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Nonlinear Meta-learning Can Guarantee Faster Rates\ast 

Dimitri Meunier\dagger , Zhu Li\ddagger , Arthur Gretton\dagger , and Samory Kpotufe\S 

Abstract. Many recent theoretical works on meta-learning aim to achieve guarantees in leveraging similar
representational structures from related tasks towards simplifying a target task. The main aim
of theoretical guarantees on the subject is to establish the extent to which convergence rates---in
learning a common representation---may scale with the number N of tasks (as well as the number
of samples per task). First steps in this setting demonstrate this property when both the shared
representation amongst tasks and task-specific regression functions are linear. This linear setting
readily reveals the benefits of aggregating tasks, e.g., via averaging arguments. In practice, however,
the representation is often highly nonlinear, introducing nontrivial biases in each task that cannot
easily be averaged out as in the linear case. In the present work, we derive theoretical guarantees
for meta-learning with nonlinear representations. In particular, assuming the shared nonlinearity
maps to an infinite dimensional reproducing kernel Hilbert space, we show that additional biases
can be mitigated with careful regularization that leverages the smoothness of task-specific regression
functions, yielding improved rates that scale with the number of tasks as desired.
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1. Introduction. Meta-learning refers colloquially to the problem of inferring a deeper
internal structure---beyond a specific task at hand, e.g., a regression task---that may be lever-
aged towards speeding up other similar tasks. This arises for instance in practice with neural
networks where, in pre-training, multiple apparently dissimilar tasks may be aggregated to
learn a representation that enables faster training on unseen target tasks (i.e., requiring rela-
tively fewer target data).

Notwithstanding the popularity of meta-learning in practice, the theoretical understanding
and proper formalism for this setting is still in its early stages. We consider a common
approach in the context of regression, which posits an unknown target-task function of the
form f(x) = g(\Gamma (x)) and N unknown related task-functions of the form fi(x) = gi(\Gamma (x)), i \in 
[N ], i.e., all sharing a common but unknown representation \Gamma (x); it is assumed that all link
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NONLINEAR META-LEARNING CAN GUARANTEE FASTER RATES 1595

functions g and \{ gi\} Ni=1 are simpler---for instance linear or at least lower-dimensional---than the
corresponding regression functions f and \{ fi\} Ni=1. As all these objects are a priori unknown,
recent research has aimed to establish how the target regression problem may benefit from
the N related tasks. In particular, if \Gamma (x) may be approximated by some \^\Gamma (x) at a rate that
scales with N (and the number n of samples per task), then presumably, the target regression
function f may be subsequently learned as \^g(\^\Gamma (x)) at a faster rate commensurate with the
simplicity of g.

Recent theoretical results [10, 21, 31, 37] have provided significant new insights in this
area by considering an idealized linear setting where x\in \BbbR d, g and \{ gi\} Ni=1 are linear functions
in \BbbR s(s\ll d), and \Gamma (x) denotes a linear projection to \BbbR s. These results show that \Gamma can be
learned at a rate of \~O(

\sqrt{} 
ds/nN)---under suitable subspace-distance measures, and where \~O

omits log terms---which then allows for the target task to be learned at a rate of \~O(
\sqrt{} 
s/n)\ll 

\~O(
\sqrt{} 
d/n). Here, it is emphasized that the representation learning rate of \~O(

\sqrt{} 
ds/nN) scales

with the number of tasks N rather than just with n, establishing the benefit of related tasks
in improving the target rate.

In practice, however, the representation \Gamma is in general a nonlinear transformation of x, as
when reproducing kernel Hilbert space (RKHS) or neural net representations are used. While
the importance of the nonlinear setting is well understood, fewer works have so far addressed
this more challenging scenario [10, 28].

In the present work, we consider the case where \Gamma maps x, nonlinearly, into an RKHS
\scrH , possibly of infinite dimension; more precisely, \Gamma projects the feature maps K(x, \cdot ) into
an s-dimensional subspace \scrH s of \scrH . The link functions g and \{ gi\} Ni=1 are assumed to be
simple in the sense that they are linear in \Gamma ; hence we also have that f and \{ fi\} Ni=1 belong to
\scrH . In other words, if we knew \Gamma (or \scrH s =\scrH s(\Gamma )), the target problem would reduce to linear
regression in \BbbR s and therefore would admit (L2) convergence rates of the form \~O(

\sqrt{} 
s/n), which

is significantly faster than usual nonparametric rates for regression over infinite dimensional \scrH 
(see discussion after Theorem 4.2 and Corollary 4.5). As in the case of linear \Gamma discussed above,
this improved rate will turn out to require estimating \Gamma at a fast rate scaling in both N and n.

When moving from linear to nonlinear, nonparametric \Gamma , a significant new challenge arises
due to the bias inherent in the learning procedure. For a high-level intuition, note that a main
appeal of meta-learning is that the aggregate of N tasks should help reduce variance over
using a single task, by carefully combining task-specific statistics computed on each of the N
samples; crucially, such statistics ought to introduce little bias, since bias cannot be averaged
out. Task-specific biases are harder to avoid in nonparametric settings, however, if we wish
to avoid overfitting task-specific statistics. This is in contrast to the case of linear projections
in \BbbR d, where we have unbiased statistics with no overfitting (one may think, e.g., of ordinary
least squares (OLS)).

Fortunately, as we show in this work, nonlinear meta-learning remains possible with rate
guarantees improving in both N and n. Our approach relies on the following initial fact: if the
links \{ gi\} Ni=1 are linear in\scrH , it easily follows that the individual regression functions \{ fi\} Ni=1 all
live in the span \scrH s \subset \scrH of the shared representation \Gamma (see set-up in section 3.1). Thus, under
a richness assumption where \{ fi\} Ni=1 span \scrH s (extending usual assumptions in the linear case,
e.g., of [10]), we may estimate \scrH s by estimating the span of regularized estimates \^fi of fi. In
order to guarantee fast rates that scale with N and n, we need to under-regularize, i.e., overfit
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1596 D. MEUNIER, Z. LI, A. GRETTON, AND S. KPOTUFE

task-specific estimates \{ \^fi\} Ni=1, to suitably decrease bias, at the cost of increased task-specific
(hence overall) variance. Such under-regularization necessarily implies suboptimal regression
in each task but improves estimation of the representation defined by \Gamma .

We demonstrate that these trade-offs may be satisfied, depending on the smoothness level
of regression functions \{ fi\} Ni=1, as captured by complementary regularity conditions on \{ fi\} Ni=1

and the interaction between the kernel and data distributions \{ \mu i\} Ni=1 defined on \scrX \times \BbbR (see
section 4.1), where we view \scrX and \BbbR as the input and output spaces, respectively. In the
process, some interesting subtleties emerge: meta-learning benefits from regularity beyond
usual saturation points that were established in traditional RKHS regression (please refer to
Remark 4.9). This further illustrates how the meta-learning goal of estimating \Gamma inherently
differs from regression, even when relying on regression estimates. This is discussed in further
detail in section 4.

Fast rates scaling in N and n for estimating \scrH s =\scrH s(\Gamma ) from span\{ \^fi\} are established in
Theorem 4.3. This requires, among other tools, a basic variation on Wedin's sin - \Theta theorem
[39] for infinite dimensional operators (Proposition 3). As a consequence, we show that by
operating in \^\scrH s (the estimation of \scrH s) for the target regression problem, we can achieve
parametric target L2 rates of \~O(

\sqrt{} 
s/n) (see Corollary 4.5), which are much faster than the

usual nonparametric rates for f \in \scrH . This last step requires us to establish closeness of
projections onto the estimated \^\scrH s versus \scrH s. Moreover, when the feature map K(x, \cdot ) is
finite dimensional, our results (see Example 1) recover the learning rates obtained in earlier
studies (e.g., [10, 37]), where \Gamma is a linear projection.

Finally, although much of the analysis and involved operations pertain to infinite di-
mensional \scrH space, the entire approach can be instantiated in input data space via suitable
representation theorems (see section 3.3). This realization supports our theoretical findings
with complementary experiments on simulated data, as detailed in section 5.

Related work. Meta-learning is an umbrella term for a rich variety of learning settings,
where we are provided with a set of distributions pertaining to relevant training tasks and
obtain a functional to speed learning on a target task. In this work, we focus on the case where
this functional defines a representation \Gamma of the data, and where the target regression function
is of the form f(x) = g(\Gamma (x)). We begin this section with the closest work to our setting
(namely linear and nonlinear projections \Gamma ) and then briefly touch on alternative meta-learning
definitions for completeness (although these will be outside the scope of the present study).

We start with works in the linear setting that study generalization error where \Gamma is a
learned linear projection \BbbR d \rightarrow \BbbR s, obtained from N training tasks [10, 21, 22, 31, 36, 37, 42].
The authors of [37] study low-dimensional linear representation learning under the assumption
of isotropic inputs for all tasks and obtain the learning rate of \~O(

\sqrt{} 
ds2/nN +

\sqrt{} 
s/n) on the

target task. The authors of [10] achieve a similar rate while relaxing the isotropic assumption
with a different algorithm. In the linear representation case, they obtain an \~O(

\sqrt{} 
ds/nN +\sqrt{} 

s/n) rate. The authors of [21] study a somewhat different scenario, where the number
of samples per task may differ (and is smaller than the dimension d of the data); the aim
is to determine how many tasks must be undertaken in order to achieve consistency. The
work of [21] is most closely related to our work, as our procedure, after linearization in \scrH , is
quite similar to their procedure in \BbbR d, notably in its reliance on outer-products of regression
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NONLINEAR META-LEARNING CAN GUARANTEE FASTER RATES 1597

estimates. However, many technical issues arise in the infinite dimensional setting considered
here, both on the algorithmic and analytical fronts. These are detailed in Remark 3.5 of
section 3. The authors of [36] consider an alternate gradient descent algorithm, where they
jointly minimize the within task loss and the aggregate loss across all tasks. Under the
assumption that the data is Gaussian with the same variance across all tasks, they obtain
the learning rate of \~O(

\sqrt{} 
ds/nN +

\sqrt{} 
s/n). The work [22] considers a distribution dependent

analysis of meta-learning in the setting of fixed design finite dimensional linear regression,
with Gaussian noise and a Gaussian parameter distribution. In the case where the covariance
matrix of the parameter is assumed to be known, the authors provide matching upper and
lower bounds, which demonstrates a precise characterization of the benefit of meta-learning.
While there is no theoretical analysis in the case where the covariance matrix is unknown, the
authors provide a detailed description of how the EM algorithm can be employed to solve the
meta-learning problem. The works [31, 42] also study the linear representation setting and
provide refined theoretical analysis on learning the common representation.

