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Abstract. Many recent theoretical works on meta-learning aim to achieve guarantees in leveraging similar
representational structures from related tasks towards simplifying a target task. The main aim
of theoretical guarantees on the subject is to establish the extent to which convergence rates—in
learning a common representation—may scale with the number N of tasks (as well as the number
of samples per task). First steps in this setting demonstrate this property when both the shared
representation amongst tasks and task-specific regression functions are linear. This linear setting
readily reveals the benefits of aggregating tasks, e.g., via averaging arguments. In practice, however,
the representation is often highly nonlinear, introducing nontrivial biases in each task that cannot
easily be averaged out as in the linear case. In the present work, we derive theoretical guarantees
for meta-learning with nonlinear representations. In particular, assuming the shared nonlinearity
maps to an infinite dimensional reproducing kernel Hilbert space, we show that additional biases
can be mitigated with careful regularization that leverages the smoothness of task-specific regression
functions, yielding improved rates that scale with the number of tasks as desired.
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1. Introduction. Meta-learning refers colloquially to the problem of inferring a deeper
internal structure—beyond a specific task at hand, e.g., a regression task—that may be lever-
aged towards speeding up other similar tasks. This arises for instance in practice with neural
networks where, in pre-training, multiple apparently dissimilar tasks may be aggregated to
learn a representation that enables faster training on unseen target tasks (i.e., requiring rela-
tively fewer target data).

Notwithstanding the popularity of meta-learning in practice, the theoretical understanding
and proper formalism for this setting is still in its early stages. We consider a common
approach in the context of regression, which posits an unknown target-task function of the
form f(z)=g(I'(z)) and N unknown related task-functions of the form f;(x) = g;(I'(z)),i €
[N], i.e., all sharing a common but unknown representation I'(x); it is assumed that all link
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functions g and { gi}fvzl are simpler—for instance linear or at least lower-dimensional—than the
corresponding regression functions f and {f; fi 1- As all these objects are a priori unknown,
recent research has aimed to establish how the target regression problem may benefit from
the N related tasks. In particular, if I'(z) may be approximated by some f’(:c) at a rate that
scales with N (and the number n of samples per task), then presumably, the target regression
function f may be subsequently learned as §(I'(z)) at a faster rate commensurate with the
simplicity of g.

Recent theoretical results [10, 21, 31, 37] have provided significant new insights in this
area by considering an idealized linear setting where z € R%, ¢ and { gi}fil are linear functions
in R*(s < d), and I'(x) denotes a linear projection to R®. These results show that I" can be
learned at a rate of O(y/ds/nN)—under suitable subspace-distance measures, and where O
omits log terms—which then allows for the target task to be learned at a rate of O(M) <
O(+/d/n). Here, it is emphasized that the representation learning rate of O(y/ds/nN) scales
with the number of tasks NV rather than just with n, establishing the benefit of related tasks
in improving the target rate.

In practice, however, the representation I' is in general a nonlinear transformation of z, as
when reproducing kernel Hilbert space (RKHS) or neural net representations are used. While
the importance of the nonlinear setting is well understood, fewer works have so far addressed
this more challenging scenario [10, 28].

In the present work, we consider the case where I' maps x, nonlinearly, into an RKHS
‘H, possibly of infinite dimension; more precisely, I' projects the feature maps K(z,-) into
an s-dimensional subspace Hs of H. The link functions ¢g and {gi}ij\il are assumed to be
simple in the sense that they are linear in I'; hence we also have that f and {f; ij\il belong to
H. In other words, if we knew I' (or Hs =Hs(T")), the target problem would reduce to linear
regression in R® and therefore would admit (Lg) convergence rates of the form O(y/s/n), which
is significantly faster than usual nonparametric rates for regression over infinite dimensional H
(see discussion after Theorem 4.2 and Corollary 4.5). As in the case of linear I" discussed above,
this improved rate will turn out to require estimating I" at a fast rate scaling in both N and n.

When moving from linear to nonlinear, nonparametric I', a significant new challenge arises
due to the bias inherent in the learning procedure. For a high-level intuition, note that a main
appeal of meta-learning is that the aggregate of N tasks should help reduce wvariance over
using a single task, by carefully combining task-specific statistics computed on each of the N
samples; crucially, such statistics ought to introduce little bias, since bias cannot be averaged
out. Task-specific biases are harder to avoid in nonparametric settings, however, if we wish
to avoid overfitting task-specific statistics. This is in contrast to the case of linear projections
in R%, where we have unbiased statistics with no overfitting (one may think, e.g., of ordinary
least squares (OLS)).

Fortunately, as we show in this work, nonlinear meta-learning remains possible with rate
guarantees improving in both N and n. Our approach relies on the following initial fact: if the
links {g;} /¥, are linear in H, it easily follows that the individual regression functions {f;}¥, all
live in the span Hs C H of the shared representation I' (see set-up in section 3.1). Thus, under
a richness assumption where { fi}i]il span H (extending usual assumptions in the linear case,
e.g., of [10]), we may estimate Hs by estimating the span of regularized estimates fz of f;. In
order to guarantee fast rates that scale with N and n, we need to under-reqularize, i.e., overfit
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task-specific estimates { fi}fip to suitably decrease bias, at the cost of increased task-specific
(hence overall) variance. Such under-regularization necessarily implies suboptimal regression
in each task but improves estimation of the representation defined by I'.

