complex object called vertex. It is important to make a clear distinction between a
term vertex defined in Feynman diagrams and the observed vertex in the context
of experimental physics. The latter one is a much broader term that also includes
a group of particles coming from a much more complex physics processes than just
two-body decays and can result in a vertex with track multiplicities exceeding two.
One of the typical examples of such a process is a neutrino-nucleus DIS process,
which, in addition to the muon, can also yield a jet of hadrons. This algorithm

Figure 2.17: A visualisation of a small sample of the Monte-Carlo data which has undergone
the FEDRA vertexing procedure, where each vertex is distinguished by its colour. Two images
represent the same data but from different points of view.

employs techniques akin to those used in tracking; however, the amount of data
that needs to be handled is much less.

44



CHAPTER 2. THEORETICAL BACKGROUND

1. Data selection: only reconstructed tracks which consist of at least four hits
are used, and all tracks that start at the first plate are eliminated to reduce
the background.

2. Seeding: the seeding step selects all possible pairs of volume tracks that are
close to each other. For this purpose, an Euclidean distance between tracks’
starting points is calculated: the seed is formed if the distance is less than
some preset value (around 4000 microns).

3. Seed fit: in the absence of magnetic fields, each track in the seed can be
modelled as a straight line. For each pair of non-parallel lines in a three-
dimensional space, there is a point at which the distance between them is
minimal and can be interpreted as the vertex origin. Cuts in the minimum
approach distance and some additional topological considerations are used to
reject seeds that are likely to be formed by two unrelated tracks.

4. Seed merging: all seeds from the previous step that have a common track
are merged to form vertices with greater multiplicity. The process of merging
uses a Kalman filter technique in a similar manner as for tracking, but instead
of hit coordinates, the vertex origin position and its uncertainties are used.

5. Final output: once all suitable seeds have been combined, each group of
tracks taking part in the merging process is given a numerical vertex identi-
fier, which is accompanied by additional metadata on the vertex characteris-
tics, such as the origin and the quality of the fit. In contrast to detectors such
as ATLAS, which have been designed to accurately measure the momentum
and type of particles, the tracks in the SND@LHC emulsion vertex detec-
tor lack this information, making it more challenging to calculate the vertex
parameters, including its invariant mass.

The final outcome of the reconstruction is kept in a ROOT file, which is ready for
the final analysis.

2.5.5 Physics goals
While the research programme of the SND@LHC is less ambitious than that of
SHiP, the neutrino sector still offers an excellent opportunity to perform tests of the
Standard Model and probe for new physics.

One of the measurements where SND@LHC can have an impact due to the limita-
tions of current experimental results is the neutrino-nucleon cross-section at medium-
high energies. Existing measurements have been made either with energies below
350 GeV or extremely high energetic regimes of 10 TeV-1 PeV[90], leaving the re-
gion between 350 GeV and 10 TeV unexplored. SND@LHC is designed to probe
this unexplored energy range and directly measure pp → νX cross-section in this
intermediate regime[91].

The LHC produces all three types of neutrinos in the necessary energy range. The
forward neutrinos are particularly energetic because of the Lorentz boost along the
beam axis. Therefore, having a detector with a high pseudorapidity acceptance
(η > 5) is a desirable feature that is not present in machines such as ATLAS or
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Figure 2.18: Available measurements of the neutrino cross-section. The blue area indicates the
energy range targeted by SND@LHC. Adapted from [92, 91].

.

CMS. Additionally, the LHC-generated neutrinos have a large flux, which leads to
a high number of signal events even in small neutrino detectors such as SND@LHC.

There are four main channels of neutrino production in LHC: charm, beauty, pion,
and kaon-hadron decays. In [93], the leptonic decays of the W and Z bosons were
considered as additional sources of neutrinos, but their rapidity distribution (4 <
|η| < 5) falls outside of the acceptance of SND@LHC, making this contribution
negligible. Each production channel is expected to provide a different contribution
to the respective neutrino flavour energy spectrum. As a consequence, identifying
the flavour and energy of the detected neutrinos provides insight into heavy-flavour
production.

The main physics measurements, Standard Model tests and searches available at
the SND@LHC experiment are described below.

Charmed-hadron production in pp collisions

In the SND@LHC pseudorapidity range, νe and ν̄e neutrinos come mainly from
charmed hadron decays: by measuring and unfolding the electron-neutrino energy
spectrum, the charmed-hadron production process at LHC can be directly probed.
The main challenge of this procedure is to subtract the decays of the kaon and
beauty hadrons that have an estimated contribution of about 10% and 3%, respec-
tively. Although various data analysis techniques can be performed to mitigate this
problem, it still limits the precision of the measurement.

Lepton flavour universality test in ν interactions

The majority of tau neutrinos ντ and ν̄τ are produced by the process Ds → τ + ντ
and the subsequent decay τ → W + ντ , with only a small fraction (8%) coming
from beauty hadron decays. Unlike tau, the electron neutrino comes from decays of
all charmed mesons such as D0, D, Ds, and Λc. Therefore the νe/ντ or R13 can be
expressed as:

R13 =
Nνe+ν̄e

Nντ+ν̄τ

=

∑
i fciBr(ci → νeX)

fDsBr(Ds → τντ )
. (2.30)
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The precision of this method is limited to 30% due to the low number of tau neu-
trinos. In addition to the νe/ντ , a νe/νµ or R12 ratio is also considered where muon
neutrinos are more abundant:

R12 =
Nνe+ν̄e

Nνµ+ν̄µ

=
1

1 + ωπ/k

. (2.31)

Despite the complications that arise because νµ has many production mechanisms,
including pions and kaons, which are represented by ωπ/k, the lepton flavour univer-
sality (LFU) test involving electron and muon neutrinos has a lower uncertainty of
15%.

By comparison, lepton universality tests performed in Z boson decays at LEP[94]
and W boson decays at the LHC[95, 96] achieve combined statistical and systematic
uncertainties at the ≈ 1-2% level. While the SND@LHC measurement is compara-
tively coarse, its goal is not to compete but to complement these results by probing
LFU in a novel environment: the LHC forward region with different production
mechanisms, systematic uncertainties and higher TeV energy regime. Any signifi-
cant deviation from Standard Model predictions observed in this environment could
provide particularly robust evidence for new physics, while agreement offers an ad-
ditional independent cross-check.

A precedent illustrating the value of complementary measurements is the lepton
flavour universality test conducted by LHCb[97], which compared the branching ra-
tios of B+ → K+e+e− and B+ → K+µ+µ−. The measured R12 was 0.846, and with
initial uncertainties of approximately 4-5%, this produced a 3.1σ tension with the
Standard Model. Subsequent measurements by LHCb, with a combined uncertainty
of about 11-12%[98], reduced this discrepancy and resolved the anomaly. Notably,
this uncertainty is not far from the projected SND@LHC precision, highlighting that
SND@LHC, in principle, can provide meaningful complementary tests of LFU in a
completely different experimental environment.

Measurement of the NC/CC ratio

Neutral-current neutrino and charged-current neutrino interactions are easily distin-
guishable in the SND@LHC detector through the final-state products: unlike NC,
the CC interactions produce a charged lepton that can be detected. By measuring
each individual production rate, the ratio P can be calculated:

P =

∑
i σ

νi
NC + σν̄i

NC∑
i σ

νi
CC + σν̄i

CC

. (2.32)

This can be expressed in terms of the Weinberg angle θW as:

P =
1

2
{1− 2 sin2 θW +

20

9
sin4 θW − λ(1− 2 sin2 θW ) sin2 θW}. (2.33)

The primary source of uncertainty in this measurement is the asymmetry between
neutrinos and antineutrinos, whose exact value is unknown. It is estimated to be be-
low 20% across the entire energy spectrum, and the overall systematic and statistical
uncertainty is predicted to be around 10% and 5%, respectively.
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While this precision is about 15 times worse than that achieved by CHARM in the
1980s, where sin2 θW was determined with ∼1% accuracy [99], the goal of SND@LHC
is not to provide a competitive determination of the Weinberg angle. Instead, the
measurement serves as an important internal consistency check of detector perfor-
mance and analysis methods in a new energy and phase-space regime.

FIP scattering

Apart from testing the Standard Model, SND@LHC is also capable of probing the
hidden sector by searching for feebly interacting particles. Depending on a particular
BSM scenario, direct searches for particles with masses of up to a few GeV can be
performed by detecting their scattering off either atomic electrons or nucleons.

The most commonly hypothesised Hidden Sector particles that could recoil off
electrons in the SND@LHC detector are the products of the dark photon decay
process A′ → χχ′. In the considered mass range of mA′ ≤ 1 GeV there are two main
dark photon generation mechanisms:

• Meson decays: radiative decays of light mesons, such as:

π0, η, η′ → γA′ (2.34)

ω → π0A′ (2.35)

• Bremsstrahlung of protons: dark photons radiation from the primary protons
at the LHC collision point.

The main signature of the DM candidate χ scattering in the detector is the re-
constructed shower induced by the recoiled electron. This search channel is not
background-free, and multiple Standard Model processes exhibit a similar topology.
These include electron-neutrino elastic scattering νxe

− → νxe
− and deep inelastic

and quasi-elastic charge current scattering with unreconstructed tracks at the neu-
trino vertex. However, in the studies performed for the technical proposal[70] their
overall contribution after the analysis cuts was found to be negligible.

The projected exclusion limits have a significant overlap with the MiniBooNE [100]
and NA64[101] experiments, as seen in the figure below, and therefore the discovery
potential of this method is somewhat limited.

However, the SND@LHC direct detection method will complement the limits of
NA64, which are based solely on missing-energy detection techniques. The theoreti-
cal model considered for the nucleon case involves a scalar particle χ coupled to the
SM via the leptophobic portal that can be described by the following Lagrangian:

Lleptophobic = −gBV µJB
µ + gBV

µ(∂µχ
†χ+ χ†∂µχ). (2.36)

Where JB
µ is the baryon current that can be expressed as JB

µ = 1
3

∑
q q̄γµq. The

presence of χ particles in the SND@LHC detector volume can be detected by their
elastic or inelastic scattering off the protons, which manifests itself as a visible
experimental signature of the charged track emerging from the interaction location.
The χ particle originates from the decay of the vector mediator V , which can have
multiple production channels such as:
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Figure 2.19: SND@LHC 90% C.L. exclusion limits in the background-free scenario for a Light
Dark Matter particle χ originating from the prompt decay of A′. Based on the assumption mA′

= 3 mχ and αD = 0.1. The filled regions are excluded by MiniBooNE[100] (grey) and NA64[101]
(orange).

• Unflavoured meson decays:
π0, η → γV (2.37)

• Bremsstrahlung of protons:

p+ p→ V +X (2.38)

• Drell-Yan process:
q + q̄ → V +X (2.39)

Each of these channels has a different contribution depending on the expected mass
of the mediator, but the bremsstrahlung of protons is considered a leading mech-
anism. The background yield consists mainly of NC DIS or Resonant (NC RES)
scattering of electron and muon neutrinos off protons and is expected to be reduced
to a negligible level at the data analysis stage.

The Figure 2.20 below shows the sensitivity of SND@LHC to the leptophobic por-
tal at the end of the expected data-taking period. A significant area of the accessible
parameter space is currently unexplored by previous experiments, presenting a good
opportunity to search for new physics.

2.6 Machine learning

2.6.1 Introduction
Machine learning is a division of the artificial intelligence field that is mainly con-
cerned with a class of regression and classification problems for which building an
explicit algorithm is either cost-prohibitive or its data modelling accuracy is in-
sufficient to provide an adequate solution. ML provides an alternative approach
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Figure 2.20: Sensitivity of the SND@LHC experiment to the leptophobic portal for both elastic
(dashed blue line) and deep-inelastic scattering (solid blue line). The grey region was already
excluded by previous experiments.

by which the computing device builds its own solution algorithm by analysing and
interpreting the input data.

From a historical point of view, this method has been known for a long time, and
the first practical attempts can be traced to the works of Marvin Lee Minsky[102]
and Arthur Samuel[103] in the 1950s. Although those works were highly innovative
for the period, the area of machine learning had limited practical use for a long time
due to the lack of computing power and accessible digital data. In the past two
decades, the landscape has been drastically altered by the affordability and speed
of computers, as well as the emergence of cloud-based data services. The result of
this is a great deal of digital material, including semi-structured and unstructured
data, that is hard to process and analyse using regular analytical techniques.

One of the typical examples is the task of recognising and interpreting scanned
handwritten text into machine-readable output. The simplest data object that could
represent each handwritten character is the monochromatic n×m array, where each
element can be represented by a Boolean variable. Building an explicit recognition
algorithm would require accounting for every variation in handwritten text data
that inevitably occurs due to various factors such as individual writing style, image
distortion, and ink quality. Reducing the image resolution could partly alleviate
this challenge, but at the cost of losing useful information, and hence reducing the
accuracy. For more complex data sets, such as RGB photographic images and audio
recordings, the implementation of human-prescribed algorithms becomes impractical
due to the enormous amount of development time.

These challenges combined with advances in computing technology have stimu-
lated rapid development of the machine learning field, elements of which at the
time of writing have already penetrated many aspects of human life such as health-
care[104], customer service[105]12 and transport[106].

12 The author participated in an industrial project to develop an AI chatbot for ASOS, a British
online retailer of fast-fashion and cosmetics.
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2.6.2 Structure
To address the wide spectrum of specific problems mentioned above, machine learn-
ing has evolved into a broad discipline containing many approaches. Although the
exact structure of ML is subject to debate, it can be roughly divided into two main
categories: unsupervised and supervised learning.

Figure 2.21: Examples of algorithms used in Machine Learning. Taken from [107].

The main objective of unsupervised learning is to extract hidden variables and
patterns of interest from unlabelled data. One of the typical examples is clustering,
which involves grouping data points xi based on their characteristics. Principal
component analysis (PCA) is another commonly used tool that aims to reduce the
dimensionality of the input xi by building a more compact representation of its fea-
ture set. In this research, a particular data mining technique called the evolutionary
algorithm (EA) will be used, which involves finding an optimal value xopt across
the large domain of possible solutions.

Supervised learning involves training machine algorithms with labelled data
where the term labelled indicates that for a given xi data point, an associated
output variable yi is already defined. A typical example of such a data set is an
MNIST dataset[108] that contains 70k handwritten character images and associated
labels. The main objective of supervised learning is to provide a function that
correctly maps an input xi to an output yi based on previous learning experience
(in the MNIST case, associate a handwritten character to the letter or number it
represents). The output yi can be a continuous range of values for regression models
or a discrete set if the task is of a classification nature. A type of ML called deep
learning will be used in the SND@LHC experiment, which involves data processing
using artificial neural networks or ANNs. Inspired by human biology, ANNs can have
large degrees of freedom that enable them to model complex data representations
and extract implicit features that may be inaccessible to other methods, such as
logistic regression or decision trees.
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2.6.3 Limitations of machine learning
Despite its successes, machine learning suffers from many limitations13 that can
potentially lead to failure. Although certain limitations depend on the particular
type of ML used, to date three main sets of problems have been identified: data
quality, the complex nature of the subject, and the interpretability of solutions.

Data quality

To provide the correct solution to the problem, machine learning supervised algo-
rithms require exposure to training datasets that assist in building the input-output
mapping function. These datasets are required to be representative of the problem
in general: failure to achieve this condition can lead to the situation where the ML
algorithm performs adequately on the training set but fails to do the same on the
previously "unseen" data. Unsupervised algorithms also suffer from data-related is-
sues but with their own specifics. For example, optimisation algorithms are sensitive
to the definition of the objective function, which is used to quantify how adequate
the solution is to solve the problem. If the definition is poorly chosen, the algorithm
may find the solution that satisfies the criteria defined by the objective function but
fails to solve the actual problem.

Complexity

Most of the ML tools require specialist knowledge and, in the majority of cases, are
not trivial to set up and run. As an example, utilising artificial neural networks
requires a lot of preparation from the hardware and software perspective. This
includes multiple tasks such as: installing the relevant libraries, preparing data,
choosing the right ANN architecture, training it, and eventually utilising its output.
While there are plenty of available resources on the topic, the exact methodology
using artificial neural networks is still considered a "dark art". For example, ANNs
have many parameters, such as the number of layers, dropout, and learning rate,
the exact values of which depend on the problem in question and, therefore, have to
be worked out through trial and error. This is one of the reasons that ML is avoided
for problems that can be solved with simpler methods.

Interpretation

From the user’s perspective, the ML algorithm is a "black-box" function, the inner
workings of which are hard to conceptualise. This makes it difficult to trace the
source of any possible issues that arise in ML. For example, it is not uncommon
for neural networks to learn from the wrong features present in the training dataset
and fail to recognise them in the validation if those features are not present there.
As a hypothetical example, the image recognition model can only be presented with
images of white cats and black dogs. Instead of focusing on the morphological
features such as shape and size, the model may focus on the colour itself and fail on
the dataset involving black cats and white dogs. Another common issue observed
in ML is an occasional "lack of common sense" effect that leads to solutions that

13 The ethical issues of using ML will not be considered here as they are irrelevant in the context
of the work being carried out.
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are abnormal and unphysical. The concealed nature of ML algorithms makes it
extremely difficult to trace and resolve the root causes of these issues.

2.6.4 Evolutionary algorithms
Evolutionary algorithm, or EA, is an optimisation method inspired by Darwin’s
theory of evolution. In this approach, the problem is solved by treating solutions
as individuals that evolve into a better set of solutions. The exact mode of EA
operation depends on its architecture; most canonical versions have the following
steps in their optimisation logic:

1. Initialisation: multiple solutions with random14 characteristics are generated
in the beginning. They act as a start-up population for the evolution process.

2. Evaluation: each individual is tested on the problem in question, after which
it receives its performance score called fitness. Generally, it is a scalar number,
the value of which indicates how well the given individual solves the problem.

3. Selection: several individuals are sampled based on the fitness calculated in
the previous step.

4. Genetic operations:

• Crossover: the best individuals undergo recombination with each other
by partially exchanging their genetically encoded characteristics. This is
a conservative operator that generates the offspring with a mixture of its
parent characteristics.

• Mutation: the best individuals may undergo a small change in their
genetic code that results in new genetic material in the population.

5. Re-injection: the new solutions created in Step 4 are released back into the
population, and the process restarts from Step 2.

6. Termination: steps 2-5 can be repeated many times, but eventually the
algorithm stops once a programmed terminating condition has been met.

Evolutionary algorithms were used in various areas such as cancer research[110],
vehicle design[111] and traffic signal light control optimisation [112]. In [113], a study
was conducted that used EA strategies to improve the design of a satellite dish beam,
making it more durable and resistant to vibrations. Optimisation has produced a
highly asymmetric structure, which was 20, 000% better than any traditional shape.
It was discovered that the asymmetry itself was the main reason for the enhanced
stability: The unequal lengths of the rungs caused the vibrational waves to meet in
different phases, resulting in destructive interference.

This case reveals an interesting feature of EA: a lack of bias toward any symmetry
or design consideration, which can provide a new route in solving the problem.

14 There are variations of evolutionary algorithms called seeding EAs where the initial individual
generation is driven heuristically. This approach has been described in [109].
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Figure 2.22: Left: A satellite boom dish derived after EA optimization in [113] Right: An actual
evolved antenna used in ST5 spacecraft. Taken from [114].

2.6.5 Artificial neural networks
Introduction

Artificial neural networks ANNs represent a family of machine learning models whose
organisational structure has been inspired by biological neural networks that partic-
ipate in the activity of the animal brain. The basic unit of the ANNs is the artificial
neuron, which loosely replicates the operation of the biological neuron.

The purpose of the artificial neuron is to transform signals from an arbitrary num-
ber m of inputs xi to produce an output y according to the following mathematical
formula:

y = φ(
m∑
i

ωixi), (2.40)

where the term ωi is the weighting coefficient of each input xi and φ is a non-linear
transfer or activation function that takes the argument in the bracket and converts
it into a real number, which generally takes a value between 0 and 1.

Figure 2.23: Left: Schematic representation of the artificial neuron. Right: Example of the two-
layer perceptron.

Each artificial neural unit can be combined into groups called layers, and each
layer can be mutually interconnected into a structure called a multilayer perceptron
(MLP). Because of their scalability, MLPs can possess many degrees of freedom,
limited only by the available computer resources. This makes them very powerful
in modelling and extracting hidden patterns from complex datasets. This process
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is accomplished by sequentially passing, multiplying, and adding a continuously
altered input signal from one layer to the next until it is converted into an internal
representation that can be used for prediction. This is commonly referred to as a
forward pass or propagation.

In principle, the multilayer perceptron can work with any type of data, but there
are some situations where it is more practical to use more specialised types of ANN
architectures. Although the full description of the types of ANN is outside the scope
of this thesis, two types of neural networks used in this research will be discussed
in more detail: convolutional neural networks (CNNs)15 and geometrical neural
networks (GNNs).

Convolutional neural networks

One of the examples in which a classical MLP struggles is image data processing:
depending on the particular conditions under which the photograph was taken, the
objects in the image are subject to various transformations such as rotations, shifts,
and scaling. For example, if the classifier’s task is to differentiate between cats
and dogs16 , two pictures of two different cats must be classified as the same label.
However, their shapes and morphology can differ considerably depending on the
cat’s breed, position, and the transformations mentioned above, which can result
in MLP wrongly identifying one of the pictures as a dog. To make MLP more
accurate, it will require a large number of layers and artificial neurons, which can
be prohibitive from a computational point of view.

To address these challenges, convolutional neural networks are used instead. In
addition to MLP layers, the typical CNN incorporates an additional set called con-
volutional layers that are specifically designed to recognise relationships between
spatially distributed data points such as pixels.

Like most ML concepts, the idea of convolutional operations was inspired by bi-
ology and comes from the pioneering work of D.H. Hubel and T.N. Wiesel[115]. In
1959, they were studying cells in the striate cortex of lightly anesthetised cats. The
main outcome of the experiment was the discovery of the so-called excitatory and
inhibitory regions of the cat’s retina, which were formed in a particulate fashion,
making it receptive to specific observed visual patterns.

This work and the following works of D.H. Hubel and T.N. Wiesel have inspired
the creation of the first computer neural network named Neocognitron[116] the main
objective of which was to simulate the visual pattern recognition system of humans.

From a conceptual point of view, this neural network already represents two key
features of modern CNNs: the convolutional and the downsampling layers, which
specialise in extracting visual pattern attributes from the data. Unfortunately, in the
1980s, this network was too ahead of its time: the convolutional operation requires
simple but numerous simultaneous matrix operations to yield sufficient performance.

This limited the practical use of CNNs until the widespread use of graphical unit
15 Also commonly referred to as ConvNets.
16 For some reason, "cats and dogs" classification tasks are commonly used in the CNN-related

literature as an example and often form the first tutorial task for beginners.

55



CHAPTER 2. THEORETICAL BACKGROUND

processors[117] (GPUs) in the 2000s, which were originally created for the video
game industry but were equally capable of solving "embarrassingly parallel"17 prob-
lems in deep learning. In 2012, AlexNet ANNs made up of eight convolutional
layers achieved astonishing top-1 and top-5 error rates of 37.5% and 17.0% in the
classification of a data set consisting of 1.2 million images [118].

Figure 2.24: Top: Schematic representation of the Neocognitron proposed in [116] Bottom:
Architecture used in more modern CNN called "AlexNet"[118].

Certainly, AlexNet was not the first multilayer CNN to achieve good performance in
image recognition tasks. LeNet-5 [119] has shown an even lower error rate of below
1% in letter recognition tasks. Neither was it the first CNN to use graphical proces-
sors: already in 2006, it was demonstrated that GPUs can speed up CNN training
by more than four times [120]. Yet, the AlexNet was the first CNN that combined
all the previous innovations, such as multiple layers, the use of GPUs, ReLu activa-
tion function, backpropagation training, and dropout normalisation techniques, to
achieve superior performance on the complex task of classifying colour photo images.

Although it has eventually been superseded by more advanced ANNs such as the
one used in [121], the architecture of AlexNet provides the basis for the majority
of the mainstream convolutional neural networks used today. The layout of the
AlexNet-like CNN that will be used in this investigation is made up of the following
components.

1. Convolutional layer: a set of matrices called filters or kernels, where each
element initially takes a random real value. As a result, each kernel has a
unique pattern that can sample specific features of the image. The process of
sampling is called convolving (hence the name of the layer), which is achieved
by sliding the filter across the image and continuously performing the dot
product between the kernel and the corresponding area of the image. Following
the convolution, a feature map containing dot product results is created for
each kernel, accompanied by the individual activation function, which serves
as the input for the next layer.

17 Problems that can be easily separated into tasks that can be solved independently.
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2. Pooling layer performs non-linear downsampling of the input map to reduce
the size of the input feature map and identify the large-scale features. It re-
duces the number of CNN parameters and hence the amount of computation.
This is done by splitting the feature map into rectangular areas of a partic-
ular size. For each region, the maximum measured value18 is extracted and
recorded in the new compact map along with its own activation unit. Al-
though this step introduces some degree of information loss, this is not critical
for pattern recognition tasks, since the presence and relative position of the
image object features are more important rather than their relative distance.

3. Flattening layer: more convolutional and pooling layers can be incorporated
into the CNN, where at each additional layer, the propagated information
represents more abstract and complex features of the image data. After several
iterations of convolution and pooling, the final feature map undergoes the
process of flattening, which involves mapping the multidimensional feature
map to a one-dimensional vector.

4. Fully connected layer where the output of the previous step is used for
further analysis of the data using a classic MLP network, which has been
described above.

5. The output layer consists of a group of artificial neurons, the number of
which represents the size of the output result vector.

Each layer described above can be parametrised using many variables, such as the
number and geometry of kernels, pooling size, and the choice of the activation
function, to name just a few. This enables the user to fine-tune the performance and
speed of the CNN depending on the task requirements and available computational
resources.

Geometrical neural networks

The main purpose of geometric learning is to extract information from complex re-
lational data sets that can be expressed as graphs. The main motivation for the
subject came in the mid-20th century from the field of chemistry, which was con-
cerned with studying the properties of molecular compounds. The need to analyse
their complex geometry led to the development of the first GNN-like algorithm by
A. Leihman and B. Weisfeiler[122].

However, by the 20th century, it was realised that graph learning could be applied
to a wide spectrum of data concepts such as social networks, semantics, and even
image analysis: arrays representing image pixels can also be expressed as graphs.
Therefore, the convolutional neural network described in the previous section is a
particular example of geometrical learning, but due to the rigid structure of the con-
stituent convolutional and pooling operators, the CNNs can work on the Euclidean
domains only.

To overcome this limitation, a more advanced neural network was required; how-
ever, surprisingly, a lot of time has passed since the work of A. Leihman and B.
Weisfeiler to the first implementation of the modern geometrical neural network.

18 Other aggregation functions such as taking the average are also commonly used.
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The first report describing GNN was published in 2008[123], which makes it a rela-
tively new concept compared to other neural network architectures.

Figure 2.25: Schematic representation of the image pixels on the left, corresponding graph rep-
resentation on the right and the adjacency matrix in the middle that encodes the relationship
between pixels or nodes. Taken from [124].

There is a lot of ongoing research in the field of geometrical neural networks, with
a wide variety of types available, so it is difficult to cover the topic in its entirety
within the confines of this thesis. Since GNNs are merely a tool and not the subject
of this investigation, only a brief overview based on the available literature[125] and
[126] will be used, with illustrations used from [124]. There are two key aspects that
make GNNs a powerful tool: graph data representation and a corresponding neural
network machinery that can exploit them.

The data representation commonly used in geometrical learning is a graph struc-
ture consisting of two essential elements:

1. Nodes: the sets of data points that make up the graph and are usually the
main subject of the analysis. Each node can possess a vector of variables called
attributes that characterise the properties of the node. As an example, the
molecular structure of the substance can be expressed as a graph, where the
nodes are individual atoms and each possesses individual attributes such as
atomic number or weight.

2. Edges which represent the connections between nodes and their own vector
of attributes that describe the property of the edge. In the molecular example
above, the edge can represent the valence bonds between atoms, and its at-
tributes could describe the associated bond properties, such as the number of
electrons and the bond strength. Edges participate in information exchange
between nodes, where the data can flow in both directions for undirected edges
and in one direction for directed edges.

By combining two components, it is possible to create graphs of varying complexity:
fully and partially connected graphs with nodes and edges that may or may not
have attributes, the only limitation being the available computing power. This
makes graphs very versatile for describing practically any kind of data set, including
the vectors and arrays used in the MLP and CNN architectures, respectively.
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Figure 2.26: 3-d model of the caffeine molecule on the left, corresponding graph representation on
the right and the adjacency matrix in the middle that encodes the relationship between atoms or
nodes. Taken from [124].

When it comes to data processing, there are three classes of problems that geomet-
rical neural networks are concerned with:

1. Node-level analysis: the main objective of this task is to predict the proper-
ties of the node based on available data such as its attributes, properties of the
adjacent edges and other nodes. For a very simple GNN, this can be done sim-
ply by assigning to each node its own individual MLP neural network, which
would remap the inputs to the other node. This results in the second layer
representing the graph, which structurally is identical to the initial graph, but
with nodes having different and more abstract attributes generated by the
MLP. This operation can be repeated numerous times, creating a multilayer
architecture in which each subsequent layer stores higher-level features. For
the hypothetical chemical case, a node-level analysis task could involve the
classification of atoms in a molecule on the basis of their properties.

2. Edge-level analysis: conceptually, the edge-level analysis is the same as for
nodes, where the latter are replaced by edges. This is used in classification and
regression tasks where the connection between nodes is the subject of study.
For the hypothetical chemical case, an edge-level analysis task could involve
the classification of the bond strength between atoms and their type.

3. Graph-level analysis: this is an instance in which the entire graph and
its arrangement are being evaluated for a classification or regression task.
Generally, this involves concatenation of all the information from the nodes
and edges into one master node. In essence, this is the GNN analogue of the
flattening operation used in CNNs. For the hypothetical chemical case, a node-
level analysis task could involve the classification of the molecular substance
or its properties as a whole.

In order to leverage the connectivity information encoded in graphs, modern GNNs
use two additional techniques: pooling and message passing. The pooling operation
can be used in two ways:

1. Graph-structure preserved pooling: this type of pooling is used in situ-
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ations where nodes do not have any attributes, and edge properties are used
instead. The operation involves aggregating all attribute vectors of the con-
necting edges and mapping to the node via the equation:

xi =
⊕
j∈Ni

eij, (2.41)

where xi is a new vector of elements of node i, Ni is a number of adjacent
edges, eij is a feature vector of the edge ij and

⊕
is an arbitrary aggregation

operator of choice (sum, mean, max, etc.). The graph structure is invariant
under this pooling transformation as the number of nodes remains constant.

2. Graph-structure reduction pooling: the pooling operator merges the
neighbouring nodes into one node using the following equation.

xk =
⊕
i∈Nk

xi, (2.42)

where xk is a vector of elements of the new node k, Ni is a number of partic-
ipating nodes, xi is a feature vector of node i. This type of pooling is similar
to the downsampling operation used in CNNs, resulting in a smaller graph
with a lower number of nodes. However, the GNN version of the pooling has
additional complications associated with the possible existence of edges, which
need to be rearranged to match the new node configuration. A more in-depth
review can be found in [127].

The second powerful technique used in geometrical neural networks is message pars-
ing, which involves exchanging information between the nodes and can be described
by the equation:

xi =
⊕
j∈Ni

xj, (2.43)

where xi is a new vector of elements of the node i, Ni is a number of connected
nodes and xj is a feature vector of the neighbour node j. The single application
of the message parsing results in every node accumulating information from its
nearest neighbours, leaving the structure of the graph unchanged. This process can
be repeated multiple times, allowing the nodes to gain knowledge from their more
distant nodes by utilising the data that their neighbouring nodes have collected in
the preceding step.

Assuming a sufficient number of iterations, each node can eventually incorpo-
rate all the data given enough computing power. It is important to note that the
operations described above can equally apply to edges with some small algorithm
adjustments.

Training artificial neural networks

Regardless of the architecture chosen and its complexity, the model itself does not
have a prediction capability. To make meaningful predictions, any supervised NN
model requires some degree of data training. One of the most common learning
methods used at the time of writing is the backpropagation technique, the main
objective of which is to find the optimal parameters of the neural network so that
the predictions of the model are as close as possible to the target values.
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Figure 2.27: Schematic representation of the node-, edge- and graph-level analysis of the graph
data by using the simplest realisation of the GNN. Taken from [124].

The backpropagation algorithm can be split into four parts: forward pass, backward
pass, summation of the gradients and weight update. For simplicity, the example of
the binary classification task will be used below, and the bias parameters will be
incorporated into the definitions of weights. During the forward pass each input
xi is fed into the input layer of the neural network and propagated through each
layer and each neuron node until the output node values are calculated. During the
propagation of each node, the activation value and the output of the connected nodes
of the preceding layer are recorded for the latter step. Their predictions pi ∈ [0, 1]
are compared with the target values of yi ∈ {0, 1}: the difference in these values
is quantified by the loss function. The loss function that was used in this thesis is
called cross-entropy loss (CEL)19 and it takes the following form:

LCEL(X, θ) = −
∑
i

yi ln(pi). (2.44)

Arguments X and θ are the input pairs (xi,pi) and the parameters of the neural
network, respectively. For a completely untrained model, these predictions will be
random, and hence, the loss function is expected to be high. To lower it, the next
step is to propagate it backwards all the way to the input to work out the changes
that need to be applied to the parameters θ: backward pass.

The main objective of the backward pass is to calculate the rate of change of the
loss function LCEL(X,θ) with respect to the parameters of the neural network θ or
∂LCEL(X,θ)

∂θ
that eventually is used for the weight update. This is not as trivial as it

sounds: the loss function above is defined for a whole network; however, individual
losses per node, except the input ones, must be calculated. This hurdle is overcome
by using the sum rule, which states that the sum of the function derivatives is
equal to the derivative of the function sum. Therefore, the backward step begins
by calculating the derivative of each node n using the chain rule according to the

19 The mean squared error (MSE) loss function is also commonly used, but it was abandoned
in favour of CEL due to the latter having steeper gradient which has a higher penalty on the
predictions that are far from the target.
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Figure 2.28: The plotted Cross Entropy Loss for the binary classification example function of the
predicted value for the target labels y=0 (red) and y=1 (green).

formula:
∂LCEL

∂wl
en

=
∂LCEL

∂aln

∂aln
∂wl

en

, (2.45)

where aln is the activation of node n in layer l which can be expressed as:

aln =

rl−1∑
n=0

wl
eno

l−1
n , (2.46)

and wl
en is the weight of the connection e to the node. The first term on the right-

hand side of equation 2.45 indicates the change of LCEL with respect to activation
and is usually referred to as an error and is denoted by

δln =
∂LCEL

∂aln
, (2.47)

and by using the previous definition of aln 2.46 the equation 2.45 can be rewritten
as:

∂LCEL

∂wl
en

= δlno
l−1
e , (2.48)

where the left term is an error term for node n and the right side reflects the output
from the node at the previous layer l − 1 that is connected through e. The terms
ol−1
e are already known since these were recorded during the forward pass step. The
δln are trickier and their exact form depends on whether they are located in the final
or hidden layer. For the final output node in the last layer l = F , the term 2.47 can
be worked out using the definition of loss 2.44 and 2.47 which after some laborious
algebra can be expressed as:

δFn = aFn − yn. (2.49)
The hidden layers can be derived using calculus, and the result is a bit more com-
plicated but still relatively easy to understand:

δln = ψ(aln)
rl+1∑
e=1

wl+1
en ∂

l+1
e . (2.50)
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The equation above reveals that the calculations of the partial derivatives flow from
the last layer to the first hidden layer, thus giving the process its name. Once the δln
functions have been calculated, they can be plugged into expression 2.49 to calculate
the partial derivative of the individual loss per node n: ∂Li

∂wl
en

.

The summation of the gradients is the consolidation step that takes all the
calculated partial derivatives from the previous part and combines them into the
total loss derivative using the sum rule:

∂LCEL(X,θ)

∂wl
en

=
1

N

N∑
i=1

∂Li

∂wl
en

. (2.51)

This expression is used to update the weights using the stochastic gradient descent
(SGD) technique according to the formula:

∆wl
en = −α∂LCEL(X,θ)

∂wl
en

, (2.52)

where the parameter α is a step size commonly called the learning rate in the field
of machine learning.