We next consider the case where the representation \Gamma is nonlinear. The authors of [28]
evaluate the performance of a method for learning a nonlinear representation \Gamma \in \scrF which is s-
dimensional, addressing in particular the case of a projection onto a subspace of a reproducing
kernel Hilbert space (RKHS). They focus on a learning to learn (LTL) scenario, where excess
risk is evaluated in expectation over a distribution of tasks [28, section 2.2]: we emphasize
that this is a fundamentally different objective from the performance on a specific novel test
task, as in our setting. The loss they propose to minimize [28, equation (1)] is an average
over N training tasks, where each task involves a different linear weighting of the common
subspace projection (the work does not propose an algorithm but concerns itself solely with
the statistical analysis). Theorem 5 in [28] shows that for an RKHS subspace projection, one
can achieve an LTL excess risk for Lipschitz losses (in expectation over the task distribution)
that decreases as \~O(s/

\surd 
N+

\sqrt{} 
s/n). This requires N \geq n in order to approach the parametric

rate. Note 2 in [28, p. 8] demonstrates that the factor 1/
\surd 
N is an unavoidable consequence

of the LTL setting.
The authors of [10] consider the case of nonlinear representation learning, using the same

training loss as equation (1) in [28], but with performance evaluation on a single test task, as
in our setting. Again defining \Gamma \in \scrF , they obtain a learning rate of \~O(\scrG (\scrF )/

\surd 
nN +

\sqrt{} 
s/n)

for the excess risk [10, Theorem 5.1], where \scrG (\cdot ) measures the Gaussian width of \scrF (a data-
dependent complexity measure, and consequently a function of n,N ; see, e.g., [27], for further
details). The instantiation of \scrG (\scrF ) for specific instances of \scrF was not pursued further in this
work; however, [27] shows that the Gaussian width is of order

\surd 
nN in n and N , in the case

where \scrF is a projection onto a subspace of an RKHS with Lipschitz kernel.
The problem of learning a ``meaningful"" low-dimensional representation \Gamma has also been

addressed in the field of sufficient dimension reduction. The works [14, 24, 41] give different
criteria for obtaining such \Gamma and establishing consistency; however, they do not address the
risk analysis of downstream learning algorithms that employ \Gamma . The authors of [23] intro-
duce the so-called principal support vector machine approach for learning both linear and
nonlinear \Gamma . The idea is to learn a set of support vector regression functions, each mapping
to different ``features"" of the output Y (e.g., restrictions to intervals, nonlinear transforms).
The estimator \^\Gamma of \Gamma is then constructed from the principal components of these solutions.
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1598 D. MEUNIER, Z. LI, A. GRETTON, AND S. KPOTUFE

In the linear setting, the authors provide the
\surd 
n-consistency of \^\Gamma . The authors of [40] provide a

kernelization of sliced inverse regression, which yields a subspace \Gamma in an RKHS (the so-called
effective dimension reduction space). Consistency of the projection by \^\Gamma of an RKHS feature
map \phi (x) is established; and an O(n - 1/4) convergence rate is obtained, under the assumption
that all \Gamma components can be expressed in terms of a finite number of covariance operator
eigenfunctions. The learning risk of downstream estimators using \^\Gamma remains to be established,
however.

Outside of the regression setting, meta-learning has been studied for classification: [15]
investigates the generalization error in this setting, with the representation \Gamma being a fully
connected ReLU neural net of depth Q, common to all tasks. The authors of [1] study
the sample complexity per task when the task-specific classifiers are halfspaces in \BbbR s and
the samples per task are extremely low. Finally, there are analyses for other meta-learning
schemes such as domain adaption [3, 26], domain generalization [5], and covariate shift [25],
as well as alternative gradient-based approaches to refine algorithms on novel test domains,
e.g., [9, 11, 12, 20, 29].

2. Background and notation. Function spaces and basic operators. Let \mu be a probability
measure on \scrX \times \BbbR , \mu \scrX denotes the marginal distribution of \mu on \scrX , and \mu (\cdot | x) denotes the
conditional distribution on \BbbR given x \in \scrX . Let K : \scrX \times \scrX \rightarrow \BbbR be a symmetric and positive
definite kernel function and \scrH be a vector space of \scrX \rightarrow \BbbR functions, endowed with a Hilbert
space structure via an inner product \langle \cdot , \cdot \rangle \scrH . K is a reproducing kernel of \scrH if and only
if 1. \forall x \in \scrX , \phi (x) .

= K(\cdot , x) \in \scrH ; 2.\forall x \in \scrX and \forall f \in \scrH , f(x) = \langle f,\phi (x)\rangle \scrH . A space \scrH 
which possesses a reproducing kernel is called a reproducing kernel Hilbert space (RKHS) [4].
L2(\scrX , \mu \scrX ), abbreviated L2(\mu ), denotes the Hilbert space of square-integrable functions with
respect to (w.r.t.) \mu \scrX .

1

\| A\| and \| A\| HS denote, respectively, the operator and Hilbert--Schmidt norm of a linear
operator A on \scrH . For f, g \in \scrH , g \otimes f

.
= \langle f, \cdot \rangle \scrH g is the generalization of the Euclidean outer

product. The covariance operator is defined as \Sigma 
.
=\BbbE X\sim \mu [K(X, \cdot )\otimes K(X, \cdot )].

We require some standard technical assumptions on the previously defined RKHS and
kernel: 1. \scrH is separable; this is satisfied if \scrX is a Polish space and K is continuous [33,
Lemma 4.33]; 2. \phi (x) is measurable for all x \in \scrX ; 3. supx,x\prime \in \scrX K(x,x\prime )

.
= \kappa 2 <\infty . Note that

those assumptions are not restrictive in practice, as well-known kernels such as the Gaussian,
Laplacian, and Mat\'ern kernels satisfy all of the above assumptions on \BbbR d [32].

Matrix notation of basic operators. For a set of vectors \{ u1, . . . , un\} \in \scrH , U
.
= [u1, . . . , un]

denotes the operator with the vectors as ``columns,"" formally U :\BbbR n \rightarrow \scrH , \alpha \mapsto \rightarrow 
\sum n

i=1 ui\alpha i. Its
adjoint is U\ast :\scrH \rightarrow \BbbR n, u \mapsto \rightarrow (\langle ui, u\rangle \scrH )ni=1.

Kernel ridge regression and regularization. Given a data set D = \{ (xi, yi)\} ni=1 inde-
pendently sampled from \mu , kernel ridge regression aims to estimate the regression function
f\mu =\BbbE \mu [Y | X], with the following kernel-based regularized least-squares procedure:

\^f\lambda = argmin
f\in \scrH 

\Biggl\{ 
1

n

n\sum 
i=1

(yi  - f (xi))
2 + \lambda \| f\| 2\scrH 

\Biggr\} 
,(2.1)

1To simplify notation, when we integrate over \mu \scrX a function defined on \scrX , we use \BbbE \mu instead of \BbbE \mu \scrX .
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NONLINEAR META-LEARNING CAN GUARANTEE FASTER RATES 1599

with \lambda > 0 the regularization parameter. \scrR \mu (f)
.
= \BbbE \mu 

\bigl[ 
(Y  - f(X))2

\bigr] 
is the squared expected

risk and the excess risk is given by \scrE \mu (f)
.
=
\sqrt{} 

\scrR \mu (f) - \scrR \mu (f\mu ) = \BbbE \mu 

\bigl[ 
(f(X) - f\mu (X))2

\bigr] 1/2
.

We also introduce the population version of \^f\lambda as

f\lambda = argmin
f\in \scrH 

\bigl\{ 
\BbbE \mu 

\bigl[ 
(Y  - f(X))2

\bigr] 
+ \lambda \| f\| 2\scrH 

\bigr\} 
.(2.2)

The normed difference \^f\lambda  - f\lambda is referred to as the estimation error and is a central object for
the study of kernel ridge regression (see, e.g., [13]).

Further notation. For n,m \in \BbbN \ast , n\leq m, [n]
.
= \{ 1, . . . , n\} , [n,m]

.
= \{ n, . . . ,m\} . For two real

numbers a and b, we denote a\vee b=max\{ a, b\} and a\wedge b=min\{ a, b\} .

3. Nonlinear meta-learning.

3.1. Population set-up. We consider a setting with N source distributions \{ \mu i\} i\in [N ] de-
fined on \scrX \times \BbbR , with corresponding regression functions of the form fi(x) = gi(\Gamma (x)). We are
interested in minimizing the excess risk for a target distribution \mu T , with regression function
fT (x) = gT (\Gamma (x)). In the mostly common linear case, it is assumed that \Gamma projects into a sub-
space of \BbbR d =\scrX . However, in this manuscript, we assume that \Gamma is a projection of nonlinear
feature maps in an infinite dimensional space.

Assumption 1. We let \Gamma : \scrX \mapsto \rightarrow \scrH be a map from x \in \scrX to a subspace \scrH s of dimension
s \geq 1 of an RKHS \scrH as follows: given a projection operator P onto \scrH s, \Gamma (x)

.
= PK(x, \cdot ).

Furthermore, all link functions gT , \{ gi\} Ni=1 are assumed linear \scrH \mapsto \rightarrow \BbbR , i.e., \exists wT ,wi \in \scrH s s.t.
gT (\Gamma (x)) = \langle wT ,\Gamma (x)\rangle \scrH , and gi(\Gamma (x)) = \langle wi,\Gamma (x)\rangle \scrH .

Remark 3.1. Given an orthonormal basis (ONB) V = [v1, . . . , vs] of \scrH s, we may rewrite
gT (\Gamma (x)) = \alpha \top 

T V
\ast K(x, \cdot ), i.e., for \alpha T \in \BbbR s, for an s-dimensional (nonlinear) representation

V \ast \Gamma (x) = V \ast K(x, \cdot ) of x. The same is true for \{ gi\} Ni=1 with respective \{ \alpha i\} Ni=1. The represen-
tations are nonunique, although their corresponding regression functions and \scrH s are unique
(see Remark 3.3 below).

Remark 3.2. Since P is self-adjoint, we have fT (x)
.
= \langle PwT ,K(x, \cdot )\rangle \scrH ; hence, by the

reproducing property, fT = PwT \in \scrH s. Similarly, we have that all \{ fi\} Ni=1 are in \scrH s.

Remark 3.2 indicates that span
\bigl( 
\{ fi\} i\in [N ]

\bigr) 
\subseteq \scrH s. We therefore need the following richness

condition, similar to previous works on meta-learning in the linear representation case [10],
without which we cannot hope to learn \scrH s.

Assumption 2 (source richness). We have that span
\bigl( 
\{ fi\} i\in [N ]

\bigr) 
=\scrH s.

Remark 3.3. For any projection P onto some complete subspace \scrH s, \langle \cdot , PK(x, \cdot )\rangle \scrH eval-
uates every function in \scrH s at x and in fact is well known as the kernel of the sub-RKHS
defined by \scrH s. The same fact implies uniqueness of \scrH s and in particular that it equals
span\{ \Gamma (x) .= PK(x, \cdot )\} .

3.2. Learning set-up. In this section we present the high level ideas of our meta-learning
strategy with nonlinear representation. The first step is to learn a subspace approximation
\^\scrH s \approx \scrH s from source tasks. This process aims to find a suitable representation that facilitates
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1600 D. MEUNIER, Z. LI, A. GRETTON, AND S. KPOTUFE

the learning of the target task. We refer to this step as pre-training. The second step involves
directly learning the target task within the subspace \^\scrH s. We refer to this step as inference.

Source tasks: Pre-training. Our approach to approximate \scrH s is inspired by [21], which
focused on finite-dimensional linear meta-learning. We extend this strategy to encompass (po-
tentially infinite dimensional) nonlinear meta-learning. Under the source richness assumption
(Assumption 2), \scrH s is equal to the range of the rank-s operator (see Proposition SM2.1 in
the supplementary material)

CN
.
=

1

N

N\sum 
i=1

fi \otimes fi, ranCN =\scrH s.(3.1)

Therefore, we estimate \scrH s via the range of

\^CN,n,\lambda 
.
=

1

N

N\sum 
i=1

\^f \prime i,\lambda \otimes \^fi,\lambda ,(3.2)

where \^f \prime i,\lambda ,
\^fi,\lambda are i.i.d. copies of a ridge regression estimator for source task i \in [N ]. Here,

we use a data-splitting strategy to obtain the following:

\BbbE [ \^CN,n,\lambda ] =
1

N

N\sum 
i=1

\BbbE [ \^f \prime i,\lambda ]\otimes \BbbE [ \^fi,\lambda ].

This property plays a crucial role in deriving approximation rates for \scrH s. Data-splitting
is similarly employed in [21]. Avoiding data-splitting remains an open problem even in the
finite-dimensional linear representation setting.

Each source task is learned from a dataset \scrD i = \{ (xi,j , yi,j)2nj=1\} , i \in [N ], of i.i.d. observa-
tions sampled from \mu i, via regularized kernel regression as in (2.1),

\^fi,\lambda = argmin
f\in \scrH 

n\sum 
j=1

(yi,j  - f(xi,j))
2 + n\lambda \| f\| 2\scrH , \^f \prime i,\lambda = argmin

f\in \scrH 

2n\sum 
j=n+1

(yi,j  - f(xi,j))
2 + n\lambda \| f\| 2\scrH .

(3.3)

For task i \in [N ], let Ki,Li \in \BbbR n\times n be the Gram matrices such that (Ki)j,l = K(xi,j , xi,l),
(j, l)\in [n], and (Li)j,l =K(xi,j , xi,l), (j, l)\in [n+ 1 : 2n]. Then for all x\in \scrX ,

\^fi,\lambda (x) = Y \top 
i (Ki + n\lambda In)

 - 1 ki,x, \^f \prime i,\lambda (x) = (Y \prime 
i )

\top (Li + n\lambda In)
 - 1 \ell i,x,(3.4)

where ki,x = (K(xi,1, x), . . . ,K(xi,n, x))
\top \in \BbbR n, \ell i,x = (K(xi,n+1, x), . . . ,K(xi,2n, x))

\top \in \BbbR n,
Yi = (yi,1, . . . , yi,n)

\top \in \BbbR n, and Y \prime 
i = (yi,n+1, . . . , yi,2n)

\top \in \BbbR n.
After obtaining \^CN,n,\lambda , we cannot directly compare ranCN to ran \^CN,n,\lambda , since the latter

is not guaranteed to be of rank s. We therefore consider the singular value decomposition of
\^CN,n,\lambda :

\^CN,n,\lambda =

N\sum 
i=1

\^\gamma i\^ui \otimes \^vi = \^U \^D \^V \ast ,
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NONLINEAR META-LEARNING CAN GUARANTEE FASTER RATES 1601

where \^\gamma 1 \geq \cdot \cdot \cdot \geq \^\gamma N \geq 0 are the singular values and stored in the diagonal matrix \^D \in 
\BbbR N\times N . The right and left singular vectors are stored as \^V = [\^v1, . . . , \^vN ] and \^U = [\^u1, . . . , \^uN ],
respectively. We use the right singular vectors to construct the approximation of \scrH s as follows
(note that a similar approach can be applied to the left singular vectors):

\^\scrH s
.
= span\{ \^v1, . . . , \^vs\} .

We define the orthogonal projection onto \^\scrH s as \^P .

Remark 3.4. In nonparametric regression, as employed in this approach, regularization
becomes necessary. This leads to biased estimators since \BbbE [ \^fi,\lambda ] \not = fi. For subspace approxi-
mation, it is crucial to effectively control this bias since it cannot be averaged out.

Target task: Inference. We are given a target task dataset \scrD T = \{ (xT,j , yT,j)nT

j=1\} \in 
(\scrX \times \BbbR )nT sampled from \mu T in order to approximate fT . As mentioned in Remark 3.3, \^\scrH s =
\^P (\scrH )\subseteq \scrH forms an RKHS on \scrX having the same inner product as \scrH and with reproducing
kernel \^K(x, y) = \langle \^P\phi (x), \phi (y)\rangle \scrH , (x, y)\in \scrX 2. Consequently, we can estimate fT via regularized
kernel regression within \^\scrH s, as shown in (2.1). For \lambda \ast > 0,

\^fT,\lambda \ast 

.
= argmin

f\in \^\scrH s

nT\sum 
j=1

(f(xT,j) - yT,j)
2 + nT\lambda \ast \| f\| 2\scrH .(3.5)

Since \^\scrH s is s-dimensional, it can be treated as a standard regularized regression in \BbbR s (see
section 3.3). The following remark highlights the main technical difficulties compared to the
linear case.

Remark 3.5 (differences from linear case). We point out that, while the algorithm used in
our meta-learning approach draws inspiration from [21], there are significant differences due
to the complexities of the nonlinear setting, as opposed to the linear one, as outlined below.

First, from the algorithmic perspective, proper regularization is crucial in an infinite di-
mensional space to prevent overfitting. [21] did not employ a regularization scheme but instead
relied on OLS regression, which does not directly extend to infinite dimension where some
form of regularization is needed to control a learner's capacity. A second algorithmic difference
arises in the instantiation of the procedure in input space \BbbR d: while our procedure appears
similar to [21]'s when described in the RKHS \scrH , i.e., after embedding, its instantiating in \BbbR d

is nontrivial, as it involves translating operations in \scrH ---e.g., projections onto subspaces of
\scrH ---into operations in \BbbR d. Section 3.3 below addresses such technicality in depth.

Second, many crucial difficulties arise in the analysis of the infinite dimensional setting
which are not present in the finite-dimensional case. Importantly, in infinite dimensional
space, the analysis effectively concerns two separate spaces: the RKHS \scrH , which encodes the
nonlinear representation, and the L2 regression space. Thus a main technical difficulty is to
relate rates of convergence in \scrH (where all operations are taking place) to rates in L2, in
particular via the covariance operator, which links the two norms \| \cdot \| \scrH and \| \cdot \| L2

; this is
relatively easy in finite dimension by simply assuming an identity covariance (or bounds on its
eigenvalues), as done in [10, 21, 37], but such assumptions do not extend to infinite dimension
where concepts such as ``identity covariance"" are not defined. Namely, an infinite dimensional
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1602 D. MEUNIER, Z. LI, A. GRETTON, AND S. KPOTUFE

covariance operator must be compact, which implies that its eigenvalues decay to zero. Our
analysis reveals that the speed of that decay (encoded in Assumptions 3 and 4) determines
the rate at which we can learn. Furthermore, unlike in [10, 21, 37], where there was no need
to regularize the task-specific regressors, much of our analysis focuses on understanding the
bias-variance trade-offs induced by the choice of regularizers. This is nontrivial but is crucial
for guaranteeing gains in our nonlinear case, as explained in the paper's introduction. Thus,
in the present infinite dimensional setting, as we will see, such crucial trade-offs will depend
on specific measures of smoothness---of the RKHS \scrH and the regression functions therein---as
introduced in the main results in section 4.2 (see Assumptions 3, 4, and 5).