The operations described above, especially the last, have an associated computa-
tional cost, which for a complex neural network can become a significant problem.
To address this issue, the mini-batch gradient descent technique is employed, in
which the training data set is divided into smaller segments of equal size called
batches, each comprising several data points. In this method, the SGD is executed
once per batch after computing the loss gradients for the individual data points.

After processing all batches, it is said that the NN model has undergone training
for a single epoch, a term in machine learning that signifies the neural network model
has been through one complete cycle of the data set.

Once the epoch has been finished, the model loss is evaluated on both the training
dataset and the previously "unseen" validation dataset to prevent bias and overtrain-
ing. Whether the model needs further training or should be abandoned depends on
the improvement versus the previous epoch in both the training and validation data
sets. Multiple outcomes can be observed; the most common are listed below:

• Model performance on both validation and training datasets is improving. In
these cases, training is continued for another iteration(s).

• The model is still improving on the training set, but a plateau is observed
in the validation domain: this is the sign of overfitting, which is caused by
the neural network modelling the noise rather than the desired data features.
In this instance, model training has to be abandoned as its performance can
significantly degrade on unseen data.

• Oscillating training or validation loss: this is a sign that possibly the learning
rate is too large to converge to the optimal point. Before continuing further
training, its value is reduced to allow SGD to reach the local optimum point.

Overfitting is a fairly common problem in NN training that prompted the devel-
opment of various regularisation techniques. One of the most commonly used is
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dropout[128], which attempts to regularise the neural network by disabling some
nodes during the training process. Although it seems to improve the performance of
the neural network model, the exact reason why it works is not fully understood[129],
which just shows how unexplored the field of deep learning really is.

2.7 Conclusion
This chapter has outlined the theoretical framework underpinning the research. The
Standard Model (SM) was presented as the prevailing theory of particle physics,
describing fundamental particles and their interactions with remarkable accuracy.
Nonetheless, it leaves key questions unanswered, including the origin of neutrino
masses, the nature of dark matter, and the baryon asymmetry of the Universe:
motivating the exploration of extensions collectively known as Beyond the Standard
Model (BSM) physics.

Among these, special emphasis was placed on feebly interacting particles (FIPs).
Heavy Neutral Leptons (HNLs), predicted in frameworks such as the seesaw mech-
anism and the νMSM, provide a minimal SM extension capable of addressing neu-
trino masses, baryogenesis, and possibly dark matter. Complementary approaches,
including the vector and scalar portals, offer well-motivated connections to hidden
sectors. Despite existing experimental constraints, vast regions of parameter space
remain accessible to dedicated facilities such as SHiP and SND@LHC.

The interaction of both SM and BSM particles with detectors was reviewed, high-
lighting how signatures from electromagnetic, strong, and weak processes can be
used to distinguish new physics from background. Neutrinos play a central role in
both experiments, and lessons from past searches inform the design of these new
facilities.

SHiP and SND@LHC were introduced as complementary experiments: SHiPs
high-intensity fixed-target setup targets long-lived hidden sector particles, while
SND@LHC exploits the unique forward neutrino flux at the LHC. Both face chal-
lenges of low signal rates and significant backgrounds, requiring advanced detection
and analysis techniques.

Finally, the motivation for applying modern machine-learning methods, including
evolutionary algorithms and deep learning, was established, given their potential for
optimising reconstruction, classification, and signal discrimination in high-energy
physics.

In summary, this chapter provides the theoretical and methodological basis for
the analyses presented in Chapters 3 and 4, dedicated to SHiP and SND@LHC,
respectively.
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Chapter 3

Optimisation of the active muon
shield at SHiP experiment

3.1 Motivation
The purpose of this chapter is to address the engineering challenge of deriving the
optimal shape of AMS raised in Section 2.4. One way to overcome this problem is to
treat it as a black-box function: simulate a passage of Monte Carlo-generated muons
through the AMS and count the number of particles reaching the detectors. Those
operations are computationally expensive: evaluation of just one shield geometry by
using all available simulated muons requires an order of 103 CPU hours. Considering
that the current AMS proposal has 42 degrees of freedom, the search domain of
possible solutions is practically infinite. Then it becomes a non-trivial optimisation
problem necessitating the use of dedicated search strategies.

Bayesian optimisation (BO) has previously been used as an approach to optimise
the geometry of the SHiP muon shield[130]. The fundamental concept involves
constructing a probabilistic model of the objective function and using this model to
identify the most promising points for evaluation in the actual objective function.
Although it was successful in finding a satisfactory optimal shield configuration,
some drawbacks of the technique were identified:

• BO performance scales poorly with the number of evaluations: after approxi-
mately 1.4×103 iterations, the cost of computing new predictions has exceeded
the simulation time itself.

• BO algorithms progress linearly, making it difficult (though not impossible[131])
to parallelise the process between multiple computing nodes. This is because
the algorithm cannot make the next prediction until the current point has
been evaluated.

• Bayesian algorithm struggles with high-dimensional search spaces[132]: this
can become a significant problem for re-parametrised AMS configurations with
higher dimensionality.

To address these challenges, an optimisation strategy based on a different set of
principles was adopted, namely an evolutionary algorithm or EA. There are several
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properties of EAs that make them attractive for muon shield optimisation:

• The performance of the EA algorithm is independent of the number of iter-
ations, and the CPU cost of the genetic operations is negligible compared to
the actual time of evaluating the population.

• In contrast to BOs, the EAs are easier to parallelise on the computing cluster.
The size of the population can be increased without significantly slowing down
the algorithm, provided there are sufficient computing nodes available.

• Evolutionary algorithms have been shown to be effective in tackling high-
dimensional problems[133].

Considering that magnet shape optimisation in SHiP is mainly an engineering de-
sign problem, it is worth exploring the method that has been successful in similar
applications previously noted in the theory chapter.

3.2 Methodology
Successful EA implementation requires three key ingredients:

1. Genetic representation: the complex geometry of the magnet sections needs
to be encoded into a vector of parameters that form the distinctive genetic
code of the AMS configuration.

2. Fitness function: the merit of configuration performance. A poorly chosen
function can lead the optimiser to produce a solution that has an optimal
score but does not solve the original problem adequately.

3. EA architecture: it is desirable to choose an algorithm that is customised to
a given problem and that exploits its search space efficiently.

All three aspects have been tackled in the following subsections.

3.2.1 Genetic representation
The current design of AMS uses eight sections of the electromagnet prisms, each
expected to be made of non-grain-oriented (NGO) or grain-oriented (GO) electrical
steel. The genetic encoding structure is illustrated in Figure 3.1 below. The first
two segments of the magnet are fixed and constitute parts of the target and hadron
absorber. Thus, only six segments of the magnet undergo optimisation, each defined
by seven parameters, representing specific lengths of the magnet prism components.
Consequently, the genetic representation of the AMS, referred to as DNA for sim-
plification, can be further divided into twelve chromosomes. The chromosome Li

denotes the lengths of each magnet prism i, while the chromosome WHi specifies
the respective cross-sectional geometry.

In theory, these parameters can take any positive real value and should be kept
as relaxed as possible to give more opportunities for the optimiser to explore. In
practice, there are engineering considerations that restrict the domain of geometric
vector space. The existing manufacturing proposals for AMS postulate the use of
the step-shield option, an approximation of the prism shape with rectangular-shaped
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magnets, each having a length of 50 cm. This restricts the minimum length of the
magnet section to 100 cm (for a magnet to have a cross-sectional area difference
along its length). The maximum length of each magnet is about six metres, due to
space limitations in the proposed experiment installation area and manufacturing
constraints. A minimum 2 cm air gap between the opposite limbs with opposite
polarity is required to achieve the desired magnetic field profile[134].

Figure 3.1: A schematic description of the muon shield parametrisation and genetic encoding.
Figures are taken from [135]. Please note that the current proposed magnetic field strength has
been dropped from 1.8 to 1.6 T.

Reasonable limits were set for other genes on the WH chromosomes to eliminate
AMS configurations with unrealistic sizes from the search area. The mutation op-
erator in EA must be adjusted to take these boundaries into account: for instance,
if the size of the magnet is already at the minimum of 100 cm, the mutation can
either increase this size or remain unchanged.

3.2.2 Fitness function
The ideal muon shield should have the following properties:

• A low mass so the amount of material used and the associated manufacturing
cost is reduced.
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• It should be short because the long lengths of AMS negatively impact the
sensitivity of the experiment to the expected long-lived particle decays.

• The ability to keep the number of muons entering sensitive detector areas to
a minimum.

The first two metrics are relatively easy to work out: lengths and weights can be
calculated using geometry parameterisation and known values for the densities of
the NGO or GO steel material.

Ideally, to calculate a background rate, a full simulation of muon propagation
through the virtual geometry of the SHiP experiment would be necessary. The
kinematics of muons should be consistent with the anticipated spectra in actual
experimental settings, and the sample size should be equivalent to a proton spill of
at least one second. The effectiveness of AMS can be assessed by combining particle-
weighted deposits in various sensitive regions of the SHiP detection systems, such
as SND and HS.

In practice, this is computationally prohibitive, and a more simplified approach is
used. The entire simulated muon sample is reduced from ' 1.7×107 to ' 4.9×105.
The resampling procedure strongly emphasised the "dangerous" muons, leptons with
kinematic properties that have been found to go more frequently through the AMS
in previous optimisation studies. The full virtual geometry of the experiment has
been reduced to a simplified setup consisting of a target, a hadron absorber, an
AMS, and a so-called sensitive plane. This area, measuring 5 × 10 m, is located 5
metres upstream of the decay volume and coincides with the first tracking station
T1: a veto device that tags and identifies incoming background particles.

Figure 3.2: Left: Transverse momentum versus momentum distribution of 4.86 × 105 resampled
muons used for fitness function evaluation. Right: The weight function for muon (blue) and
antimuon (orange) hits in the sensitive plane area.

The background rate is determined by summing the weights of all simulated hits
left by muons with a momentum of at least 1 GeV on the sensitive area. For a muon
µ±, the weight function is defined as

Wµ(xµ) =

√
5.6∓ (xµ ± 3)

5.6
, (3.1)

where xµ is the horizontal hit coordinate in metres, and Wµ(xµ) = 0 for |y| or
changing with x outside the regions as shown in Fig. 3.2.
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This function is designed to penalise muons that deviate into areas where they
should not occur if the muon shield is functioning properly. For a negatively charged
muon, hits occurring at x ≤ 2.6 m from the plane centre are assigned a weight of
zero, since such muons are deflected towards the left side of the plane as expected.
The interval 2.6 < x ≤ +2.6 m represents the extended boundary of the sensitive
plane with an additional buffer of 0.1 m on each side to penalise the muons in the
vicinity of the sensitive area. In this interval, the weight increases continuously as
the muon hit position drifts towards the dangerous right-hand side of the plane. To
further discourage muons from entering this region, the penalty extends beyond the
sensitive boundary: for 2.6 < x ≤ +3.0 m, the weight rises to its maximum value
of 1.0, after which it drops back to zero. The situation is analogous for positively
charged antimuons, but mirrored with respect to the plane centre.

In order to make the EA results comparable to the previous studies, the following
fitness function has been used:

f(M,Wµ(xµ)) =

{
108 ifM > 3kt

(1 + exp (10× M−M0

M0
))× (1 +

∑
µWµ(xµ)) ifM ≤ 3kt

,

(3.2)
where M0 is the mass of the baseline configuration derived in [66] and is ≈ 1.9 kt.

3.2.3 EA architecture
The primary difficulty in implementing an EA lies in the numerous parameters that
need to be configured before optimisation. These parameters can be broadly divided
into two categories:

1. EA instances: global architectural choices such as the size of the initial
population, elitism, and selection mode. These choices must be set for the
entire optimisation run.

2. EA parameters: the parameters of the particular EA instance, such as mu-
tation probabilities and selection size, which can be modified during the run.

From the literature research, it seems that there are three main approaches to con-
figuring EA for an optimisation task:

1. Take an arbitrary configuration: very often in papers describing the use of
evolutionary algorithms, the parameters are stated without any justification
(one example is here [136]). Some publications [137] [138] [139] have been
dedicated to studying the problem in more detail and determining the optimal
values for some optimisation problems. These results have questionable value
for this research, as they were derived by using test functions such as the "K-
armed bandits" or the "Knapsack problem". They do not prescribe the best
values for EA optimisation of magnetic shields in physics experiments.

2. Genetic encoding of EA parameters: an interesting approach discussed
in [140], where EA parameters such as mutation rate or crossover mode are
added to the genetic code of each individual as an additional chromosome and
become the subject of evolution itself. This approach is limited to parameters:
it is not clear how to genetically encode EA instances such as initial population
size or elitism.
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3. Error and trial: experiment with different values of the EA parameters on a
small subset of a problem to find the most suitable EA. This approach requires
additional research work that may not be justified for "one-off" optimisation
tasks.

This report has adapted the more advanced version of the last method, Meta-
Optimisation[141]. The full details can be found in Appendix A. Although this
approach requires substantial investment in its optimisation, it is justified for this
case, as the optimisation of AMS is a continuous iterative process. The output of
the EA hyper-tuning analysis has yielded the following schema:

1. Initialisation: Two island pools are equally populated with a total of 400
generated individuals with random characteristics.

2. Evaluation: For each individual on both islands, the script sends AMS sim-
ulation jobs to the HTCondor batch system: a CERN distributed computing
service. On average, it takes about 2-3 hours for each job to complete.

3. Selection: Once all individuals have been evaluated, the top 50% from each
island is selected for breeding and mutation.

4. Crossover: Each individual can undergo a single-point crossing procedure:
two individuals are aligned together, the random point on both of their DNA
is chosen, and the content on the right of the point is swapped, resulting in
two offspring AMS configurations that have a mixture of the parents’ DNA.
This happens with 20% probability.

5. Mutation: Each offspring experiences a mutation process in which its DNA
elements are necessarily altered. The new value adheres to a Gaussian prob-
ability density function where the original DNA element is the mean, and
2.5 cm is the standard deviation. Nevertheless, the resultant DNA element
changes are always rounded to the nearest integer.

6. Re-injection: New solutions created in step 4 are released back into the
population, and the process restarts from step 2. All evaluated fitness values
are cached, which avoids rerunning computationally expensive simulations for
the same AMS configuration again.

7. Migration: Two islands are not completely isolated: there is a 10% chance in
each generation that 5% of the best individuals will travel to another island.

8. Termination: The AMS optimisation process spans several days. After each
generation, the algorithms outcomes are monitored for progress. If the best
fitness value obtained falls below the baseline established through Bayesian
optimisation (approximately 29[130]), the optimisation is terminated, and the
top-performing individual is retained for detailed analysis.

The model has been implemented in Python. The DEAP library [142] was used as
a starting point, but some library components had to be customised to include the
Gaussian mutation mechanism and obey the genetic boundary conditions.
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3.3 Results

3.3.1 Optimisation run 1
The first run tested the performance of the algorithm using the previously defined
fitness function and the muon sample. This was done to compare the EA perfor-
mance with other alternative AMS optimisers that were used or are currently being
used: Bayesian optimisation and Local Generative Surrogates (L-GSO)[143].

Figure 3.3: Evolution of Island 1 (top) and Island 2 (bottom) over generations. The dashed
green and blue lines represent the average fitness, while the solid lines denote the median fitness to
mitigate outlier bias. The yellow dashed line represents the fitness achieved by the previous method
using Bayesian optimisation. Between generations 11 and 16, the selection size was manually
decreased to impose stronger selective pressure.

The optimisation process took approximately two weeks and was terminated when
a solution (EA1) exhibiting a fitness value of 12, which is below the Bayesian op-
timisation baseline, was identified and selected for further study. The visualisation
of geometry has shown a very different configuration from the BO baseline (BO1).
Quantitatively, there are substantial differences as well: the EA1 has a length of
38.08 m versus 35.44 m of BO1 and a mass of 1.92 kilotons versus the BO1 value
of 1.27 kt. Therefore, EA1 is longer and heavier than BO1, meaning its low fitness
function is mainly driven by muon deflection performance.

Another simulation was conducted using the same basic geometric arrangement,
but with the most comprehensive existing sample of Monte Carlo-generated muons,
for three different configurations: EA1, BS1, and L-GSO1. The results of the anal-
ysis demonstrated that the EA1 configuration exhibited significantly superior filter
performance compared to the BO1 candidate and L-GSO1. EA1 allowed for an or-
der of magnitude fewer background hits in the sensitive plane of the First Tracking
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Figure 3.4: The EA candidate and the baseline Bayesian optimised design visual comparison. In
the top view, the inner limb of the magnet is represented in bright turquoise colour, and the outer
limb is represented in ruby red. In the side view, turquoise is used for both the inner and outer
limbs, while the magnet yoke is depicted in ruby.

Station than BO1, and two orders of magnitude fewer hits than L-GSO11 .

3.3.2 Optimisation run 2
The second optimisation run has been initiated with the following objectives:

• To test whether the given EA instance consistently delivers optimal results.

• Assess the robustness of the EA instance to slight changes in the fitness func-
tion: the geometry shape has been rendered using a step approximation where
the magnet shield shape is made of 50 cm long rectangular blocks. Although
the definition and parameterisation of the fitness function have remained the
same, this option changes the AMS response to the incoming muon stream.

• Modify the EA output to include weight and length information so that the
geometrical aspects of evolution can be studied.

1 L-GSO1 is derived from the BO1 geometry but is shorter and lighter.
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L-GSO Bayesian EA Run 1

µ Hit loss: µ Hit loss: µ Hit loss:

5.6± 0.03× 104 7.2± 0.09× 103 3.2± 0.05× 102

Length: 34.79 m Length: 35.4 m Length: 38.08 m

Mass: 1.15 kt Mass: 1.27 kt Mass: 1.92 kt

Run 2 has taken approximately the same amount of time as Run 1 and has yielded
comparable results. However, this time the evolution profiles of Island 1 and Island
2 are more similar: this could indicate a bigger role of the migration operator.
Another interesting feature is the effect of manually adjusting the selection size
for some generations: compression leads to a bigger spread of fitness values within
a generation. Overall, the periodical change in the selection pressure does seem to
have a beneficial effect on the optimisation progress: after each change, the minimum
values of fitness started rapidly decreasing.

Although both Run 1 and Run 2 have converged to similar fitness values, the solu-
tions are conceptually different from each other. The Run 2 solution with the lowest
fitness value, EA2, has a different geometry compared to EA1: It is lighter, less
massive, and has an unusual morphology. This shows that evolutionary algorithms
do indeed lack any design bias by following the principle "If it works, it works".

Further examination of the geometry evolution has revealed the following picture,
which can be interpreted as follows. At first, the initial population is randomly
scattered across a weight-length phase space. This distribution is not uniform, but
it follows a degree of positive linear correlation between the mass and length of the
AMS. After a few generations, the evolution enters an exploration phase in which
various areas of the search space are probed. The area is limited to length ranges of
25-35 metres and to masses between 1 kt and 2.2 kt. The fact that Run 1 has yielded
a solution that lies well outside of the exploration domain in Run 2 indicates that
the algorithm has a high degree of stochasticity, which is driven by the population
initialisation process. It also indicates that the search space is vast and potentially
contains more optimal solutions. After 17 generations, a strong family of similar
individuals starts dominating a whole population, which eventually converges into
a single clump with an average mass of 1.7 kt and a length of 33 metres.

Diversity collapse is a well-known EA problem, and while it does not cause signif-
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Figure 3.5: The Run 2 evolution of Island 1 (top) and Island 2 (bottom) over generations. The
dashed green and blue lines represent the average fitness, while the solid lines denote the median
fitness to mitigate outlier bias. The yellow dashed line represents the fitness achieved by the
previous method using Bayesian optimisation.

Figure 3.6: The visualised geometry of the EA2 candidate. In the top view, the inner limb of the
magnet is represented by turquoise colour, and the outer limb is represented by ruby red. In the
side view, turquoise is used for the inner and outer limbs, while the magnet yoke is depicted in
ruby.

icant issues for AMS optimisation at this stage, it can become a problem in future
extensions of the EA model [144]. It is also important to remember that it is a highly
simplified picture, where the 42-dimensional space is reduced to two dimensions.
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Figure 3.7: The evolution process of Run 2 on the mass-length phase space read from top left
slides clockwise. The colour indicates the island to which an individual belongs. Top Left: The
distribution of lengths (in metres) and masses (in kilotons) in the initial population. Top right:
In the fifth generation, multiple small congregated spots of evolving individuals are observed.
Bottom right: After 17 generations, a shift towards larger lengths is observed along with a
decrease in diversity. Bottom left: The last generation is condensed into a single cluster.

Overall, the second run results met most of the initial expectations and confirmed
the validity of the chosen EA configuration. At that time, several potential model
improvements were identified, such as increasing the total population size beyond 400
individuals to ensure better coverage of the weight-length phase space and reduce
run-to-run variability, and programming the EA model to monitor evolutionary
progress and adjust the selection size automatically, thereby limiting the need for
manual intervention. However, these improvements were not implemented, as the
research was concluded shortly thereafter.

3.3.3 Optimisation run 3
So far, the optimisation has been concerned with using the static data set consisting
of 4.86×105 muons. This simulation is unable to accurately replicate the kinematic
spectrum of muons that would be observed in a real experiment, because of its
limited size. This can lead to a situation where the performance of AMS is optimal
only for a specific kinematic distribution of muons but significantly degrades under
real-life conditions.

As an alternative to the CPU costly increase in the number of muons, a new
approach has been tested, which in principle could yield muon shields that are
robust to changes in the muon spectrum. The main idea of the approach is to make
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the AMS and the muon spectrum evolve together and compete with each other, so
only robust AMS geometries are generated as a result. The algorithm used is more
complex than for Run 1 and Run 2 and has an extra step, which is concerned with
the evolution of the muon spectrum, as shown in the figure below:

Figure 3.8: A schematic diagram representing the Run 3 optimisation workflow.

The breakdown of the optimisation cycle was as follows:

1. Initialisation: two island pools were equally populated with a total of 600 in-
dividuals with random characteristics similarly to previous optimisation runs,
but with a 50% increase in the number of initial population.

2. AMS evolution cycle: this included standard steps involved in the evolution
cycle, such as evaluation, selection, cross-over, and mutation. For the initial
population, a nominal resampled muon data set was used to calculate the loss
function.

3. Muon sample adjustment: this is the additional step that involved collect-
ing all muons that had evaded the AMS of the current generation and ended
up in the acceptance area. Since the total number of muons collected could
be significantly less than the required amount of ≈ 5 × 105, an additional
tool has been used to fast-simulate the muon samples. It has been specifically
developed for the SHiP experiment[145] and is supported by generative ad-
versarial networks (GAN). GAN is a machine learning method that involves
two rival neural networks: the generator, which seeks to create an image, and
the discriminator, which aims to determine whether the image is authentic
or counterfeit. It is commonly used to create or improve images and videos,
but at SHiP, GANs have been used to expand small muon samples into larger
datasets. Since GAN-based muon simulation is much faster than traditional
Monte Carlo generators, it has become the preferred simulator for accelerated
muon spectra evolution. After integrating the remaining muons into a GAN
model, a new muon sample is created for each iteration of EA, matching the
original sample in the number of simulated muons, but with modified spectra.
This freshly generated muon sample is subsequently utilised to calculate the
loss function for the upcoming AMS generation.

4. Termination: after a few cycles of subsequent AMS and muon sample evo-
lution, the run has been terminated manually.

Although Run 1 and Run 2 have been characterised by rapid improvements in the
average fitness of the AMS population over consecutive generations, Run 3 has
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shown the opposite picture. For both islands, the average fitness function has been
continuously increasing with each generation, with the last generations performing
worse than the first one.

Figure 3.9: The Run 3 evolution of Island 1 (top) and Island 2 (bottom) over generations. The
dashed green and blue lines represent the average fitness, while the solid lines denote the median
fitness to mitigate outlier bias. The yellow dashed line represents the fitness achieved by the
previous method using Bayesian optimisation. Please note that data for Generation 7 is missing
due to a technical problem that occurred during the evolution run.

In order to understand the exact cause of this degrading behaviour, a selected series
of samples of evolving muon spectra has been plotted below and interpreted as
follows:

Figure 3.10: A few selected steps of the muon spectra evolution observed in Run 3.

• The initial population of the muon shields consists of randomly generated
designs, and therefore, the overall kinematic profile of the collected muon
follows the one in the baseline sample.

• Since the consecutive generation has undergone selection, it starts to deflect
a significant amount of muons, causing a gap in the 50-100 GeV range. Two
different regions of the phase space of the muon momentum can be identified:
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muons with a total momentum of less than 50 GeV and those with high en-
ergy, which feature both an overall momentum greater than 100 GeV and a
transverse momentum ranging from 1 to 7 GeV.

• The gap increases with each generation, where the later generations of AMS
learn to screen muons within the 50-250 GeV range effectively. The muon
spectrum adjusts rapidly, causing the absolute momentum of newly generated
muons to increase.

Intuitively, this behaviour can be understood as AMS evolution having a slow re-
sponse to the drastic changes in the muon spectrum. Consequently, evolved pop-
ulations in consecutive generations fail to adapt to the increasing flux of highly
energetic muons, which is, in fact, the expected outcome: the optimisation could
not converge in principle, as the probability of identifying a universal shield design
capable of deflecting any possible muon spectrum is extremely low. Instead, this
run served as a pilot study to push the evolution-GAN framework to its limits and
to identify potential operational problems. One such issue concerns the quality of
the GAN-based muon simulation, as the tails of the input sample spectrum appear
to be unrealistically exaggerated in the generated output.

3.4 Conclusion

3.4.1 Summary
In summary, a set of three optimisation procedures for the active muon shields has
been carried out, each of which had its own objectives.

The first pilot run after ≈ 3k iterations has yielded an AMS geometry with a
superior shielding performance compared to other optimisation techniques, although
at the cost of having a heavier geometry. However, those optima perform well only
on unrealistic problems with simplified geometry, an idealised magnetic field, and a
small muon sample size.

In order to address the problem of the simplified geometry, the second run has
been performed by using the magnet step approximation. The EA algorithm has
again converged to the local optimum point with a fitness value similar to Run 1,
but after a greater number of ≈ 4k iterations.

In Run 3, the principle of co-evolving different muon shield geometries together
with muon kinematic distributions was tested as a way to address the challenge of
the limited muon sample size identified earlier. Although the co-evolution procedure
was, as expected, unable to converge, with successive generations of the muon shield
failing to adapt to the concurrently evolved spectra of dangerous muons, the process
itself ran smoothly overall and showed that, aside from minor technical adjustments,
the framework can be reliably executed.

Although evolution strategies clearly have demonstrated some advantages of the
evolutionary algorithm optimisation speed and the quality of converged solutions,
their true capabilities have never been tested in real-life conditions. Only the evolved
AMS design from the first run has been tested on the full muon sample using a
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simplified SHiP setup, and it does not include other background contributions such
as muon rescattering and electron bremsstrahlung radiation.

The fitness function has a major limitation in that it does not take into consider-
ation the muon background in other detector systems, such as SND. The solution
to this problem necessitates not only the development but also the agreement of
relevant parties, such as detector groups, on a metric that is suitable for all. Unfor-
tunately, the European Strategy for Particle Physics report in 2020 did not prioritise
the SHiP experiment, which led to a temporary suspension of its implementation in
the proposed form. In the meantime, efforts were redirected towards the SND@LHC
experiment, which, while more limited in scope, offered a simpler setup and the op-
portunity to collect data during LHC Run 3. In 2024, however, SHiP was finally
approved at a different location at the LHC, which allowed AMS activities to resume;
however, due to the placement in a different tunnel and specific site restrictions, the
muon shield design had to be substantially revised to meet the new operational
requirements.

3.4.2 Future research
The direction of further research critically depends on the constraints of the SHiP
detector components in the new location. The application of evolutionary algorithms
is justified if the future active magnetic shield geometry has a high number of degrees
of freedom, as the model studied in this thesis does. If this is the case, the following
key aspects of muon shield optimisation could be the subject of further research.

AMS reparametrisation

If the geometry of the muon shield uses a step approximation, then the prismatic
shape of the magnets could be modelled as a set of rectangular blocks. The muon
shield can be reparameterised in terms of numerous 50 cm long individual magnets,
each having its own geometrical characteristics that can be varied independently.
This will provide more degrees of freedom to the AMS configurations and can result
in an additional number of optimal solutions that were previously unattainable.

Accurate fitness function

Previously, it was mentioned that the fitness function has many drawbacks that
prevent it from accurately representing many of the effects expected in the actual
operation of the AMS. The challenge is to find the right balance between its accuracy
and its computational time: the definition of the loss function will be useless no
matter how precise it is if the time needed to calculate it is too long.

Competitive evolution

If this method is to be explored further, the next logical step would be introducing
small controlled spectrum variations based on the response of the previous muon
shield generation. For example, only 10-20% of the muon spectrum could be altered
per generation, focusing on the momentum phase space where the shield is less
effective. This approach would challenge the next generation to adapt to changing
conditions while avoiding large, catastrophic shifts in the overall charged particle
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spectrum, potentially allowing the AMS population to gradually improve both its
shielding capability and resilience to variations in the incoming muon spectra.

Hybrid approach

The typical optimisation can be divided into two distinct phases: the exploration
mode, in which the solution space is sampled for potential solutions, and the tuning
mode, in which the selected solutions are incrementally improved.

The current approach of using the same EA architecture for both phases is not
ideal, as the two phases have distinct differences that require a more individual
approach. For example, in the exploration phase, it is preferable to have low selection
pressure, large step sizes for genetic operators, and different selection strategies
such as the tournament. This could prevent premature convergence of the entire
population to a single group of genetically similar solutions. The tuning phase,
on the other hand, has opposite requirements, such as small steps in the genetic
operators to prevent the potential solutions from oscillating around the optimal
point, high selection pressure, and higher contributions from the crossover operators.

A more agile approach would be to develop two distinct EA architectures, each
tailored to its specific task. Partially, this has already been realised in the Run 1
and Run 2 optimisation cycles, where a higher selection pressure has been applied
to the later AMS generations.

An interesting idea discussed during one of the SHiP collaboration meetings was
to combine evolutionary algorithms with other optimisation approaches, such as L-
GSO[143]. In this proposal, the EA is solely responsible for exploring the search
space for potential solutions, while the L-GSO uses these solutions as input and
investigates the local optima in their vicinity.
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Chapter 4

Application of machine learning to
tracking and vertexing in the
SND@LHC experiment

4.1 Motivation
The main element of the FEDRA data reconstruction process is a Kalman filter[89],
which was discussed in the theory chapter. This algorithm is highly effective in deal-
ing with noisy data, as it does not require the storage of all previous measurements,
since the most recent internal state accumulates all the past history at each step.
These particular qualities made it popular in applications that involve navigation
and control of vehicles such as cruise missiles, spacecraft, and marine navigation,
where memory and computing power can be limited.

In the context of particle physics, the Kalman filter was first implemented in 1989
at the DELPHI detector at LEP1 [146] and since then the KF technique has remained
the main backbone of online data event reconstruction on major high-energy physics
experiments such as ATLAS or CMS. Despite this strong track record, the Kalman
filter is known to be limited by two key assumptions: the linearity of the particle
propagation model and the Gaussian distribution of the noise processes, which is not
necessarily accurate for all particle detectors. The ECC brick used at SND@LHC
is a good example of such a system: it is a complex environment made of dense
tungsten plates and emulsion films that are well-known to deflect and distort the
path of the passing charged particles, especially in the low-momentum regime of
0-20 GeV.

In combination with the high density of the LHC recorded data and uncertainties
introduced by the alignment procedure, the LHC detector data present a significant
challenge for linear estimator algorithms. Even when conducting research on low-hit
density, idealised Monte Carlo simulated sets with a perfect alignment configuration,
four key issues have been identified with the standard reconstruction output. These
will be discussed in further detail below.

1 LEP was a Large Electron Positron collider at CERN that has been eventually decommissioned
in 2000 and replaced with LHC.
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Figure 4.1: A study of the MC simulated interactions in one of the SND@LHC ECC units (B31)
where the data is split by main particle groups: electrons, hadrons, and muons. Left: Residual-
momentum scatter plot where each coloured circle represents a unique particle. The residual
represents the average deviation of the particle’s trajectory from the fitted straight line, while the
momentum is calculated by measuring the momentum across the particle’s path and taking its
average value. Right: An event display projected on an xz-plane with visualised particle tracks.

4.1.1 The integrity of the reconstructed tracks
Ideally, each charged particle that passes through the emulsion detector should be
identified and represented as a single track. In reality, the trajectory of a particle
can be composed of multiple tracks, each representing a segment of the particle’s
journey.

Figure 4.2: Left: An event display projected on an xz-plane with visualised simulated muon
neutrino decay with a production of daughter particles. The transparent backgrounds represent
the true path of the particle, while the black lines represent the tracks reconstructed by FEDRA.
The numbers at the ends quantify the segmentation of the particular particle MC track. Right:
percentage distribution of MC tracks segmentation for the three main particle groups.
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Quantitatively, this effect can be characterised by a segmentation metric, defined
as the number of reconstructed segments per truth particle. For a single particle,
the segmentation value can range from one up to the maximum number of segments
that can be reconstructed within a given ECC unit. The phenomenon of track
segmentation in emulsion is inherently complex and arises from a variety of factors
that contribute to the issue:

1. Holes: Missing hits in ECC on one or more consecutive plates can cause the
FEDRA tracking algorithm to stop extending the track if the maximum toler-
able number of gaps has been encountered. It will still attempt to reconstruct
the remaining segment, but the latter will end up in the output as a separate
track. In some cases, these gaps are caused by the limited detection efficiency
of the plate, which, for the data set in question, is modelled at about 85%.
In theory, the chances of encountering two or more consecutive gaps are small
(≈ 2.25% and less), but even a single hole causes a lag in the Kalman filter’s
knowledge of the particle state, which can result in rejecting the following hit.
In addition to the actual holes, there can be "perceived" holes at plates where
the hits are present, but their measured base-track variables, such as slopes
or positions, are outside of FEDRA acceptance.

2. Track length: At the SND@LHC experiment, the reconstructed tracks in
the emulsion must have a minimum of four2 constituent hits to be accepted
for data analysis. If an incident particle leaves fewer than eight hits in the
emulsion, the FEDRA reconstructed track will have a maximum segmentation
of one3 : If at least four hits are identified, the remaining segment will not meet
the minimum hit criteria. As the length of the trajectory of the passing particle
increases, so does its maximum theoretical value of segmentation, which can
be approximated by the formula Segmax = NTrHits

TrHitsmin
where a numerator is the

total number of hits that the particle deposits in ECC and the denominator
is the minimum accepted number of hits per reconstructed track.

3. Particle trajectory: The more predictable the trajectory of a particle, the
easier it is for the tracking algorithm to model its behaviour and produce
sufficiently accurate predictions for the next hit. Not all particles act in the
same manner in the ECC; if their mass or momentum is too low, the alter-
ations to their trajectory, due to the interaction with the detector medium,
like Coulomb scattering, can be too great for the Kalman filter to adapt.

4. Electromagnetic activity: High-energy charged particles often produce sec-
ondary ionisation electrons (delta-rays) or initiate bremsstrahlung and elec-
tromagnetic showers inside the emulsion. These secondaries leave additional
base tracks close to the primary trajectory. FEDRA may occasionally incor-
porate such hits into the evolving track fit, leading to a sudden change in the
fitted parameters. Once the fit diverges, the algorithm terminates the current
segment and attempts to reconstruct the remaining trajectory as a separate
track. This results in artificial segmentation even when the true underlying
trajectory is continuous.

2 A criterion has been agreed by the SND@LHC collaboration in order to exclude tracks coming
from the EM showers.

3 In some cases, this can be exceeded if the reconstructed track contains hits from other particles.
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There are three main groups of charged particles that are reconstructed in the emul-
sion detector: hadrons, electrons, and muons. Table 4.1 below illustrates the effect
of segmentation on different groups of particles and their sources.

Table 4.1: High-level statistical description of the data used for this research, split by particle group
and its origin, the full details of which can be found in Appendix C. The average segmentation is
only calculated for tracks that have been at least partially reconstructed by FEDRA.