3.3. Instantiation in data space. In this section, we describe in detail the steps outlined in
section 3.2 to offer a comprehensive understanding of the computational process. In particular,
we focus on the computation of the right singular vectors of \^CN,n,\lambda , which plays a crucial role

in constructing \^\scrH s. Additionally, we provide insights into the projection of new data points
onto \^\scrH s, which is essential during the inference stage. We emphasize that such instantiations
were not provided for kernel classes in the nonlinear settings addressed by [10, 28]; given the
nonconvexity of the loss (equation (1) in both papers), this task is nontrivial.

Singular value decomposition of \^CN,n,\lambda . We start by explaining how we can compute

the SVD of \^CN,n,\lambda in closed form from data. Let \{ \^vi\} si=1 and \{ \^ui\} si=1 be the right and left

singular vectors corresponding to the largest s singular values, and denote \^Vs = [\^v1, . . . , \^vs]
and \^Us = [\^u1, . . . , \^us]. The next proposition shows that ( \^Us, \^Vs) can be obtained through the
solution of a generalized eigenvalue problem associated to the matrices J,Q \in \BbbR N\times N , where
for (i, j)\in [N ]2

Ji,j = \langle \^fi, \^fj\rangle \scrH = nY \top 
i (Ki + n\lambda In)

 - 1Kij (Kj + n\lambda In)
 - 1 Yj ,

Qi,j = \langle \^f \prime i , \^f \prime j\rangle \scrH = n(Y \prime 
i )

\top (Li + n\lambda In)
 - 1Lij (Lj + n\lambda In)

 - 1 Y \prime 
j .

Proposition 1. Consider the generalized eigenvalue problem, which consists of finding gen-
eralized eigenvectors (\alpha \top , \beta \top )\top \in \BbbR 2N and generalized eigenvalues \gamma \in \BbbR such that\biggl[ 

0 QJ
JQ 0

\biggr] \biggl[ 
\alpha 
\beta 

\biggr] 
= \gamma 

\biggl[ 
Q 0
0 J

\biggr] \biggl[ 
\alpha 
\beta 

\biggr] 
.

Define A
.
= [ \^f \prime 1, . . . ,

\^f \prime N ] and B
.
= [ \^f1, . . . , \^fN ] and let \{ (\^\alpha \top 

i ,
\^\beta \top i )

\top \} si=1 be the generalized eigenvec-
tors associated to the s-largest generalized eigenvalues of the above problem and re-normalized
such that \alpha \top 

i Q\alpha i = \beta \top i J\beta i = 1, i \in [s]. The following two families of vectors \{ \^ui\} si=1 and
\{ \^vi\} si=1 are orthonormal systems and correspond to top-s left and right singular vectors of
\^CN,n,\lambda :

\^ui =A\^\alpha i =

N\sum 
j=1

(\alpha i)j \^f
\prime 
j , \^vi =B \^\beta i =

N\sum 
j=1

( \^\beta i)j \^fj , i\in [s].

In other words, we can define the projection onto the subspace \^\scrH s via \{ \^vi\} si=1:

\^\scrH s
.
= span\{ \^v1, . . . , \^vs\} = span\{ B \^\beta 1, . . . ,B \^\beta s\} .
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NONLINEAR META-LEARNING CAN GUARANTEE FASTER RATES 1603

Projection onto \^\scrH s and inference. Next, we explain how we can project a new point onto
\^\scrH s and perform inference on such representations. The projection onto \^\scrH s satisfies \^P = \^Vs \^V

\ast 
s .

A new point x\in \scrX can be projected into \^\scrH s as \^P\phi (x) and identified to \BbbR s via

\~x= \^V \ast 
s \phi (x) = (\langle \^v1, \phi (x)\rangle \scrH , . . . , \langle \^vs, \phi (x)\rangle \scrH )\top = (\^v1(x), . . . , \^vs(x))

\top \in \BbbR s.(3.6)

By Proposition 1, \~x can be computed as

\~xi = \^vi(x) = \langle \^vi, \phi (x)\rangle \scrH = \langle B \^\beta i, \phi (x)\rangle \scrH = \^\beta \top i B
\ast \phi (x), i\in [s],

where B\ast \phi (x)
.
= ( \^f1(x), . . . , \^fN (x))\top \in \BbbR N . Recall that after pre-training, at inference, we

receive a target task dataset \scrD T = \{ (xT,j , yT,j)\} nT

j=1. We denote by \~xT,j \in \BbbR s the embedding of

the covariate xT,j into \^\scrH s according to (3.6), and by XT
.
= [\~xT,1, . . . , \~xT,nT

] \in \BbbR s\times nT the data
matrix that collects the embedded points as columns; KT

.
=X\top 

T XT \in \BbbR nT\times nT is the associated
Gram matrix and n - 1

T XTX
\top 
T \in \BbbR s\times s the associated empirical covariance.

Proposition 2. \^fT,\lambda \ast =
\^Vs\beta T,\lambda \ast , where

\^\beta T,\lambda \ast 

.
= argmin

\beta \in \BbbR s

nT\sum 
j=1

\Bigl( 
\beta \top \~xT,j  - yT,j

\Bigr) 2
+ nT\lambda \ast \| \beta \| 22 =XT (KT + nT\lambda \ast InT

) - 1YT ,

and YT
.
= (yT,1, . . . , yT,nT

)\top \in \BbbR nT . For all x\in \scrX , \^fT,\lambda \ast (x) = \beta \top T,\lambda \ast 
\~x.

4. Main results.

4.1. Regularity assumptions. Our first two assumptions are related to the eigensystem
of the covariance operator. For i \in [N ] \cup \{ T\} , the covariance operator for task i, \Sigma i

.
=

\BbbE \mu i
[\phi (X)\otimes \phi (X)], is positive semidefinite and trace-class and thereby admits an eigenvalue

decomposition with eigenvalues \lambda i,1 \geq \lambda i,2 \geq \cdot \cdot \cdot \geq 0 and eigenvectors \{ 
\sqrt{} 
\lambda i,jei,j\} j\geq 1 [34,

Lemma 2.12].

Assumption 3. For i\in [N ], the eigenvalues of the covariance operator \Sigma i from the (K,\mu i)
pair satisfy a polynomial decay of order 1/p, i.e., for some constant c > 0 and 0< p\leq 1, and
for all j \geq 1, \lambda i,j \leq cj - 1/p. When the covariance operator has finite rank, we have p= 0.

The assumption on the decay rate of the eigenvalues is typical in the risk analysis for
kernel ridge regression (see, e.g., [7, 13]).

Assumption 4. There exist \alpha \in [p,1] and k\alpha ,\infty > 0, such that, for any task i \in [N ] and
\mu i-almost all x\in \scrX ,

\sum 
j\geq 1 \lambda 

\alpha 
i,je

2
i,j(x)\leq k2\alpha ,\infty .

This assumption is known as an embedding property (into L\infty ; see [13]) and is a regularity
condition on the pair (K,\mu i). In particular, let TK,i

.
=
\sum 

j \lambda i,j ei,j\otimes L2(\mu i)ei,j denote the integral
operator L2(\mu i) \mapsto \rightarrow L2(\mu i) induced by K; then the assumption characterizes the smallest \alpha 

such that the range of T
\alpha /2
K,i may be continuously embedded into L\infty (\mu i). As is well known for

continuous kernels, ranT
1/2
K,i \equiv \scrH ; thus the assumption holds for \alpha = 1 whenever K is bounded.

Note that the interpolation spaces ranT
\alpha /2
K,i only get larger as \alpha \rightarrow 0, eventually coinciding

with the closure of span\{ ei,j\} j\geq 1 in L2(\mu i). Additionally, it can be shown that Assumption 4
implies Assumption 3 with p= \alpha [13, Lemma 10].
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1604 D. MEUNIER, Z. LI, A. GRETTON, AND S. KPOTUFE

As alluded to in the introduction, \alpha has no direct benefit for regression in our well-specified
setting with fi \in \scrH but is beneficial in meta-learning (see Corollary 4.5 and Remark 4.9
thereafter).

Assumption 5. There exist r \in [0,1] and R \geq 0, such that for i \in [N ], the regression
function fi associated with \mu i is an element of \scrH and satisfies \| \Sigma  - r

i fi\| \scrH 
.
=R<\infty .

This assumption, imposing smoothness on each source task regression function, is standard
in the statistical analysis of regularized least-squares algorithms [7].

Remark 4.1. Assumptions 3, 4, and 5 only concern the source tasks towards nonlinear
meta-learning. We will see in section 4.2 that they are complementary in ensuring enough
smoothness of the source regression functions to allow for sufficient under-regularization to
take advantage of the aggregation of N source tasks. Thus, the main assumption on the
target task is simply that it shares the same nonlinear representation as the source tasks.

Finally, to control the noise we assume the following.

Assumption 6. There exists a constant Y\infty \geq 0 such that for all Y \sim \mu i, i \in [N ] \cup \{ T\} :
| Y | <Y\infty .

4.2. Main theorems.

Theorem 4.2. Under Assumptions 1, 2, and 6 with s\geq 1, for \tau \geq 2.6, 0<\lambda \ast \leq 1, and

nT \geq 6\kappa 2\lambda  - 1
\ast (\tau + log(s)) ,

with probability not less than 1 - 3e - \tau and conditionally on \{ \scrD i\} Ni=1,

\scrE \mu T
( \^fT,\lambda \ast )\leq c0

\biggl\{ \sqrt{} 
\tau s

nT
+

\tau 

nT
\surd 
\lambda \ast 

+
\sqrt{} 
\lambda \ast +

\bigm\| \bigm\| \bigm\| \^P\bot P
\bigm\| \bigm\| \bigm\| \biggr\} ,

where \^P\bot 
.
= I\scrH  - \^P and c0 is a constant that depends only on Y\infty ,\| fT \| \scrH , and \kappa . Hence,

treating \tau as a constant, if we take \lambda \ast = 12\kappa 2(log(s) \vee \tau )n - 1
T , conditionally on \{ \scrD i\} Ni=1, for

nT \geq 12\kappa 2(log(s)\vee \tau ), we get that \scrE \mu T
( \^fT,\lambda \ast ) is of the order\sqrt{} 

s

nT
+
\bigm\| \bigm\| \bigm\| \^P\bot P

\bigm\| \bigm\| \bigm\| .
Theorem 4.2 reveals that the excess risk for the target task consists of two components:\sqrt{} 
s/nT due to the inference stage, and \| \^P\bot P\| in the pre-training stage. In the upcoming

Theorem 4.3, we will see that the pre-training error \| \^P\bot P\| decays with n and N . In other
words, if either N (number of tasks) or n (number of data within each task) is sufficiently
large, we can guarantee that the excess risk decays at the parametric rate O(

\sqrt{} 
s/nT ), an

optimal rate achieved only by performing linear regression in a space of dimension s. \| \^P\bot P\| 
is the sin-\Theta distance between \scrH s and \^\scrH s [35]. We can relate this distance to the difference
between CN and \^CN,n,\lambda using classic perturbation theory for singular vectors. Proposition 3
is a basic generalization of Wedin's sin - \Theta theorem [39].
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NONLINEAR META-LEARNING CAN GUARANTEE FASTER RATES 1605

Proposition 3 (Wedin's sin - \Theta theorem). Given CN and \^CN,n,\lambda defined in (3.1) and (3.2),
with \gamma s smallest nonzero eigenvalues of CN , we have

\| \^P\bot P\| \leq 2\gamma  - 1
s \| \^CN,n,\lambda  - CN\| .(4.1)

We refer the reader to section SM1.2 in the supplementary material for the proof. Note that
the operator norm \| \^CN,n,\lambda  - CN\| is dominated by the Hilbert--Schmidt norm \| \^CN,n,\lambda  - CN\| HS .
The following theorem provides high probability bounds on this quantity.

Theorem 4.3. Let Assumptions 3, 4, 5, and 6 hold with parameters 0 < p \leq \alpha \leq 1 and
r \in [0,1]. Let \tau \geq log(2), N \geq \tau , and 0<\lambda \leq 1\wedge mini\in [N ] \| \Sigma i\| . Define the following terms:

A\lambda 
.
= c log(Nn)

\bigl( 
1 + p log(\lambda  - 1)

\bigr) 
\lambda  - \alpha ,

B\lambda 
.
= c log(Nn)

\bigl( 
1 + p log(\lambda  - 1)

\bigr) 
\lambda  - (1+p),

where c only depends on k\alpha ,\infty ,D,\kappa . We require n\geq A\lambda if r \in (0,1/2] or n\geq B\lambda if r \in (1/2,1].
Under both scenarios, with probability greater than 1 - 2e - \tau  - o((nN) - 10) over the randomness
in the source tasks we have

\| \^CN,n,\lambda  - CN\| HS \leq C1

\Biggl( 
log(nN)

\surd 
\tau 

\surd 
nN\lambda 

1

2
+ p

2

\sqrt{} 
1 +

1

n\lambda \alpha  - p
+ \lambda r

\Biggr) 
,(4.2)

where C1 only depends on Y\infty , R, \kappa , p, and k\alpha ,\infty .

We highlight two key aspects of Theorem 4.3. First, the bound is comprised of two terms
that come from a bias-variance decomposition (refer to section 6 for details):

\| \^CN,n,\lambda  - CN\| HS \leq \| \^CN,n,\lambda  - \BbbE ( \^CN,n,\lambda )\| HS\underbrace{}  \underbrace{}  
\mathrm{V}\mathrm{a}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{n}\mathrm{c}\mathrm{e}

+\| \BbbE ( \^CN,n,\lambda ) - CN\| HS\underbrace{}  \underbrace{}  
\mathrm{B}\mathrm{i}\mathrm{a}\mathrm{s}

.

The first and second terms in (4.2) correspond to bounds on the variance and on the bias,
respectively. Second, while we obtain the same upper bound in (4.2) for the two distinct
scenarios r \in (0,1/2] and r \in (1/2,1], the requirement on the number of training samples per
task is different. In particular, B\lambda \geq A\lambda , since \lambda \leq 1 and p+ 1\geq \alpha . This means that we can
benefit from further smoothness r > 1/2, but at the cost of a higher number of samples per
source task. Our analysis in Theorem SM1.7 implies that the difference comes from bounding
the bias term. We specifically show that uniformly bounding the bias from each task when
r \in (1/2,1] (which requires n \geq B\lambda ) is strictly harder than doing so when r \in (0,1/2] (which
requires n\geq A\lambda ). As such, our results reveal the inherent difficulty of nonlinear meta-learning:
analyzing the bias is more involved than analyzing the variance, a fact which cannot be seen
in the linear representation case.

Remark 4.4 (further smoothness and the well-specified regime). While in usual analyses,
consistency in L2 norm is ensured for r= 0 (implying that the regression function is in \scrH ), we
require further smoothness on source regression functions (i.e., r > 0) to guarantee consistency
in our setting. The requirement for additional smoothness stems from the fact that the result
depends on convergence of regression estimates in the stronger RKHS norm rather than in L2

norm, as the above \| \cdot \| HS and projections are defined w.r.t. the RKHS itself.
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1606 D. MEUNIER, Z. LI, A. GRETTON, AND S. KPOTUFE

We point out that in kernel learning literature (see, e.g., [7, 13]), one often observes the
Tikhonov saturation effect, where the learning rate does not improve for r > 1/2. However,
we remark that this saturation happens only when the L2 norm is used. In particular, (4.2)
demonstrates that our learning rate can be improved up to r= 1. This reflects the fact that,
if the RKHS norm is employed, the Tikhonov saturation effect happens for r > 1. A similar
phenomenon is observed by [6].

Combining Theorem 4.2, Proposition 3, and (4.2) from Theorem 4.3, we obtain the fol-
lowing results on the meta-learning excess risk.

Corollary 4.5. Under the assumptions of Theorem 4.2 and Theorem 4.3, for \tau \geq 2.6 and
\lambda \ast = 12\kappa 2(log(s)\vee \tau )n - 1

T , with probability 1 - 5e - \tau  - o((nN) - 10) over the randomness in both
the source and target tasks, we have the following regimes of rates for a constant C3 that only
depends on Y\infty , R, \kappa , \gamma 1, p, c, \| fT \| \scrH , and k\alpha ,\infty .

A. Small number of tasks. In this regime, with the number of tasks N being small, the
variance is significant compared to the bias. Therefore, we must choose \lambda to balance the order

of the bias with that of the variance. If N \leq n
2r+1+p

\alpha 
 - 1 and r \in (0,1/2] or N \leq n

2r+1+p

p+1
 - 1 and

r \in (1/2,1], for a choice of \lambda =
\bigl( 
log2(nN)/(nN)

\bigr) 1

2r+1+p ,

\scrE \mu T
( \^fT,\lambda \ast )\leq C3\tau 

\Biggl\{ \sqrt{} 
s

nT
+

\biggl( 
log2(nN)

nN

\biggr) r

2r+1+p

\Biggr\} 
.(4.3)

B. Large number of tasks. In this regime, we consider larger N (see B.1 and B.2 below),
so that the variance term becomes negligible compared to the bias. Therefore, the rates below
correspond to the choices of \lambda that minimize the bias in (4.2) (under the constraints n \geq 
A\lambda ,B\lambda ). In what follows, \omega > 2 is a free parameter.

\bullet B.1. For r \in (0,1/2], if n
2r+1+p

\alpha 
 - 1 \leq N \leq o (en), for a choice of \lambda = ( \mathrm{l}\mathrm{o}\mathrm{g}

\omega (nN)
n )

1

\alpha ,

\scrE \mu T
( \^fT,\lambda \ast )\leq C3\tau 

\biggl\{ \sqrt{} 
s

nT
+ log

\omega r

\alpha (nN) \cdot n - 
r

\alpha 

\biggr\} 
.

\bullet B.2. For r \in (1/2,1], if n
2r+1+p

p+1
 - 1 \leq N \leq o (en), for a choice of \lambda = ( \mathrm{l}\mathrm{o}\mathrm{g}

\omega (nN)
n )

1

p+1 ,

\scrE \mu T
( \^fT,\lambda \ast )\leq C3\tau 

\biggl\{ \sqrt{} 
s

nT
+ log

\omega r

p+1 (nN) \cdot n - 
r

p+1

\biggr\} 
.

Remark 4.6 (saturation effect on large N). Corollary 4.5 shows no further improvement

from larger N once N \geq n
2(r\wedge 1/2)+1+p

\alpha 
 - 1, since the rates then only depend on n (as outlined in

case B). This is due to a saturation effect from the bias-variance trade-off, i.e., N only helps
decrease the variance term below the best achievable bias; at that point the bias (within each
task) can only be further improved by larger per-task sample size n.