Particle source Particle group % of all tracks Average
momentum

(GeV)

Average residual
(microns)

Average number
of constituent

hits

Average
segmentation

EM showers and delta-rays Electrons 71.82 % 0.86 43.2 5.00 1.35

External muons from IP1 Muons 27.01 % 1,150.08 0.7 50.76 1.28

Muon neutrino interaction Muons 0.02 % 271.69 1.9 50.00 1.04

Hadrons 0.06 % 35.19 105.9 32.00 1.33

µ/e/γ nuclear interaction Hadrons 0.27 % 6.05 284.3 19.00 1.67

Hadronic interactions Hadrons 0.82 % 3.86 255.6 17.00 1.80

Muons are predominantly produced in high-energy collisions at the LHCs interaction
points, and as a result, they typically carry significant momentum, often averaging
in the TeV range. Even in this regime, muons lose relatively little energy while
traversing the ECC, producing straight, nearly parallel tracks that extend across
the full detector. However, these through-going muons also induce electromagnetic
activity and parasitic delta-ray tracks, which, when combined with their consider-
able track length and the presence of holes, drive the muon segmentation upwards,
thereby inflating the number of reconstructed muon tracks observed in the data.

From the analysis point of view, external muons have no physics discovery value
apart from being used in the alignment procedure and are treated as a background.
This background can be eliminated by removing any tracks that start at the first
plate: only interactions that occur within the ECC unit are considered; this solution,
in principle, should be removed up to ≈ 85% of the entire muon background4 , the
value of which is limited by the emulsion detection efficiency.

Unfortunately, for FEDRA reconstructed tracks, the percentage of them that can
be removed is at a much lower value of around ≈ 67% due to the segmentation:
If the track is split into two or more segments, only the first fragment will be
removed, leaving the remaining segments in the data. In addition to overloading
the vertexing algorithm with unnecessary tracks to process, these leftover segments
are a potential source of random crossings that can create fake or spoil existing
signal vertices. Therefore, it is desirable to reduce muon segmentation as much as
possible.

Apart from increasing muon segmentation, the muon-induced electromagnetic
showers also generate substantial cascades that are deposited in the emulsions. By
track count, the electrons produced in these showers are expected to contribute a

4 Inevitably, it can also remove tracks caused by the signal interactions in the preceding ECC
units (if applicable), but this should not cause any concern since only interactions coming from
the ECC detector of interest are considered.
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Figure 4.3: The percentage distribution of tracks by the plate according to Monte-Carlo simulation
truth (Top) and the FEDRA reconstructed (Bottom) track origins.

background comparable to that of external muons in the ECC detector. To mitigate
their impact, reconstructed tracks are required to contain at least four hits. Typi-
cal shower electrons have low momentum, often below 5 GeV, and small radiation
lengths, which result in short trajectories. Their tracks are highly non-linear, with
average residual values nearly forty times greater than those of incoming muons.
Nevertheless, because their average hit content is small, their segmentation values
remain relatively modest and comparable to those observed for external muons.

It is important to note that the Monte Carlo-generated data samples available
at the time of writing this thesis consisted only of muon neutrino signals. The
SND@LHC physics programme also includes the detection of electron neutrinos.
This raises the issue of track segmentation, which is a difficult task due to the low
mass of the electron (around 511 keV). This makes it more susceptible to the electric
fields of the atoms in the emulsion and tungsten layers, which can cause its trajectory
to deviate, making it difficult to accurately reconstruct the electron’s path.

The remaining hadron particle group consists mainly of pions and protons with
a small number of other hadrons, such as kaons and strange baryons. Hadrons
are expected to produce less than 2% of all tracks in the emulsion detector data,
but they are essential for the analysis, as the majority of signal signatures involve
hadronic particles produced in the DIS processes and their secondary decays. Their
low momentum in combination with relatively large lengths makes them susceptible
to the majority of the factors listed above, which results in the highest average seg-
mentation of all particle groups. The signal event reconstruction is greatly affected
by this, as it can cause a considerable distortion of the actual parameters of the
reconstructed vertex, including its multiplicity.
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4.1.2 Track reconstruction quality
Segmentation is not the only criterion that the tracking algorithm should satisfy. In
this investigation, three other metrics are used to assess the quality of the recon-
struction.

1. Track reconstruction efficiency: this parameter quantifies the number of
suitable MC simulated tracks that were at least partially reconstructed by the
tracking algorithm. Only tracks that contain four or more hits generated by
the simulation are considered in the calculation.

2. Track hit reconstruction efficiency: this criterion quantifies how complete
the FEDRA track is compared to its MC-generated counterpart. For example,
if, according to the Monte Carlo simulation, a given track should have 20 hits,
but the reconstructed track has only 15 hits, then the track hit reconstruction
efficiency or THRE will be 75%. This metric has a degree of correlation
with segmentation: the higher the segmentation, the lower the THRE since
each constituent reconstructed track segment will have a lower number of
matched hits. However, the reverse is not necessarily true: the low THRE can
be observed for tracks without segmentation, where the remaining hits were
ignored during the tracking procedure.

3. Track hit reconstruction purity: in the example mentioned above, the
FEDRA counterpart had only 15 hits that corresponded to the MC simulated
track; however, the length of the FEDRA reconstructed track can be greater,
for example, 25 hits. This usually happens when hits belonging to two or
more different particles have been merged in a single track. The track hit
reconstruction purity or THRP is calculated simply by dividing the number of
matched hits by the number of total hits that make up a reconstructed track.
In this example it is simply calculated as: THRP = 15

25
= 60%

The evaluation of the FEDRA tracks performance on the Monte-Carlo simulated
data has yielded the following picture:

Table 4.2: FEDRA track reconstruction performance split by particle group and its origin taken
from the calibration domain. Average values are calculated for tracks that have been at least
partially reconstructed by FEDRA.

Particle source Particle group Number of
simulated tracks

Overall track
reconstruction
efficiency (%)

Track hit
reconstruction
efficiency (%)

Track hit
reconstruction

purity (%)

EM showers and delta-rays Electrons 114,555 39.7 ± 0.2 42.1 ± 0.2 62.0 ± 0.2

External muons from IP1 Muons 43,000 98.2 ± 0.05 80.2 ± 0.1 98.2 ± 0.0

Muon neutrino interaction Muons 25 96.0+4.0
−20.0 95.2 ± 4.0 99.8 ± 0.1

Hadrons 91 91.2+8.8
−10.5 68.7 ± 3.8 97.1 ± 0.9

µ/e/γ nuclear interaction Hadrons 433 65.4 ± 4.5 45.7 ± 1.8 99.2 ± 0.4

Hadronic decays and inelastic scattering Hadrons 1,306 61.4 ± 2.6 37.9 ± 0.9 99.6 ± 0.1

The first significant insight from the table is that FEDRA has difficulty tracking
electrons, with a tracking efficiency of less than 40%, and the quality of the re-
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constructed tracks is very poor. As previously mentioned, in the context of muon-
neutrino interaction physics, electrons are of secondary importance; however, the
ability to reconstruct electromagnetic showers and their constituent electrons will
become important in searches for dark photons and in the detection of electron
neutrinos.

The muons, on the other hand, demonstrate the best overall performance in terms
of track utilisation and the quality of the reconstructed tracks. Nevertheless, some
nuances can be observed. The first is a slight discrepancy of approximately 2%
between the track reconstruction efficiency of muons originating from the interaction
point (IP1) and those emerging from νµ interactions. The latter exhibit a somewhat
lower TRE; however, due to the limited statistics for neutrino-induced muons (only a
few dozen tracks), the associated uncertainties are large, making it difficult to draw
a definitive conclusion. More striking is the behaviour of the track hit reconstruction
efficiency. Here, external IP1 muons exhibit a significantly lower efficiency of ≈ 80%,
which is about 15% below that of muons from neutrino interactions.

The reason for this somewhat counterintuitive behaviour is the same as for seg-
mentation: TeV-scale muons generate a higher density of secondary delta-rays and,
to a lesser extent, bremsstrahlung photons along their path. FEDRA may inadver-
tently include some of these secondary hits in the reconstruction, causing the main
track to diverge and segment, which in turn reduces the effective hit utilisation. In
contrast, muons from neutrino interactions typically have lower momenta (200-300
GeV), which are still sufficient to maintain nearly linear trajectories while produc-
ing far fewer delta-rays and electromagnetic secondaries. Consequently, FEDRA
can follow these tracks more continuously, resulting in a higher THRE.

The picture for hadrons is more straightforward, but less favourable than for
muons. Being more massive, hadrons in this dataset generally carry relatively low
momentum. For instance, hadrons produced in muon neutrino interactions have av-
erage momenta of approximately 35 GeV, whereas those originating from secondary
nuclear or hadronic interactions carry only a few GeV on average. Their low mo-
mentum makes hadrons particularly susceptible to Coulomb scattering within the
emulsion medium, which renders their tracks non-linear and challenging for FEDRA
to reconstruct. The resulting increase in residuals (ranging from ≈ 100 µm to over
250 µm), combined with their low momentum, reflects the comparatively poorer
track quality observed for hadrons.

4.1.3 Identification of the particle type
Unlike the event data from complex particle detectors such as CMS or ATLAS, the
reconstructed tracks in ECC lack a lot of information, such as momentum or particle
type.

The lack of a magnetic field in the emulsion detector at SND@LHC is responsible
for the inability to bend the path of charged particles. Partially, this can be com-
plemented with data from other SND@LHC detector systems; however, this would
require matching events from the electronic detectors with accumulated events in
the emulsion. In general, electronic detector systems are expected to point to the
approximate location of the event of interest in the ECC unit rather than annotate
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each track in the emulsion with the relevant information.

Another solution to this problem lies in the utilisation of the high resolution of the
emulsion to infer the particle properties from their track morphology. It is expected
that the particles with high mass or high momentum will leave highly linear tracks,
while the path of the low-momentum particle will exhibit more complex behaviour,
as they will be more prone to Coulomb repulsion effects. Therefore, it is possible to
obtain approximate values of the particle energy and its type, but currently, FEDRA
does not offer any capabilities in this area.

4.1.4 Vertex reconstruction quality
The FEDRA vertexing capabilities have been examined using similar metrics for
tracking quality with some slight modifications in the definitions, such as comparing
tracks instead of hits between FEDRA and Monte Carlo-matched vertices:

1. Vertex reconstruction efficiency: This parameter quantifies the number
of suitable simulated vertices that were at least partially reconstructed by the
vertexing algorithm. Only vertices that contain two or more tracks, according
to the Monte Carlo simulation, are considered in the calculation.

2. Vertex track reconstruction efficiency: This criterion quantifies the ef-
fectiveness of the FEDRA in reproducing the true vertex multiplicity of its
MC simulated counterpart. For example, if according to the Monte Carlo
simulation, a given vertex should have 6 tracks, but the FEDRA counterpart
shares only 3 tracks, then the vertex track reconstruction efficiency or VTRE
will be 50%.

3. Vertex track reconstruction purity: In the example mentioned above,
the FEDRA counterpart had only three tracks that were linked to the Monte
Carlo simulated track; however, the FEDRA reconstructed vertex can have a
greater multiplicity, for example, nine. This is a random crossing effect that
occurs when two or more unrelated tracks are merged as a vertex entity. The
vertex track reconstruction purity or VTRP is calculated simply by dividing
the number of matched tracks by the multiplicity of the reconstructed vertex.
In this example, it is simply calculated as: VTRP = 3

9
= 33.33%

The evaluation of the FEDRA vertexing performance on the Monte Carlo simulated
data has yielded the following picture presented in Table 4.3 below:

Table 4.3: FEDRA vertex reconstruction performance split by the origin group taken from the
control domain. Average values are calculated for vertices that have been at least partially recon-
structed by FEDRA.

Particle source # MC simulated
vertices

# Matched
FEDRA vertices

Vertex
reconstruction
efficiency (%)

Vertex track
reconstruction
efficiency (%)

Vertex track
reconstruction

purity (%)

EM showers 1072 61 ± 7.8 5.7 ± 0.7 93.9 ± 2.3 91.8 ± 2.2

Hadronic decays 146 82 ± 9.1 56.2 ± 6.2 77.8 ± 2.4 93.8 ± 0.5

νµ interactions 8 7+1.0
−2.7 87.5+12.5

−33.1 72.1 ± 8.0 81.6 ± 6.6
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It follows a similar pattern to the tracking picture: the FEDRA vertexing algorithm
struggles with vertices from electromagnetic showers and hadronic interactions. In
the electromagnetic category, the vertex reconstruction efficiency (VRE) is very low
(≈ 6%), reflecting the difficulty of identifying true vertices made of low-momentum
tracks. The FEDRA vertexing algorithm assumes that tracks are approximately
straight when performing the vertex fit. Electrons and positrons from EM showers
are typically low-momentum and therefore undergo significant multiple scattering
in the emulsion, producing non-linear trajectories. This violates the straight-track
assumption, causing the algorithm to struggle in performing vertex fit and resulting
in a very low probability of successful vertex reconstruction.

For those rare matched vertices, the vertex track reconstruction efficiency (VTRE
≈ 94%) and purity (VTRP ≈ 92%), which quantify the quality of the matches,
appear unusually high. This can be explained by a ceiling effect: the overwhelming
majority of EM vertices correspond to photon conversions into an e+e− pair, produc-
ing two-track vertices. Since the minimum matching criterion requires two tracks,
any correctly matched seed automatically yields a very high VTRE. The small devi-
ation from 100% arises from a handful of EM vertices with simulated multiplicities
greater than two, which are in fact artefacts of limitations in Geants interaction
modelling: occasionally, photon conversions or secondary interactions are merged or
misclassified, producing vertices with more than the expected two tracks.

By contrast, hadronic decays achieve a higher overall VRE (≈ 56%) but lower
VTRE and VTRP, reflecting the more complex vertex topology and higher chance of
random track crossings. Finally, muon-neutrino interactions show the most balanced
performance, with the highest VRE (≈ 88%), albeit on a very small sample of
vertices O(10), making the signal yield particularly sensitive to this metric.

It is important to note that only simulated vertices with tracks reconstructed by
FEDRA are taken into account in this analysis: improved tracking could potentially
lead to a greater number of reconstructed tracks, which could result in more vertices.

Previous attempts have been made to address the issues mentioned above, in-
cluding the use of nonlinear Kalman filters[147], adapting conventional vertexing
algorithms to combine fragmented tracks, and techniques to estimate track momen-
tum by examining its deviation caused by Coulomb scattering[148]. In line with the
subject of this thesis, a different approach will be taken here, which involves the use
of perhaps one of the most well-known machine learning applications: deep learning
with artificial neural networks.

4.2 Literature review: ANN in particle physics
There is a relatively large amount of literature on the use of ANNs in physics ex-
periments. However, their applicability to the research topic of this thesis is varied
and can be split into four categories.

1. Use of ANNs for event reconstruction in emulsion detectors: these would have
the biggest overlap with the work being carried out here, and hence they have
the highest value from the point of applicability.

2. Use of ANNs for event reconstruction in electronic detectors: they still have
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value in terms of applicability, but their methodologies need to be adapted to
the emulsion data environment, accounting for any specifics associated with
emulsion data analysis.

3. Use of ANNs for event analysis in emulsion detectors: this involves cases where
the data from the standard event reconstruction is analysed with the use of
artificial neural networks. They do not have direct applicability to the research
carried out here, but they help direct it since they provide the requirements
for the quality of the reconstructed data.

4. Use of ANNs for event analysis in electronic detectors: this is the least inter-
esting domain in the literature, since it describes methods that solve different
classes of problems in different experimental environments. The implementa-
tion of deep learning methods is very sensitive to the data being used, and
changing them can render the methods and associated ANN models useless
in a different experimental setting. Understanding the general challenges of
using artificial neural networks and how they are solved is the only practical
benefit that can be gained by analysing this type of literature, and therefore
it will not be considered here.

The analysis of the available materials on the topic has been categorised according
to the classification above and is presented below.

4.2.1 Use of ANNs for event reconstruction in emulsion de-
tectors

The use of ECC technology is a niche application in the field of experimental high-
energy physics, and therefore, the number of experiments using emulsion detectors
is relatively small. Additionally, the time constraint is a significant factor, since
the application of ANNs before the 21st century was limited by the relatively small
computing power available at that time.

The following relatively modern experiments with emulsion detectors can be com-
pared to SND@LHC: CHORUS[149], DONuT[150] and OPERA[74]. Perhaps unsur-
prisingly, the literature on the use of artificial neural networks for these experiments
is practically non-existent. The closest attempts to solve at least some of the prob-
lems mentioned in the motivation Section 4.1 have been reported for the DONuT
experiment, where the track momentum in the emulsion was deduced by measuring
the multiple Coulomb scattering[151]. This was an analytical approach without the
use of machine learning and was therefore only mentioned here for completeness.

4.2.2 Use of ANNs for event reconstruction in electronic
detectors

The proposals to use neural networks for tracking can be traced back to the 1990s
when A. Eide et al.[152] explored the idea of using simple feedforward neural net-
works for general electronic detectors at the time. Since then, there has been no
noteworthy progress in the use of neural networks for reconstruction, as standard
algorithms were able to adequately handle the event rates available back then.
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The LHC was launched in 2008, offering the opportunity to search for new physics.
However, the high luminosity of the LHC has pushed the traditional Kalman filter-
based tracking algorithms to the limit, due to the increasing pile-up.

To address current and anticipated challenges in future high-luminosity experi-
ments[19] a pilot project called HEP.TrkX[153] was established in 2016. The first
outcome of the project was a preliminary report[154] investigating the possibility of
using CNN’s and RNN’s for tracking charged particles in LHC detectors such as AT-
LAS and CMS. A follow-up report[155] was published next year with the following
conclusions:

• While demonstrating promising results, CNNs and any image-based methods
will struggle in scaling up to realistic high-luminosity data because of their
high dimensionality and sparsity.

• RNNs still provide an adequate alternative to the existing KF-based tracking
algorithms that show similar performance.

• The hit data in the particle detector can be modelled as a graph, and therefore
GNNs represents another strong alternative to the sequential tracking used in
the standard tracking algorithm and the proposed RNN’s alternative.

Based on these findings, two ways to use ANNs for tracking purposes have been
identified: RNNs and GNNs.

The main advantage of the RNN route is that it can be easily incorporated into
existing standard tracking algorithms simply by replacing the Kalman filter as a hit
predictor. The subject of RNNs is a relatively mature and understood field, with
the first implementation in 1986[156]. Unfortunately, they suffer from some serious
issues, such as the vanishing gradient problem[157], which makes them unable to
effectively learn long-sequence data. Although some attempts have been made to
rectify it, such as the modifications of long short term memory (LSTM)[158], there
is barely any hard evidence in the literature that RNNs work well on large tracking
data. Subsequent studies have been conducted on this subject[159], but there is no
noticeable progress in the development of RNN trackers.

The GNN approach is conceptually different from the proposed RNN-assisted
tracking. Instead of performing sequential tracking, the detector hit data are treated
as a graph of nodes where each node is assigned hit attributes, such as spatial co-
ordinates. The GNN tracking mechanism is based on predicting weights for all
physically possible edges and leveraging this information to build track represen-
tations. The compactness and versatility of the graph data representation enables
it to model any kind of detectors, including complex multi-layered systems such as
ATLAS. Therefore, it is not surprising that the subject of graph-based tracking is an
active area of research that regularly produces reports such as [160][161][162][163]
praising the performance of GNNs.

Certainly, there have been issues identified[164] which include standard ANN prob-
lems such as the requirement of generous computer resources and the concealed
nature of deep learning. An additional set of challenges specific to GNNs has also
been identified, such as converting physics problems into graphs, immaturity of the
available software libraries, and lack of integration with the experimental pipeline.
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Figure 4.4: The schematic representation of RNN-based tracking (left) and the GNN alternative
(right). Taken from [154].

Whether those logistical problems are the only blockers or there are more fundamen-
tal issues is unclear: so far, no solid evidence of practical use of the GNN-tracking
algorithm for the actual non-simulated data analysis has been found in the literature.

There are reports such as [165] and [166] that describe the potential use of GNNs
for physics problems, but the content of the reports presents GNN as a suggestion
rather than an actual working tool that solves the real problem. This can partially
be explained by the time lag between data collection and publication, which for LHC
experiments can take many years. For example, the following ATLAS paper[167]
was published only recently in 2023, but the data was collected between 2015 and
2018, when the GNN tracking algorithms were only at the conception level.

Thus far, this section has been largely devoted to the utilisation of ANN for
track reconstruction, rather than other issues that are expected to arise from the
SND@LHC emulsion data, such as track identification and vertexing. There are two
main reasons for this bias:

• Particle tracking is a critical component of event reconstruction, yet it is the
most difficult part and thus serves as a hindrance to subsequent processes.
Therefore, it is unsurprising that a great deal of effort is dedicated to improving
the tracking capabilities, as these alone are likely to benefit the consecutive
vertexing step.

• Some of the problems mentioned in the motivation Section 4.1 are more rele-
vant for ECC detectors than their electronic counterparts. For example, the
segmentation of tracks correlates with the maximum reconstructable number
of hits: the more hits that make up the track, the more likely the fragmen-
tation. The ATLAS or CMS pixel detectors consist of four layers, making
track segmentation practically impossible. Neither particle identification is a
pressing issue: many electronic devices use magnetic fields and the composite
detector layer architecture to deduce the momentum of the particle and its
type.

There is evidence of some activity in the literature on the use of ANNs in ver-
tex reconstruction, but it lacks large pilot research projects such as HEP.TrkX or
Exa.TrkX[168] and is mainly driven by small collaboration groups in an attempt
to solve vertexing problems for their specific experiment. It should be noted that,
despite the differences between the objective, the experimental design and the data
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used there and the present study, there are still some intriguing and beneficial con-
cepts that can be applied to the research carried out here.

The successful use of neural networks was reported for the PandaX-III experiment
designed to find the neutrino-less double decay of Xenon-136. The authors have used
an adaptation of the VGG16 classification model[169], which itself is a derivative
of the AlexNet architecture, to reconstruct the event vertex and its position. CNN
reconstruction was claimed to have improved the energy resolution of the experi-
ment from 10.1% to 4.0% FWHM, and that the method had been verified on the
experimental data from the PandaX-III prototype[170].

Another 0νββ experiment called Next has claimed to use convolutional neural
networks for event classification and vertex rejection. The adopted CNN architecture
was conceptually different: it used a specific implementation of CNN with only two
convolutional layers, each employing tensor kernels and pooling operators, enabling
it to work on the 3D data. The use of CNNs has been claimed to reduce the
background to ≈ 10% while retaining the signal efficiency at about 65%[171].

CNNs are not the only type of neural network that was considered for vertex re-
construction tasks: other types were used to develop the vertexing algorithm[172]
for the proposed International Linear Collider (ILC). In terms of complexity, the
proposed ILC detectors are comparable to those of the LHC and the physics events
are expected to produce a wide range of signatures that include primary and sec-
ondary vertices. To cope with the challenging task of reconstructing and identifying
them, a complex track data pipeline was created that consists of two parts: seed
finding and vertex building. The seed finding process is performed by a simple for-
ward neural network, which, in addition to the track seed classification, calculates
the location of the vertex origin. The vertex-building part of the algorithm takes the

Figure 4.5: Schematic diagram of the ICL proposed vertex finder. Taken from [172].

seeds from the previous step and increases their multiplicity by adding the tracks
one by one. Conceptually, this is a similar strategy used in the tracking proposals
mentioned above: replicate the Kalman filter fitting used in standard vertexing al-

93



CHAPTER 4. APPLICATION OF MACHINE LEARNING TO TRACKING AND VERTEXING IN
THE SND@LHC EXPERIMENT

gorithms with the RNN analogue. The authors claim that their vertex algorithm
shows better reconstruction efficiency than its non-ML counterpart LCFIPlus[173],
albeit with worse purity. Since the ICL at the time of writing was still in conception,
the performance studies were done on the Monte Carlo simulation and were never
tested on the actual data and should be treated as preliminary.

A brief but intriguing paper was published from the Connecting the Dots and
Workshop on Intelligent Trackers event that discussed the use of feedforward neu-
ral networks for vertex reconstruction in the general cylindrical ATLAS-like detec-
tor[174]. Although the reported neural network architecture was found to have a
limited modelling capacity at high-track multiplicity, the approach itself is interest-
ing: it skips the track reconstruction part and builds the vertices from the raw hits.
In principle, assuming sufficient implementation, this approach could work for the
SND@LHC detector, where the tracking takes most of the offline reconstruction time
but is mainly concerned with the background processes, while the signal signatures
are represented by the vertex.

In conclusion, neural networks have the potential to handle certain aspects of the
physics event reconstruction for the SND@LHC experiment. However, three key
aspects make the ECC detectors different from their electronic counterparts:

1. Data quality: the DAQ processing of emulsion films is very manual compared
to the electronic detectors that collect and store data in an automatic regime.
The development of the emulsion films is fully manual, and the scanning is
semi-automatic at best, making the collected event information vulnerable to
data quality issues. The use of different microscopes can also contribute to the
problem if the scanning settings or methodology differ drastically. Different
plates from the same ECC unit can be scanned by various laboratories, result-
ing in the detector having a non-homogeneous quality pattern throughout its
length. In the DONuT experiment, it was claimed[67] that up to 50% of the
predicted vertices have not been reconstructed in the emulsion due to poor
data quality alone.

2. Alignment: the deformation of the emulsion films during the data collection
and scanning procedure distorts the reconstructed data. The exact pattern
and degree of distortion of each ECC unit are individual, making it difficult
to replicate in a Monte Carlo simulation. Electronic detectors suffer less from
this problem because their constituent parts are more rigid and remain stable
over time.

3. Hit density: the typical electronic detectors, such as ATLAS, while exposed
to high data rates, can separate them into events using the time stamp. The
process is not 100% efficient, and pile-up phenomena occur when more than
one physical interaction is present in the same event. After the expected
increase in the luminosity of the LHC, the average event with 200 interactions
is projected to have approximately O(105) hits. Although it might seem large,
this is a meagre amount compared to the typical number of hits in the ECC
data, where the typical density is reaching 2.5 × 106 cm−3 in the Run 1 data
only. Due to the data-accumulating nature of the emulsion detector, all hits
are treated as one large event, which is a significant computational challenge,
especially for tracking tasks.
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4.2.3 Use of ANNs for event analysis in emulsion detectors
As with event reconstruction, there is not much literature on the use of ANNs for
data analysis in emulsion detectors. A paper[175] describes a successful application
of ANN in the OPERA experiment, where the first observation of a ντ CC interaction
with charm production has been observed with a significance of 3.5σ. It was a rather
simple feedforward neural network that would analyse the kinematic variables of the
event and produce the classification.

Figure 4.6: The output of the artificial neural network is displayed in the graph, with each process
contributing in a different hue. The vertical black line indicates the ANN output for the event
being studied in this analysis. Taken from [175].

If the assumption of using deep learning is relaxed, then there is slightly higher
activity in terms of the application of simpler ML tools. Boosted decision trees are
used in SND@LHC for background vertex rejection analysis. A more complex task
of reconstructing electromagnetic showers has been attempted for the SHIP experi-
ment[176] with the use of various ML tools such as support vector machines (SVM),
XGBoost classifiers (XGB), and conditionally random fields (CRF). Performance
was found to be on par with that of the standard algorithm, but the comparison
was not adequate, as some of the information used by the baseline algorithm was
not utilised.

4.3 General methodology for SND track and ver-
tex reconstruction

In this section, a comprehensive methodology will be presented that applies to all
research lines performed in this chapter. This part will cover important topics such
as the data and tools utilised and the evaluation criteria that apply to all aspects
of emulsion reconstruction and analysis. However, more specific information on a
particular reconstruction study will be outlined in the respective sections.
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4.3.1 Data
Two key data sources have been used for this study: Monte Carlo simulation and a
sample of the emulsion data collected during Run 1. Data sets have been prepared
for studies in tabular format as a comma-separated text file of values or CSV. The
main advantages of this file format are its accessibility to most third-party analysis
tools, including Excel, and its simplicity, which enables one to inspect them easily
without using any advanced technical skills. However, there are certain disadvan-
tages associated with them, including their limited capacity to model complex data
and the absence of metadata. Consequently, they are appropriate only for the initial
demonstration phase and should be substituted in the future with more appropriate
formats like ROOT or JSON. In this study, CSVs were predominantly used as input,
while a Python object representation was utilised for high-level output.

The simulated and actual data sets are divided into domains called bricks, which
correspond to the ECC cells in the emulsion detector. Each brick is identified by
a two-digit number, where the first digit represents the wall sequence, while the
second digit indicates the particular unit out of four from which the data have
been collected. For example, the "Brick 23" domain contains data that have been
simulated or collected in the second wall of the emulsion detector in ECC Unit 3.

Within each brick, the smallest unit of information is a base track or hit that is
parameterised by a minimum of five variables: x, y, z, tx, and ty. The first three
variables describe the spatial location of the hit in the local Cartesian coordinate
system of units of ECC within each wall, with the z-axis aligned along the direction
of the IP1 beam collision axis and the y-axis pointing upward from the detector
floor, as illustrated in Figure 2.10.

Typically, for each brick, the position of the plate farthest along the z-axis serves
as the point of origin, with all preceding plates having negative values of z. In the
frontal view projection, the x-axis and y-axis are positioned at the farthest bottom-
right corner of the brick wall. From a purely emulsion analysis perspective, the
alignment of the coordinate system can be arbitrary for each ECC unit, as long as
it remains consistent within that cell. The definition of reference points may vary
slightly depending on whether a simulation or actual data is being considered.

The tx and ty parameters quantify the slope of the hit along the x and y-axis,
respectively, and are expressed as the dimensionless ratio.

In addition to the five variables described above, hits can carry additional infor-
mation content that depends on the type of data, which will be described in more
detail in the following:

Monte Carlo simulated data

For this data set, a simulation of two types of events has been performed throughout
the entire SND@LHC detector.

• 100 signals muon-neutrino interaction events, including secondary decays.

• 83,984 incoming muon background events, including muon-induced processes
such as delta rays and bremsstrahlung.
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It is important to emphasise that the number of simulated signal events does not
necessarily equate to the number of detectable signal events: some can leave a
barely noticeable footprint in the reconstructed data, such as a few hits that cannot
be reliably identified. Hence, even with a perfect reconstruction of these events, the
expected signal yield is anticipated to be lower than the initial simulated value.

The Monte Carlo sets play a crucial role in this research and has three objec-
tives: provide training data for neural network models, allow the determination and
validation of the reconstruction parameters, and the final independent test of the
quality of the reconstruction. In line with these objectives, the simulated data were
split into three domains, as shown in the figure below.

Figure 4.7: Schematic representation of the Monte-Carlo generated data split into three sets of
ECC units. Green: Bricks used for the training of neural networks (ML domain). Orange: ECC
cells used for the determination and tuning of the global reconstruction parameters (Calibration
domain). Red: The ECC units used for the final testing (Control domain).

The choice of bricks has been mainly dictated by the following considerations:

• The bricks that have identifiers ending with ’1’ are situated closer to the
collision axis. As a result, they are anticipated to have the highest number
of signal and background events. To replicate real-life conditions as closely
as possible, the final testing should be conducted on the brick located in the
lower-right quadrant.

• The number and density of background events increase with the wall number
as a result of the additional products of interactions in the preceding ECC
units. Therefore, it is desirable to choose walls toward the end of the emulsion
detector to obtain a more challenging testing environment.

• The ML domain also requires some bricks with a high density of hits; oth-
erwise, the neural network will perform poorly in the calibration and control
bricks.

In addition to spatial information, the data simulated using the Monte Carlo method
also include truth information, allowing the determination of the type of original
event and its topology. It provides labels for machine learning data points and plays
an essential role in a wide range of reconstruction assessments. The simulation data
model, shown schematically in Figure 4.8, groups each hit into tracks, tracks into
vertices, and vertices into events.

It is important to note that not all events contain vertices. For example, a muon
originating from IP1 is modelled as an "external" particle, although it should theo-
retically originate from some decay outside of the SND@LHC detector.
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Some caveats have to be taken into account when dealing with Monte Carlo meta-
data, such as:

• The event identifiers have been generated globally for the whole emulsion
detector, while the typical emulsion analysis is done at the brick level. For
example, the vertex originating at the first wall will produce the daughter par-
ticles in the proceeding wall with the same Mother ID, which can lead to the
vertex overcounting. To mitigate this problem, an additional data manipula-
tion procedure has been performed, which involved reassigning a special value
of Mother ID to all particles in a given brick that originate in the preceding
ECC unit. This procedure prevents an underestimation of the signal efficiency
of a given brick.

• The Mother and Track IDs restart for every single event, and therefore, are
not unique when considered in the context of a single simulation or even a
single brick. Therefore, some trivial data reprocessing has been performed,
which involved concatenating Brick and Event IDs to each track and vertex
entity to make it unique.

Apart from the topological information, Monte Carlo simulation contains other use-
ful metadata that enables identification of the physical process in the event and its
kinematical properties, such as:

• PDG code: it is a number assigned on a track level to identify the particle
that created the track. The numbering logic follows the Particle Data Group
convention for Monte Carlo particle simulations[177].

• Mother PDG code: it is almost the same as above, but instead of identifying
the flavour of the particle responsible for the hit, it identifies the type of
particle from which it came as a result of decay. All particles originating
outside of the detector, such as IP1 muons, have this identifier set to zero.

• P: it is the magnitude of the three-momentum vector in units of gigaelectron
volts (GeV) of the truth particle that leaves the track in the detector. Since the
particle is expected to lose energy as it traverses the film plates, the momentum
is defined at the hit level.

Other information, such as the production time and the type of interaction process,
is available but is barely used, and therefore is not mentioned here.

The simulated data considered here have been processed using the FEDRA track-
ing and vertexing procedure. In addition to the Monte Carlo-generated truth meta-
data, it also adds standard tracking and vertexing information that serves both as
a benchmark and as a material for the reconstruction enhancement procedures used
here. The data structure is very similar to that used for the simulation. Hit IDs
form FEDRA-reconstructed tracks that, in turn, can serve as building blocks for
higher-order structures such as FEDRA-reconstructed vertices. The concept of an
event is poorly defined within the FEDRA framework and is limited to identifying
a given vertex as primary or secondary.

Although the Monte Carlo data used are an important tool without which this
research would be impossible, there are some serious limitations of the simulation
that potentially can diminish the effectiveness of the studies performed here:
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(a)

(b)

(c)

Figure 4.8: Data structure of a simulated signal event: (a) Each hit has its unique identifier and
can act as a building block for a track with the same Track ID (in this example, it is 11). (b) Every
track, in turn, can form higher-level structures, such as vertices, which are denoted by Mother ID.
(c) Tracks and vertices form the highest order structure in the simulation called event and denoted
by Event ID.
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• Low density: even the simulated Brick 51, which has the highest average den-
sity of hits (approximately 1.21 × 103 cm−3), does not come close to matching
the conditions observed in real data. For example, just a 1 cm × 1 cm cross-
sectional area of Run 1 Brick 42 data has an average density of around 1.6
× 106 hits per cubic centimetre, which is more than three orders of magni-
tude higher than in the simulation. A much higher density of the actual data
implies a higher volume of random crossing effects than that observed during
neural network training and the reconstruction parameter calibration.

• Low event diversity: only muon neutrino and muon background events have
been simulated, leaving out other important background contributions. The
current simulation also ignores tau and electron neutrino interactions, which
considerably limit the scope of this research and should be revisited for future
studies to address all requirements of the SND@LHC programme.

• Simplistic modelling: the degradation of data quality due to plate mis-
alignment effects is not taken into account in the Monte Carlo simulation. The
emulsion detector is modelled as a rigid structure that preserves the unrealistic
perfect alignment configuration, which is unattainable in real-life conditions.
This presents another obstacle for the neural network models that have been
trained on the "perfect" data only.

Run 1 data sample

To assess the reconstruction techniques developed in this study in real-life conditions,
a small sample of the Run 1 data has been selected as illustrated in the diagram
below:

Figure 4.9: Schematic representation of the location of the Run 1 data sample.

On the granular level, the Run 1 data have a similar structure to that used in the
simulation; however, there are some important differences:

• Lack of truth information: real data lack information present in the Monte-
Carlo simulation, such as the event topology and the particle type.

• Scan metadata: it contains microtrack metadata collected during the emul-
sion scanning procedure, such as micro-track fit parameters and the number
of silver clusters that are not produced in the Monte Carlo simulation.

• High event diversity: the data provided in this section contains all the
events that can be recorded in the emulsion while being exposed to the Run
1 cycle. This includes various sources of background that were observed in
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the T118 tunnel, such as thermal neutrons generated by the LHC beam, and
hadrons produced by the interaction of IP1 muons with the rock upstream of
the SND@LHC detector.