Remark 4.7 (regime N \gtrsim exp(n)). The regimes presented in Corollary 4.5 only cover
settings where N \lesssim exp(n), which is in fact the only regime covered by previous works (see,
for instance, [10, 38]). This is due to the constraints n\geq A\lambda ,B\lambda , which prevent N \gtrsim exp(n).
However, at the cost of a less tight rate we can obtain a bound on the pre-training error
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NONLINEAR META-LEARNING CAN GUARANTEE FASTER RATES 1607

that is free of any constraint on n (see section SM1.6). As a corollary of this theorem, when
N \gtrsim exp(n), choosing \lambda = n - 

1

2 results in the nontrivial rate

\scrE \mu T
( \^fT,\lambda \ast )\lesssim 

\sqrt{} 
s

nT
+ n - 

r

2 .

Notice that this is a slower rate than shown for smaller N in regime B of Corollary 4.5.
Tightening the rates in the regime of N \gtrsim exp(n) appears difficult and is left as an open
problem. We emphasize, as stated earlier, that this regime is in fact not addressed by previous
works, even under the stronger assumption of linear representations.

Regimes of gain. We want to contrast our results in the meta-learning setting with the
rates obtainable on the target task without the benefits of source tasks. Since no regularity
condition is imposed on the target distribution, the best target rate, absent any source tasks, is

of the form O(n
 - 1/4
T ) (see, e.g., [7]);2 thus we gain from the source tasks whenever \scrE \mu T

( \^fT,\lambda \ast ) =

o(n
 - 1/4
T ).
Our interest, however, is in regimes where the gain is greatest, in that the source tasks

permit a final meta-learning rate of \scrE \mu T
( \^fT,\lambda \ast )\lesssim 

\sqrt{} 
s/nT ; Corollary 4.5 displays such regimes

according to the number of source samples N and n, and the parameters r, \alpha , and p, denote
the difficulty of the source tasks. While it is clear that larger r indicates smoother source
regression functions fi as viewed from within the RKHS \scrH , smaller parameters \alpha and p can
be understood as a smoothness level of the RKHS \scrH itself---e.g., consider a Sobolev space \scrH 
of m-smooth functions; then we may take \alpha ,p \propto 1/m (see Example 3). Thus the smoother
the source tasks, viewed under r, \alpha , and p, the faster rates we can expect, since our approach
aims at reducing the bias in each individual task (which is easiest under smoothness; see
Remark 4.8 below).

Focusing on the situation where the number of samples per task is roughly the same across
source and target, i.e., n\propto nT , the conditions for meta-learning to provide the greatest gain,
i.e., achieving O(n - 1/2) rate, under various regimes, are listed in Table 1.

Remark 4.8 (under-regularization/overfitting). In order for meta-learning to provide gain,
in particular for n\propto nT , we have to overfit the regression estimates in each source task, i.e., set

Table 1
Conditions for meta-learning to reach the parametric rate O(

\sqrt{} 
s/n); log terms are removed for clarity.

Cases Range of source tasks Choice of \lambda Regimes of gain

A n
2r+1+p

2r
 - 1 \leq N \leq n

2r+1+p
\alpha 

 - 1 (nN)
 - 1

2r+1+p \alpha 
2
\leq r\leq 1

2

A n
2r+1+p

2r
 - 1 \leq N \leq n

2r+1+p
p+1

 - 1
(nN)

 - 1
2r+1+p p+1

2
\leq r\leq 1

B.1 n
2r+1+p

\alpha 
 - 1 \leq N \leq o (en) n - r

\alpha \alpha 
2
\leq r\leq 1

2

B.2 n
2r+1+p

p+1
 - 1 \leq N \leq o (en) n

 - r
p+1 p+1

2
\leq r\leq 1

2Note that the assumption that fT is in some subspace \scrH s is irrelevant for usual kernel ridge regression,
since it is always true once we know that f belongs to \scrH .
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1608 D. MEUNIER, Z. LI, A. GRETTON, AND S. KPOTUFE

\lambda lower than would have been prescribed for optimal regression (choices of \lambda for the different
regimes of gain are summarized in Table 1).

Overfitting is essential because, as highlighted in the introduction, the bias inherent in each
task during meta-learning cannot be averaged out. Deliberate under-regularization reduces
this bias at the expense of increased variance within each task. However, the variance in the
target task may subsequently be mitigated by aggregating across multiple tasks.

More specifically, in the regimes of gain discussed earlier, the choices of \lambda in Corollary 4.5

are consistently lower than the optimal regression choice of \lambda KRR \asymp n
 - 1

2(r\wedge 1/2)+1+p (see, e.g.,
Theorem 1 in [13]) in the well-specified regime. This deviation from the optimal regression
setting indicates overfitting, which again reveals that understanding nonlinear meta-learning
is fundamentally more difficult than the linear setting due to the bias term. This effect is
similarly observed in nonparametric kernel regression when splitting the dataset and averaging
estimators trained on each split of the dataset [43].

Remark 4.9 (regularity beyond regression). Notice that the choice of the regularization pa-

rameter in kernel ridge regression \lambda KRR \asymp n
 - 1

2(r\wedge 1/2)+1+p has no direct dependence on \alpha : lower
values of 0<\alpha \leq 1 yield no further benefit in regression once we assume fi \in \scrH , as opposed to
the misspecified setting where fi lies outside \scrH .3 By contrast, in meta-learning, we do benefit
from considering \alpha , as \alpha governs both the threshold level at which the saturation effect on
large N kicks in (see Remark 4.6) and the level of smoothness required for meta-learning
to provide the greatest gain (See Table 1 and associated discussion). Ultimately, if \alpha \rightarrow 0,
there is no saturation effect, and the rates always match the parametric rate O(n - 1/2). This
indicates that subspace learning is a fundamentally different problem from ridge regression.

Characterizing \alpha , p, and r. As discussed above, smaller parameters \alpha and p and higher
parameter r yield faster meta-learning rates. The next examples yield insights on these sit-
uations. Throughout, recall that by Lemma 10 in [13], we have p \leq \alpha , i.e., p = \alpha is always
admissible.

Example 1 (finite-dimensional kernels). Suppose \scrH is finite dimensional, i.e., the covariance
operators \Sigma i each admit a finite number of eigenfunctions ei,j , j = 1,2, . . . k, for some k \geq 1.
Then clearly the eigenfunctions \{ ei,j\} are bounded4 and Assumptions 3 and 4 hold for \alpha ,p= 0.
Furthermore, Assumption 5 holds for any value of r. In this regime,

\scrE \mu T
( \^fT,\lambda \ast )\lesssim 

\sqrt{} 
s

nT
+

\sqrt{} 
k

\gamma 2snN
log(nN).(4.4)

See Remark SM1.8 in the supplementary material for the detailed derivations. As an example,
for polynomial kernels K(x,x\prime )

.
= (x\top x\prime +b)m on compact domains \scrX \subset \BbbR d, we obtain k= dm.

Note that, since polynomial regression converges at rate O(
\sqrt{} 
dm/nT ) (see, e.g., [2, 8, 16, 44]),

we can gain in meta-learning whenever the representation \scrH s is of dimension s\ll dm.

Remark 4.10 (subspace learning guarantees in the linear setting). In the meta-learning
model with linear representations, with d the dimension of the input points and s the dimension

3Note, however, that p\leq \alpha , and therefore a small \alpha implies that we are in the small p regime (and the rates
do depend on p).

4As we employ a bounded kernel, every function in the RKHS is bounded [33, Lemma 4.23].
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NONLINEAR META-LEARNING CAN GUARANTEE FASTER RATES 1609

of the subspace, [37, Theorem 5] provides an information-theoretic lower bound on the sin - \Theta 

distance \| \^P\bot P\| of the order
\sqrt{} 

ds
nN valid for estimators that are functions of the nN data

points. Assuming that the eigenvalues of CN are well conditioned (\gamma s \asymp s - 1), estimators
with matching guarantees on the sin - \Theta distance are obtained in [10, 31]. By the previous
example, if we employ a linear kernel on \BbbR d and under the assumption \gamma s \asymp s - 1, we obtain

a subspace learning error (up to a log term) of
\sqrt{} 

ds2

nN , recovering the learning rate obtained

in [37]. Generalizing the result of [37] to the nonlinear setting with a lower bound depending
on the parameters (N,n, s, p, r,\alpha ) represents a significant and valuable direction for future
research.

Example 2 (Gaussian kernel). Let \scrX \subset \BbbR d be a bounded set with Lipschitz boundary,5 \mu 
a distribution supported on \scrX \times \BbbR , with marginal distribution uniform on \scrX , and let K be a
Gaussian kernel. Then by Corollary 4.13 in [18], Assumption 4 is satisfied with any \alpha \in (0,1],
implying that Assumption 3 is also satisfied with any p\in (0,1].

Example 3 (Sobolev spaces and Mat\'ern kernels). Let \scrX \subset \BbbR d, be a nonempty, open,
connected, and bounded set with a C\infty -boundary. Let \mu be a distribution supported on
\scrX \times \BbbR , with marginal equivalent to the Lebesgue measure on \scrX . Choose a kernel which
induces a Sobolev space Hm of smoothness m \in \BbbN with m> d/2, such as the Mat\'ern kernel
(see, e.g., [18, Examples 2.2 and 2.6]). Then by Corollary 5 in [13], Assumption 3 is satisfied
with p = d

2m , and Assumption 4 is satisfied for every \alpha \in ( d
2m ,1]. Furthermore, it can be

shown that Assumption 5 is satisfied if and only if the \{ fi\} Ni=1 belong to a Sobolev space (with
fractional smoothness) of smoothness m(2r+ 1) (see [13]).

5. Experimental results. In this section, we report the results of experiments on simulated
data to test the two main theoretical predictions of our paper: (1) with the proper number of
tasks it is possible to learn at the parametric rate; (2) overfitting is beneficial for meta-learning.
Consider the Sobolev space \scrH = \{ f : [0,1]\rightarrow \BbbR , f absolutely continuous, f \prime \in L2([0,1]), f(0) =
0\} , equipped with the inner product \langle f, g\rangle \scrH =

\int 1
0 f

\prime (x)g\prime (x)dx. \scrH is the RKHS associated to
the kernel K : [0,1] \times [0,1] \rightarrow \BbbR , (x,x\prime ) \mapsto \rightarrow min(x,x\prime ) [17]. For a fixed parameter s \in \BbbN , we
consider an orthonormal system (with respect to \langle \cdot , \cdot \rangle \scrH ) of s splines of degree 2 (i.e., piecewise
quadratic functions with continuous derivative) (\psi 1, . . . ,\psi s) as shown in Figure 1. We then
take\scrH s = span\{ \psi 1, . . . ,\psi s\} and P =

\sum s
j=1\psi j\otimes \psi j , the projection onto\scrH s. Note that P = V V \ast 

with V = [\psi 1, . . . ,\psi s]. Any \omega \in \BbbR s leads to an element of \scrH s as

f =

s\sum 
\ell =1

\omega \ell \psi \ell (x) =

s\sum 
\ell =1

\omega \ell \langle \psi \ell ,K(x, \cdot )\rangle \scrH = \langle g,PK(x, \cdot )\rangle \scrH , g
.
=

s\sum 
\ell =1

\omega \ell \psi \ell .

To generate each task, we proceed as follows. For i \in [N ] \cup \{ T\} , \omega i \sim \scrU (
\surd 
s\BbbS s - 1), fi =\sum s

\ell =1\omega i,\ell \psi \ell , for j = 1, . . . ,2n (or j = 1, . . . , nT for the target task),

yi,j = fi(xi,j) + \epsilon i,j , xi,j \sim \scrU (0,1), \epsilon i,j \sim \scrN (0, \sigma 2).

Throughout the experiments, \sigma is fixed to 0.1. In Figure 1, we display an example of a
generated task for s= 10. Given an estimator \^f for the target task, we evaluate its performance

5For the definition of Lipschitz boundary see [19, Definition 3].
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1610 D. MEUNIER, Z. LI, A. GRETTON, AND S. KPOTUFE

Figure 1. Left--center: Orthonormal system in \scrH spanning \scrH s for, respectively, s = 3 (left) and s = 10
(center). Right: Example of sampled task for s = 10 with 300 datapoints; the blue solid line represents the
ground truth.

by approximating the squared excess risk \BbbE \mu T
[( \^f(X) - fT (X))2] on independent samples, where

\mu T is the Lebesgue measure on [0,1].
Parameter values: p, \alpha , and r. As the marginal probability distribution is the uniform

measure on [0,1] and K induces a Sobolev space of smoothness m = 1, by Example 3, As-
sumption 3 is satisfied with p= 1

2 and Assumption 4 is satisfied with every \alpha \in (12 ,1]. Finally,
task functions are generated as linear combinations of order 2 splines and therefore belong to
Hm(0,1) for every m < 5

2 (and do not belong to Hm(0,1) for any m \geq 5
2). By Example 3,

Assumption 5 is therefore satisfied for every r \in [0, 34) (and Assumption 5 is not satisfied for
any r\geq 3

4). In the experiments, we set r= 1
2 .

Choice of regularization. We focus on the small number of tasks regime, Corollary 4.5(A),

where N \leq n
2r+1+p

\alpha 
 - 1 = n4. According to case A, we set \lambda = (nN) - 

1

2r+1+p = (nN) - 
2

5 and
\lambda \ast = n - 1

T . By Corollary 4.5, the excess risk on the target task is upper bounded (up to

constants and log terms) by
\sqrt{} 
s/nT + (nN) - 

1

5 .
Learning at the parametric rate. We have shown in Table 1 that given enough source tasks

and samples per source task it is possible to learn at the parametric rate
\sqrt{} 
s/nT . To illustrate

this fact, we compare our meta-learning approach to an oracle estimator accessing the true
subspace. The oracle estimator has access to (\psi 1, . . . ,\psi s) and is trained with linear ridge
regression. For x\in [0,1], define its transform \~xs

.
= (\psi 1(x), . . . ,\psi s(x))

\top \in \BbbR s. Then, \^f\mathrm{o}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{l}\mathrm{e}(x)
.
=

\^\beta \top \~xs, with

\^\beta = argmin
\beta \in \BbbR s

1

nT

nT\sum 
i=1

\Bigl( 
yT,i  - \beta \top \~xsT,i

\Bigr) 2
+ \lambda \mathrm{o}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{l}\mathrm{e}\| \beta \| 22.

For \lambda \mathrm{o}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{l}\mathrm{e} = n - 1
T , \scrE \mu T

( \^f\mathrm{o}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{l}\mathrm{e}) is of the order
\sqrt{} 
s/nT [30]. In Figure 2 (left), for s = 25 and

n= 300 we show the evolution of the squared excess risk as we vary nT for the oracle estimator
and our meta-learning estimator trained with different values of N . Results are averaged over
100 runs, where for each run we sample new source and target tasks. For N = 250, the
performance of the meta-learning is identical to that of the oracle. It demonstrates that our
meta-learning strategy successfully leverages the source tasks and that given enough source
tasks, it learns at a rate similar to that of the oracle estimator, leading to a parametric rate
of convergence. We refer the reader to section SM4 for additional results.

Effect of overfitting. To assess the effect of overfitting (see Remark 4.8), we compare our
meta-learning approach trained with \lambda 1 = (nN) - 

2

5 and \lambda 2 = n - 
2

5 . In Figure 2 (right), for
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NONLINEAR META-LEARNING CAN GUARANTEE FASTER RATES 1611

Figure 2. Left: Meta-learning versus oracle: Comparison of the squared excess risk on the target task for
the oracle estimator \^foracle (dotted red line) and the meta-learning estimator \^fT,\lambda \ast trained with different number
of tasks N (solid lines). The x-axis represents the size of the dataset for the target task (nT ). Right: Effect
of under-regularization: Comparison of the squared excess risk of the meta-learning estimator trained with

\lambda = (nN) - 
2
5 (red dotted line) and \lambda = n - 2

5 (blue solid line). The x-axis represents the number of source tasks
(N). For both figures n = 300, s = 25, and results are averaged over 100 generations of the source and target
tasks.

s= 25, n= 300, and nT = 5000, we plot the evolution of the squared excess risk as we increase
N for \lambda 1 (red dotted line) and \lambda 2 (blue solid line). Results are averaged over 100 runs. They
confirm the message of Remark 4.8 that overfitting (with respect to the usual regularization
of kernel ridge regression) on each source task is beneficial for meta-learning. We refer the
reader to section SM4 for additional results.

6. Analysis outline. To prove Theorem 4.3, we proceed with a bias-variance decomposi-
tion:

\| \^CN,n,\lambda  - CN\| HS \leq \| \^CN,n,\lambda  - \=CN,n,\lambda \| HS\underbrace{}  \underbrace{}  
\mathrm{V}\mathrm{a}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{n}\mathrm{c}\mathrm{e}

+\| \=CN,n,\lambda  - CN\| HS\underbrace{}  \underbrace{}  
\mathrm{B}\mathrm{i}\mathrm{a}\mathrm{s}

,(6.1)

where \=CN,n,\lambda 
.
= 1

N

\sum 
i\BbbE ( \^fi,\lambda )\otimes \BbbE ( \^fi,\lambda ). Next we consider both of these terms separately.

\bullet The variance term can be written as follows:

\| \^CN,n,\lambda  - \=CN,n,\lambda \| HS =

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 1

N

N\sum 
i

\xi i

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
HS

,

with \xi i
.
= \^f \prime i,\lambda \otimes \^fi,\lambda  - \BbbE ( \^fi,\lambda ) \otimes \BbbE ( \^fi,\lambda ), i \in [N ]. Thus, the variance term being an average

with mean 0, we would naturally want to bound it via a concentration inequality. However,
this requires \xi i to be well behaved, e.g., bounded or sub-Gaussian. A naive upper bound on
\| \xi i\| HS is of the order \| \^f \prime i,\lambda \| \scrH \cdot \| \^fi,\lambda \| \scrH \leq \lambda  - 1 (see Proposition SM2.9); however, this would
lead to a loose concentration bound on the variance term; in particular, such a bound would
not go down with the per-task sample size n.

Therefore, we first establish a high probability bound on \| \xi i\| HS in terms of n and \lambda as
follows. First, recall fi,\lambda from (2.2), and let \eta i

.
= \^f \prime i,\lambda \otimes \^fi,\lambda  - fi,\lambda \otimes fi,\lambda , whereby \xi i = \eta i - \BbbE [\eta i].