• Instrumental imperfections: the data contain two artefacts of the emul-
sion handling procedure: distortion of the detector geometry compared to the
"perfect" MC simulated layout and fog, which results in additional thermally
induced noisy hits in the data.

To demonstrate the difference in event densities between simulated and recorded
data, a summary table has been compiled and presented below.

Table 4.4: High-level statistical description of the data used for this research, split by domains and
brick number.

Data domain Brick ID Total number
of hits

Average hit
density [cm−3]

Maximum hit
density [cm−3]

Total number
of FEDRA

tracks

Average
FEDRA track
density [cm−2]

Maximum
FEDRA track
density [cm−2]

MC ML 11 2.95× 106 (1.02± 2.51)× 103 1.38× 104 6.77× 104 (2.73± 2.63)× 102 1.25× 103

12 8.59× 105 (2.98± 21.8)× 102 1.07× 104 1.90× 104 (2.28± 2.44)× 102 9.05× 102

13 7.71× 105 (2.68± 21.7)× 102 1.34× 104 1.83× 104 (2.28± 2.55)× 102 1.06× 103

14 1.16× 106 (4.05± 23.3)× 102 1.25× 104 2.73× 104 (2.43± 2.58)× 102 9.75× 102

21 3.36× 106 (1.17± 2.31)× 103 1.46× 104 7.76× 104 (2.18± 2.60)× 102 1.21× 103

22 9.77× 105 (3.40± 19.2)× 102 1.06× 104 2.14× 104 (1.62± 2.31)× 102 9.21× 102

23 8.84× 105 (3.07± 18.2)× 102 1.55× 104 2.07× 104 (1.41± 2.34)× 102 1.06× 103

24 1.32× 106 (4.60± 19.7)× 102 1.16× 104 3.12× 104 (1.51± 2.36)× 102 9.39× 102

32 9.97× 105 (3.47± 16.4)× 102 1.18× 104 2.20× 104 (1.21± 2.05)× 102 9.40× 102

33 8.71× 105 (3.03± 14.7)× 102 1.21× 104 2.08× 104 (9.60± 19.6)× 10 1.06× 103

34 1.34× 106 (4.65± 17.3)× 102 1.08× 104 3.17× 104 (1.19± 2.11)× 102 8.59× 102

42 1.07× 106 (3.71± 14.7)× 102 1.32× 104 2.41× 104 (8.70± 18.6)× 10 9.15× 102

43 9.08× 105 (3.16± 13.2)× 102 9.43× 103 2.19× 104 (7.20± 16.8)× 10 9.59× 102

44 1.36× 106 (4.73± 16.0)× 102 1.50× 104 3.22× 104 (9.20± 18.6)× 10 1.01× 103

51 3.47× 106 (1.21± 1.93)× 103 1.28× 104 8.10× 104 (1.26± 2.08)× 102 1.12× 103

52 1.05× 106 (3.67± 13.2)× 102 1.06× 104 2.32× 104 (6.60± 15.1)× 10 7.54× 102

53 9.12× 105 (3.17± 12.3)× 102 1.05× 104 2.20× 104 (5.80± 14.9)× 10 9.48× 102

54 1.42× 106 (4.94± 16.8)× 102 2.00× 104 3.41× 104 (8.50± 17.5)× 10 1.13× 103

MC calibration 31 3.36× 106 (1.17± 2.10)× 103 1.52× 104 7.76× 104 (1.67± 2.42)× 102 1.28× 103

MC control 41 3.34× 106 (1.16± 1.98)× 103 1.72× 104 7.72× 104 (1.43± 2.25)× 102 1.30× 103

Run 1 data sample 42 2.87× 107 (1.63± 0.67)× 106 2.52× 106 5.48× 105 (1.82± 2.67)× 104 1.50× 105

The following quantities are presented in the table:

• Toal number of hits: this is the total number of base tracks present in a
data sample, regardless of whether they have been used for reconstruction or
not. For the non-simulated data, this number also includes hits that would be
rejected by the tracking algorithm due to the cuts on the microtrack parame-
ters.
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• Average hit density: This is derived simply by dividing total number of hits
by the fiducial volume in cm3 that contains the base tracks. For Monte Carlo-
generated sets, this volume is calculated using the nominal dimensions of the
ECC unit of 19.2 cm ×19.2 cm × 7.8 cm. The Run 1 data sample originally
had been defined as having dimensions of 1 cm ×1 cm × 7.8 cm; however, the
effective volume has been changed to 1.51 cm ×1.55 cm × 7.5 cm. This is due
to the alignment procedure, which involves shifting each plate with respect to
the other in an attempt to reverse the ECC deformation effects. The error
was calculated by splitting the data sample into cm3 volumes, measuring the
hit density in each and calculating the variance. It is important to note that
the density pattern of the data used does not follow the normal Gaussian
distribution, especially for the simulated data. This is due to the specific
ways the Monte Carlo data were produced: instead of uniformly populating
the bricks with muon background particles, only the specific areas around the
neutrino interaction have been saturated with the passing muon tracks, leaving
other areas of the detector sparsely populated.

• Maximum hit density: this is calculated by splitting the data sample into
one cm3 volume, measuring the hit density in each and taking the highest
value.

• Total number of FEDRA tracks: this is the total number of tracks that
have been identified by the FEDRA standard reconstruction procedure. Only
tracks made up of a minimum of four hits are considered.

• Average FEDRA track density: this can be interpreted as the average
number of tracks incident on an ECC plate per unit area. It is derived by
splitting the area of each plate into 1 cm × 1 cm fragments, measuring the
number of hits that were used in the tracking procedure and taking the mean
and variance.

• Maximum FEDRA track density: this can be interpreted as the maximum
number of tracks incident on an ECC plate per unit area. It is derived by
splitting the area of each plate into 1 cm × 1 cm fragments, measuring the
number of hits that were used in the tracking procedure and taking the highest
value.

The list of data parameters above has been shortened to give a general idea of the
data volumes involved in training, calibration, and final testing. There are other
important quantities, such as the number of vertices and signal events, which were
omitted here for conciseness but will be covered in more detail in the relevant sections
in due course.

4.3.2 Reconstruction strategy
In the majority of the reconstruction workflows, whether the standard reconstruction
or the neural network-driven process is considered, the basic unit of the data flow is
called the seed. Depending on the specific task, the seed is simply the combination of
two objects in the emulsion data that make up more complex higher-order structures.
For example, in the case of tracking, that would be a pair of constituent hits that
make up a volume track or at least one of its segments. For the vertexing operation,
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the seed would consist of a pair of tracks that can potentially become part of the
vertex.

A typical reconstruction that will be performed within this report involves the
following steps: seed creation and refinement, neural network analysis, and final
output consolidation, which will be described in more detail below.

Seed creation and refining

The data preparation serves the following purposes:

1. Clean and convert the input data to a suitable format.

2. Restructure the data into possible seeds.

3. Reduce data flow by eliminating background seeds while preserving the rele-
vant signal combinations by using the standard analytical techniques as much
as possible, so that the neural network is not overloaded with high rates of
data flow. Typically, this is achieved by numerous filtering steps, the order
of which is dictated by computational efficiency considerations: the simplest
filters are applied first to reduce data flow as much as possible for complex
steps that require more memory and CPU resources.

4. Develop a suitable data point representation for neural network analysis, which
varies depending on the type of neural network being used. For CNNs, it is
necessary to use three-dimensional numpy arrays, while GNNs require a graph
object of the seed.

5. If the data are used for neural network training, the additional two steps are
used: assigning labels to seeds using simulated truth information and seed
resampling. The latter is needed to ensure that each batch used in the ANN
training has an even distribution of seeds with different labels, resulting in a
smooth learning process.

Neural network analysis

Four important aspects of neural network handling need to be discussed in more
detail: data preparation, choice of architecture, training and use during reconstruc-
tion.

The training data set is generated by merging all data within the ML domain,
denoted by green colour in Figure 4.7 and then generally split into the training
and validation samples with a split of 90:10%. In some complicated cases where
the acceptance of neural networks is optimised, a more rigorous schema is followed,
which involves splitting training data into three sets: training, validation, and test
samples with a ratio of 85:10:5%.

One of the most difficult parts of dealing with neural networks is choosing their ar-
chitecture. Ideally, the complexity of the neural network should be just sufficient to
effectively model the subject data, but not more than that. Otherwise, an overcom-
plicated NN model will consume more computational resources than necessary and
will be prone to overfitting. Striking the right balance is, in essence, a very similar
type of problem that was solved in Chapter 3 and requires optimisation of many NN
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parameters such as the number of layers, size of kernels, the value of the dropout
and many more, depending on the type of the neural network. This is particularly
true for CNNs, which have a large, high-dimensional parameter space and for which
grid search and other optimisation strategies have been employed. However, during
the late phases of this research, CNNs were mostly abandoned in favour of GNNs,
which are easier to optimise and for which the principle of parsimony was applied
as follows:

1. Pick a decently sized training sample.

2. Start with the simplest NN configuration.

3. Train the model on the training sample until the performance on the validation
set begins to plateau.

4. Record the loss and accuracy achieved.

5. Slightly increase the model complexity and use it for the next iteration.

6. Continue repeating steps 3-5 until no further improvement is observed.

7. Choose the model that achieved the overall performance plateau.

Once the optimal configuration of the neural network is chosen and the training
data are ready, neural network learning can begin using the backpropagation process
described in Section 2.6.5. It can be described briefly as an iteration of the following
steps:

1. Split the training data into smaller batches of equal size. Depending on the
type of neural network, batch sizes of 4 (for CNNs) to 16 (for GNNs) were
used.

2. Perform a backpropagation on each batch until all of them have been processed
in the given training sample. This denotes an epoch.

3. Run both validation and training samples through the neural network and
record loss and accuracy.

4. Decrease the learning rate slightly according to the predetermined schedule.

5. Continue repeating steps 2-4 until no further improvement is observed.

6. Stop training once the plateau for both loss and accuracy has been reached.

After the training process is completed, the neural network can be applied to assist
in reconstructing the Monte Carlo data in both the calibration and control domains.
Additionally, the network can also be used for Run 1 data. Compared to the com-
putationally intensive backpropagation process used in training, the actual task of
reconstruction is much simpler. For each input data point, only a single feedforward
pass is performed, which yields a prediction that can be used for classification or
regression tasks.

It is important to ensure that the pre-selection steps for the reconstruction input
data match or exceed those used for neural network training. In this way, the gap in
the neural network performance between running on the ML domain and "unseen"
data is minimised as much as possible.
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Final output consolidation

The assimilation process of the neural network predictions varies depending on the
type of reconstruction used. In general, they follow some adjustable algorithm that
remaps or groups the original data into a more complex representation, which can
be used for analysis or further reconstruction steps. The initial pre-reconstruction
state of the input data is always preserved for later optimisation and testing.

4.3.3 Tools
The tools used for this research are very similar to those used in Chapter 2 and
can be divided into three main categories: storage and computing infrastructure,
a reconstruction software framework, and third-party tools that are used for the
analysis and visualisation of input and output data.

Storage and computing infrastructure

The primary environment within which reconstruction processes are carried out is
called LXPLUS[178], which stands for LinuX Public Login User Service. It consists
of a cluster of public machines provided by CERN, where each machine runs either
CERN CentOS 7 Linux (CC7) or Enterprise Linux 9 (EL9) operating system and
has access to numerous compilers, such as C++ and Python and their respective
library sets. All CERN users can interact with each machine via the Secure Shell
Protocol (SSH), which removes the need to run programs on a local computer.

However, the LXPLUS itself is not designed to run jobs with high CPU consump-
tion: instead, it offers an HTCondor batch submission system[179]. The purpose
of this system is to ingest and distribute user-submitted jobs across the large batch
farm consisting of around 100k cores. Its queueing system introduces a degree of
latency when it comes to job execution, but it allows for the submission of a theoret-
ically unlimited5 number of tasks. This is ideal for reconstruction jobs that can be
parallelised and split into smaller chunks, and is highly applicable to the problems
attempted in this thesis.

In addition to computing services, LXPLUS provides access to storage facilities
such as Andrew File System[180] (AFS) and EOS[181]6 . From the read-write speed
and storage perspective, EOS is superior to AFS as it has a considerably higher
storage quota of 1 terabyte per user versus the modest 100 GB offered by the AFS
service. Therefore, EOS is the first choice when it comes to storing large volumes
of physical data.

However, EOS is a low-cost disk storage solution, which, compared to AFS, is
less robust when it comes to disk failures, and it does not offer a backup facility.
More importantly, although the HTCondor service can handle input and output
data through EOS, it still necessitates AFS storage for submission and log files.

5 In practice, there are service limits due to the HTCondor fair-share policies.
6 The meaning of the "EOS" acronym is surprisingly unclear. According to the official website, it

stands for EOS Open Storage, which creates a recursive situation similar to the infamous chicken-
and-egg dilemma. There is a possibility to define it as Exabyte Open Storage, which would be a
more reasonable definition. However, no concrete evidence is provided in the official documentation
to support this claim.
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Therefore, while CERN has indicated[182] intentions to eliminate AFS, it is still
widely used along with EOS.

Reconstruction software framework

To address the numerous challenging problems attempted in this research, a software
framework called ANNDEA[183] or Artificial Neural Network-Driven Emulsion
Analysis has been developed. ANNDEA is a Python-written framework, the main
purpose of which is to assist the user in all aspects of reconstruction, such as:

• Data ingestion and preparation.

• Creation and training of neural networks.

• HTCondor submission management.

• Utilising the output of neural networks.

Figure 4.10: Schematic representation of the ANNDEA framework.

At the time of writing this thesis, ANNDEA consisted of five main modules that per-
form tracking, ECC-data alignment, track desegmentation, track classification and
regression analysis, and vertex reconstruction. Thanks to the active use of Tensor-
Flow and PyTorch libraries, ANNDEA naturally incorporates neural networks into
its existing reconstruction pipelines, and its open architecture enables it to modify
existing or add new reconstruction modules easily. Provided that it runs on the
terminal multiplexer such as tmux with appropriate authentication tokens, it can
perform tasks in the fully automatic mode without the need for user intervention.

Despite ANNDEA capabilities, the full description of which is beyond the scope
of the thesis7 , there are some significant limitations of ANNDEA, such as:

1. ANNDEA is still in a "proof-of-concept" stage and therefore some of the aspects
of its algorithm, such as data preparation and interaction with the HTCondor
service, are not optimised to their full potential. For example, ANNDEA

7 A comprehensive documentation can be found on a dedicated wiki page available at [184].
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actively uses Pandas data frames for data preparation, which are memory-
consuming and can become a significant bottleneck of the reconstruction speed
and performance.

2. Currently, ANNDEA is not yet integrated into the native SND@LHC sndsw
framework, which presents an additional data exchange barrier to the collab-
oration as a whole.

3. Unlike powerful frameworks such as ROOT, ANNDEA itself has very limited
visualisation capabilities, necessitating third-party software packages.

Other tools

In addition to ANNDEA, a set of third-party tools has been used that includes:

Tableau Desktop: Tableau Desktop has been used to produce the bulk of graphs
and event visualisations for this report. Conceptually, Tableau offers a shallower
learning curve compared to MATLAB or ROOT, enabling the user to produce com-
plex visualisations with minimal effort. One limitation of Tableau software is its
focus on the commercial data analyst market, which means it may not have all the
functionalities needed for scientific purposes, such as heatmaps. However, it remains
a robust tool and is available to students through a complimentary one-year student
license.

Matplotlib: to fill some gaps in the Tableau visualisation capabilities, the matplotlib
Python library has been used to produce some of the plots used in this thesis.

Tableau Prep: while in principle the Panda’s library can perform any required data
cleansing and manipulation, it requires a significant level of laborious coding that
is only justifiable for the routine data pipelines, but not for the ad hoc or one-
off analysis tasks. Tableau Prep provides an intuitive graphic user interface that
enables the end user to perform complex data cleansing and transformation with
little to no coding. Certainly, it lacks the sophisticated features present in more
advanced visual data preparation platforms such as Alteryx Designer, but it is a
more affordable option since it comes as a complementary package to the Tableau
Desktop.

4.3.4 Measuring performance
Defining and assessing reconstruction performance is important for several reasons:

• It enables the evaluation of the efficiency of different reconstruction processes.

• Helps identify areas for improvement and optimisation.

• Offers a uniform measurement that allows for the comparison of ANNDEA
and standard reconstruction techniques, with the latter serving as a reference
point.

Overall, it offers an impartial quantitative evaluation of the performance of this
study.

Three distinct aspects of the reconstruction pipeline are evaluated using various
sets of metrics: the performance of neural network training, the reconstruction data
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cut flow, and the quality of the final output.

Neural network training monitoring

For classifier neural networks, two key metrics are used to assess learning perfor-
mance: cross entropy loss defined earlier in Equation 2.44 and accuracy, which is
simply a number of data points xi for which the ANN predictions pi match the
labels yi, divided by the total number of evaluations. The range of values for this
parameter is 0 to 1. Typically, values between 0.5 and 1.0 are observed. A value
of 0.5 suggests that neural network predictions are essentially random, while values
closer to 1.0 indicate better learning performance. It is uncommon to find values
significantly below 0.5, and if they do occur, it may be an indication of incorrect
labelling in the validation dataset.

Although accuracy is intuitively easier to understand, compared to the loss metric,
it suffers from a degree of information degeneracy when it comes to measuring the
performance of the classification of neural networks. This can be demonstrated by a
hypothetical example in which two neural networks, A and B, perform a binary clas-
sification of a data point x. In this example, neural network A assigns a probability
pA = [0.0, 1.0] and neural network B assigns a probability pB = [0.49, 0.51]. If the
label y is [0.0, 1.0], both neural networks will have a 100% accuracy for that specific
data point, although prediction A is closer to the value of the label y compared to
model B. Because CEL can capture this information, it is a more reliable measure
to evaluate the progress of neural network training compared to accuracy.

The accuracy metric has another notable drawback in that it can be misleading
when solely relied upon to gauge the neural network’s performance in testing sce-
narios. This can be demonstrated by a hypothetical example in which the binary
classification neural networks A and B train in different training sets with 50%:50%
label split and both reach an accuracy of 95%. If neural network A is evaluated
using data that have the same equal class distribution, while model B is evaluated
using data that are heavily skewed towards one label, neural network A will prob-
ably produce a similar performance to the one exhibited during the training. The
same cannot be stated for model B, where the acknowledged 5% error rate can lead
to a significant number of misclassified data points that belong to the prevailing
label.

Another complication arises from the fact that the accuracy score measures the
overall rate of correct predictions for the given dataset, which is an average of
the prediction rate for each data class. However, a neural network can perform
well in one data class but struggle in another. Depending on the magnitude of
this asymmetry and the relative distribution of the test data labels, the numerical
network evaluation performance will produce different results.

For neural networks that perform regression tasks, only one metric is sufficient to
monitor NN training performance, called mean squared error loss or MSEL, which
is defined through the equation:

LMSEL(θ) =
1

N

N∑
i=0

(pi − yi)
2. (4.1)
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An attractive feature of the MSEL is that, in the context of momentum or energy
prediction, it has a straightforward interpretation of a measurement resolution.

Reconstruction data cutflow

This part concerns the evaluation of seed refining performance in various filtering
steps, including fiducial and neural network cuts. Each step in the cutflow results
in the following types of seeds described in the table below:

Table 4.5: Confusion matrix for seed binary classification with desired elements (Green) and un-
desired elements (Red).

Genuine seed Fake seed

Passed the filter True Positive (TP) False Positive (FP)

Rejected by the filter True Negative (TN) False Negative (FN)

In the ideal scenario, the reconstruction cut flow should not yield any off-diagonal
entries, which are the consequence of the rejection of genuine seeds or acceptance of
fake random pairs. Generally, two metrics are used to quantify these effects: recall
and precision.

Recall measures the percentage of genuine seeds that successfully pass through the
filter in relation to their initial quantity. It is computed using the following formula:

Recall = TP
TP + FN

. (4.2)

Precision is a metric that quantifies the proportion of authentic seeds among all
seeds that pass through the filter. It is computed using the following formula:

Precision =
TP

TP + FP
. (4.3)

The primary aim of efficient reconstruction is to maximise both quantities at the
end of the flow. However, in practice, it is difficult to achieve this objective because
improving one metric frequently results in a decline of another. Typically, when the
cut becomes more stringent, there is an increase in the number of authentic seeds
that fail it, and vice versa: relaxing the criteria results in a higher number of false
positives. The primary purpose of integrating deep learning into the reconstruction
process is to mitigate this trade-off by utilising all the accessible seed information.
Consequently, it enables a more precise selection process that traditional techniques
cannot achieve, as they depend on a restricted set of variables for candidate classi-
fication.

Nonetheless, using neural networks alone for large volumes of unrefined seeds is
computationally expensive. Therefore, it is more practical to combine these two
methods. By employing simple and fast algorithms at the beginning of the flow,
obvious fakes can be rejected, while the neural network handles fewer but more
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challenging inputs. Within this schema, the preselection steps should have the
highest computationally possible efficiency to prevent an irreversible loss of signal
before the ANN step and the overall loss of efficiency as a result.

The step involving neural networks has more room for deciding the optimal point
between precision and recall, which in principle can be optimised by using a com-
bined metric such as F-score, which is defined as:

F1 = 2× Recall × Precision

Recall + Precision
. (4.4)

However, to demonstrate the capabilities of machine learning-driven methods com-
pared to the conventional techniques using the Kalman filter, a more simple approach
will be taken. It consists of tuning the reconstruction workflow so that its recall ap-
proximately matches that of FEDRA and comparing the precision between the two
reconstruction methods.

Although the result of the comparison can help guide the direction of the develop-
ment of the reconstruction algorithm, it cannot be used as conclusive evidence that
one technique performs better than another. This is because recall and precision
encode limited information and do not reflect the exact reconstructed seed configu-
ration. It is perfectly possible for two methods to have the same recall and precision
values, but the reconstructed state of the final physics event can be different, such
as in the illustrated example below.

Figure 4.11: A schematic illustration of a hypothetical situation where a reconstruction of a single
vertex is performed by two different models. Both models achieve the same recall, but their results
are different. Left: Model 1 has identified all seeds that group tracks A, B and C and a seed
connecting tracks D and E. Since there is no link between the groups, they are reconstructed as
two different vertices. Right: Model 2 has identified all seeds AB, BC, CD, and DE. Also, some
seeds, such as AE or AC, have been rejected by the model, filters the configuration of seeds enables
them to group into one vertex.
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Quality of the final output

While the previous two evaluations provide important information on the perfor-
mance of the reconstruction workflow, the quality of the output provides a final
assessment of the overall algorithm and its value for physics analysis. Some of the
metrics that are used for this task have already been mentioned in Section 4.1 and
will be covered in more detail here:

TRE: this parameter measures the number of MC simulated tracks that were recog-
nised to some extent by the tracking algorithm. To calculate it, these steps are
followed:

1. Extract all MC-generated tracks from the reconstructed dataset and eliminate
any tracks with fewer than four hits. By default, this study will apply the short
track cut, which represents the minimum number of hits per segment, to all
volume tracks. Henceforth, it will not be reiterated for the sake of brevity.

2. Calculate the total number of tracks from the previous step.

3. Extract all the tracks reconstructed by the tracking algorithm.

4. Take the MC simulated tracks from Step 1 and match them with the recon-
structed tracks from Step 3. The concept of track matching refers to the
manipulation of data in which the subject track, reconstructed or generated
by one algorithm, is mapped to the corresponding track of another algorithm.
The link is established by counting the number of shared hits with a minimum
accepted number of one8 . When the MC-generated track is mapped to mul-
tiple track segments reconstructed by the counterpart algorithm, the segment
with the highest hit overlap is chosen.

5. Count the number of matched MC simulated tracks from the previous step
and divide by the result from Step 2.

THRE: this criterion quantifies how complete the reconstructed track is compared
to its MC simulation counterpart. Its calculation steps are as follows:

1. Extract the suitable MC simulated tracks from the reconstructed dataset.

2. Extract all tracks reconstructed by the tracking algorithm.

3. Take the reconstructed tracks from the previous step and match each of them
with the MC-generated tracks.

4. For all matched simulated tracks, count the original number of their con-
stituent hits. If two or more reconstructed tracks share the same simulated
track, the number of hits for the latter is counted multiple times.

5. Count the total number of shared hits used in the matching procedure and
divide by the result from the previous step.

8 This is a much more relaxed criterion than the one applied to the definition of the simulated
and reconstructed tracks. It has been chosen deliberately to make these metrics more robust and
consistent for future cases involving the reconstruction of short tracks, making up electromagnetic
showers as an example. Occasionally, there will be cases where the reconstructed track is matched
to the MC-simulated counterpart through accidentally using one of its hits; however, these effects
are captured better in other metrics.
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THRP: This criterion quantifies how many wrong hits have been used by the track-
ing procedure to reconstruct a track. Its calculation steps are as follows:

1. Extract all the reconstructed tracks from the dataset and count the total
number of constituent hits.

2. Match the reconstructed segments with the MC simulated tracks and count
the number of shared hits.

3. Divide the result from the previous step by the result of Step 1.

Segmentation: is a metric that describes the number of segments reconstructed
per truth particle. This can be calculated using the following steps:

1. Extract all the tracks generated by the Monte-Carlo simulation from the re-
constructed dataset.

2. Extract all tracks reconstructed by the tracking algorithm.

3. Match the tracks obtained in Step 1 with the tracks from Step 2, keeping a
record of all matched segments, even if there are multiple segments per MC
simulated track.

4. Calculate the total number of simulated tracks from the previous step and
then divide it by the total number of matched reconstructed segments.

VRE: this parameter quantifies the number of suitable MC-generated vertices that
were at least partially reconstructed by the vertexing algorithm. Its calculation
steps are as follows:

1. Extract all the MC simulated vertices and eliminate any vertices with fewer
than two constituent tracks. By default, this vertex multiplicity cut will apply
to all vertices.

2. Extract all vertices reconstructed by the vertexing algorithm.

3. Each track that belongs to the reconstructed vertex is matched with the corre-
sponding MC-generated track. This step is required to perform vertex match-
ing in the next step.

4. Take the simulated vertices from Step 1 and match them with the recon-
structed vertices from Step 3. Similarly to track matching, vertex matching
refers to the manipulation of data in which the subject vertex, reconstructed
or generated by one algorithm, is mapped to the corresponding vertex of an-
other algorithm. The link is established by counting the number of shared
tracks with a minimum accepted number of two. If the MC simulated ver-
tex is mapped to multiple distinct vertices reconstructed by the counterpart
algorithm, the vertex with the highest track overlap is chosen.

5. Divide the total number of matched vertices by the result of Step 3.

VTRE: this criterion quantifies the effectiveness of FEDRA in reproducing the true
vertex multiplicity of its simulated counterpart. Its calculation steps are as follows:

1. Extract all the simulated vertices.
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2. Extract all the vertices generated by the vertexing algorithm and match their
constituent tracks with their Monte-Carlo simulated counterparts.

3. Match the reconstructed vertices from the previous step with the MC simu-
lated vertices.

4. Count the total number of tracks that overlap for the matched vertices and di-
vide by the original number of tracks that make up the matched MC-generated
vertex. If two or more reconstructed vertices share the same MC-simulated
vertex, the number of tracks for the latter is counted multiple times.

VTRP: this criterion quantifies the rate of fake tracks that make up the recon-
structed vertices. Its calculation steps are as follows:

1. Extract all Monte-Carlo-generated vertices.

2. Extract all vertices reconstructed by the vertexing algorithm and, for each
track that belongs to the reconstructed vertex, match the simulated track.

3. Count the total number of tracks that belong to the reconstructed vertices
from the previous step.

4. Match the vertices from the previous step with the simulated counterparts.

5. Count the total track overlap for the matched vertices and divide by the orig-
inal number of tracks that make up the matched MC-generated vertex. If two
or more reconstructed vertices share the same simulated vertex, the number
of tracks for the latter is counted multiple times.

So far, the metrics described in this section require truth-level information from the
simulation for calculation, which makes them unusable for the actual data, which
lack any truth information. To address this challenging limitation, a set of additional
methodologies is also applied.

• Objective metrics: some characteristics of the reconstruction data that are
impartial to the availability of Monte-Carlo simulation metadata will be used,
such as hit utilisation, which is simply the ratio of hits used for the tracking
procedure versus the total number of hits present in the data.

• Consistency checks: this involves validating the picture of the reconstructed
data using independently verified physical expectations. For example, the
number of reconstructed long tracks in the emulsion can be compared with the
observed muon flux, which has been independently measured using electronic
detectors.

• Visual inspection: this technique involves manually reviewing the recon-
structed event of interest to spot any anomalies or errors in the reconstruction
process. Although it is a laborious and highly subjective method that was
widely used for emulsion analysis in the mid-20th century, in combination
with modern visualisation software, it remains a powerful tool in the hands of
a skilled particle physicist.
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4.4 Reducing track segmentation

4.4.1 Purpose
In this part, an issue related to track segmentation discussed in Section 4.1 will
be addressed. The solution entails merging reconstructed track segments that the
FEDRA did not identify as a single track, and consists of the following steps:

1. Clean and prepare the data that has been previously tracked by FEDRA.

2. Form all possible track combinations and refine them using basic geometrical
considerations.

3. Pass the remaining seeds through the neural network filters.

4. Combine all seeds remaining from the previous steps into new tracks.

If the segment is integrated into the newly formed track, the initial tracking iden-
tifiers will be replaced with new ones, enabling them to be perceived as a cohesive
entity in the data. The investigation conducted in this study will focus on the FE-
DRA reconstructed tracks; however, this method can be applied to the output of
any tracking algorithm.

4.4.2 Data preparation
The primary objective of data preparation is to create a file containing only the
necessary details to reduce the storage requirements for data reconstruction. This
involves taking the initial input file and stripping any data apart from the following
variables: x, y, z, tx, ty, Brick ID and the Track ID, which contains a unique
identifier for the reconstructed track within a data set. Only hits used for track
reconstruction and those that are part of tracks of sufficient length are considered.
In case data are needed to train the neural network, an additional variable MC Track
ID is brought in, which holds an identifier for the corresponding MC-generated track.

4.4.3 Seed refining
The objective of seed refinement is to identify the correct combination of the track
segments that ultimately allows them to be merged into complete volume tracks.
This operation can be divided into the following steps9 : seed initialisation, pre-
liminary selection and fiducial cuts, which will be explained in more detail in the
following.

Seed initialisation

As previously stated, a track seed refers to a pair of track segments originating
from the same parent particle track. The initial number of combinations increases

9 The process described here has been expressed in the simplistic mathematical form. AN-
NDEA’s actual workflow is more complex: it yields the same results but is optimised for compu-
tational performance.
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Figure 4.12: A small example of the input data in tabular form that has been subjected to the
FEDRA tracking process. The red colour denotes unused columns, and the grey colour denotes
rows with hits not used by tracking that are discarded from the data. Yellow is an optional column
included only if the data form the training set for neural network training.

according to equationNsd =N2
tr, which can be large for a standard ECC unit. Hence,

initially, only a basic seed representation in the shape of a vector is employed:

sd12 =

[
seg1 x1 y1 z1 seg2 x2 y2 z2 zsd label

]
(4.5)

where seg1 is a track identifier of the first segment and seg2 is a track identifier of
the second.

The elements x1, y1, z1 represent the coordinates of the last hit along the z-axis
for segment seg1, and the elements x2, y2, z2 represent the coordinates of the first
hit along the z-axis for segment seg2. zsd is the minimum value of the z-coordinate
observed for any hit within the seed.

The label element is not mandatory and is only included in the data sets intended
for neural network training and is ignored in the seed refinement phase. It is a
Boolean variable that can take a value of 1 or 0, indicating whether the constituent
segments share the same MC simulated track or not.

Preliminary selection

This simple but powerful description of the seed vector described above allows the
execution of the subsequent seed preselection tasks:

1. Select unique seeds: only seeds composed of two different track segments
are considered. Furthermore, the ordering of the segments is irrelevant: the
seed [AB] is equivalent to [BA], so only one representative is retained. To-
gether, these two conditions reduce the number of seeds from N2

tr to Nsd =
N2

tr−Ntr

2
.

2. SLG cut: Segment Longitudinal Gap, or SLG, refers to the distance along the
z-axis between the end hit of the preceding segment and the start hit of the
following segment. It can be easily calculated using the formula SLG = z2−z1.
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In most cases of track segmentation, a positive distance is anticipated. How-
ever, it is not uncommon to encounter scenarios in the data set in which two
segment tracks from the same particle overlap along the z-axis, leading to neg-
ative SLG values. This is caused by flaws in the reconstruction process when
wrong hits are used for the given track. Due to the complete morphological
differences between these cases, the desegmentation process has been divided
into two separate phases: initially running the desegmentation process using a
neural network trained specifically for these types of tracks, followed by util-
ising the output for a subsequent round of the desegmentation process where
SLG is greater than or equal to zero with the relevant neural network model.
For Phase 1, the SLG can take any value within the range zsd ≤ SLG < 0,
while for the second phase, it can take values 0 ≤ SLG ≤ 7000 microns.
The numerical value represents the maximum computationally possible limit
achieved within this research for the MC simulated domains. The effect of
this cut on the seed reduction cannot be estimated analytically and depends
strongly on the data set in question.

3. STG cut: Segment Transverse Gap or STG is the maximum distance along
the xy plane between the end of the preceding segment and the next start of
the segment, calculated as r =

√
(x1 − x2)2 + (y1 − y2)2. Its value is dynamic

and depends on the desegmentation phase: for SLG ≥ 0, it is set according
to the formula: STGmax = STGmin+(SLG × 0.96). This is done to account
for possible deviations of the particle path with increasing z. For the case of
the overlapping track where SLG < 0, this cut simply becomes STGmax =
STGmin. The assumption here is that the tracks that overlap should be close
enough together. The value of STGmin has been set at 160 microns as it was
found to be the most optimal value to achieve the best SNR balance.

Figure 4.13: A schematic representation of the SLG and STG cuts used for the seed preselection.
In this example, the track segments are well separated and do not overlap along the z-axis.

Fiducial cuts

Although the initial step greatly assists in preselecting and refining possible seeds
for neural network fitting, the background-to-signal ratio remains too high to de-
pend solely on neural networks. To address this, a more sophisticated approach is
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adopted, which involves examining more intricate details about the seed. The basic
vector representation of the seed, as specified in the expression 4.8, is inadequate
for this task. Therefore, a more complex seed object is introduced, which encom-
passes a comprehensive representation of the seed, such as its hit coordinates and
calculated attributes. This representation allows for the performance of more com-
plex calculations of seed parameters such as the Distance of the Closest Approach,
abbreviated as DOCA. Originally used for vertexing processes, it is equally useful
for track merging and consists of the following steps:

1. Fit straight lines for each of the track segments in the seed.

2. Find the parameters of the shortest possible vector that connects two lines
from Step 1.

3. The length of the vector in Step 2 is DOCA.

In a perfect scenario, for an authentic two-track seed, the DOCA should ideally be
zero because track segments from the same particle are expected to originate from
a common spatial point. However, in reality, there is a certain level of dispersion
resulting from the calculation of DOCA using the line equation from Step 1, which
assumes a linear path of particles. As discussed in Section 2.5.4, the emulsion
medium, along with imperfections in scanning and reconstruction, can significantly
alter the trajectory of the reconstructed particles, particularly for particles with
low momentum. Nevertheless, DOCA10 is one of the most important parameters
that help reduce the number of fake seeds, and for this desegmentation process, the
chosen value leading to the optimal SNR is 100 microns.

Figure 4.14: Schematic representation of how DOCA is calculated. The coloured dots represent
the track hits, the coloured solid lines visualise the track trajectory, and the dotted lines represent
the extrapolated lines. In this example, a vertex seed is present rather than a track segment seed;
however, the DOCA definition is the same for both types.

10 For track segment merging, only DOCA is used. Other parameters, such as the relative angle,
have been attempted, but have eventually been discarded as ineffective.
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4.4.4 Neural network training
A set of trained neural networks is used to further refine the seeds produced in
the previous step. In this stage, a GNN neural network with Gaussian mixture
model[185] convolutional operators has been employed throughout all stages, as
it has shown better effectiveness compared to CNN and other GNN models. Its
optimised setup includes four convolutional layers, each comprising 150 neurons.