With some algebra we can get

\| \eta i\| HS \leq \| \^f \prime i,\lambda  - fi,\lambda \| \scrH \| \^fi,\lambda  - fi,\lambda \| \scrH + \| fi\| \scrH (\| \^fi,\lambda  - fi,\lambda \| \scrH + \| \^f \prime i,\lambda  - fi,\lambda \| \scrH ).
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1612 D. MEUNIER, Z. LI, A. GRETTON, AND S. KPOTUFE

From existing results on kernel ridge regression (see, e.g., [13]), we can bound \| \^fi,\lambda  - fi,\lambda \| \scrH 
in terms of both n and \lambda , in high probability. This leads to a high probability bound on
\| \xi i\| HS that takes the form \BbbP (\| \xi i\| HS \leq V (\delta ,n,\lambda )) \geq 1  - 2e - \delta for all \delta \geq 0 and i \in [N ] (see
Theorem SM1.6 in section SM1.3 for details). Define the event EN,\delta ,n,\lambda =\cap i\in [N ]Ei,\delta ,n,\lambda , where
Ei,\delta ,n,\lambda 

.
= \{ \| \xi i\| HS \leq V (\delta ,n,\lambda )\} . We then have

\BbbP 

\Biggl( \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 1

N

N\sum 
i=1

\xi i

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
HS

\geq \epsilon 

\Biggr) 
\leq \BbbP 

\Biggl( \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 1

N

N\sum 
i=1

\xi i

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
HS

\geq \epsilon 

\bigm| \bigm| \bigm| \bigm| \bigm| EN,\delta ,n,\lambda 

\Biggr) 
+ 2Ne - \delta .(6.2)

For the first term on the right-hand side, we can now apply the Hoeffding inequality
(Theorem SM3.6) since \xi i conditionally on EN,\delta ,n,\lambda is bounded. However, conditioning on
EN,\delta ,n,\lambda , the variable \xi i may no longer have zero mean, a requirement for usual concentration
arguments. We therefore proceed by first centering \xi i around \BbbE (\xi i | EN,\delta ,n,\lambda ) = \BbbE (\xi i | Ei,\delta ,n,\lambda )
(by independence of the source tasks) and upper-bounding this expectation as

\| \BbbE [\xi i | Ei,\delta ,n,\lambda ]\| = \| \BbbE (\xi i | Ei,\delta ,n,\lambda ) - \BbbE (\xi i)\| \leq 2\BbbE 
\bigl[ 
\| \xi i\| | Ec

i,\delta ,n,\lambda 

\bigr] 
\BbbP 
\bigl( 
Ec

i,\delta ,n,\lambda 

\bigr) 
\leq 4e - \delta \lambda  - 1,

where we used the upper bound \lambda  - 1 on \| \xi i\| HS . Then, applying the Hoeffding inequality to
the first term, we obtain with probability greater than 1 - 2e - \tau  - 2Ne - \delta \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 1

N

N\sum 
i=1

\xi i

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
HS

\leq V (\delta ,n,\lambda )

\sqrt{} 
\tau 

N
+

4e - \delta 

\lambda 
\leq V (\delta ,n,\lambda )

\sqrt{} 
\tau 

N
+

4

\lambda N12n12
,

by choosing \delta (a free parameter) as 12 log(nN). In that way, for our choices of \lambda (see Corol-
lary 4.5), (\lambda N12n12) - 1 is always of lower order and 2Ne - \delta = o((nN) - 10). Our choice of
V (\delta ,n,\lambda ) is given in Theorem SM2.6 (leading to (4.2)), with the constraint that n\geq A\lambda (see
Theorem 4.3 for the definition of A\lambda ). For the detailed proof of the variance bound, please
refer to Theorem SM1.6 in section SM1.3.

\bullet To bound the bias, we first notice that it can be decomposed in the following way:

\| \=CN,n,\lambda  - CN\| HS \lesssim 
1

N

N\sum 
i=1

\bigm\| \bigm\| \bigm\| fi  - \BbbE ( \^fi,\lambda )
\bigm\| \bigm\| \bigm\| 
\scrH 
.

The key is therefore to obtain a good control on \| fi - \BbbE ( \^fi,\lambda )\| \scrH . We consider two different
ways of bounding this term, commensurate with regimes of r.

When r \in (0,1/2], we proceed as follows:\bigm\| \bigm\| \bigm\| fi  - \BbbE ( \^fi,\lambda )
\bigm\| \bigm\| \bigm\| 
\scrH 
= \lambda 

\bigm\| \bigm\| \bigm\| \BbbE \Bigl( \^\Sigma  - 1
i,\lambda 

\Bigr) 
fi

\bigm\| \bigm\| \bigm\| 
\scrH 
= \lambda 

\bigm\| \bigm\| \bigm\| \bigm\| \Sigma  - 1/2
i,\lambda \BbbE 

\Bigl( 
I +\Sigma 

 - 1/2
i,\lambda 

\Bigl( 
\^\Sigma i  - \Sigma i

\Bigr) 
\Sigma 
 - 1/2
i,\lambda 

\Bigr)  - 1
\Sigma 
 - 1/2
i,\lambda fi

\bigm\| \bigm\| \bigm\| \bigm\| 
\scrH 

\leq \lambda 
\bigm\| \bigm\| \bigm\| \Sigma  - 1/2

i,\lambda 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \BbbE \Bigl( I +\Sigma 
 - 1/2
i,\lambda 

\Bigl( 
\^\Sigma i  - \Sigma i

\Bigr) 
\Sigma 
 - 1/2
i,\lambda 

\Bigr)  - 1
\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \Sigma  - 1/2

i,\lambda fi

\bigm\| \bigm\| \bigm\| 
\scrH 
.

For r \leq 1/2, we have
\bigm\| \bigm\| \bigm\| \Sigma  - 1/2

i,\lambda fi

\bigm\| \bigm\| \bigm\| 
\scrH 
=
\bigm\| \bigm\| \bigm\| \Sigma r - 1/2

i,\lambda \Sigma r
i,\lambda fi

\bigm\| \bigm\| \bigm\| 
\scrH 
\leq \lambda r - 1/2, while

\bigm\| \bigm\| \bigm\| \Sigma  - 1/2
i,\lambda 

\bigm\| \bigm\| \bigm\| \leq \lambda  - 1/2. We

then have \bigm\| \bigm\| \bigm\| fi  - \BbbE ( \^fi,\lambda )
\bigm\| \bigm\| \bigm\| 
\scrH 
\leq \lambda r

\bigm\| \bigm\| \bigm\| \bigm\| \BbbE \Bigl( I +\Sigma 
 - 1/2
i,\lambda 

\Bigl( 
\^\Sigma i  - \Sigma i

\Bigr) 
\Sigma 
 - 1/2
i,\lambda 

\Bigr)  - 1
\bigm\| \bigm\| \bigm\| \bigm\| .
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For n \geq A\lambda , with probability over 1 - 2e - \delta ---where \delta is chosen as discussed for the variance

bound---we can show that \| (I +\Sigma 
 - 1/2
i,\lambda (\^\Sigma i  - \Sigma i\Sigma 

 - 1/2
i,\lambda ) - 1\| \leq 3, whereby we get with the same

probability \| fi  - \BbbE ( \^fi,\lambda )\| \scrH \leq 3\lambda r. Thus, conditioning on this event, we get a final bound

\| fi  - \BbbE ( \^fi,\lambda )\| \scrH \leq 3\lambda r + 2e - \delta \| fi\| \scrH ,

using the fact that \| fi  - \BbbE ( \^fi,\lambda )\| \scrH = \lambda \| \BbbE (\^\Sigma  - 1
i,\lambda )fi\| \scrH is always at most \| fi\| \scrH .

When r \in (1/2,1], we proceed as follows:\bigm\| \bigm\| \bigm\| fi  - \BbbE ( \^fi,\lambda )
\bigm\| \bigm\| \bigm\| 
\scrH 
= \lambda 

\bigm\| \bigm\| \bigm\| \BbbE \Bigl( \^\Sigma  - 1
i,\lambda 

\Bigr) 
fi

\bigm\| \bigm\| \bigm\| 
\scrH 
= \lambda 

\bigm\| \bigm\| \bigm\| \BbbE \Bigl( \^\Sigma  - 1
i,\lambda \Sigma i,\lambda 

\Bigr) 
\Sigma  - 1
i,\lambda fi

\bigm\| \bigm\| \bigm\| 
\scrH 

\leq \lambda 
\bigm\| \bigm\| \bigm\| \BbbE \Bigl( \^\Sigma  - 1

i,\lambda \Sigma i,\lambda 

\Bigr) \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \Sigma r - 1
i,\lambda \Sigma  - r

i,\lambda \Sigma 
r
i\Sigma 

 - r
i fi

\bigm\| \bigm\| \bigm\| 
\scrH 

\leq \lambda r
\bigm\| \bigm\| \bigm\| \BbbE \Bigl( \^\Sigma  - 1

i,\lambda \Sigma i,\lambda 

\Bigr) \bigm\| \bigm\| \bigm\| = \lambda r
\bigm\| \bigm\| \bigm\| \Sigma i,\lambda \BbbE 

\Bigl( 
\^\Sigma  - 1
i,\lambda 

\Bigr) \bigm\| \bigm\| \bigm\| .
We then use the following derivation:

\^\Sigma  - 1
i,\lambda =

\Bigl( 
\^\Sigma i + \lambda 

\Bigr)  - 1
=
\Bigl( 
\Sigma i + \lambda  - (\Sigma i  - \^\Sigma i)

\Bigr)  - 1
=\Sigma  - 1

i,\lambda 

\Bigl( 
I  - (\Sigma i  - \^\Sigma i)\Sigma 

 - 1
i,\lambda 

\Bigr)  - 1
.

We are left with bounding the term \BbbE \| (I - (\Sigma i - \^\Sigma i)\Sigma 
 - 1
i,\lambda )

 - 1\| , which can be obtained by using
a Neumann series. For a detailed analysis of the bias, see Theorem SM1.7 of section SM1.3

7. Conclusion. We address the problem of meta-learning with nonlinear representations,
providing theoretical guarantees for its effectiveness. Our study focuses on the scenario where
the shared representation maps inputs nonlinearly into an infinite dimensional RKHS. By
leveraging the smoothness of task-specific regression functions and employing careful regular-
ization techniques, the paper demonstrates that biases introduced in the nonlinear represen-
tation can be mitigated. Importantly, the derived guarantees show that the convergence rates
in learning the common representation can scale with the number of tasks, in addition to
the number of samples per task. The analysis extends previous results obtained in the linear
setting and highlights the challenges and subtleties specific to the nonlinear case. The findings
presented in this work open up several avenues for future research, which include exploration
of different types of nonlinear representations beyond RKHS, alternative subspace estimation
techniques, and further refinement of trade-offs between bias and variance.
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