The training set used was created by processing data from the ML domain using
the data preparation and seed refinement steps described above. Each data point
used for training contains a Boolean data label indicating whether both seed tracks
belong to the same matched MC simulated particle or not. Two additional processing
steps are needed for the training set to make it suitable for the GNN model training:
resampling and creating an adequate graph representation.

The goal of resampling is to achieve a balanced distribution of fake and genuine
seeds across training batches to facilitate stable training of the neural network.
Failure to do so could result in scenarios where the neural network, having been
exposed to a large number of uniformly labelled classes, may become optimised for
classifying one label effectively while performing suboptimally for another. Despite
efforts to refine the distribution of seeds, there remains a significant imbalance with
fakes that heavily outnumber authentic seeds, with only approximately 1% genuine
seeds observed in the simulation. The resampling process involves identifying the
class with the smallest representation and adjusting the sampling of other classes
accordingly to ensure a more even distribution.

One drawback of the resampling technique is that when most of the class data
points encompass numerous implicit subcategories, downsampling them may cause
the neural network to concentrate on a single subcategory during training. Conse-
quently, the network may struggle with the other subcategories once it encounters
the imbalanced dataset. An illustrative example can be provided using the cats
and dogs image dataset, in which there are approximately 100 dog images for each
cat picture. When downsampling dog images, the neural network may learn to dif-
ferentiate between cats and the most prevalent dog breed included in the sample.
The presence of uncommon dog breeds in the imbalanced dataset could potentially
confuse the neural network, resulting in misclassification errors.

In the context of the research carried out here, the implicit subcategories of fake
seeds are mainly driven by the physics of the event, such as the type of interactions,
particle flavours involved, and their kinematics. To address this issue, a multi-tier
classification method has been implemented where needed. This method entails
analysing the dataset using two neural networks in a specific order, with the second
neural network being trained on the dataset that has been pre-processed by the first
neural network.

Another important step in seed preparation is its data representation, which the
neural network can interpret and learn from. In the context of track desegmentation,
a graph object has been selected with the following properties:

• Each node on the graph is represented by the hits that make up the track in
the seed, with attributes that encode the spatial and angular coordinates.
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• Every single node is interconnected with other nodes through non-directional
edges.

• Each edge encodes several geometric properties:

– longitudinal separation: dz = z2 − z1,

– transverse separation in the xy plane: dr =
√

(x2 − x1)2 + (y2 − y1)2,

– 3D distance between the two nodes:
dl =

√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2.

• A Boolean flag is also included to indicate whether the edge connects hits
within the same or different tracks.

This compact but powerful representation provides much more information on the
seed than a typical 3-D pixel image used in CNNs, but, contrary to the latter,
occupies significantly less memory as only relevant nodes and their connections are
encoded.

(a) Node attributes

Node ID Track ID x [µm] y [µm] z [µm] tx ty

A1 A 1 3 10,520 0.00985 -0.01042

A2 A 0 0 11,835 -0.00502 -0.00843

B1 B 2,613 2,143 0 -0.00504 -0.00197

B2 B 2,464 1,974 52,600 -0.00820 -0.00526

(b) Edge attributes

Edge ID Node 1 Node 2 dz [µm] dr [µm] dl [µm] Same track

E1 A1 A2 1,315 3.2 1,315.0 True

E2 A1 B1 -10,520 3,376.7 11,048.6 False

E3 A2 B2 40,765 3,157.2 40,887.1 False

Figure 4.15: An example of the graph representation of a seed fragment: (a) node attributes
with spatial and angular information, (b) edge attributes with relative distance parameters and a
Boolean flag indicating whether the hits belong to the same track. All distance values are expressed
in microns, but before training, they are normalised to the range [0,1] for input to the GNN.

The steps above have been performed for both Phase 1 and Phase 2, which will be
described in more detail in the following.

Phase 1

Phase 1 deals with tracks that consist of two or more hits sharing the same plate
and hence the same z-coordinate. One of the most common causes of this particu-
lar type of segmentation is the reconstruction errors occurring during the tracking
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procedure of a muon that during propagation induces electron tracks either through
bremsstrahlung or delta ray11 processes. If the first hit of the emerging electron
track is sufficiently close to the muon propagation path, the Kalman filter may
accidentally use it instead for further muon tracking.

Typically, the initial trajectory of the electron tracks is collinear with the muon
path, which can be sufficient to divert the tracking procedure from the main muon
propagation path to the path of the emerging electron. The latter loses energy
rapidly, leading to the discontinuation of the tracking process. The untracked part
of the muon trajectory is later reconstructed as a distinct track, leading to the
fragmentation of the muon’s path of propagation. The plate overlap is caused by
the "electron" part of the first segment.

Figure 4.16: An illustration showing genuine (Left) and fake (Right) seed tracks utilised in Phase
1b training. It is important to highlight that the scales of the horizontal and vertical axes are not
the same.

By identifying the simulated mother track ID of the majority of the hits belonging
to the reconstructed track, it is possible to establish whether these track segments
should be merged and use the ID as a class label. Since Phase 1 has used a two-
stage ANN analysis process, two training sets have been generated and used for the
training of the neural networks:

• Set 1a: A sample of the ≈ 36.5k train and an additional ≈ 3.6k validation
seeds that have been used for the first stage GNN training.

• Set 1b: A sample of the ≈ 33k train and an additional ≈ 3.3k validation seeds
that have been pre-filtered by the first stage GNN that has been trained in
Set 1a.

Two GNN models have been trained with a starting learning rate of 10−4 with the
validation loss and accuracy profile plotted in Figure 4.17 below.

The neural networks underwent training using the ANNDEA autopilot functional-
ity, which continues to train them until it detects a plateau determined by the chang-
ing slope of the validation loss and accuracy. Subsequently, the best-performing state
of the neural networks is saved and can be applied in the Phase 1 desegmentation
process.

11 In the framework of SND@LHC, delta rays refer to the electrons that have been displaced by
the muons traversing the atoms within the emulsion detector material. Unlike bremsstrahlung,
which generates both electrons and positrons, delta rays exclusively yield electrons.
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Figure 4.17: A plot of the normalised validation accuracy and CEL loss of the 1a (Top) and 1b
(Bottom) GNN models training. Occasional small spikes in loss with a corresponding drop in
accuracy are possible indications of instability of the local optimum neural network states with
respect to the incremental weight updates.

Phase 2

Phase 2 concerns tracks with one or no constituent hits that share the same plate
and coordinate z. The most common reasons for this type of segmentation have been
described in Section 4.1. The neural network training routine is almost identical to
Phase 1, with two key differences:

• Higher data rates: Given that the track segments can be distanced up to
7000 microns apart, there must be allowance for the dispersion of the radial
distance between the final hit of the preceding segment and the initial hit of
the following tracks. As a result, the STG cut becomes less effective in ECC
units with a higher density of tracks.

• No staging: Only one neural network was deemed necessary, eliminating the
need to pre-process the seeds by another neural network.

A training set with 100k size and a validation set with 10k seeds from the ML
domain that has previously undergone Phase 1 desegmentation has been generated.
Two GNN models have been trained with a starting learning rate of 10−4 with the
validation loss and the accuracy profile plotted in Figure 4.18 below:

Figure 4.18: A plot of the normalised validation accuracy and CEL loss of the Phase 2 GNN models
training.
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Figure 4.19: A visualisation example of the genuine (Left) and fake (Right) seed tracks used for
Phase 2 training. Note that the scale is not consistent and has been manipulated for demonstration
purposes.

In contrast to Phase 1 machine learning training, the Phase 2 model has reached a
lower loss and higher accuracy, nearing almost 97% after 60 epochs. This improve-
ment could be attributed to either the larger training sample size or the simpler
conceptual nature of the Phase 2 seed morphology, which makes it easier to classify
it using the neural network.

4.4.5 Final output
Once the neural networks have been trained, they can be used as additional filter
steps that significantly improve the concentration of genuine seeds. In addition to
selection, the GNN models also provide another useful output: a classification score
from 0.5 to 1.0 that can be loosely interpreted as the quality of the seed fit. The
task of the post-neural network step is to leverage this information to provide the
most accurate reconstruction of the final events. It consists of two distinct steps:
track building and track smoothing which are described in more detail below.

Track building:

The task of track building is to link all seeds that have a common track segment
to a single track. For example, if there are 3 seeds: AB, BC and CD where each
letter denotes a particular track segment, they can be merged into a single track
that consists of A, B, C and D track segments. A hypothetical seed EF cannot be
incorporated as it does not share any common track segments with any seed of the
group mentioned above. However, if instead of EF a seed AF is presented, it can
be used to complete the final track, provided there is no overlap between F and the
tracks B,C, and D along the z-axis. If there is, this conflict is resolved by discarding
the seed that attained the lowest prediction value in favour of the seed with a better
fit.

Track smoothing:

Each track is expected to follow a unique path, which means that the hits within
a single track should not share any plates and should have unique values of z-
coordinate. However, after the seed merging procedure, particularly for Phase 1
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Figure 4.20: A visualised example of the seed grouping (Top), track building (Middle) and track
smoothing (Bottom) process.

desegmentation, the final output can yield unphysical solutions where two or more
hits can be located on the same plate. The purpose of the track smoothing is to
solve this problem by identifying these problematic parts of the merged track and
deduplicating by keeping the hits that provide the best track fit. This is done by
following the steps described below.

1. Fit a second-degree polynomial P (z) to the overall track. A parabola over a
straight line has been chosen to better model the track’s nonlinearity, which
resulted in its fragmentation in the first place.

2. For each hit h calculate the absolute distance to the polynomial fitted at the
particular coordinate z using the formula: rh(z) =

√
∆x2h(z) + ∆y2h(z), where

∆xh(z) and ∆yh(z) are the components x and y of the displacement vector
that connects the hit h and a corresponding point at P (z).

3. If there are two or more hits within a single plate within a track, keep only
the hit with the smallest value of rh(z) and discard the other.

Once the tracks have been built and smoothed, they are used to build a map that
transforms the final data representation so that the fragmented tracks appear as a
whole.

4.4.6 Performance on the Monte Carlo simulation
To assess the merging performance of the track segment, the Control domain in the
simulated data has been subjected to both Phase 1 and Phase 2 of the desegmenta-
tion procedure.
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Results

Two segmentation stages were conducted using ANNDEA, taking approximately
12 hours to complete. The desegmentation process was monitored using the AN-
NDEA logging feature, which, at each seed analysis step, computes and registers
the distribution of seed labels. These data have presented in Figure 4.21 below:

Figure 4.21: A desegmentation seed data flow performance for both Phase 1 in the left part and
Phase 2 in the right part of the figure. The genuine and fake seed cutflow is plotted in the top
part, while the corresponding precision and recall dynamics are reflected in the bottom graphs.

After obtaining the output of the data reconstruction, the relevant statistical and
quality track metrics have been calculated and presented in Table 4.7 below. In or-
der to quantify the significance of the impact, uncertainties were calculated for each
metric using methods tailored to the type of quantity, particle source and group. The
number of reconstructed tracks was modelled with a Poisson distribution, and the
standard error was therefore estimated as the square root of the count. The segmen-
tation was modelled using both binomial and Poisson statistics. The uncertainties
of THRE and THRP were estimated using the bootstrap method, which involves
repeatedly resampling the data and evaluating the variation of the estimates.

Discussion

The analysis of the results from the simulated data has yielded numerous interesting
findings that are worth discussing in more detail.

The first observation is the lack of substantial benefit from the Phase 1 recon-
struction. Both Phase 1 and Phase 2 require similar efforts in model training and

124



CHAPTER 4. APPLICATION OF MACHINE LEARNING TO TRACKING AND VERTEXING IN
THE SND@LHC EXPERIMENT

reconstruction time; however, the first step provides a small amount of improve-
ment, raising the necessity of including it at all. This can be partially explained by
looking at the reconstruction cut flow in the left part of Figure 4.21 and noting the
following:

• While the initial number of possible seeds for both Phase 1 and 2 is more
or less comparable, by the end of the flow, the recall value for the seeds
involving overlapping tracks is about eight times lower. The biggest source of
this discrepancy is the STG cut that, in Phase 1, removes more than 80% of
genuine seeds, limiting its maximum recall to less than 20%.

• Despite using two neural networks in sequence, their final precision is still
below 30%, which is significantly lower than the one achieved by a single
GNN used in Phase 2. This is partially compensated for by the track building
and smoothing process, but at the cost of halving the recall to only ≈ 7 %.

Table 4.6: The control domain statistical data on the ANNDEA desegmentation performance.
The impact is measured in percentage or percentage point change. Beneficial changes are coloured
green, while deleterious changes are highlighted in red.

Particle source Particle group Measured metric FEDRA Phase 1 Phase 1 impact Phase 2 Phase 2 impact

Number of tracks 29,968 ± 173 29,692 ± 172 -0.9 ± 0.8% 29,376 ± 171 -2.0 ± 0.8%

EM showers Electrons Segmentation 1.351 ± 0.005 1.352 ± 0.005 0.1 ± 0.5% 1.350 ± 0.005 -0.1 ± 0.5%

and THRE (%) 42.1 ± 0.2 42.0 ± 0.2 -0.1 ± 0.3 pp 42.0 ± 0.2 -0.1 ± 0.3 pp

delta-rays THRP (%) 62.0 ± 0.2 62.2 ± 0.2 0.2 ± 0.3 pp 62.2 ± 0.2 0.2 ± 0.3 pp

Number of tracks 52,664 ± 229 51,668 ± 227 -1.9 ± 0.6% 44,894 ± 212 -14.8 ± 0.5%

External muons Muons Segmentation 1.276 ± 0.005 1.254 ± 0.005 -1.7 ± 0.5% 1.097 ± 0.005 -14.0 ± 0.5%

from IP1 THRE (%) 80.2 ± 0.1 81.6 ± 0.1 1.4 ± 0.1 pp 93.7 ± 0.1 13.5 ± 0.1 pp

THRP (%) 98.2 ± 0.0 98.3 ± 0.0 0.1 ± 0.0 pp 98.1 ± 0.0 -0.1 ± 0.0 pp

Number of tracks 25 ± 5.0 25 ± 5.0 0.0 ± 28.3% 25 ± 5.0 0.0 ± 28.3%

Muon neutrino Muons Segmentation 1.042 ± 0.208 1.042 ± 0.208 0.0 ± 28.2% 1.042 0.0 ± 28.2%

interactions THRE (%) 95.2 ± 4.0 95.2 ± 4.0 0.0 ± 5.7 pp 95.2 ± 4.0 0.0 ± 5.7 pp

THRP (%) 99.8 ± 0.1 99.8 ± 0.1 0.0 ± 0.1 pp 99.8 ± 0.1 0.0 ± 0.1 pp

Number of tracks 108 ± 10 109 ± 10 0.9 ± 13.2% 103 ± 10 -4.6 ± 12.8%

Hadrons Segmentation 1.325 ± 0.126 1.337 ± 0.127 0.9 ± 13.3% 1.265 ± 0.123 -4.5 ± 13.0%

THRE (%) 68.7 ± 3.8 68.5 ± 3.8 -0.2 ± 5.4 pp 73.8 ± 3.5 5.1 ± 5.2 pp

THRP (%) 97.1 ± 0.9 97.0 ± 1.0 -0.1 ± 1.3 pp 95.7 ±1.2 -1.4 ± 1.5 pp

Number of tracks 471 ± 22 471 ± 22 0.0 ± 6.6% 380 ± 19 -19.3 ± 5.5%

µ, e, γ Hadrons Segmentation 1.668 ± 0.077 1.668 ± 0.077 0.0 ± 6.5% 1.346 ± 0.069 -19.3 ± 5.6%

nuclear interactions THRE (%) 45.7 ± 1.8 45.7 ± 1.8 0.0 ± 2.5 pp 59.3 ± 2.1 13.6 ± 2.8 pp

THRP (%) 99.2 ± 0.4 99.2 ± 0.4 0.0 ± 0.6 pp 97.7 ± 0.6 -1.5 ± 0.7 pp

Hadron decays Number of tracks 1,434 ± 38 1,434 ± 38 0.0 ± 3.7% 1,045 ± 32 -27.1 ± 3.0%

and Hadrons Segmentation 1.796 ± 0.047 1.796 ± 0.047 0.0 ± 3.7% 1.347 ± 0.041 -25.0 ± 3.0%

inelastic scattering THRE (%) 37.9 ± 0.9 37.9 ± 0.9 0.0 ± 1.3 pp 53.9 ± 1.2 16.0 ± 1.5pp

THRP (%) 99.6 ± 0.1 99.5 ± 0.2 -0.1 ± 0.2 pp 97.7 ± 0.4 -1.9 ± 0.4 pp

Phase 2, on the contrary, has demonstrated positive impacts, especially on hadrons
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and incoming muons, by decreasing their segmentation by approximately 20-25%
and around 14%, respectively. This leads to an improvement in the efficiency of
using the constituent track hits (THRE), albeit with a slight decrease in their purity.
This phenomenon occurs because even though there are rigorous efforts to eliminate
fake seeds, a small portion still finds its way into the final output. This results
in traces consisting of segments left by various particles, ultimately leading to a
reduction in the THRP value.

Figure 4.22: A plot on the background elimination impact on the control domain data that is made
possible through desegmentation. Additionally, the exclusion of tracks with a hit on the initial
emulsion plate is done with the n = 1 cut. The term signal tracks refers to tracks originating from
muon neutrino interactions specifically within the B41 brick.

It is clear from Table 4.7 that desegmentation has a minor impact on signal events
related to muon neutrino interactions, where only a small number of hadrons emerg-
ing from the muon neutrino interaction are involved in the desegmentation process.
This is not surprising considering that the tracks left by particles in the signal
events do not suffer from the fragmentation effects and therefore have little room
for improvement.

As previously highlighted, the primary goal of the desegmentation procedure is to
assist in reducing the absolute number of background track segments left by incoming
muons that can potentially interfere with the vertex reconstruction stage. This will
be revisited in Section 4.6.5 devoted to vertexing studies. Meanwhile, the benefit
that the desegmentation process brings to the relative reduction of background was
quantified in a set of graphs presented in Figure 4.22 above.

As it can be seen in this graph, the ANNDEA segmentation procedure helps to
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Figure 4.23: An illustrative instance of the tracking data presented in a tabular format following the
ANNDEA desegmentation process. The original data is highlighted in grey, the remapped tracking
representation is shown in green, the FEDRA tracks that were not involved in the merging are
highlighted in yellow, and the hits rejected by the smoothing procedure are indicated in red rows.

remove up to ≈ 8% larger number of background tracks without any significant
impact on the signal than if the original FEDRA data were used. This in turn
results in a more favourable SNR, especially with the most optimal ratio achieved
with n = 3 at which tracks with lengths of more than 57 plates are removed.

4.4.7 Performance on Run 1 data
To evaluate the performance of the ANNDEA reconstruction on actual data, a Run 1
data set, as shown in Figure 4.9, was subjected to the desegmentation procedures of
both Phase 1 and Phase 2. Unlike the quick and seamless desegmentation process
observed in the Monte Carlo simulation, the reconstruction of the Run 1 dataset
required a considerably longer period of approximately 10 days.

Several factors have led to this slowness, with the primary issue being a higher
track density in the data, leading to a large number of seeds, particularly during
the Phase 2 stage. This exceeded the computing and memory capacity of both the
local Lxplus and HTCondor machines, requiring further code optimisation. Unfortu-
nately, to expedite the reconstruction process and reduce pressure on the computing
infrastructure, the SLG cut criteria had to be reduced from 7000 to 4000 microns.

Results

Since Run 1 data lack any Monte Carlo metadata, a reduced version of the analysis
has been performed, which consisted of plotting the track length distribution and
comparing it with the corresponding plot for the simulation in Figure 4.24.

Along with the geometrical analysis, a visual inspection of a random sample of
the merged tracks has been performed to identify any potential issues plottted on
the Figure 4.26 below.
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Figure 4.24: Distribution of original tracks from FEDRA (orange filled area) for the Run 1 data
sample (Top) and the simulation of tracks in the control domain (Bottom) with their length
quantified in the number of plates crossed. The green line shows in both cases the length distribu-
tion after the ANDNDEA merging process. The text annotations show the percentage difference
in the number of tracks for each specific length. It is important to mention that the data set used
consisted of only 58 scanned emulsion plates.

Discussion

The detailed analysis of the pre- and post-desegmentation track length distribution
indicates an overall positive shift in the track distribution towards the longer lengths,
as expected. However, contrary to what has been observed in the simulated data,
the ANNDEA performance is significantly lower in the actual data: for example,
the number of the longest tracks is only reduced by ≈ 8% compared to over ≈ 22%
achieved in simulation. Multiple reasons could explain this:

• More stringent SLG cut imposed for Phase 2 as part of the computing
intensity reduction measures. Unfortunately, it has also reduced the recall at
the seed processing stage, resulting in fewer tracks being merged. To estimate
the impact of this measure, the control set was rerun with the same SLG
settings and compared with the state of the data produced by the nominal
ANNDEA configuration in Appendix B. There is a clear ≈ 5 percentage points
drop in the desegmentation performance compared to the nominal ANNDEA
configuration for the longest tracks, but it is still not sufficient to explain the
drop of ≈ 14 percentage points in the defragmentation performance of the Run
1 data.

• Lower rates of FEDRA track segmentation, which would result in fewer

128



CHAPTER 4. APPLICATION OF MACHINE LEARNING TO TRACKING AND VERTEXING IN
THE SND@LHC EXPERIMENT

opportunities for the desegmentation process. This is very unlikely, as there
are no objective reasons to expect that FEDRA will produce more complete
tracks in the data set with much higher hit density and that has lower hit
reconstruction quality due to the artefacts of the scanning procedure. Another
strong argument against this hypothesis is the presence of a significant number
of tracks with lengths between 28 and 54 plates that are certainly caused by
external muons that have been reconstructed as multiple segments by FEDRA.

• Disparity between the simulation and Run 1 data, which results in
ANNDEA experiencing a drastically different environment when processing
the Run 1 data compared to the simulation. This disparity can be driven
by different factors, such as distortion of the reconstructed hit coordinates
and higher density, which leads to poorer FEDRA reconstruction performance
and consequently to the lower quality of the tracks, which in turn can lead
to their false rejection at the desegmentation process. The higher density
of tracks can also affect ANNDEA directly by overloading it with fake seeds
that were previously not observed during neural network training and that
can potentially disrupt ANNDEA from building a complete track segment
sequence.

The effectiveness of background removal has also decreased compared to simulation
studies, as can be seen in the corresponding Figure 4.25. This outcome is anticipated
because the cut is designed to exclude any track that begins at a first plate or tracks
that have a length exceeding 58− n, where the preferred value for n is generally up
to 3 to avoid a substantial decrease in signal yield.

Figure 4.25: The plots of the background removal effect on the Run 1 data can be achieved thanks
to desegmentation. The n = 1 cut also eliminates any tracks that leave a hit on the first emulsion
plate.

Upon visual examination of the combined tracks, it was observed that the quality
of the merged tracks generally met the anticipated criteria in terms of the location
and direction of the track segments. However, anomalies were detected that de-
viated from the expected physical behaviour of the event. Specifically, in certain
instances, the merged tracks displayed segments with orientations in space that were
incongruous to the overall track.
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Figure 4.26: A collection of visualisations for Phase 1 (Top) and Phase 2 (Bottom) tracks pro-
jected on both the xz- and yz-planes. Each collection includes three categories that assess the
quality of the combined tracks. It is important to note that these categories are subjective and do
not determine whether the merged segments are accurate or incorrect.

It is expected that there will be low occurrences of fake seeds and incorrect track
merging, since the precision of identifying fake seeds, even when employing neural
networks, has never achieved 100% accuracy, not even in Monte Carlo simulations.
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However, its impact on the generated data has been minimal, resulting in only a
slight reduction (1-2%) in the purity of the hit content of the track. Unfortunately,
it is challenging to accurately predict the real impact of these error rates in actual
data conditions solely through visual inspection, due to a lack of comprehensive
understanding of the correlation between error rates and track density. Therefore,
studies using Monte Carlo data with comparable density are necessary.

4.4.8 Conclusion
Summary

To recap, this study has investigated ways to enhance the accuracy of the current
standard method for tracking emulsion data in the SND@LHC experiment. The
primary aim was to minimise instances where the path of the moving charged particle
was reconstructed as several segments, leading to fragmented tracks. The main
motivation behind this study was to:

1. Assist in removing the background tracks associated with external muons
traversing the entire detector.

2. Reduce data load on vertex reconstruction, typically carried out after the
tracking process.

3. Improve the overall quality of the reconstructed data.

The solution that was suggested and investigated involved identifying appropriate
segment pairs using a series of geometric characteristics and combining them to
form a unified volume track. The use of neural networks played a crucial role in this
process, allowing for a more precise classification through their capacity to utilise the
granular track data more effectively compared to conventional algorithmic methods
that rely on a less detailed set of computed parameters.

The setup was evaluated using a separate sample of the generated data that was
not used to train neural networks or tune the parameters of the global desegmenta-
tion algorithm. Data processing lasted around 12 hours in total, and analysis of the
results has shown a notable decrease in muon background segmentation, estimated
to be around 14-15%. A significant enhancement of up to 25% has been observed
for hadrons, which are usually the particles most impacted by track segmentation.

The positive impact of segmentation on background elimination was investigated
by evaluating the efficiency of track removal for both the initial track data and
the desegmented version. The latter made it possible to remove up to ≈ 8% more
background tracks without significantly affecting the number of tracks emerging
from the signal event.

After conducting simulation experiments, a small sample of scanned Run 1 emul-
sion data was analysed using a similar approach, although with slightly more strin-
gent criteria for data selection. This adjustment was made because of the large
amount of data resulting from a much higher track density in the real data sam-
ple compared to the simulation. Despite these modifications, the processing time
was approximately 20 times longer than in the simulated data. The outcome was
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examined by analysing the disparity in track length distribution between pre/post-
processed data and then comparing it with the simulation.

Similarly to the simulation, an overall trend has been observed in the distribution
of track lengths shifting toward longer segments, although not as significant: there
has only been an increase of 8% in the number of reconstructed tracks that traverse
the entire ECC cell. The increase achieved is less than the anticipated increase of ≈
22% seen in the simulation. This difference, partially attributable to the more strin-
gent ad hoc data selection criteria, has led to a reduction in the removal efficiency
of long tracks compared to the simulation to less than 4%.

Visual inspection has revealed a small set of rare, but noticeable anomalies where
seemingly a set of unrelated track segments has been merged.

Interpretation

Overall, this study has demonstrated the capability of the neural network-assisted
algorithm in enhancing the standard tracking data and has shown its value in re-
moving background in simulated and actual scanned emulsion data.

Although the desegmentation process has shown promise, there are certain limi-
tations in the current method that must be resolved before progressing further in
this area. These include the insufficient simulation samples used, the suboptimal
performance of ANNDEA when handling high data rates, and the potential need to
enhance the algorithm by incorporating additional seed processing steps. This could
help address possible accuracy challenges that might occur when working with larger
data sets such as those in Run 1, as well as the even denser sets collected during
Runs 2 and 3.

It is worth mentioning that current studies on the impact of desegmentation have
focused exclusively on the tracking aspect, without considering its effects on the
vertexing process and final results. The latter will be explored further in Section
4.6, where a more detailed assessment of how segmentation influences the vertexing
procedure will be conducted.

Further research

The desegmentation module of ANNDEA is now in a stage where it can be applied in
practical emulsion analysis. However, there is potential for additional improvements
for future applications in the SND@LHC experiment.

A major constraint affecting this and other studies conducted on SND@LHC is
the inadequate simulation of the emulsion data, which fails to closely replicate the
conditions in the real ECC unit, leading to a performance gap. This is unsurprising
since the algorithms that incorporate deep learning are expected to be particularly
sensitive to the changes in their input data environment, which is the price to pay
for their ability to model very complex features of the data.

Ideally, it would have been preferable to employ a realistic simulation from the
outset; however, in practice, the process of generating Monte Carlo physics data is
anything but straightforward. It demands a significant amount of time, expertise,
and computational capabilities that are not easily accessible. Consequently, a less
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complex but more affordable simulated dataset was used to support the development
of more sophisticated simulations.

In addition to establishing a strong foundation for the identification of the problem,
the segmentation analysis has also influenced the specifications for future Monte
Carlo-generated datasets that may apply to various ML-related studies, as outlined
below in order of importance:

1. Higher density: a minimum average hit density achieved in the simulation
should at least match that of Run 1 data, which corresponds to the Figure 4.9
and has ≈ 106 hits cm−3.

2. Modelling of the ECC geometrical distortion: the exact modelling of the
data alignment imperfections is certainly unfeasible due to the complex nature
of the distortion effects of the ECC unit geometry. Alternatively, a smearing
technique may be employed on the output Monte Carlo data, which slightly
adjusts the hit coordinate for each hit based on a Gaussian distribution, thus
introducing uncertainty in its value.

3. Increased variety of physics events: this is an optional yet very valuable
aspect of the simulation, encompassing additional signal and background oc-
currences, such as interactions involving electron and tau neutrinos, cosmic
muons, and the radiation resulting from muon interactions with the tunnel
walls. For studies involving dark matter detection, a simulation of the poten-
tial DM candidates can also be included. This does not have to be done in
one go: since the particles within the ECC rarely interact, each group can be
simulated separately and added to the existing simulated data set in phases.

The second limitation of the desegmentation process is primarily technical. The
ANNDEA desegmentation algorithm faces computational challenges with the seed
processing flow rates seen in the Run 1 data, consequently imposing data flow con-
straints that hinder its ability to merge tracks effectively. Various strategies can be
employed to address this issue, including optimising the code and adjusting the seed
preselection parameters. The first strategy is flexible and can be implemented at
any point as long as it does not alter the algorithm’s results. On the other hand,
the second approach is best performed with the Monte Carlo simulation method
mentioned earlier, allowing for fine-tuning and testing of the current geometric con-
straints using a more realistic and densely populated simulated dataset.

Another potential enhancement is motivated by the identification of anomalies in
the track merging output while visually analysing the data. One of the fundamental
limitations of the segmentation procedure developed in this study is the narrow
scope of neural network application. The neural network is trained to differentiate
between a pair of tracks coming from the same particle and a pair of randomly
associated tracks, and it is sufficient, provided that the number of fakes ending up
in the data is kept under control.

Nevertheless, as the density of the track increases, relying solely on the perfor-
mance of the seed classifier may prove inadequate, potentially allowing a significant
number of authentic-looking false seeds to proceed to the track construction phase.
This may result in paradoxical scenarios where each seed seems appropriate on its
own, but the combined track as a whole appears unphysical. This offers the oppor-

133



CHAPTER 4. APPLICATION OF MACHINE LEARNING TO TRACKING AND VERTEXING IN
THE SND@LHC EXPERIMENT

tunity to introduce an extra stage in the merging procedure. Before incorporating
the seed into the track, a separately trained neural network could evaluate the over-
all merged track and discard the new seed candidate if it does not align well with
the track.

However, this approach is challenging to put into practice, with the most demand-
ing aspect being the generation of appropriate training data sets that include tracks
in various merging phases. Moreover, the inclusion of an additional neural network
will inevitably result in a decrease in the speed of the desegmentation process and,
as such, should be avoided where possible. This is why rerunning the current de-
segmentation configuration on realistic simulation data should be done before, to
avoid the risk of becoming unnecessarily invested in the additional time-consuming
algorithm development.

4.5 Track Classification

4.5.1 Purpose
In this section, the problem concerning the measurement of the track momentum
and the classification of particle types in the emulsion data, as previously discussed
in Section 4.1, will be attempted. The proposed resolution involves inputting the
reconstructed tracks into a neural network, which has been trained to identify the
absolute momentum value and its type using a prepared Monte Carlo simulated
data set. The process consists of the following stages:

1. Prepare the data that has been previously tracked.

2. Remove incoming particles and sufficiently long tracks that are likely to be
left by passing muons.

3. Pass the remaining tracks through two different neural networks for particle
identification and absolute momentum prediction.

4. Register the prediction value against each suitable track in the final data set.

Viewing this from a more physics-oriented angle, the primary idea of this method
is to leverage the fact that distinct types of particles at different energies exhibit
unique morphological and trajectory patterns, predominantly influenced by electro-
magnetic interactions of the charged particle with the nuclei of the ECC constituent
atoms. For instance, muons usually possess higher energies and minimal relative
energy losses, resulting in long, almost straight tracks. Conversely, electrons, being
lighter, are more susceptible to synchrotron radiation losses and Coulomb scattering,
ultimately producing short and highly nonlinear tracks.

The volume of data that can be potentially extracted and analysed is complex,
involving a minimum of five distinct variables for each hit that constitutes the track.
This makes it challenging to interpret using conventional analytical approaches, yet
it is straightforward for neural network modelling, which is inherently apt for such
problems.

The investigation conducted in this study will focus on the tracks originally re-
constructed by FEDRA and that have undergone the ANNDEA desegmentation
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procedure described in Section 4.4. Nevertheless, this method can be applied to the
output of any tracking algorithm, including the ANNDEA tracking module, which
will be explored later in Section 4.7.

4.5.2 Data preparation
The main goal of preparing data is to generate a compact data set that only includes
relevant information, thus minimising data storage needs during data analysis. This
involves taking the initial input file and stripping any data apart from the following
variables: x, y, z, tx, ty, Brick ID and the Track ID, which contains a unique
identifier for the reconstructed track within a data set. Only hits used for the
reconstruction that are part of sufficiently long tracks are included.

In case data are needed for training the neural network, extra variables MC Track
ID, PDG ID, and P are brought in, which hold an identifier for the corresponding
MC-generated track, its particle flavour and the value of the absolute 3-momentum
in units of GeV. Since the correspondence between the reconstructed FEDRA track
and the MC simulated track is not always exact, the usual track-matching procedure
described in Section 4.3.4 is performed.

An additional step is necessary for the P variable as it is set at the individual hit
level, reflecting the energy loss experienced by the particle as it travels through the
emulsion. However, for regression analysis, a single variable for the whole track is
required. In this research, the highest observed track momentum has been chosen,
which corresponds to its initial value. The choice was driven by potential use cases
that involve reconstructing invariant masses of vertices, which would require this
particular definition of P . Nevertheless, future studies could opt for other aggrega-
tion methods like mean or min.

4.5.3 Data selection
Once the data are ready, additional data selection steps are carried out to minimise
background, ensuring that it does not interfere with the classification procedure:

1. Eliminating all tracks that have registered a hit on the initial emulsion plate of
the specified ECC unit. The purpose of this action is to eliminate all incoming
muons and any other external charged particles that are not necessary for the
analysis. This procedure also naturally eliminates all tracks that cross the
entire length of the ECC unit.

2. Erasing all tracks that extend from L − 1 to L − 2, where L represents the
total number of emulsion layers in a particular ECC cell. The primary aim
of this step is to discard any external muons that did not record any hits
on the initial or final emulsion layers, as a result of the limited basetrack
reconstruction efficiency of these plates.

For an ECC brick made of 60 emulsion layers, this data selection measure would
eliminate any tracks that span12 58 to 60 plates and any tracks with an initial hit
in the first layer.

12 This definition also includes plates with gaps in track or holes.
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4.5.4 Neural network training
This specific research focuses on both classification and regression tasks. Despite
the similarities in the data set and the neural networks employed, the substantial
differences between these procedures justify dividing this section into two respective
parts.

Particle type classification

At this point, a GNN neural network featuring Gaussian mixture model convo-
lutional operators is used, having previously shown effective results in the track
merging studies as discussed in Section 4.4.4. The optimised configuration of the
network consists of four convolutional layers, with each layer containing 200 neurons.

The training set used was created by processing data from the ML domain using
the data preparation and selection steps described above. Each data point used for
training contains an integer label that can assume three values: 0,1, and 2, where
each respectively represents the following particle type:

• Muons: This includes all the particles with the absolute value of PDG ID
equal to 13.

• Electrons: This includes all particles with the absolute value of PDG ID
equal to 11.

• Other: This category includes particles that possess any other PDG ID val-
ues. Given that tau leptons are not part of the simulation used in this study,
this group essentially contains only hadrons.

After the data have been categorised, a resampling process is carried out in which
all classes are reduced to match the number of data points in the class with the least
representation.

Once the resampling is completed, a form of data representation that the neural
network is capable of understanding and learning is chosen. For the purposes of this
study, a graph object has been selected, possessing the following characteristics:

• Each node on the graph is represented by the hits that make up the track in
the seed, with attributes encoding the spatial and angular coordinates.

• Every single node is interconnected with other nodes through non-directional
edges.

• Each edge encodes numerous geometric properties, such as the relative distance
between nodes.

This representation mirrors that used in Section 4.4.4. However, given that a single
track is confined to just one data point, a seed boolean separator becomes unneces-
sary.

A GNN model has been trained with a starting learning rate of 10−4 with the
validation loss and the accuracy profile plotted in Figure 4.28 below.

The neural networks were trained using the ANNDEA autopilot functionality,
which continues to train them until it detects a plateau determined by the changing
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(a) Node attributes

Node ID x [µm] y [µm] z [µm] tx ty

N1 8,389 4,927 1,135 -0.00200 -0.00347

N2 8,387 4,926 2,450 0.00749 -0.00267

N3 8,388 4,915 3,765 0.00311 -0.01095

(b) Edge attributes

Edge ID Node 1 Node 2 dz [µm] dr [µm] dl [µm]

E1 N1 N2 1,315 2.2 1315.0

E2 N1 N3 2,630 12.0 2630.0

E3 N2 N3 1,315 11.0 1315.0

Figure 4.27: Example of graph representation for a track fragment: (a) node attributes encoding
spatial and angular information, (b) edge attributes defined by relative distance parameters. The
illustrated track is particularly straight, rendering transverse distance parameters practically neg-
ligible. All distance values are expressed in microns, but before training, they are normalised to
the range [0,1].

Figure 4.28: A plot of the normalised validation accuracy and CEL loss of GNN model training.

slope of the validation loss and accuracy. Subsequently, the best-performing state
of the neural networks is saved and can be applied to the classification task.

Particle momentum measurement

In this specific task, the identical GNN neural network equipped with Gaussian
mixture model convolutional operators has been deployed as before, with a slight
alteration to its output layer: the number of output channels has been reduced to
one, and the softmax13 activation function has been deactivated, allowing the neural
network to produce any real number as output.

13 The Softmax activation function is frequently employed in classifier neural networks to stan-
dardise their output by transforming a real number vector into a probability distribution of po-
tential outcomes.
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Figure 4.29: An illustration showing a visualised example of the track left by a muon (Top), elec-
tron (Middle) and hadron (Bottom). The scale has intentionally been altered for demonstration
purposes and is not consistent.

The training set was created using data from the ML domain, applying the same
preparation and selection methods that were outlined earlier. The data label values
yi are derived through the subsequent steps:

1. Extract the Pi value that has been computed in the data preparation process
for every track i.

2. Limit any Pi values that surpass 100 GeV to this amount.

3. Deduct 50 GeV from the value and divide the result by 50 GeV.

For example, if track i has a maximum momentum of 56 GeV, it will be assigned a
label value of yi = 56−50

50
= 0.12. Conversely, tracks with momenta of 150 GeV and

1 TeV will both receive an identical value of 1.0.

Step 2 is justified by studies of residual versus momentum as shown in Figure
4.1, where the average residual value for the three groups of particles decreases
with momentum and plateaus around 100 GeV. This implies that, from the neural
network perspective, the tracks with momenta of 150 GeV and 1 TeV will appear
almost identical, and it is not sensible to penalise the model for not being able
to distinguish these two scenarios. Instead, it is more rational to concentrate on
the 0-100 GeV range. Although this approach narrows the range of momentum
measurement, from an analytical perspective, it is not an uncommon situation in
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experimental physics. Even the momentum resolution of the dedicated ATLAS
tracking detector deteriorates[186] with increasing particle momentum due to the
larger uncertainty of track curvature measurement. Therefore, expecting superior
performance from the ECC detector, which was initially not designed to perform
this kind of task, would be unreasonable.

The final stage is driven by strictly technical factors: within the realm of data
science, this is a conventional method often referred to as feature scaling. This is
a data preprocessing strategy that is used to normalise the values of features in a
dataset, aligning them to a uniform scale. This procedure enhances data utilisation
and model precision by reducing the impact of differing scales on machine-learning
models.

After the data are labelled, they are preserved in their original form without
any resampling because the tag values are on a continuous scale instead of being
expressed as discrete categories. The data representation is the same as the one
used for classification tasks, with the only distinction being the type of label value.

A GNN model has been trained with a starting learning rate of 10−4 with the
RMSE and MSE loss plotted in Figure 4.30 below:

Figure 4.30: A plot of the RMSE and MSE loss of GNN model training.

The neural networks were trained using the ANNDEA autopilot functionality, and
the best-performing state of the neural networks was saved and applied to the mo-
mentum prediction task.

4.5.5 Final output
After the training of the neural networks is complete, they can be directly applied to
examine the tracking data and generate predictions, the form of which is determined
by the type of model. The classifier provides a vector of values for pi =

[
µ, e, h

]
,

where µ, e, and h represent the probability values of the track being muon, electron,
and hadron, respectively, and the sum of these values is normalised to one. The
regression model outputs a real value ri ∈ [−1, 1], which is then converted back to
GeV using formula pi = (ri ∗ 50 GeV) + 50 GeV.
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Figure 4.31: An illustration showing a visualised example of the track left by a muon (Top), elec-
tron (Middle) and hadron (Bottom). The scale has intentionally been altered for demonstration
purposes and is not consistent.

4.5.6 Performance on the Monte Carlo simulation
Classification results

The classification process was carried out using ANNDEA, taking approximately
1-2 hours to complete. The data were collected and the predictions were compared
to the matched simulated tracks and their actual truth labels and presented below.

Table 4.7: The classification confusion matrices represent three different views of the same data.

Truth

Prediction Muons Electrons Hadrons

10.4% 3.2% 0.1%

Muons 2,699 834 30

[96%] [62%] [98%]

1.9% 78% 0.2%

Electrons 481 20,284 43

[59%] [62%] [99%]

0.1% 2.2% 4.1%

Hadrons 26 562 1,061

[99%] [73%] [99%]

Prediction

Truth Muons Electrons Hadrons

84.2% 15.0% 0.8%

Muons 2,699 481 26

[96%] [59%] [99%]

3.9% 93.6% 2.6%

Electrons 834 20,284 562

[62%] [62%] [73%]

2.7% 3.8% 93.6%

Hadrons 30 43 1,061

[98%] [99%] [99%]

Truth

Prediction Muons Electrons Hadrons

75.8% 23.4% 0.8%

Muons 2,699 834 30

[96%] [62%] [98%]

2.3% 97.5% 0.2%

Electrons 481 20,284 43

[59%] [62%] [99%]

1.6% 34.1% 64.3%

Hadrons 26 562 1,061

[99%] [73%] [99%]
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All of the tables above depict the same data, but each is compiled in a unique
manner to address different queries. The left table is a standard confusion matrix
that includes the percentage distribution of the tracks across the table, their absolute
count, and the mean value of THRP.

The middle table incorporates the track percentage distribution within each row,
their absolute count, and the mean value of THRP. It seeks to interpret the results
from the simulation perspective: Given the actual distribution of the particle types
in the data, what proportion of them were accurately classified?.

The table on the right is the transposed form of the middle one, aiming to answer
the question: Given the distribution of the predicted track labels, what proportion of
them were correctly classified?.

Momentum measurement results

The regression analysis took approximately 1 to 2 hours. Data were collected,
juxtaposing the predicted values pi with the matched simulated tracks and their
true values Pi, which are visualised below:

Figure 4.32: A set of three momentum measurement plots split by the matched truth particle type.
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The various plot groups aim to assess distinct facets of momentum prediction profi-
ciency: The upper group showcases a heatmap of track density, with the predicted
momentum of particles plotted against the vertical axis and the actual momentum
on the horizontal axis. This visual representation serves to highlight how the neural
network prediction correlates with the simulated particle momentum distribution
within the dataset.

The central visualisation set illustrates the distribution of the variances between
the forecasted momentum values pi and their true simulated counterparts Pi. Each
distribution is modelled using a Gaussian function, concentrating on fitting the
central peak. The σ values represent the absolute momentum resolution, while the
µ values help evaluate whether the predictor tends to underestimate or overestimate
the true momentum value.

The plots on the bottom illustrate the relative resolution σ(p)
P

, where σ(p) denotes
the local momentum resolution, obtained by fitting a Gaussian for each true mo-
mentum bin P . The purpose of this plot is to show how the measured resolution
changes with true momentum P .

Discussion

By looking at and analysing each of the three versions of the confusion matrices,
the following observations can be made:

• The overwhelming majority, surpassing 80% of the tracks in the dataset, are
attributed to electrons, and the total number of tracks constitutes merely
around 35% of the quantity prior to data selection. This suggests a high effi-
ciency in removing background noise through the application of data selection
cuts. Although this is consistent with the results from 4.4, it still serves as a
reliable verification.

• The total classification precision in the control set has reached 92.4%, sur-
passing the score reached during the model training phase, a scenario not
commonly seen in machine learning, as test data sets usually exhibit reduced
performance. The interpretation of this as a positive or negative aspect hinges
on the precise cause: on one hand, it could suggest that the training set is
sufficiently diverse in terms of track types, allowing the model to effectively
generalise predictions across the entire simulated ECC detector. On the other
hand, it may indicate possible limitations of the existing simulation set, which
might have a restricted variety of events, thereby making it easier to achieve
high-precision scores within the identical simulation dataset but not perform
well on unrelated data sets.

• ANNDEA correctly identified over 80% of the actual muons and over 90%
of the real electrons and hadrons. The most significant errors occur when
ANNDEA incorrectly labels true muons as electrons. These errors predomi-
nantly affect muons that undergo additional interactions, such as producing
delta-rays or small electromagnetic showers. In such cases, the reconstruction
algorithm can mistakenly attach electron fragments to the muon track, making
it appear electron-like to the classifier.
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• Looking at it from a prediction perspective, the following scenario unfolds:
approximately 98% of all electrons that ANNDEA identifies align with their
MC simulation truth label. For all muons that GNN identifies, there is a
roughly 23% probability that the real particle is an electron. The case is
slightly worse for particles identified as hadrons, where only about 64% of
them are genuinely hadrons, according to the simulated truth.

A common theme can be spotted in these observations: all misclassified hadrons
and muons exhibit the greatest overlap with electrons and consistently demonstrate
low track-hit purity according to the THRP criteria. This brings to light a pivotal
concern of this study: the susceptibility of neural networks to the quality of the
underlying data. For both training and validation phases, reconstructed FEDRA
tracks, enhanced by the ANNDEA desegmentation process, are used instead of pure
MC tracks. This approach is justified because these are the tracks that ANNDEA
will encounter in real-world data, although these tracks are not perfect: some com-
prise fewer hits than the actual particle left behind, while others amalgamate hits
from tracks left by different particles. Consequently, the truth particle label as-
signed during training may only represent the majority of hits in the track, but
not necessarily its entirety. For instance, there could be scenarios where the recon-
structed tracks incorporate multiple segments from different particle types, thereby
’confusing’ the classifier model and potentially resulting in incorrect predictions.

The outcomes derived from the regression analysis reveal a more controversial sce-
nario: while the reconstructed momentum distribution approximately aligns with
the true momentum spectrum, its overall performance remains suboptimal, likely
due to the presence of outliers that distort the otherwise symmetric Gaussian shape.
The finest resolution is achieved for high-energy muons where P > 60 GeV, with
relative resolution values ranging from 36% down to 28%. This might be considered
poor, even when compared to the relatively modest accuracy benchmarks of energy
measurements in electromagnetic calorimeters, and certainly below the precise kine-
matic measurements achievable with standard tracking devices (typically . 3-4 %
for muons in the same momentum range[186]) However, the shape of the pi − Pi

distribution suggests that significant degradation stems from outliers, likely caused
by track segment mixing during the reconstruction process. For high-quality tracks,
the resolution improves slightly, reaching 4.1%. However, this value should be in-
terpreted not as a precise momentum measurement, but rather as an indicator of
the probability that the particles true momentum exceeds 100 GeV, which the re-
gressor does not directly determine. For hadrons and electrons, the situation is even
more challenging: the relative resolution, even for perfectly reconstructed tracks,
remains comparable to the particles actual momentum, making precise kinematic
measurements unfeasible.

The means µ in the momentum delta distribution pi−Pi indicate that the regressor
has a tendency to overestimate the momentum for electrons and underestimate it
for muons, while the hadron group distribution is more symmetric.

4.5.7 Performance on Run 1 data
The performance of ANNDEA was assessed using the Run 1 data sample by imple-
menting both the particle identification and momentum measurement procedures.
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These procedures required approximately 3-4 hours, a duration longer than that
for the simulated control domain, but not significantly different, as noted for the
desegmentation procedure. This can be attributed to two primary factors: the data
selection process, which minimises the number of tracks to initially work with, and
the absence of seed generation in the analysis phase, implying that the data rate
will increase linearly, not quadratically, with increasing density.

Results

The data containing the prediction of the particle type and its momentum mea-
surement are plotted below. Given that the Run 1 data does not contain any

Figure 4.33: Left: The simulation’s anticipated particle track flavour is represented by a percentage
distribution (depicted by lighter coloured bars) and is compared to the predictions (shown by
saturated bars) for the Run 1 data sample. Right: The expected particle’s momentum, as observed
in the simulation, is displayed as a percentage distribution (represented by a grey-filled area) and
is contrasted with the prediction (indicated by a black line) for the Run 1 data sample.

Monte Carlo simulation truth and the precise distribution of the particle types in
the Run 1 data sample remains unknown, it is not feasible to validate the results
with absolute certainty. Nevertheless, by utilising the measurable parameters that
are available, a series of plots illustrating the identified particle distribution across
the measured momentum-track length phase space has been created, consisting of
three plot groups:

1. Three diagrams from the control domain, distinguished by the corresponding
MC simulated particle type and utilising the genuine simulated momentum on
the vertical axis to portray the distribution projected by the simulation.

2. Three diagrams from the control domain, distinguished by the predicted par-
ticle type, utilising the measured momentum on the vertical axis to portray
the distribution generated by ANNDEA on the simulated data set.

3. Three diagrams from the Run 1 data sample, distinguished by the predicted
particle type and utilising the observed momentum on the vertical axis to
portray the track distribution generated by ANNDEA on the real data.

These diagrams allow for the verification of the predicted kinematic and particle
flavour distribution results from ANNDEA, and their comparison with the simula-
tion predictions.
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Figure 4.34: A set of 9 plots, each representing different particle percentage distributions across
track length and momentum phase space, depending on the data set, truth/prediction and particle
flavour group.
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Discussion

Examining the projected particle flavour distribution in Figure 4.33 reveals a sig-
nificantly higher percentage of hadrons in the Run 1 data than what is seen in
the simulation. This could suggest that there are substantially more hadron back-
grounds and QCD processes in the real data, or there is an increased frequency of
misidentification. The momentum distribution peak at energies under 1 GeV seen
in simulation is moved towards 2 GeV and considerably broadened. The rest of
the reconstructed spectrum is sparsely populated, including the ≥ 100 GeV range,
which is expected to be occupied by IP1 muons. This offers the first distinct sign
of a significant issue with the neural network’s ability to handle tracks in the real
data.

A deeper understanding of ANNDEA performance can be achieved by examining
the graphs in Figure 4.34. Here, the extra track length acts as an additional variable,
aiding in assessing the correspondence between the anticipated and observed physics.
The analysis for each particle is encapsulated below:

• Electrons are anticipated to be of short length (L . 8 plates) and possess low
absolute momentum values (P . 5 GeV). The ANNDEA simulation manages
to more or less mimic its length and momentum distribution; however, the
latter is broadened, as it has been noted that the GNN regressor has a slight
inclination to overestimate the momentum of electrons. In the actual data, the
distribution of electrons appears to be somewhat similar to what is depicted
in the two preceding charts, albeit with a minor shift towards a greater track
length and a slightly more dispersed momentum distribution.

• Hadrons, predominantly, are anticipated to exhibit low absolute momen-
tum values (P . 5 GeV); however, their length distribution is considerably
dispersed throughout the range. The simulation performance mirrors the ex-
pected scenario to some extent, but there are minor discrepancies in the mo-
mentum distribution, where the prediction fails to correctly measure the high-
momentum hadron tracks that are anticipated according to the simulation.
In the actual data, the predicted hadron track length distribution appears to
align with the control set, albeit with a shift towards shorter lengths. However,
the momentum distribution seems to be skewed towards larger values.

• Muons, predominantly, are predicted to possess high absolute momentum
values (P ≥ 100 GeV) and their length distribution is expected to peak at
longer lengths. ANNDEA’s performance on the simulation attempts to re-
produce this, but there are two distinct sets of discrepancies: a shift in the
momentum spectrum towards lower values and a notable presence of tracks
in the lower-left quadrant, a region usually populated by electrons. The first
discrepancy can be attributed to the tendency of the GNN regressor to un-
derestimate the momentum of muons. The second discrepancy arises from
the overlap of electron and muon hits due to errors in the tracking procedure,
misleading the GNN classifier. A likely reason for that is the presence of extra
noise in the data and the much higher occupancy.

In the Run 1 data, the classification and regression results for muons stand in
stark contrast to the control set: the anticipated and observed distributions
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of track length and momentum show no resemblance. Instead, muon tracks
cluster in the short-track, low-momentum quadrant, which is the opposite of
theoretical expectations. This highlights the significant challenges faced by
the GNN in both particle-type classification and momentum reconstruction
on real data. A likely cause is the emulsion misalignment, which reduces the
apparent smoothness of muon tracks compared to their idealised simulated
counterparts, leading the network to misclassify them as low-momentum par-
ticles undergoing Coulomb scattering.

4.5.8 Conclusion
Summary

In summary, this study has investigated the potential of using deep learning to in-
fer reconstructed track properties from their inherent morphological characteristics.
The primary motivation for this work is the lack of specific technological abilities of
the SND@LHC emulsion detector to provide details on the type of track particle or
its momentum that could potentially be used for event analysis tasks. These tasks
include further background identification, such as electromagnetic showers and more
efficient signal event selection, including reconstruction of their properties.

The solution that was suggested and investigated involved the use of two trained
geometrical neural networks to perform the following operations by using all the
track available information, such as constituent hit coordinates and angles:

1. Split tracks into three categories: electrons, muons and hadrons.

2. Provide an estimate of a track’s absolute momentum on a scale from 0 to 100
GeV, with the latter value being applicable to all higher-energy particles as
well.

The full data processing took approximately four hours, and the subsequent analy-
sis revealed a two-fold outcome. Classification performance reached 92% accuracy,
with cases of misidentification primarily associated with poorly reconstructed tracks.
In contrast, the regression results for momentum prediction were much more mod-
est. Even in the absence of outliers, the absolute momentum resolution depended
strongly on particle type: for electrons and hadrons, the relative resolution was
roughly comparable to the particles actual momentum. The regressor performed
somewhat better for particles with momentum above 100 GeV; however, since the
momentum is effectively capped at 100 GeV, this should not be interpreted as a
precise kinematic measurement.

After conducting simulation experiments, a small sample of scanned Run 1 emul-
sion data was analysed using a similar approach. The outcome was examined by
analysing the distribution of tracks across measured quantities such as the recon-
structed momentum spectrum, calculated track length, and predicted particle type
and comparing it with the picture observed in the simulation. Although for the
identified electrons and hadrons, the observation was more or less consistent with
expectation, a major discrepancy in the behaviour of identified muons and their MC-
generated counterparts has been observed, indicating the need to train the network
on a more realistic simulation sample.
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Interpretation

The issues addressed in this research are perfect examples of typical problems tackled
by deep learning. Unfortunately, they have showcased one of the most common
challenges that plague data science projects: data quality and consequently model
overfitting.

This becomes particularly clear in the context of the particle type classification
task. Here, the neural network demonstrated commendable performance in track
identification within a simulated environment but faced difficulties under actual data
conditions. This discrepancy in performance substantially limits the applicability of
neural networks to the emulsion data analysis: it can lead to misinterpretations of
the reconstructed physics in the detector, thus invalidating any potential discoveries.

Therefore, the overall outcome of this experiment is inconclusive: accurate particle
identification using a neural network is possible under simulated conditions, but
there is no solid proof that it is practical for the actual emulsion data, the data
quality of which is significantly lower due to various factors that are not taken into
account in simulation.

Momentum measurements present a notably greater challenge, as their precision,
even in simulated environments, remains limited for detailed kinematic analysis.
Nevertheless, these estimates can still provide useful guidance for broader event
characterisation. When applied to real data, performance naturally declines, even
for particles such as muons, whose signatures are generally easier to identify due to
their high energy. However, the momentum resolution is closely tied to the quality of
track reconstruction, and as the latter improves, through better tracking algorithms
and detector alignment, a corresponding improvement in momentum resolution is
expected. While the current implementation may not yet meet the precision re-
quirements for detailed momentum studies within the SND@LHC experiment, the
observed limitations also point to clear directions for refinement. Moreover, this
approach may still hold practical value in other experimental setups that lack a
dedicated momentum spectrometer, offering a lightweight and adaptable alterna-
tive for momentum estimation and becoming a valuable component of the analysis
strategy.

Further research

The strategy for further research depends on the type of problem and will be listed
separately in the following.

Track classification: Despite the encouraging performance demonstrated on the
simulation set, it is crucial to bridge the ANNDEA performance gap between the
simulation and the real data to ensure its effectiveness under actual experimental
conditions.

Ideally, the first step in the right direction would be to understand what drives
this difference so that the causes can be addressed accordingly. This can be achieved
by selecting a key performance indicator such as RMSE and converting it to L′

RMSE

with the following formula:

L′
RMSE(pi, yi) = 1− LRMSE(pi, yi), (4.6)
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thus, the best classification performance is attained when L′
RMSE = 1, whereas the

poorest performance is reached at L′
RMSE = 0. This new metric can be decoupled

into multiple terms such as the one below:

L′
RMSE = lb εml εem εtr(em, ρh). (4.7)

The initial term lb represents the highest possible mean value of L′ that can theo-
retically be reached in the simulated data, assuming perfect tracking accuracy and
ideal emulsion alignment.

The second term εml is the coefficient that encodes the loss degradation as a
result of the specific selection of the data representation and the choice of the ML
model. If the optimal configuration is selected, it will use the data effectively, and
its degradation factor will tend towards 1, maintaining the initial value of lb. In
contrast, any suboptimal selection will lead to εml < 1, imposing a penalty on the
final loss L′

RMSE.

The third term εem represents the degradation coefficient due to the noise intro-
duced by the artefacts of the emulsion alignment and as a result of its geometrical
distortion effects.

The last term εtr(em, ph) describes the penalty factor due to the tracking quality,
which is a function of the emulsion alignment and the hit density.

This equation is not to be considered a basic principle of nature; instead, it serves
as a useful mathematical approximation. By measuring each term, it allows for the
quantification of each effect’s contribution and assists in identifying the appropriate
solution.

Upon defining the equation, the selection of the simulation data sample becomes
necessary. It is recommended to use a simulation that has an average hit density
of at least ≈ 106 hits cm−3, which is comparable to the conditions observed in the
Run 1 emulsion data. The terms lb, εml, and εem in Equation 4.7 are not impacted
by the hit density, given the low probability of particles in the emulsion detector
interacting with each other. However, its final term εtr(em, ph) is affected by it.
Thus, for consistency, it is advisable to keep the underlying conditions the same.

Once the simulation set is chosen, the coefficient product lb× εml can be evaluated
by repeating all the steps described in this study, such as model training and clas-
sification loss evaluation, using the original MC-generated tracks provided by the
simulation truth.

Estimation of the term εml can be achieved by replicating the preceding step using
the same simulation, with an additional step involving smearing its hit coordinates.
This must be done to model the degradation in data quality caused by the emulsion
alignment effects observed in the actual dataset. The quantity εml is then determined
by dividing the newly assessed L′

1 by the product of the coefficient lb and εml, which
was obtained in the previous step.

To calculate the last term, another iteration has to be performed on the simulated
data sample that has been subject to the tracking procedure using the reconstructed
tracks instead. Its value is simply the new evaluated L

′
2 divided by the coefficient

product lb × εml × εem derived in the previous step.
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After the computation of all terms in Equation 4.7, the follow-up action will de-
pend on the final value of L′. The GNN, which has been trained on the tracks
that were reconstructed in the dense hit environment, might exhibit adequate per-
formance. Then it can be assessed on real data, employing the same consistency
checks that were used earlier in this investigation.

If this is not the case, then the primary factor contributing to the most influential
coefficient should be tackled first, provided that it is achievable. For example, if
term εtr(em, ph) exerts the most substantial effect on classification performance,
then improvements should be made to the tracking process where feasible. If this
is not possible and the classification performance does not meet the requirements
for the physics analysis, then at least it provides sufficient grounds to abandon any
further efforts in this area and focus on other problems.

Track momentum measurement: This investigation did reveal a potential for
this method, and if this avenue is to be pursued, the identical principles used for
the classification problem can be used to pinpoint the precise problem that affects
its performance. One of the limitations of the regression method used in this study
is the lack of proper research on an optimal regression method due to the limited
scope and time. The regression model used has been an adaptation of the existing
classification model, and therefore, its real value prediction capabilities might be
suboptimal. In theory, this can be achieved by singling out the term εml. However,
in practice, it poses a significant challenge because of the necessity to experiment
with many types of neural networks and their architectures.

Expanding the scope of the research: So far, this study has been concerned
with tracks only; however, an analysis of more complex objects, such as vertices and
electromagnetic showers, can also be explored using similar principles described here.
The ANNDEA scalable architecture enables one to incorporate these capabilities
with relative ease, and neural network analysis involving more complex structures
may prove to be more resilient to jumps in the underlying data quality. An obvious
use case would be to identify signal vertices, which is one of the main goals of the
SND@LHC experiment.

4.6 Vertex reconstruction

4.6.1 Purpose
This section seeks to investigate the potential of deep learning in vertex reconstruc-
tion tasks. The reconstruction pipeline closely resembles the one described in Section
4.4, so the methodology section will emphasise the differences to avoid redundancy.

There are four main steps involved in vertexing:

1. Clean and prepare the emulsion data, which have been previously tracked by
FEDRA.

2. Form all possible track combinations and refine them using basic geometrical
considerations.

3. Pass the remaining seeds through the neural network filters.
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4. Combine all seeds remaining from the previous steps into vertex objects.

The investigation conducted in this study will focus on the FEDRA reconstructed
tracks, but in principle, it can be applied to the output of any tracking algorithm.

4.6.2 Data preparation and selection
The data preparation mirrors that of the track desegmentation process, with a minor
variation: if data are required to train the neural network, not only is the MC Track
ID included, but also the MC Mother ID, which serves as an identifier for the parent
particle the decay of which has produced the track in question.

Data selection, on the other hand, replicates the steps used in Section 4.5. Initially,
all tracks that have left a hit at the initial emulsion plate are removed, aiming to
eliminate irrelevant incoming muons and other external charged particles. Then
tracks that span L − 3 plates of the detector are excluded, where L is the total
number of emulsion layers of the given ECC unit.

4.6.3 Seed initialisation and preliminary selection
Vertex seed refers to a pair of track segments that may originate from the same
decay. The initial number of combinations increases according to equation Nsd =
N2

tr, which can be large for a standard ECC unit. Hence, initially, only a basic seed
representation in the shape of a vector is employed:

sdij =

[
tri xi yi zi trj xj yj zj label

]
(4.8)

where tri is a track identifier of the track i and the trj is a track identifier of the
track j. The elements x, y, and z represent the coordinates of the first hit along the
z-axis for the tracks i and j, respectively.

The label element is not mandatory and is only included in the data sets intended
for neural network training and is ignored in the seed refinement phase. It is a
Boolean variable that can take a value of 1 or 0, indicating whether the constituent
tracks share the same MC Mother ID or not.

The initial selection steps for vertex seeds are akin to those used for desegmen-
tation: self-permutations and duplications are eliminated. However, rather than
applying SLG and STG cuts, a simpler selection is made by discarding seeds where
the distance parameter R exceeds 4000 microns. The parameter R represents the
Euclidean distance between the initial track hits in the seed and is calculated as
R =

√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2.

4.6.4 Seed fiducial cuts
The fiducial cuts employ a more advanced method compared to the desegmentation
equivalent. In addition to the DOCA, which has a vertexing threshold set at 200
microns, an additional pair of cuts is applied based on the reconstructed vertex seed
origin (VO). The first cut discards any seed if its VO coordinates fall outside the
fiducial volume of the ECC detector.

151



CHAPTER 4. APPLICATION OF MACHINE LEARNING TO TRACKING AND VERTEXING IN
THE SND@LHC EXPERIMENT

The second cut takes into account the minimum distance between the origin of
the vertex and the closest starting hit of any track in the seed (V OT1 or V OT2 as
depicted in 4.14). If this distance exceeds 4000 microns, the whole seed is rejected.
It is important to mention that numerous selection criteria resemble those employed
by FEDRA and are primarily motivated by the need to reduce the computational
load.

4.6.5 Neural network training
In the vertex reconstruction research, two neural network models were employed
to enhance the seeds generated in the previous stage: the GNN neural network,
which had been used in two earlier studies, and the CNN, which, for this particular
task, has demonstrated promising performance during training. The CNN model
architecture had the following configuration, presented in the table below.

Layer Activation function Number of neurons/kernels Size

Convolution 1 ReLU 64 3 ×3 ×3

Pooling 1 N/A N/A 2 ×2 ×6

Convolution 2 ReLU 64 3 ×3 ×3

Pooling 2 N/A N/A 1 ×1 ×3

Convolution 3 ReLU 80 5 ×5 ×5

Pooling 3 N/A N/A 2 ×2 ×6

MLP 1 ReLU 80 N/A

MLP 2 ReLU 64 N/A

MLP 3 ReLU 48 N/A

Output Softmax N/A 2 channels

To avoid overtraining, a dropout regularisation technique has been implemented for
dense and convolutional layers, whose value was set at 10%.

Before feeding the seeds into the neural network, they are transformed into a three-
dimensional monochrome image represented by a 70 ×20 × 200 numpy array. Each
pixel in this array has a value of either 1 or 0, indicating whether the corresponding
region of space is traversed by the track.

Figure 4.35: An example of genuine (Left) and fake (Right) seed images used for CNN model
training projected on the xz plane .

To minimise the memory usage of three-dimensional numpy arrays while avoiding
substantial data loss, the vertex track hit coordinates are subjected to rotations
around the z and x-axes and scaling transformations to ensure that the seed features
fit within the narrow image dimensions.
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By identifying the simulated mother particle ID of the majority of the hits be-
longing to the reconstructed track, it is possible to establish whether these track
segments should form a vertex and use it as a class label. To train both the GNN
and CNN models using original and defragmented FEDRA tracks, the following sets
of training and validation samples have been produced:

• GNN set: A sample of the ≈ 29k train and an additional ≈ 2.9k validation
seeds represented as graphs using original FEDRA tracks.

• GNN* set: A sample of the ≈ 36.5k train and an additional ≈ 3.6k validation
seeds represented as graphs using FEDRA tracks that have undergone the
desegmentation process covered in 4.4.

• CNN set: A sample of the ≈ 29k train and an additional ≈ 2.9k validation
seed images using original FEDRA tracks.

• CNN* set: A sample of the ≈ 36.5k train and an additional ≈ 3.6k validation
seed images using FEDRA tracks that have undergone the desegmentation
process covered in Section 4.4.

Both GNN and CNN models have been trained with a starting learning rate of 10−4

with the validation loss and the accuracy profile plotted in Figure 4.36 below:

Figure 4.36: A plot of the normalised validation accuracy and CEL loss of the GNN (Top) and CNN
(Bottom) models training on both original FEDRA tracks (paler lines) and their de-segmented
versions (More saturated lines).

Since the training process, especially for CNN models, can take a considerable
amount of time of up to a day for a single epoch, several time- and hardware resource-
saving measures have been taken, such as requesting HTCondor nodes with GPU
facilities and using the data transfer. The latter is a commonly used technique in
deep learning that involves using a neural network model that was previously pre-
trained on a similar data set to tune it to a specific domain of the data; however,
due to the specific nature of the emulsion data, its true potential has never been
fully realised in this study.

The example above is a rare example where this technique is useful: instead of
training two instances of the CNN model on the different data sets at the same time,
a CNN model that has been pre-trained on the original FEDRA tracks is trained
for just another epoch on data set that is made of tracks that have undergone the
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desegmentation procedure. Strictly speaking, this takes a slightly longer time than
doing two instances at the same time; however, it results in fewer GPU computing
hours, which generally are scarce on the HTCondor batch farm.

4.6.6 Final output
Once the neural networks have been trained, they can be used as additional filter
steps that significantly improve the concentration of genuine seeds. It consists of
two distinct steps: seed link analysis and vertex building, which are described in
more detail below.

Seed link analysis: This post-neural network step uses classification scores from
neural networks to improve SNR and reduce the number of seeds in the final vertex
merging step. Detailed algorithm information is in the ANNDEA documentation.
At a high level, this step explores links between a subject seed and related seeds
based on common tracks. For instance, inspecting seed AB involves looking at
related seeds containing track A or B. The presence of seeds like AC and BC
with common track C increases confidence that tracks A and B are from the same
particle. This confidence is quantified and optimised using calibration data. Link
analysis relies on neural network predictions, making its performance dependent on
the neural network’s effectiveness.

Vertex building: After refining seeds through a combination of analytical meth-
ods and NN-based selection techniques, they are combined into vertices of greater
multiplicity as long as the merged seeds have at least one track in common. Once
the vertices have been assembled, they are utilised to create a table that links the
newly formed reconstructed vertex identifier to the tracks in the dataset.

4.6.7 Performance on the Monte Carlo simulation
Results

Two vertexing procedures were conducted using ANNDEA, taking approximately 12
hours to complete. The log data has been presented visually in Figure 4.37 below.

After obtaining the result of the data reconstruction, the relevant statistical and
quality track metrics have been calculated and presented in Table 4.8 below.

The results in Table 4.8 are presented separately for different particle sources in
order to highlight potential domain-dependent effects on vertex reconstruction per-
formance. In addition to the simulation truth categories already introduced in Table
4.1.4, a dedicated category of fake vertices is reported. These correspond to recon-
structed vertices that cannot be matched to any Monte Carlo simulated vertex and
arise from random track crossings or reconstruction artefacts. Consequently, they
provide a direct measure of the vertexing algorithms susceptibility to instrumental
background.

In addition, the number of reconstructed vertices per category is reported, repre-
senting the number of vertex identifiers assigned by the respective vertexing algo-
rithm. It can be observed that the number of reconstructed vertices in the non-fake
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Figure 4.37: A fake (Top) and genuine (Middle) vertex seed cutflow through various phases of
reconstruction, followed by precision and recall charts (Bottom).

Table 4.8: Statistical data for the control domain assessing ANNDEA vertexing performance. The
impact is represented as a percentage or percentage point change. Positive impacts are shown in
green, while negative impacts are shown in red.

Particle
source

Metric FEDRA GNN GNN
impact

GNN* GNN*
impact

CNN CNN
impact

CNN* CNN*
impact

# Rec. Vx. 61±7.8 154±12.4 152.5±38.1% 161±12.7 163.9±39.7% 23±4.8 -62.3±9.2% 32±5.7 -47.5±11.5%

EM # Mtch. MC Vx. 61±7.8 171±13.1 180.3±37.0% 174±13.2 185.2±38.8% 22±4.7 -63.9±7.7% 31±5.7 -49.2±9.8%

showers VRE (%) 5.7±0.7 16.0±1.1 10.3±1.2pp 16.2±1.2 10.5±1.3pp 2.1±0.4 -3.6±0.7pp 2.9±0.5 -2.8±0.7pp

VTRE (%) 93.9±2.3 96.3±1.1 2.4±3.1pp 96.1±1.1 2.2±3.2pp 94.1±2.8 0.2±4.6pp 92.9±3.2 -1.0±5.0

VTRP (%) 91.8±2.2 86.6±1.8 -5.2±3.6pp 88.5±1.7 -3.3±3.6pp 96.0±2.6 4.2±4.2pp 98.5±1.5 6.7±3.3pp

Hadronic # Rec. Vx. 79±8.9 72±8.5 -8.9±14.9% 58±7.6 -26.6±12.7% 73±8.5 7.6±15.0% 58±7.6 -26.6±12.7%

decays # Mtch. MC Vx. 82±9.1 82±9.1 0.0±9.8% 68±8.3 -17.1±10.0% 83±9.1 1.2±8.5% 66±8.1 -19.5±8.9%

and VRE (%) 56.2±6.2 56.2±6.2 0.0±5.5pp 46.6±5.6 -9.6±6.1pp 56.8±6.2 0.6±4.7pp 45.2±5.6 -11.0±5.2pp

µ nuclear VTRE (%) 77.8±2.4 81.4±2.5 3.6±3.7pp 71.1±3.9 -6.7±5.0pp 80.9±2.4 3.1±3.5pp 66.3±4.5 -11.5±5.2pp

interactions VTRP (%) 93.8±0.5 92.1±0.7 1.7±0.9pp 91.5±0.9 -2.3±1.1pp 92.2±1.4 -1.6±1.5pp 90.7±1.7 -3.1±1.8pp

# Rec. Vx. 7±2.7 9±3.0 28.6±65.6% 8±2.8 14.3±59.5% 6±2.4 -14.3±47.6% 6±2.4 -14.3±47.6%

νµ # Mtch. MC Vx. 7+1.0
−2.7 8+0.0

−2.8 14.3+71.7
−49.4% 8+0.0

−2.8 14.3+71.7
−49.4% 6+2.0

−2.5 -14.3+100.3
−42.0 % 6+2.0

−2.5 -14.3+100.3
−42.0 %

interactions VRE (%) 87.5+12.5
−33.1 100+0.0

−35.4 12.5+33.1
−47.9pp 100+0.0

−35.4 12.5+33.1
−47.9pp 75.0+25.0

−30.6 -12.5+58.1
−43.1pp 75.0+25.0

−30.6 -12.5+58.1
−43.1pp

VTRE (%) 72.1±8.0 60.0±7.9 -12.1±9.3pp 61.7±7.5 -10.4±8.3pp 82.9±5.4 10.8±6.0pp 80.0±4.5 7.9±4.5pp

VTRP (%) 81.6±6.6 76.7±5.1 -4.9±8.1pp 82.9±5.3 1.3±4.3pp 87.9±4.1 6.3±6.1pp 87.5±4.0 5.9±3.4pp

Fake vertices # Rec. Vx. 1261±36 1053±32 -16.5±3.5% 766±28 -39.3±2.8% 390±20 -69.1±1.8% 295±17 -76.6±1.5%

categories does not always match the number of matched vertices produced by the
simulation. This discrepancy arises from imperfections in the vertexing algorithms,
which may merge multiple distinct vertices into a single reconstructed vertex or,
conversely, split a vertex into several reconstructed vertices (a phenomenon similar
to segmentation). As a result, it is entirely possible for two or more reconstructed
vertices to correspond to a single MC-generated vertex, and vice versa.
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In order to quantify the significance of the impact, uncertainties were calculated for
each metric using methods tailored to the type of quantity and particle category. The
number of reconstructed vertices was modelled with a Poisson distribution, and the
standard error was therefore estimated as the square root of the count. The number
of matched vertices and the vertex recognition efficiency VRE were modelled using
both binomial and Poisson statistics, since the number of matched vertices depends
on the number of reconstructed vertices. The uncertainties of VTRE and VTRP
were estimated using the bootstrap method, which involves repeatedly resampling
the data and evaluating the variation of the estimates.

Discussion

There are numerous results to analyse; therefore, to maintain clarity in the discus-
sion section, the following structure will be adhered to: first, the performance of
the CNN and GNN algorithms, which executed vertexing on the original FEDRA
reconstructed tracks, will be compared to the MC simulation and the FEDRA re-
constructed picture. The comparison will begin with the seed cutflow statistics,
followed by the overall vertex reconstruction results, and then proceed to a more de-
tailed examination of the reconstruction metrics. This will be followed by a prompt
discussion of the benefits and advantages that track desegmentation and classifica-
tion studies performed in Sections 4.4 and 4.5 contribute to the analysis of signal
events.

The first notable observation regarding seed processing performance in Figure 4.37
is the remarkably low precision and recall values for CNN and GNN reconstruction
pipelines in contrast to those seen in desegmentation studies. The highest precision
achieved by CNN is 41%, which is still below the 70-95% range observed in the
desegmentation data flow in Figure 4.21. The recall is also low, around 13%. Al-
though the recall for GNN-assisted tracking is slightly higher14 at 17%, its precision
is significantly lower than CNN’s, at 13%.

However, compared to the FEDRA output, which has achieved the recall and pre-
cision values of 12.5% and 11.8%, respectively, the figures achieved by the neural
network already represent a substantial improvement. The generally poor perfor-
mance can be attributed to the intrinsic complexity of the vertex seed processing,
where the number of initial seeds is less constrained than in the cases of track seg-
ment seeding and is more difficult to manage.

The second notable observation with respect to seed processing performance is
the superior performance of CNNs compared to GNNs, even though both models
exhibited similar performance during training, achieving approximately 81-82% ac-
curacy. Surprisingly, this performance disparity arises not from the neural network
analysis phase itself, where both models perform similarly, but from the seed link
analysis stage.

This suggests that the prediction values generated by the convolutional neural net-
work are more informative than those produced by the GNN. This can be attributed
to the lower loss values achieved by CNN during training. However, the reason be-

14 As mentioned in Section 4.3, efforts were made to adjust the algorithm parameters to match
the recall with the FEDRA value, thereby enabling a comparison based on precision.
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hind this remains unclear: since converting vertex seeds to images inevitably results
in greater information loss compared to a similar operation for graphs, GNN models
are expected to provide better predictions since they have access to more detailed
information about the seed.

Moving from seed to actual vertex reconstruction performance, at a high level,
the CNN also displays a superior performance when it comes to the SNR15 metric.
For example, out of the 1407 vertices reconstructed by FEDRA, only 146 or ≈ 10%
are genuine, the rest being random crossings. CNN-assisted vertexing generated 491
vertices with a genuine yield of 101 or ≈ 21%. The GNN variant sits somewhere
between the mixture of genuine vertices measured at 18%.

The primary factor contributing to these performance discrepancies is the treat-
ment of physics processes such as electron-positron pair production in electromag-
netic showers. These vertices account for almost 90% of all simulated vertices, yet
they are challenging to reconstruct due to their composition of low-momentum tracks
that are highly nonlinear and short. This results in significant uncertainties in the
calculation of their parameters, such as DOCA and VO, leading to their rejection
during the seed processing phase.

From a physics analysis perspective, they hold no practical value; however, the
tracks associated with these processes burden the vertexing algorithms with com-
putations, generating a plethora of fake vertices and consequently increasing in-
strumental background and skewing the overall vertex reconstruction metrics due
to their sheer volume. Paradoxically, it is the poorer performance of CNN in this
particular domain that results in the overall better SNR: the limited resolution of
seed images is likely to contribute to this by causing the CNN to reject vertex seeds
containing tracks coming from these background processes, leading to the overall
better performance.

However, once the focus is only given to the secondary hadronic decays and more
interesting signal interactions, the differences in performance between FEDRA and
neural network-assisted algorithms diminish. In the hadronic sector, all three algo-
rithms achieve comparable vertex reconstruction efficiency, with the reconstructed
vertices exhibiting a similar overall quality. In some cases, the performance of indi-
vidual algorithms slightly exceeds that of FEDRA, while in others it is marginally
lower. However, these variations generally fall within the statistical uncertainties
and do not indicate any significant advantage or disadvantage. Regarding overall
signal reconstruction efficiency, the GNN exhibits the highest value, reconstructing
100% of all signal vertices, whereas the CNN achieves the lowest, with only 75%
reconstructed. In terms of signal reconstruction quality, the CNN appears superior,
while the GNN shows the lowest performance, particularly for VTRE. However, the
extremely limited statistics in this sample result in large uncertainties, rendering all
apparent advantages or disadvantages statistically insignificant.

So far, the analysis has been focusing on the vertex performance using original FE-
DRA tracks: this was to have a fair comparison between the output of the standard
vertexing procedure that has used FEDRA tracks only and the neural network-

15 The term SNR referenced here pertains to the proportion of any genuine vertices to fake ones
regardless of whether they represent a signal event.
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assisted algorithms. However, the results of the vertex reconstruction present an
excellent opportunity to test the results of the studies in Sections 4.4 and 4.5 in a
slightly different context. The first benefit of the desegmentation process can be seen
by analysing the columns in the vertexing stats marked with asterisks, where the
vertexing quality evidently improves for vertices coming from the secondary hadron
decays and neutrino interactions. There is a small decrease in the overall efficiency
for hadronic decays, but these are most likely to be caused by track length cuts, the
rate of which is sensitive to desegmentation.

An example of the mechanism by which track desegmentation can improve the
quality of the reconstructed vertices can be demonstrated by using an example of
one of the simulated signal vertices visualised in Figure 4.38 below:

Figure 4.38: An xz-plane projection of a vertex resulting from a simulated neutrino-nuclei inter-
action in Brick 41 (control domain).

In this example, a muon neutrino participates in the charged current deep-inelastic
scattering with one of the nuclei in the tungsten layer of emulsion, resulting in the
production of one muon, one proton (the bottom track on the top left image, and
two pairs of oppositely charged pions and kaons. FEDRA reconstructs only the
part of the vertex containing the muon and mesons, excluding the proton track
because of its distance from the interaction origin. The GNN and CNN algorithms
do reconstruct the proton track by mistake, associating it with a muon track segment
passing nearby into a separate vertex (marked with a faded colour). As a result,
each neural network-assisted output contains two vertices: a genuine one, which is
the same for all algorithms, and a fake vertex reconstructed by GNN and CNN.
However, following the desegmentation procedure, the passing muon track fragment
gets merged into a larger track, making it unavailable for vertexing and resulting in
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fewer fake vertices.

To assess the track classification and its momentum measurement, a more detailed
plot of the same event comparing the simulated truth and the holistic reconstructed
picture by ANNDEA has been produced in the following.

Figure 4.39: A more detailed plot visualising the event mentioned above, focusing on tracks that
were reconstructed by the GNN* algorithm. The Top part represents the vertex tracks assigned
to their particle group and absolute momentum according to the simulation truth. The Bottom
image is the GNN* vertexing output, along with the track type and momentum prediction carried
out earlier by ANNDEA.

It is evident that ANNDEA has accurately identified most of the hadronic tracks,
except for one that it mistakenly classified as a muon. This error is likely due to
the similar morphology of the tracks. Interestingly, ANNDEA has also assigned a
higher momentum value of approximately 90 GeV to the actual muon track, which
is close to the 100 GeV threshold set for ANNDEA. This indicates that although
both the classification and momentum measurements are not entirely precise, they
can complement each other to provide better guidance to the physics event analyst.

For instance, considering the physical principle that a muon-neutrino interaction
can yield only one lepton, the track identified as a muon with the highest predicted
momentum can be regarded as accurate, while the remaining tracks with lower
predicted values of momentum are likely to be mesons.

4.6.8 Performance on Run 1 data
To evaluate the performance of the ANNDEA vertex reconstruction on actual data,
a Run 1 data set was performed, as shown in Figure 4.9, using the GNN and CNN
models. In order to have a fair comparison with the FEDRA reconstruction perfor-
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mance, the original FEDRA tracks that have not been merged using the desegmen-
tation procedure were used for vertexing.

The reconstruction of the Run 1 dataset took approximately 14 days for both
models. Several factors have led to this long reconstruction, with the primary issue
being a higher track density in the data, leading to a large number of seeds, the
number of which is less constrained than in the desegmentation procedure.

Results

Since Run 1 data lack any Monte Carlo-generated metadata, a reduced version of the
analysis has been performed, which consisted of plotting the reconstructed vertex
track multiplicity distribution and comparing it with the corresponding plot for the
simulation.

Figure 4.40: Vertex multiplicity distribution for three vertexing algorithms on both simulation and
Run 1 data.

Along with the geometrical analysis, a visual inspection of a random sample of the
merged tracks has been performed to identify any potential issues below in Figure
4.41.

Discussion

Multiple findings can be inferred by looking at the vertex multiplicity distribution
graphs.

All algorithms, irrespective of data type, are heavily skewed toward vertices with
low multiplicities, with approximately between 60%-85% of vertices, depending on
the algorithm, made of just two tracks. This is perhaps unsurprising since it is
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Figure 4.41: A collection of visualizations of vertices reconstructed by FEDRA (Top),GNN
(Middle) and CNN (Bottom) algorithms projected on xz plane. Each collection includes three
categories that assess the apparent quality of the reconstructed vertex. It is important to note
that these categories are subjective and do not determine whether the reconstructed vertices are
genuine or random crossings.

expected that the majority of the vertices in ECC are expected to come from electron
pair production, which generally yields 2-track vertices. Another plausible reason for
the vertex distribution towards low multiplicities is driven by the seed reconstruction
efficiency: the more stringent the seed selection, the more likely the resultant merged
vertex will comprise fewer tracks. This is apparent for CNN-assisted reconstruction,
which, from the simulation studies, has proved to be more conservative than other
algorithms and, as a result, has yielded the highest proportion ≈ 85% of two-track
vertices.

The second significant observation is the significantly lower number of vertices re-
constructed by neural networks compared to FEDRA. In the simulation, the number
of GNN-produced vertices is roughly comparable to the number produced by FE-
DRA, while the number of vertices produced by CNN is less than half compared to
FEDRA and GNN. In the actual data, this gap is even larger: FEDRA, GNN, and
CNN have produced 91,715, 28,239 and 6,729 vertices, respectively, resulting in a
steeper ratio of approximately 100:30:7. Although the exact cause of this reduction
is uncertain, analysis of data reconstruction logs suggests that the seed link analysis
step played a significant role. This may be attributed to the much higher track
density in the Run 1 data sample, which rendered the seed link analysis step less
efficient. However, definitive conclusions require studies with Monte Carlo data of
similar density.
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Before delving into the visual inspection, it is essential to highlight a final, minor
yet significant point that was observed but not shown in the graphs: the extensive
tails of the GNN multiplicity reaching values over a hundred tracks per vertex,
whereas for FEDRA, it is limited to just 21. The ANNDEA vertex reconstruction
pipeline inherently does not impose any restrictions on vertex multiplicity, since
simulation studies showed that it did not pose any major problems. However, the
results of the reconstruction of the actual data suggest that this assumption may
need reconsideration.

Numerous findings were inferred from visual inspection of the reconstructed ver-
tices: the first notable observation is a significantly lower quality of the tracks
compared to their smoother simulation counterparts. In some instances, their tra-
jectories are so distorted that occasionally, vertexing algorithms get confused and
erroneously associate the nearly parallel beam of multiple tracks as a vertex.

A large, almost overwhelming number of vertex anomalies were spotted for GNN-
assisted reconstruction, where the final merged vertex obtained a sweeping broom-
like appearance with tracks seeming to appear from different directions. For the
CNN-assisted algorithm, the proportion of flukes has been significantly lower, and no
significant anomalies were detected during random checks on the FEDRA vertices;
however, it is important to note that only a small random sample per algorithm was
evaluated, leaving some room for a possible bias.

4.6.9 Conclusion
Summary

In summary, this study has explored methods to improve the precision of the existing
standard technique for vertexing tracked emulsion data in the SND@LHC experi-
ment. The proposed and examined solution involved adopting a similar approach to
the standard vertexing algorithm, with the addition of a neural network component.

The configuration was assessed using CNN and GNN-based reconstruction on
an independent set of simulated data that was not used to train neural networks
or adjust the parameters of the vertexing algorithm and was contrasted with the
results of the FEDRA reconstruction. Although neural network-based methods pro-
duced fewer false vertices, the reconstruction performance for key physics events like
neutrino-nucleon interactions and hadronic decays was largely comparable across all
three methods. The GNN-based algorithm identified more signal vertices than FE-
DRA but with slightly inferior quality, whereas CNN identified fewer vertices than
FEDRA but with superior reconstruction quality. The benefits of desegmentation
and track classification have also been assessed, demonstrating a noticeable improve-
ment in fake vertex rejection and analysis of the simulated interaction event.

After the Monte Carlo-based study, a limited sample of scanned Run 1 emul-
sion data was evaluated using a similar methodology. The results were reviewed
by examining the distribution of the multiplicity of the reconstructed vertex and
through visual inspection. Compared to simulation, neural network algorithms
showed markedly poorer performance than the standard method both in the number
and quality of the reconstructed vertices. Anomalies were detected where seemingly
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unrelated tracks were merged into a single vertex, more frequently in the GNN
output and to a lesser degree in the CNN-assisted reconstructions.

Interpretation

While the ANNDEA has achieved some improvements over FEDRA in the simulated
set, a clear benefit of using neural networks for vertex reconstruction has not been
demonstrated. It seems that all three algorithms are more or less on the same Pareto
front: their performance is quite similar, with any minor variations stemming from
the selection of adjustable acceptance parameters rather than the inherent strengths
of the specific method. Any alteration of these parameters typically results in either
decreased efficiency or an increase in the number of false vertices and their lower
reconstruction quality.

While GNN-assisted reconstruction shows a marginally improved trade-off capa-
bility, the improvement is not substantial enough to warrant further development.
The key advantage of Kalman filter-based methods lies in their adaptability to vary-
ing data quality conditions. This is evident from the reconstruction outcomes on
actual data with a higher track density and misaligned plates, where GNN and CNN
both underperformed compared to FEDRA.

It should be noted that the simulation results must be interpreted with caution for
various reasons, including the small number of signal events / 10 and the absence
of outcomes from the final event analysis stage. Even if one algorithm reconstructs
more signal vertices than another, they may still be discarded in the final analysis
due to poor reconstruction quality.

Further research

Future progress in this field is heavily reliant on the quality of simulated data, a
point that has been frequently mentioned in prior research and will not be reiterated
here. This study has shown that any deep learning algorithm will not function
properly in real-world data scenarios without sufficiently dense and realistic Monte
Carlo-generated data.

Another problem that can be addressed in the current ANNDEA vertexing module
arises from a similar issue seen during desegmentation studies: the limited appli-
cation of the neural network. As track density increases, relying solely on the per-
formance of the seed classifier may be inadequate, allowing numerous false seeds to
proceed to the vertex merging stage. This may result in situations where individual
seeds appear valid, but the overall vertex looks unphysical. Unlike the desegmenta-
tion study, the present implementation of ANNDEA offers an intermediate solution:
the link analysis step, which helps to eliminate many false seeds by leveraging their
relational information and neural network predictions. However, it still falls short
of the more advanced seed merging and fitting process performed by FEDRA. An
adequate ML counterpart to the standard reconstruction process would be to intro-
duce an additional stage in the merging process where a separately trained neural
network assesses the overall merged seed group and discards new seed candidates if
they do not align well with the resulting vertex.

Another more radical and yet more interesting and promising solution is to aban-
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don the vertex finding and fitting paradigm used for both standard reconstruction
and current implementation of ANNDEA altogether and opt for a fundamentally
different approach using the graph analysis method where the tracks in the emul-
sion data can be encoded as graph nodes each having its own attributes encoding
its coordinates and orientation in space. Within this approach, the possible links
between these tracks can be assessed using the GNN model, which performs an edge
analysis of the links between these tracks. The upcoming study will investigate this
concept within the tracking framework, and if it proves to be successful, it can be
similarly used in this context.

4.7 Track reconstruction

4.7.1 Purpose
This final study revisits the standard tracking quality issues raised in Section 4.1
and attempted in Section 4.4, approaching them from a new perspective. Rather
than improving the track previously generated by FEDRA, a comprehensive tracking
process will be implemented on both the simulated and actual data with the support
of the neural networks.

The tracking procedure is arguably the most challenging operation in emulsion
data reconstruction due to the large data volume required to process and the as-
sociated computational intensity, which requires a carefully designed and optimised
pipeline. The literature review in Section 4.2 has provided a promising solution
using GNN relation models to assist with the tracking task in ATLAS[160] and has
served as a crucial starting point[187] for the tracking algorithm developed here.
On a high level, this solution involves building an interconnected graph of hits and
classifying it using a previously trained GNN to analyse the connections between
these hits and leveraging this information to build tracks.

Nevertheless, several challenges emerge because, unlike the electronic tracking
detectors at ATLAS, the emulsion data cannot distinguish hits by event timestamp,
requiring all hits gathered in a single exposure cycle to be treated as a single large
event. Consequently, this results in a substantially higher density of hits per unit
volume than what is typically seen in an ATLAS recorded event, making it unfeasible
to construct and analyse an interconnected graph for an entire emulsion unit with
current computing capabilities.

In order to circumvent this technological limitation, an adapted version of the
tracking process has been developed in ANNDEA that consists of the following
steps.

1. Prepare the hit data that has been previously simulated by Monte-Carlo or
generated by the emulsion scanning procedure.

2. Split the data into smaller rectangular prisms or hit clusters, each occupying
a different region of the target ECC unit.

3. Perform GNN-assisted tracking of each set of hits that occupy these clusters
individually.
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4. Merge all track segments that were reconstructed in each individual cluster in
the previous step into complete volume tracks.

The clustered approach enables a better distribution of the data processing load
across multiple computing nodes, such as HTCondor, but this parallelisation comes
at the cost of making the tracking algorithm quite complex and its execution time-
consuming. Although the full description is beyond the scope of this work16 , the
most important processing details that will be useful for the interpretation section
of the results will be covered in more detail in the following.

4.7.2 Data preparation
Unlike other neural network-based analyses in this study, the data preparation for
tracking is quite simple. It requires processing the initial input file to retain only
specific variables: x, y, z, tx, ty, and the Hit Id, which serves as a unique identifier for
each reconstructed hit in the data set. If additional data are necessary for training
the neural network, a variable MC Track ID is included, providing an identifier for
the corresponding MC simulated track, and potentially other optional variables like
PDG ID if the GNN model needs to focus on particular types of tracks during the
training phase.

If only simulation is involved, then no further data selection steps are required;
however, for scanned emulsion data, the hit reconstruction quality criteria described
in Section 2.5.4 are applied. In addition to the hit selection, the scanned emulsion
data undergo an alignment procedure covered in Section 2.5.4: this is an important
step to minimise the gap between the simulated perfect conditions on which GNN
was trained and the environment encountered in the actual emulsion data.

4.7.3 Splitting dataset into hit clusters
Once the data have been obtained, it is divided into smaller clusters of size h ×
w × l where the longest component l is aligned along the z-axis. This size has been
determined from performance and optimisation studies in the calibration domain
based on the following factors:

• The trajectories of most particles in the SND@LHC detector are collinear with
the z-axis, and therefore the rectangular prism is favoured over the cube.

• The height and width of each cube should not be too small, as it limits the
maximum azimuthal angle of the average particle path with respect to the
z-axis through the formula θp ≤ arctan( h

2Pgap
) where h is the height or width

of the cluster and Pgap is the average distance between emulsion plates equal
to ≈1.3 mm placing the current limit at ≈67◦.

• The number of hit combinations within the cluster, and therefore the memory
and computational load during processing, scales cubically with volume.

Hence, the dimensions chosen for this study are 6 mm × 6 mm × 12 mm, representing
a compromise between enhanced tracking performance from larger clusters and the

16 A more complete information with technical details can be found on the dedicated wiki page
available at [184].
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computational benefits of smaller volumes. Consequently, this leads to a minimum
number of clusters required for parallel processing, calculated based on the detector’s
fiducial volume dimensions H, W , and L using the formula:

Nmin =
H

h
× W

w
× L

l
(4.9)

where Nmin is a round up integer number. For an ECC unit which has dimensions
192× 192× 78 mm3, this means that at least ≈ 6.7× 103 jobs have to be processed.

Unfortunately, even this large number is not sufficient, as it represents the recon-
struction setup where each cluster independently tracks a distinct region of space.
Within this configuration, it is challenging to link segments from the different clus-
ters together, resulting in extremely high segmentation of the output volume tracks.
To address this issue, a new set of clusters is initiated, each covering an area that
intersects with two of the original clusters in some direction. These additional clus-
ters contain reconstructed tracks that serve as connectors, facilitating the merging
of track segments from clusters that do not overlap.

It was found that the best number of extra overlapping hit regions for achiev-
ing peak performance, while minimally affecting the HTCondor system, is one in
both the x- and y-directions and two in the z-direction. Consequently, the esti-
mated total number of hit clusters that need processing in a standard ECC brick is
approximately ≈ 5.2×104. This requirement to handle such a high volume of opera-
tions significantly contributes to the prolonged duration of the track reconstruction
process outlined here.

4.7.4 Hit cluster tracking
Once the set of hit clusters has been defined, each of them can undergo the local
tracking procedure consisting of the following steps: seed initialisation, fiducial cuts,
creating graph representation, GNN analysis and segment assembling.

Seed initialisation

In the particular context of hit cluster tracking, the term seed refers to a pair of
hits i and j potentially originating from the same parent particle track and can
mathematically be expressed in the shape of a vector:

sdij = [hi xi yi zi txi tyi hj xj yj zj txj tyj labelij] (4.10)

where hi is a hit i and the hj is a hit identifier for hit j. The elements xi, yi, zi,
txi and tyi represent the spatial coordinates and angle of the basetrack i and the
elements xj, yj, zj, txj and tyj represent the same set of parameters for the hit j.
The label element is not mandatory and is only included in the data sets intended
for neural network training. It is a Boolean variable that can take a value of 1 or
0, indicating whether the constituent hits share the same desirable MC-generated
track or not.

The word desirable implies that in some scenarios, the simulated track is required
to represent a particular group of particles. For example, if the GNN model is
required to be trained to recognise only seeds coming from the muon tracks, the
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label still can take a value of 0 even if both hits belong to the same non-muon
particle.

Seed preliminary selection

The initial number of seeds is determined by the equation Nsd = N2
h , and for a

hit cluster located in the dense hit environment, it can still be too large to convert
it into a graph object. To reduce the computational load on the neural network,
a further set of simple filters, similar to those used in the track segment merging
algorithm, is applied:

1. Eliminate self-permutations: discard any seeds where two hits are identi-
cal, reducing the number of seed candidates from the original N2

h to N2
h −Nh.

2. Remove duplicates: the sequence of hits does not matter: The seed sdij is
equivalent to the seed sdji, so only the initial one is retained. This process
reduces the seed cut flow to Nsd = (N2

tr - Ntr)/2.

3. Enforcing cross-plate connection only: The connections between nodes
that are within the same plate are eliminated under the physical assumption
that the particle leaves only one hit per plate.

4. Relative angle cut: It is presumed that the particle’s path remains fairly
consistent, and should there be any deflection from Coulomb scattering, the
angular variation remains minimal. Hence, seeds are discarded if the difference
between their hit angles along the x or y-axis17 exceeds a value of 0.2 radians
or ≈ 11◦.

5. Distance cut: It is assumed that the trajectory of the particles adheres
largely to a linear path with limited deviation. The distance from the line is
calculated using the formula: dx =

√
((xi − xj) + (txj × (zi − zj)))2 and dy =√

((yi − yj) + (tyj × (zi − zj)))2. The cut on these values is set at 60 microns
following the optimisation studies performed on the calibration domain.

Creating graph representation

In the context of tracking, a graph object has been selected with the following
properties:

• Each node on the graph is represented by a hit with attributes encoding the
spatial and angular coordinates.

• Every single node is interconnected with other nodes through one-directional
edges.

• Each edge encodes numerous geometric properties, such as the distance be-
tween hits and their relative angle orientation.

• If the cluster is used for training, a Boolean flag indicating whether the edge
connects hits within the same or different tracks is included.

17 Assuming that the physics of interactions is independent of rotation around the trajectory line.
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The graph representation scheme has been adopted from the public Github reposi-
tory[187] but with numerous modifications associated with different coordinate sys-
tems used in ATLAS (cylindrical) and SND@LHC (cartesian), and the fact that the
latter does not have any magnetic fields.

GNN analysis

The primary goal of the GNN analysis, similar to the approaches in Sections 4.4 and
4.6, is to leverage the graph information to eliminate as many fake seeds as possible
while retaining the genuine ones. However, here, rather than classifying the entire
graph, it focuses on classifying the links between hits or seeds, a process known as
edge analysis. Each seed is rated on a scale from 0 to 1, and if this score falls below
a certain model-defined threshold, the corresponding edge is removed. This action
decreases the number of seeds and, consequently, the number of edges in the graph.

Track segment assembling

Although the output from the previous step provides a valuable hit relationship
structure, it remains too unrefined for substantial analysis because it comprises a
collection of seeds rather than complete tracks. The primary objective of this step is
to consolidate these seeds into extended track segments. This process is facilitated
through a cycling algorithm that constructs tracks in the following steps:

1. Firstly all seeds are merged based on common hits into all possible combina-
tions that can make up a track segment within a cluster.

2. The evaluation of each track segment candidate is based on the quality of
fit, which considers various elements, including the initial weighted scoring of
constituent seeds by GNN and the number of non-conflicting seeds involved
in the merging process.

3. The candidate achieving the highest score is chosen for the definitive cluster-
approved track list, and any hit linked to the chosen track candidates is dis-
carded to prevent their involvement in subsequent iterations.

4. Steps 1,2, and 3 are repeated multiple times until there are no suitable seeds
to build track segment combinations anymore.

5. All hits that are part of the final track segments get assigned the temporary
track segment IDs: all unused hits get discarded.

4.7.5 Final output
After reconstructing each cluster, the associated track segments, which were identi-
fied during the cluster tracking phase, must be connected to form complete volume
tracks. This connection must occur across the x-, y-, and z-axes by leveraging over-
lapping clusters. This facilitates the merging of all track segments, exemplified by
a merging procedure in the z-direction:

1. Load the first reconstructed cluster in the z-axis, which contains the recon-
structed track with the respective identifiers that were previously assigned
during hit cluster reconstruction.
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Figure 4.42: A visualised example of a typical hit cluster tracking process. Phase 1: Ini-
tialised hit cluster containing 850 hits. Phase 2: Interconnected hits in the cluster, excluding
self-permutations and duplicates. In this example, there are about 320k edges. Phase 4: Inter-
connected hits in the cluster after seed selection and GNN analysis. In this example, there are
2333 edges left. Phase 5: Hit cluster tracking result.

2. Begin examining subsequent clusters to determine if any tracks overlap in hits
with the master segment. Assign the identifier from the previous track seg-
ment, which was initially set during hit cluster processing, to the subsequent
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track segment that shows the greatest hit overlap with the master segment.

3. Tracks that do not pass the overlap test are considered distinct tracks that
originate in the subsequent brick, thus maintaining their initial identifiers.

4. This procedure continues until the final brick on the z-axis of this specific
xy set is encountered, at which point all track segments are combined, where
possible.

Figure 4.43: A visualised example of a typical hit cluster tracking process. Phase 6: A visualised
set of clusters overlapping along the z-axis. Phase 7: Tracks that have come as a result of merging
clusters in Phase 6.

Consequently, most of the segments in this specific cluster set are consolidated into
complete tracks, and every cluster along the z-axis for each xy set is combined into
one. This integration can only occur when there are intersecting track clusters in
which segments share hits from both the previous and subsequent clusters. There-
fore, the presence of overlap is crucial to minimise segmentation.

It is anticipated that the majority of incoming tracks absorbed by the target will
predominantly have a boost in the z-direction with low values of the transverse
momentum, which makes merging only along the z-axis sufficient for most tracks.
However, the SND@LHC experiment concentrates on neutrino interactions, which
typically involve products with significant transverse momentum. Consequently, it
is advisable to reconstruct at least one overlapping cluster on both the x- and y-axes.
This involves taking all volume tracks from the previous step and applying the same
merging process on the x- and y-axes, resulting in more complete volume tracks,
ready for the final output.
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A further smoothing process is implemented on each derived track to ensure the
absence of irregularities like incorrectly linked hits, causing tracks to display an
unnatural "zig-zag" pattern. This procedure is required due to a specific drawback
of employing Machine Learning discussed in Chapter 2: the sporadic absence of
"common sense" leading to an unrealistic output.

4.7.6 Neural network training
For the tracking procedure, ANNDEA employs a particular physics-motivated in-
stance of the GNN neural network called Interaction Networks[188] or IN capable
of reasoning about objects and their relations. The key mechanism integrated into
the interaction network is the message passing mechanism described in Section 2.6.5,
which re-embeds the nodes and edges with the information from their nearest neigh-
bours, thus enabling each node to "learn" about the surrounding network and hence
re-establish its particular role in the graph, thus enabling its proper classification.
For this study, a particular IN configuration has been used:

• Each node and edge participates in message passing with a number of re-
embeddings reaching 5, which determines the knowledge reach of each node
and edge about its local neighbourhood. For the dimensions of the hit cluster
used in this study, this should be sufficient since each hit cluster can accom-
modate a track segment with a maximum number of hits ≈8.

• Each re-embedded node and edge is assigned a MLP instance made of 5 hidden
layers, each consisting of 80 nodes.

• The GNN learns from this data representation through the back-propagation
technique by comparing the input of the embedded representation and the
corresponding class label, which determines whether the edge is genuine or
not.

Two training data sets were developed by processing data from the ML domain
through the data preparation and hit cluster generation steps described above. The
main distinction between these datasets lay in the definition of the class label: in the
first dataset, the Boolean label was assigned a value of 1 for pairs of hits originating
from the same truth particle, whereas in the second dataset, the label was set to 1
for hits generated by non-electrons. This approach was implemented to investigate
the feasibility of employing specifically trained GNNs to better reconstruct tracks
from certain types of physical events.

Each training sample consisted of three distinct data samples:

• Training set: a sample of the ≈ 36.5k data points used for the actual GNN
training.

• Validation set: a sample of the ≈ 4.2k data points used to determine the
optimal value of the acceptance threshold that removes edges based on the
prediction value of the GNN, which can run between 0 and 1.

• Test set: a sample of the ≈ 2.1k data points used for the final independent
test of the trained model and the optimised value of the acceptance of its
predictions.
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The relative split of the samples has followed a 85:10:5% split: a commonly used
ratio in machine learning.

Two GNN models have been trained with a starting learning rate of 10−4, with
validation loss and the accuracy profile plotted below.

Figure 4.44: A plot of the normalised test accuracy, loss and the optimal value of acceptance of
two GNN models training.

Although the standard GNN model rapidly achieved 96% accuracy, the version
tailored for hadron and muon track reconstruction has faced difficulties matching
this performance, with the final test accuracy just surpassing 92% despite efforts to
reduce the learning rate. A likely reason for this issue is the model being penalised
when it mistakenly classifies authentic energetic electron hit seeds, which resemble
those from muons and hadrons, as the incorrect type due to pre-set opposite labels.

4.7.7 Performance on the Monte Carlo simulation
To assess the tracking performance, the control domain of the simulated data was
processed using the default GNN model and its tuned version.

Results

Two tracking procedures were carried out, each lasting about one week. The du-
ration of these experiments was mainly due to the large number of hit clusters
submitted to HTCondor and the resulting pressure on the EOS drive system, which
had to manage a significant number of data read and write operations. After obtain-
ing the result of the data reconstruction, the relevant statistical and track quality
metrics have been calculated and presented in Table 4.9 below:
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Table 4.9: The control domain statistical data on the ANNDEA tracking performance. The impact
is measured in percentage or percentage point change with respect to FEDRA. Improvements are
coloured in shades of green, while worse performances are highlighted in shades of red. The
statistical uncertainties were calculated using the same methodology as in Section 4.4.

Particle source Particle group Measured metric FEDRA Default GNN Default GNN impact Tuned GNN Tuned GNN impact

Number of tracks 29,968 ± 173 67,038 ± 259 123.7 ± 1.6% 28,653 ± 169 -4.4 ± 0.8%

EM showers Electrons Segmentation 1.351 ± 0.005 1.445 ± 0.004 7.0 ± 0.5% 1.231 ± 0.006 -8.9 ±0.6%

and TRE (%) 39.7 ± 0.2 68.5 ± 0.3 28.8 ± 0.4 pp 30.6 ± 0.2 -9.1 ± 0.3 pp

delta-rays THRE (%) 42.1 ± 0.2 50.5 ± 0.1 8.4 ± 0.2 pp 45.0 ± 0.2 3.0 ± 0.2 pp

THRP (%) 62.0 ± 0.2 66.7 ± 0.1 4.7 ± 0.3 pp 75.3 ± 0.1 13.3 ± 0.3 pp

Number of tracks 52,664 ± 229 50,156 ± 224 -4.8 ± 0.6% 48,500 ± 220 -7.9 ± 0.6%

External muons Muons Segmentation 1.276 ± 0.005 1.427 ± 0.006 11.8 ± 0.7% 1.367 ± 0.006 7.1 ± 0.6%

from IP1 TRE (%) 98.2 ± 0.5 100.0+0.0
−0.5 1.8 ± 0.7 pp 100.0+0.0

−0.5 1.8 ± 0.7 pp

THRE (%) 80.2 ± 0.1 84.0 ± 0.1 3.8 ± 0.2 pp 87.6 ± 0.1 7.4 ± 0.2 pp

THRP (%) 98.2 ± 0.0 96.8 ± 0.0 -1.4 ± 0.0 pp 97.1 ± 0.0 -1.0 ± 0.0 pp

Number of tracks 25 ± 5.0 31 ± 5.6 24.0 ± 33.4% 32 ± 5.7 28.0 ± 34.3%

Muon neutrino Muons Segmentation 1.042 ± 0.208 1.240 ± 0.223 19.0 ± 32.0% 1.280 ± 0.226 22.8 ± 32.8%

interactions TRE (%) 96.0+4.0
−20.0 100+0.0

−20.0 4.0+20.0
−24.0 pp 100+0.0

−20.0 4.0+20.0
−24.0 pp

THRE (%) 95.2 ± 4.0 84.1 ± 5.2 -11.0 ± 6.6 pp 92.6 ± 3.8 -2.6 ± 5.5 pp

THRP (%) 99.8 ± 0.1 98.7 ± 0.6 -1.1 ± 0.6 pp 99.7 ± 0.1 -0.1 ± 0.2 pp

Number of tracks 108 ± 10 118 ± 10 9.3 ± 13.7% 111 ± 10 2.8 ± 13.3%

Hadrons Segmentation 1.325 ± 0.126 1.371 ± 0.124 3.5 ± 13.6% 1.295 ± 0.121 -2.3 ± 13.1%

TRE (%) 91.2+8.8
−10.5 97.8+2.2

−10.5 6.6+12.7
−19.3 pp 96.7+3.3

−10.5 5.5+13.8
−19.3 pp

THRE (%) 68.7 ± 3.8 73.3 ± 3.8 4.6 ± 5.4 pp 74.9 ± 3.8 6.2 ± 5.4 pp

THRP (%) 97.1 ± 0.9 96.2 ± 1.1 -1.0 ± 1.4 pp 97.3 ± 0.9 0.2 ± 1.3 pp

Number of tracks 471 ± 22 524 ± 23 11.3 ± 7.1% 526 ± 23 11.7 ± 7.1%

µ, e, γ Hadrons Segmentation 1.668 ± 0.077 1.450 ± 0.063 -13.1 ± 5.5% 1.462 ± 0.063 -12.4 ± 5.5%

nuclear interactions TRE (%) 65.4 ± 4.5 84.8 ± 4.7 19.4 ± 6.5 pp 85.0 ± 4.8 19.6 ± 6.5 pp

THRE (%) 45.7 ± 1.8 62.4 ± 1.9 16.7 ± 2.6 pp 59.4 ± 1.8 13.7 ± 2.6 pp

THRP (%) 99.2 ± 0.4 98.3 ± 0.3 -0.9 ± 0.5 pp 98.9 ± 0.2 -0.3 ± 0.4 pp

Number of tracks 1,434 ± 38 1,645 ± 41 14.7 ± 4.2% 1,656 ± 41 15.5 ± 4.2%

Hadron decays Hadrons Segmentation 1.796 ± 0.047 1.511 ± 0.037 -15.9 ± 3.0% 1.525 ± 0.037 -15.1 ± 3.1%

and TRE (%) 61.4 ± 2.6 84.8 ± 2.7 23.4 ± 3.7 84.2 ± 2.7 22.8 ± 3.7

inelastic scattering THRE (%) 37.9 ± 0.9 54.2 ± 1.1 16.3 ± 1.4 pp 52.6 ± 1.0 14.7 ± 1.4 pp

THRP (%) 99.6 ± 0.1 98.6 ± 0.2 pp -1.0 ± 0.2 98.9 ± 0.2 -0.2 ± 0.7 pp

Discussion

Before delving into the discussion, it is essential to underscore the main distinctions
between the tracking conducted by the standard version of GNN, which is trained
on all available tracks in the training dataset, and the GNN specifically adjusted
for non-electron tracks. Taking into account a scenario with purely simulated data
using Table 4.1, electrons are expected to make up the majority of tracks (≈ 72%)
by count. Consequently, a significant proportion of truth seeds encountered by a
neural network in a standard data set will be from electrons and positrons whose
track morphology significantly differs from that of high-energy muons.

The tuned GNN model has been trained on a training set where the identifica-
tion of hits coming from the same electron-flavoured particle has been penalised by
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modifying the appropriate class labels. This can be thought of as performing track
reconstruction in a "classical regime" which tends to be more optimised for tracking
particles on which the standard tracking algorithms like FEDRA have been designed
to operate. The default instance of GNN, on the other hand, is more optimised to re-
construct electron tracks produced in the electronic showers and low-energy hadrons:
the type of tracks that standard charged particle tracking algorithms traditionally
struggle with.

The default GNN model-based tracking procedure, as expected, has demonstrated
strong performance in the electron sector, resulting in a significantly higher percent-
age of reconstructed electron tracks with a reconstruction efficiency almost double
that achieved by FEDRA. For muonic tracks, the scenario is twofold: in terms of
track reconstruction efficiency, the default GNN-based tracking possesses advantages
over traditional methods, particularly in signal events where the reconstruction ef-
ficiency reaches 100%. However, this higher efficiency comes at the price of the
lower quality of the track reconstruction, particularly for THRE, where the perfor-
mance is 11% lower compared to standard techniques, affecting the hit completeness
of the tracks relative to their MC-generated counterparts. Nevertheless, it should
be noted that the quantity of muons originating from signal events is insufficient to
draw broad conclusions about ANNDEA’s muon reconstruction capabilities. For the
muons coming from IP1, the results are more promising, with reconstruction qual-
ity slightly superior to that of the conventional algorithm. However, GNN-assisted
tracking is certainly prone to splitting tracks during reconstruction, resulting in
segmentation being 10-20% higher than observed for FEDRA reconstructed muons.
This problem is particularly troubling as it somewhat negates the progress achieved
in Section 4.4.

With the tuned GNN model-based tracking procedure, the situation is almost
the opposite of the previous case: while the quality of muon reconstruction has
slightly improved, it has come at a significant cost to the efficiency of electron track
reconstruction, which has decreased to approximately 30%: even lower than the
rate attained by FEDRA. It should be noted that although there has been a slight
reduction in IP1 muon segmentation due to the tuned GNN tracking procedure, it
still surpasses the one achieved by FEDRA by ≈ 7%.

Compared to FEDRA, both GNN models demonstrated a superior performance in
the hadron sector, marked by an increase in tracking efficiency where the TRE pa-
rameter rose from approximately 60-65% to around 85%, and better reconstruction
quality, evidenced by a reduction in track segmentation by approximately 12-15%
and a THRE metric improvement of roughly 16-17 percentage points.

To illustrate a more qualitative comparison of various reconstruction algorithms, a
signal event depicting a muon-neutrino nucleus interaction, where one of the tracks
generates a cascade of electromagnetic showers along its trajectory, has been visu-
alised in the figure below:

Among the three approaches, the conventional ANNDEA tracking reconstruction
surpasses both FEDRA and the GNN-tuned variant in accurately replicating the
simulated event truth. In contrast to FEDRA, the electromagnetic shower pro-
file is more complete, and both hadron and muon tracks show fewer segmentation
problems compared to the standard reconstruction method. The tuned GNN-aided
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Figure 4.45: A visualised example of one of the simulated signal events in the control domain with
tracks reconstructed by different algorithms.

algorithm performance falls somewhere in between the FEDRA and the standard
GNN reconstruction; although the hadron tracks exhibit slight segmentation issues,
the efficiency of electron track reconstruction decreases considerably, mirroring the
reduction observed in the FEDRA reconstruction.

4.7.8 Performance on Run 0 data
Before assessing the tracking performance of ANNDEA on the Run 1 data, a similar
dataset from Run 0 was utilised for preliminary testing of ANNDEA. This data set
was acquired with a simplified configuration of the SND@LHC target, where only
a single brick was active, and it was used to calibrate the FEDRA reconstruction
parameters. Given that it has accumulated only about ≈ 0.46 fb−1[189] of LHC
data, the hit density per unit volume is roughly an order of magnitude lower than
in the Run 1 data sample, providing an ideal environment to identify potential early
issues in ANNDEA’s tracking capabilities on actual data.
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Figure 4.46: The averaged hit density heat map for the Run 0 data sample is illustrated with the
(Left) panel showing the frontal projection on the xy-plane and the (Right) panel depicting the
heatmap projected onto the xz-plane. It is important to note that the density values are expressed
as the number of hits per cubic centimetre. However, the dimensions of each heatmap cell are 1
mm x 1 mm x 12 mm, with the latter dimension expanded to accommodate the discrete nature of
the hit spatial distribution along the z-axis.

Results

The reconstruction process was performed using a default trained GNN model, and
it took about a week. The output was assessed and compared to the FEDRA output
using a few criteria: hit utilisation, the track parameter distribution and the visual
inspection of the long tracks.

The utilisation of hits has been computed by taking the number of hits consumed
during tracking and dividing it by the total hits available in the dataset. FEDRA
discards tracks with fewer than four hits to reduce background; similarly, for AN-
NDEA, tracks under this threshold have their hits marked as unutilised. From the
dataset’s 2,098,594 available hits, ANNDEA successfully used 540,597 for track re-
construction, resulting in a 25.76% utilisation rate. This value is noticeably higher
than FEDRA’s, which achieved a 21.57% utilisation on the same data sample.

To evaluate how well ANNDEA can reconstruct tracks with different geometry
configurations, the graphs showing track distribution against track length and angle
with respect to the z-axis have been plotted for both algorithms and presented below.

A small subset of ANNDEA’s longest tracks has been visualised to assess the quality
of track reconstruction and identify any anomalies, as illustrated in Figure 4.48
below.

Discussion

The distribution of track lengths in both FEDRA and ANNDEA exhibits a similar
pattern that can be divided into three distinct regions: the left region, containing
track lengths with four to fourteen hits, the right region, encompassing tracks with 46
to 57 hits, and a middle region that spans the range between. In the left region, short
tracks predominated by low-energy electrons are most prevalent, with a significant
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Figure 4.47: The distribution of initial tracks derived from ANNDEA and FEDRA versus the
number of constituent hits (Top) and their azimuthal angle in degrees (Bottom). The vertical axis
uses a logarithmic scale to represent the number of distinct tracks, and the percentages indicated
by coloured values over the lines show the proportion of tracks within the particular bin.

Figure 4.48: A subset of ANNDEA tracks from Run 0 spanning the entire detector.

concentration at 4 hits, representing 16% of all FEDRA and 32% of all ANNDEA
tracks, respectively. As the number of hits increases, the number of tracks declines
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sharply, leading to a more uniform middle region comprising tracks of moderate
length. These tracks are likely generated by hadrons, fragments of muon tracks,
and cosmic muons penetrating the detector at steep angles. In contrast, the right
region predominantly contains IP1 muons that fully traverse the detector, with the
width of the peak reflecting the quality of the track reconstruction and the hit
detection efficiency.

Although ANNDEA and FEDRA share some similarities in the reconstructed
picture, some differences are apparent: ANNDEA’s increased utilisation is driven
by its ability to reconstruct a significantly higher number of short tracks compared
to FEDRA. In terms of reconstructing long muons, ANNDEA has a less prominent
peak than FEDRA, which can be attributed to track segmentation issues. This
results in a higher proportion of ANNDEA tracks within the 30-44 hits length range,
often comprising fragmented muon tracks. This is consistent with simulation results,
where a similar pattern is observed: ANNDEA tends to be more skewed towards
reconstructing electron and hadron tracks while encountering difficulties with IP1
muons, whereas FEDRA exhibits an opposite bias.

The distribution of track angles can be broadly categorised into three sections,
though the boundaries are less distinct in this scenario. The left section contains a
peak around ≈ 1◦, associated with muons arriving from the LHC interaction point,
which quickly decreases into a relatively flat region covering angles from 10 to 56
degrees. The left side of this section is likely influenced by hadron interactions and
the decay products, while the latter portion is primarily due to external backgrounds,
such as radiation from surrounding walls and cosmic muons. On the right side of the
graph, there is a sharp decline in track numbers as the angle approaches 58◦. This
decline is not indicative of any physical phenomena but is due to the limitations of
scanning and tracking algorithms in reconstructing tracks with steep angles.

When it comes to reconstructing tracks at shallow angles, the FEDRA’s and AN-
NDEA’s performance is almost identical. However, ANNDEA demonstrates a clear
advantage in handling particles that pass through the detector at steep angles, with
a noticeable increase in the number of particles reconstructed in the 10-57 degree
range. Although the ability to reconstruct cosmic muon radiation might be of ques-
tionable value, this capability proves beneficial for reconstructing interaction prod-
ucts and particle decays with a low Lorentz boost along the z-axis.

The visual inspection indicates that the track morphology is generally healthy,
although a series of unusual kinks were detected in the track trajectories between
-35 mm and -30 mm. An inquiry with the collaboration team has confirmed that
this section experienced significant data quality problems during the scanning of
the related plate. Although primarily a cosmetic concern, it is evident that the
ANNDEA tracking algorithm is affected by the data quality during scanning, and
this should be considered when reconstructing other data sets with similar issues.

4.7.9 Performance on Run 1 data
After conducting the tracking test on the Run 0 dataset, the Run 1 dataset, detailed
in 4.3 was addressed. Unfortunately, the tenfold increase in hit density within this
sample has posed a substantial computational challenge, rendering all efforts to con-
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duct complete tracking of the sample unsuccessful. Diagnostics swiftly identified the
issue: the graph construction process exceeded the maximum wall time permitted
by the HTCondor batch system, taking over a week to complete.

Figure 4.49: The averaged hit density heat map for the Run 1 data sample is illustrated with
the (Left) panel showing the frontal projection on the xy-plane and the (Right) panel depicting
the heatmap projected onto the xz-plane. Only the highlighted regions have been processed by
ANNDEA, while the shaded areas represent the detector volume that has been omitted during the
tracking process.

To mitigate this restriction, a quick workaround was implemented by introducing
an extra criterion for the hit seeds to satisfy before engaging in the graph con-
struction process: the z-axis distance cutoff, originally matching the hit cluster’s
12,000-micron length, was decreased to 4,000 microns. Although ad-hoc simulation
studies indicated a significant decline in track reconstruction quality, this change
considerably lowered the graph’s interconnectivity and complexity, thereby easing
computational demand and reducing graph construction time. Unfortunately, even
these drastic measures were insufficient to process the entire sample, resulting in
the processing of only a small peripheral subsample measuring 6 mm ×15 mm ×84
mm, as illustrated above.

Results

The calculation for hit utilisation followed a similar method to Run 0. However, this
time, a significantly smaller fraction of the data was processed. As a result, FEDRA
tracks that did not meet the four-hit criteria had their hits classified as unutilised
for an equitable comparison. Out of the entire dataset containing 4,485,287 hits,
ANNDEA was able to successfully reconstruct tracks from merely 127,831 hits,
yielding a notably lower utilisation rate of 2.85% in contrast to Run 0, despite the
fact that nearly twice the number of hits was available. On the other hand, FEDRA
showed enhancement, attaining a hit utilisation rate of 26.1%.

To gain a better understanding of why ANNDEA performed poorly, the graphs
depicting the track distribution in relation to track length and azimuthal angle for
both algorithms have been plotted and visualised in Figure 4.50 below.
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Figure 4.50: The distribution of ANNDEA and FEDRA tracks versus the number of constituent
hits (Top) and their angle with respect to the z-axis (Bottom). The vertical axis uses a logarithmic
scale to represent the number of distinct tracks, and the percentages indicated by coloured values
over the lines show the proportion of tracks within the particular bin.

Additionally, a small subset of ANNDEA’s longest tracks has been visualised to
assess the quality of track reconstruction and identify any anomalies, as illustrated
below.

Discussion

Although the distribution of FEDRA tracks in terms of track lengths and angles
shows a pattern comparable to Run 0, the scenario with ANNDEA is completely
different: the distribution reaches a peak at 4 hits per track and rapidly drops to
a value of 17, highlighting ANNDEA’s inability to reconstruct tracks beyond this
length. Analysis of the track angle distribution and visual inspection clearly indicate
that the longest tracks reconstructed by ANNDEA are mainly cosmic muons and
external radiation crossing the detector at steep angles.

Although ANNDEA struggles significantly with accurately reconstructing muons
directly from the LHC, it still demonstrates a substantial advantage over FEDRA
in reconstructing tracks at steep angles, with the number of tracks reconstructed at
certain angles surpassing FEDRA’s by a factor of 100.

A closer examination of the visualised tracks reveals noticeable non-linearity in the
reconstructed paths. This can be linked to several factors, including errors in the
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Figure 4.51: A subset of ANNDEAs longest tracks from Run 1 incident at approximately 45
degrees, consistent with cosmic muons to which the ECC brick was briefly exposed during the
transportation outside the T118 tunnel.

ANNDEA reconstruction process, flaws in the brick alignment, and potentially the
generally lower momentum of the external radiation. However, for cosmic muons,
this lower momentum scenario is improbable, given their typically high energies.

4.7.10 Conclusion
Summary

To summarise, this study has aimed at similar goals as outlined in Section 4.4:
to improve the precision of the standard method currently used for tracking the
emulsion data in the SND@LHC experiment. However, rather than refining the al-
ready reconstructed tracks, a more innovative strategy was suggested, which involves
tracking the hit data from scratch using geometrical neural networks. The approach
included utilising a pre-existing data pipeline identified during the literature review
that uses graph edge analysis, originally created for ATLAS, and modifying it to suit
the SND@LHC data framework, including adjustments for the specific geometry of
the emulsion detector.

To illustrate the flexibility of neural networks when adapted to specific physics
processes, two instances of the GNN model were trained: a general model and
one that exclusively targets muon and hadron particle tracks. Both setups were
assessed using the same control set of simulated data employed in previous studies
for comparison purposes. Data processing took approximately one week, and the
analysis of results from both models revealed differences and similarities in their
reconstructed event pictures. The general GNN model significantly improved the
electron reconstruction efficiency from 40% to nearly 70% and enhanced the track
quality compared to the standard reconstruction algorithm.

In contrast, the general GNN model exhibited slightly inferior performance com-
pared to FEDRA in terms of muons from signal events, although the number of
these events is too small to draw definitive conclusions. The tuned GNN model im-
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proved muon reconstruction quality but suffered a substantial reduction in electron
reconstruction quality compared to both the general GNN and FEDRA outputs.

Both the general and tuned GNN models demonstrated superior efficiency and
quality in hadron particle tracking. A common tendency for both models to fragment
muon tracks was also noted.

After conducting simulation experiments, a small sample of scanned Run 0 emul-
sion data was analysed using a similar approach. The analysis has revealed similar
trends to those observed in the simulation. A much higher number of short tracks
were reconstructed by ANNDEA compared to the standard tracking procedure, al-
beit at the cost of higher segmentation of the high-energy muons. Small anomalies
in the morphology of the ANNDEA reconstructed tracks have been spotted and
attributed to the data quality issues that have arisen during the data acquisition
stage.

A data sample from Run 1 was also attempted; however, due to its much higher
density, only a portion of the data could be processed using stricter data selection
criteria. This led to more simplified and less interconnected graphs for processing
by GNNs. The analyses were conducted using a methodology similar to that of Run
0, but the results were quite different. ANNDEA produced significantly fewer tracks
and was unsuccessful in reconstructing IP1 muons and long hadrons. Instead, it was
more effective in dealing with charged particles traversing the emulsion detector at
large angles above 8◦ with respect to the z-axis.

Interpretation

The studies involving the GNN-enhanced tracking mechanism in the simulation
have shown considerable promise of the graph-based approach in reconstructing
physics events, especially complex track trajectories like those found in electromag-
netic showers, which are typically challenging for conventional tracking algorithms.
Although there are specific areas where ANNDEA slightly underperforms compared
to FEDRA, such as IP1 muon reconstruction, the performance gap is relatively mi-
nor, suggesting that these are likely teething problems that can be addressed with
ongoing enhancements. The test on the low-density data sample recorded during
Run 0 has demonstrated that, despite challenging data quality, ANNDEA is still
capable of demonstrating its strong performance and is less limited than FEDRA in
reconstructing particle tracks left by other events that were not taken into account
during simulation, such as cosmic muons. However, a few minor yet significant
anomalies in the track morphology have also been observed and should not be over-
looked.

Unfortunately, the tests on a set with the density that will be anticipated at the
actual experimental conditions have highlighted one of the critical issues that arise
when analysing graph data: a significant computational resource demand in build-
ing the graphs for GNN analysis. The computational requirements for constructing
graphs tend to increase cubically with the rise in hit density, and at present, paralleli-
sation is not feasible, thus making graph building a major time-consuming obstacle
for the charged particle tracking in emulsion.

Attempts to streamline graph construction by imposing the strictest feasible cri-
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teria on hit connections have marginally reduced computational time. Despite these
efforts, only partial results have been obtained, exposing ANNDEA’s inability to
replicate its performance observed in less dense simulations and datasets. Since
ANNDEA was not running at its intended algorithm configuration, identifying the
precise cause of its subpar performance is a non-trivial exercise.

There are three plausible reasons why it can happen: poor data quality, high
density of the data or the result of the cuts, which can be implicitly attributed
back to the high-density issue. While the poor data quality certainly had a role in
diminishing ANNDEA performance, it is unlikely to be the dominant factor. First
of all, Run 0 also had challenging data issues and had higher measured residuals
on the long tracks due to the alignment than for the Run 1 data sample, yet the
ANNDEA still managed to perform adequate tracking on it.

The second important observation that puts a shadow on the poor data quality
theory is the fact that in Run 1, ANNDEA did not have an issue in reconstruct-
ing steeply angled tracks with angles exceeding 8◦ and, in fact, has outperformed
FEDRA in this aspect in a similar fashion as in Run 0. This greatly supports the
density-related theory: high-angle domains have much less density due to a sig-
nificantly lower intensity of the related particle sources and since ANNDEA can
separate the hits based on their angle, these groups are less challenging to recon-
struct. This domain is also less susceptible to the graph restriction measures that
have been done purely on the distance along the z-axis component.

Therefore, it can be concluded that high density and the drastic measures that
had to be taken to alleviate the computational challenges are to blame; however,
which one is the dominant factor is unclear. What can be said with certainty is
that the results from the analysis of FEDRA tracks show that the tracking at this
density, while challenging, is not fundamentally impossible and that there is a large
area for improvement of the ANN-based algorithms.

Further research

In its current form, ANNDEA can be used for tracking; however, it is severely re-
stricted to data sets with the hit densities . 105 cm−3, which would make it ideal for
low-intensity conditions experienced in the experimental setups such as OPERA. Un-
fortunately, the typical hit densities observed at the SND@LHC experiment impose
significant demands on the computational resources needed for ANNDEA, which are
currently beyond the reach of CERN’s available infrastructure. Attempts to apply
quick fixes by crudely limiting graphs have failed to achieve the desired outcome,
necessitating a more thorough revision of the ANNDEA pipeline for sustainable
progress. Logs indicate that the bottleneck in the ANNDEA tracking pipeline is the
graph creation stage. Once it is completed, the GNN analysis and track-building
proceed swiftly, taking merely 10-15 minutes to complete. Thus, to speed up the
process, it is beneficial to examine the steps leading to graph creation, particularly
hit selection and hit seeding, since these are readily parallelisable.

The hit selection method currently utilised by both FEDRA and ANNDEA in-
volves filtering out basetracks with fewer than 20 silver grain clusters per microtrack
pair and a chi-square fit value exceeding 2.4 for two matching microtracks. This
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strategy aims to discard the background noise: false hits triggered by external in-
fluences such as heat, rather than by actual charged particles. While theoretically,
these criteria could be altered, determining the precise correlation between these pa-
rameters and the likelihood of an incorrect hit activation is quite challenging. The
simulations do not go into this level of detail, leaving data-driven methods as the
only feasible option. Nonetheless, addressing this uncertainty might not provide a
long-term solution, since the primary cause of increased emulsion density is the pro-
longed exposure of the target to high-intensity muon particles and their secondary
effects, including delta-rays and bremsstrahlung, making the fog contribution mod-
erate in comparison.

The seed selection, on the other hand, presents numerous opportunities for fur-
ther optimisation, although a cautious approach is imperative to prevent depriving
the subsequent graph of essential information. In its current setup, ANNDEA em-
ploys three primary criteria: the maximum angular difference between two hits, the
maximum transverse distance, and the maximum distance along the z-axis. The
latter was reduced as a desperate effort to simplify graph complexity, but this sim-
plification adversely affected track reconstruction quality, thus failing to meet the
benefit-cost criteria. Analytically, the only sensible course of action would be to ad-
just the cut on the relative angle between hits as a function of their relative distance
rather than applying a constant average value. From a physics perspective, this is
logical: the nearer the hits, the smaller the expected angular difference. Nonethe-
less, implementing this would require simulation studies to determine the optimal
function for maximising the SNR, and the impact on reducing extraneous graph
complexity is uncertain and might not adequately address the issue.

A more farsighted strategy is to use a neural network to seed the hits. This ap-
proach will undoubtedly make the ANNDEA pipeline more complex, but there is a
silver lining: the hit seed is a simple object that can be represented by a short vector
that encodes relational information, such as spatial distance and relative angle, thus,
a simple MLP will be sufficient. Certainly, there is no guarantee that this method
will reduce graph complexity to the desired level without considerably compromising
the final GNN output. However, since the depth of an MLP can be easily modi-
fied, the iterative experiments could at least determine whether such a reduction is
theoretically feasible. This technique has been applied in analogous situations[190]
involving charged-particle tracking, albeit with non-emulsion detectors.

While tackling the computational challenge is important, there are other issues
that need to be resolved, especially the extensive number of separate jobs necessary
to process on HTCondor. For a single brick, the number of jobs can surpass 104,
making their management challenging in practice. Additionally, the task of merging
clusters poses issues, as it often results in tracks with multiple hits on the same
plate. This creates anomalies that give the tracks an unrealistic "seesaw" pattern.

The ANNDEA is designed to resolve these conflicts in the final stages of the data
processing by discarding duplicated hits, but the overall setup is not ideal, and simu-
lation studies have hinted at this being the largest source of the track fragmentation.

A plausible solution to these problems could be an increase in the size of the hit
cluster. Ideally, the cluster dimensions should be equivalent to those of the emulsion
brick; however, this is impractical due to the prohibitive number of hit seeds that
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Figure 4.52: A visualised example of reconstructed ANNDEA tracks before applying the corrective
measures.

need to be processed. Even FEDRA cannot process an ECC unit containing LHC
data in one go, and instead is handled in cross-sectional cells of 1 cm × 1 cm that
span the entire length of the ECC unit. For a fair comparison between FEDRA
and ANNDEA, the hit cluster size for ANNDEA should be able to process similar
dimensions, about 1.5 cm ×1.5 cm × 7.8 cm volume blocks18 . This adjustment
would decrease the number of reconstruction jobs processed on the HTCondor batch
farm and minimise instances where clusters need merging, potentially reducing track
segmentation.

Unfortunately, enlarging the cluster size would inevitably prolong batch-farm ex-
ecution times, which, even in the current configuration, exceed the available compu-
tational resources. Therefore, the density problem mentioned in the beginning has
to be resolved first. However, considering the results that the graph method demon-
strated so far on computationally available data, the benefits will likely outweigh
this effort.

18 This extra 5 mm is factored in to account for the horizontal and vertical dispersion of the hit
coordinates due to the alignment procedure.
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Chapter 5

Final Conclusion

This research set out to evaluate the practical benefits of Machine Learning (ML) in
high-energy physics, with a particular focus on enhancing discovery potential in the
SHiP and SND@LHC experiments at CERN. Through five comprehensive investi-
gations using both simulated and real data, this study has demonstrated that ML
holds considerable promise in pushing the boundaries of current data reconstruction
and analysis methods.

In the first investigation, evolutionary algorithms proved to be an effective opti-
misation technique for designing a magnetic shield that minimises background noise
in the SHiP detectors. Among all tested configurations, the evolved design yielded
the highest background suppression in simulation, showcasing the potential of ML-
driven design in experimental setups.

The second study highlighted the power of neural networks in improving the
tracking efficiency in the SND@LHC emulsion detector. By intelligently merging
previously fragmented track segments, the ML-assisted approach achieved a notable
reduction in background tracks: up to 10% more than conventional methods, ulti-
mately enhancing vertex reconstruction accuracy.

In the third investigation, neural networks were successfully applied to leverage the
unparalleled resolution of emulsion data, enabling particle classification and momen-
tum estimation from track properties. Although further exploration is warranted,
the results affirm the feasibility of using ML for extracting rich, physics-relevant
insights from detector data.

The fourth study explored neural networks as an alternative to traditional ver-
texing algorithms. While no definitive advantage over Kalman filter methods was
observed due to limited statistics, the findings suggest that ML-based vertexing is
a viable and potentially competitive approach that merits continued investigation.

In the fifth and final study, geometric neural networks (GNNs) were applied to
one of the most complex tasks: track reconstruction in emulsion data. This innova-
tive method demonstrated compelling advantages, including higher reconstruction
efficiency and adaptability to challenging scenarios like electromagnetic showers.
These promising outcomes mark a meaningful step forward in developing flexible,
ML-based tracking frameworks.
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What makes this research particularly unique is its focus on underexplored ML
frontiers in particle physics: evolutionary optimisation for detector components and
deep learning applications for emulsion data. Collectively, these studies illustrate
that ML not only offers theoretical advantages but also delivers practical benefits
in terms of precision and data reconstruction quality. The clear message is that the
integration of ML into high-energy physics is not only worthwhile – it is essential
for continued progress.

Of course, this journey also revealed several practical challenges that currently
limit the widespread adoption of ML in particle physics. These include steep learning
curves, software maintenance burdens, and the substantial computational demands
involved, particularly when dealing with data from emulsion detectors. However,
these obstacles are not insurmountable. Instead, they serve as valuable signposts
guiding the development of more accessible tools, better data pipelines, and more
robust training datasets.

In response to some of these challenges, the ANNDEA framework was developed.
This tool represents an important step forward, offering an easier and more intuitive
interface for newcomers while automating many of the complex data manipulation
steps. ANNDEA embodies the vision of democratising ML access in particle physics
and lowering the barrier to entry for students and researchers alike.

This thesis also proposed a path forward by merging two complementary ML ap-
proaches within ANNDEA: one enhancing seed selection, and the other applying
GNNs for event reconstruction. While neither method performs optimally in isola-
tion, their combination, as illustrated in Figure 5.1, offers a balanced and effective
solution for emulsion data reconstruction.

Figure 5.1: A schematic representation of the data pipeline proposed for the SND@LHC emulsion
data reconstruction process.
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Two future directions emerge from this research. First, enhancing traditional re-
construction pipelines with ML alternatives within the existing paradigm paves the
way for more efficient, accurate physics event analysis. ANNDEA can be viewed
as a natural evolution of FEDRA, shifting from analytical logic to adaptive ML
algorithms.

Second, there lies exciting potential in exploring radically different approaches. For
instance, convolutional neural networks may directly segment raw emulsion data to
identify regions of interest without intermediate reconstruction steps. Likewise, in-
tegrating ML into the scanning process itself, using methods inspired by 3D medical
imaging, could revolutionise how emulsion films are read, reducing bottlenecks and
improving data quality.

In conclusion, this thesis affirms that, while challenges remain, the integration of
ML into experimental particle physics, especially in novel areas like emulsion data
analysis, offers remarkable opportunities. The road ahead is promising, and with
continued research and collaboration, machine learning can become a cornerstone
in unlocking new physics at the energy and intensity frontier.
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Appendix A

Finding the right EA architecture

Here, an arbitrarily chosen evolutionary algorithm is used to arrive at the best EA
configuration for this particular problem. The whole procedure can be illustrated
as:

For hyper-tuning studies, a reduced search space is used. The typical AMS full
genetic representation with 42 parameters is taken, and 6 of them are chosen (in
bold), while the rest are set to a constant value:

[200;170;180;207;185;248;305;242;10;40;150;150;2;2;80;80;150;150;2;2;15;51;29;46;10;7;54;38;46;192;14;9;25;31;35;31;51;11;3;32;54;24].

The setup can be simplified to:

[200; 180; 185; 10; 15; 25].

For easier processing by the evolution algorithm, the representation is changed using
the formula:

[
(x1 − 175)

5
;
(x2 − 175)

5
;
(x3 − 175)

5
;
x4
5
;
x5
5
;
x6
5
] (A.1)
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This can now be expressed as [5; 1; 2; 2; 3; 5]. By restricting a range of values to
(1-5) for each of the six parameters, a subset of search space with a size of 56 or
15625 points is obtained.

Figure A.1: The evaluated reduced space of muon shield configurations with fitness (or FCN) on
the vertical axis and AMS configuration index number on the horizontal axis. The Global Optima
(the point with the lowest fitness in the subset) is labelled with a value of 45.87.

By using a specially created submission script and the HTCondor batch service,
each point in the reduced subspace is evaluated, resulting in the complete data set.

The next step is to run optimisation cycles using a simple Random Search Al-
gorithm (RSA). The objective is to establish a reliable foundation against which
to compare and evaluate EA settings. The RSA algorithm works as follows: RSA
picks a random AMS configuration point and evaluates it using the data file. Ev-
ery evaluation costs RSA one iteration point, but the algorithm is not penalised
for evaluating the same point twice. The RSA continues to evaluate muon shield
configurations one by one until it finds the global optimum. For better statistics,
the whole procedure is repeated 100 times.

Once the RSA search profile is obtained, the meta-EA optimisation process begins:

1. The initial population of EA models with random configurations is generated.

2. Every EA individual runs 10 times over the data. Each of those 10 runs is
capped to a maximum of 8041 iterations (the average number of iterations it
takes for a random search algorithm to find GOP).

3. After each of those runs, a quantity called Q is evaluated, which is the utility
of each EA model. It is a multi-objective metric that measures both EA
performance versus RSA and its consistency in delivering those results from
run to run.

4. Metagenetic operators are performed on the top selected EA configurations.
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5. Steps 3 to 5 repeat until no further progress is made.

After several days of the meta-optimisation process, the run has been suspended and
the top ten EA models have been re-evaluated by using 100 runs each to calculate a
more accurate utility. Eventually, the top EA architecture has been selected for the
muon shield optimisation process with little modifications to a mutation operator
to accommodate the full 42-dimension vector space.

Figure A.2: The RSA search profile indicates an average best solution found at the evaluation
iteration.

Figure A.3: The utility calculation methodology description.
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Figure A.4: An example of the utility calculation.

Figure A.5: The genetic encoding table that was used to define an EA model.

Figure A.6: Top 10 EA configurations following the meta-EA optimisation procedure.
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Appendix B

The impact of reducing SLG cut

To estimate the impact of the reduction of the SLG cut from 7000 microns to 4000
microns that can affect the Run 1 data desegmentation performance, a short study
has been conducted using the control domain data set and plotting the track length
distribution and the background removal effect.

Figure B.1: Distribution of long (>50 plates) FEDRA original tracks (Orange filled area) for
control domain simulation and ANNDEA Phase 2 tracks (Green line for nominal and Teal for
reduced cut) with their length measured in number of plates traversed. The text labels indicate
the percentage change in the number of tracks for this particular length.

Figure B.2: The plots of the background removal effect on the control domain data that can be
achieved thanks to de-segmentation with the lower value of SLG cut set to 4000 microns.
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Although there is a drop in the desegmentation performance compared to the nom-
inal ANNDEA configuration, it is still not sufficient to explain the gap observed in
Run 1 data.

207



Appendix C

Classification of the truth particles

The classification used in SND@LHC research applies only to events simulated using
the Monte Carlo method.

Table C.1: The particle group mapping based on the Particle, Mother Particle and Process ID.

Particle group Particle source Particle ID Mother Particle
ID

Process ID Additional
comments

EM showers -11, 11 13, -13 9

Electrons

Delta rays -11 13, -13 8

External Mother ID

muons -13, 13 0 is designated

from IP1 as zero

Muons Muon CC

neutrino -13 14 interactions

interaction only

Muon Particle ID

neutrino ±xxx 14 consists of

interaction 3 digits

Hadronic Mother/Particle ID

Hadrons interaction ±xxx ±xxx consists of

3 digits

µ/e/γ Mother/Particle ID

nuclear ±xxx ±xxx 25, 26, 27, 46 consists of

interaction 3 digits
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