We demonstrate that these trade-offs may be satisfied, depending on the smoothness level
of regression functions {f;}1¥,, as captured by complementary regularity conditions on {f;}
and the interaction between the kernel and data distributions {s;}%¥, defined on X x R (see
section 4.1), where we view X and R as the input and output spaces, respectively. In the
process, some interesting subtleties emerge: meta-learning benefits from regularity beyond
usual saturation points that were established in traditional RKHS regression (please refer to
Remark 4.9). This further illustrates how the meta-learning goal of estimating I" inherently
differs from regression, even when relying on regression estimates. This is discussed in further
detail in section 4.

Fast rates scaling in N and n for estimating #, = H,(T') from span{f;} are established in
Theorem 4.3. This requires, among other tools, a basic variation on Wedin’s sin —© theorem
[39] for infinite dimensional operators (Proposition 3). As a consequence, we show that by
operating in H (the estimation of Hg) for the target regression problem, we can achieve
parametric target Ly rates of O(+/s/n) (see Corollary 4.5), which are much faster than the
usual nonparametric rates for f € H. This last step requires us to establish closeness of
projections onto the estimated H, versus H,. Moreover, when the feature map K (x,-) is
finite dimensional, our results (see Example 1) recover the learning rates obtained in earlier
studies (e.g., [10, 37]), where T" is a linear projection.

Finally, although much of the analysis and involved operations pertain to infinite di-
mensional H space, the entire approach can be instantiated in input data space via suitable
representation theorems (see section 3.3). This realization supports our theoretical findings
with complementary experiments on simulated data, as detailed in section 5.

Related work. Meta-learning is an umbrella term for a rich variety of learning settings,
where we are provided with a set of distributions pertaining to relevant training tasks and
obtain a functional to speed learning on a target task. In this work, we focus on the case where
this functional defines a representation I' of the data, and where the target regression function
is of the form f(z) = g(I'(x)). We begin this section with the closest work to our setting
(namely linear and nonlinear projections I') and then briefly touch on alternative meta-learning
definitions for completeness (although these will be outside the scope of the present study).

We start with works in the linear setting that study generalization error where I' is a
learned linear projection R? — R*, obtained from N training tasks [10, 21, 22, 31, 36, 37, 42].
The authors of [37] study low-dimensional linear representation learning under the assumption
of isotropic inputs for all tasks and obtain the learning rate of O(y/ds?/nN + \/s/n) on the
target task. The authors of [10] achieve a similar rate while relaxing the isotropic assumption
with a different algorithm. In the linear representation case, they obtain an O( ds/nN +
\/s/n) rate. The authors of [21] study a somewhat different scenario, where the number
of samples per task may differ (and is smaller than the dimension d of the data); the aim
is to determine how many tasks must be undertaken in order to achieve consistency. The
work of [21] is most closely related to our work, as our procedure, after linearization in #, is
quite similar to their procedure in R?, notably in its reliance on outer-products of regression
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estimates. However, many technical issues arise in the infinite dimensional setting considered
here, both on the algorithmic and analytical fronts. These are detailed in Remark 3.5 of
section 3. The authors of [36] consider an alternate gradient descent algorithm, where they
jointly minimize the within task loss and the aggregate loss across all tasks. Under the
assumption that the data is Gaussian with the same variance across all tasks, they obtain
the learning rate of O(y/ds/nN + /s/n). The work [22] considers a distribution dependent
analysis of meta-learning in the setting of fixed design finite dimensional linear regression,
with Gaussian noise and a Gaussian parameter distribution. In the case where the covariance
matrix of the parameter is assumed to be known, the authors provide matching upper and
lower bounds, which demonstrates a precise characterization of the benefit of meta-learning.
While there is no theoretical analysis in the case where the covariance matrix is unknown, the
authors provide a detailed description of how the EM algorithm can be employed to solve the
meta-learning problem. The works [31, 42] also study the linear representation setting and
provide refined theoretical analysis on learning the common representation.

We next consider the case where the representation I' is nonlinear. The authors of [28]
evaluate the performance of a method for learning a nonlinear representation I' € F which is s-
dimensional, addressing in particular the case of a projection onto a subspace of a reproducing
kernel Hilbert space (RKHS). They focus on a learning to learn (LTL) scenario, where excess
risk is evaluated in expectation over a distribution of tasks [28, section 2.2]: we emphasize
that this is a fundamentally different objective from the performance on a specific novel test
task, as in our setting. The loss they propose to minimize [28, equation (1)] is an average
over N training tasks, where each task involves a different linear weighting of the common
subspace projection (the work does not propose an algorithm but concerns itself solely with
the statistical analysis). Theorem 5 in [28] shows that for an RKHS subspace projection, one
can achieve an LTL excess risk for Lipschitz losses (in expectation over the task distribution)
that decreases as O(s/v/N + M) This requires N > n in order to approach the parametric
rate. Note 2 in [28, p. 8] demonstrates that the factor 1/4/N is an unavoidable consequence
of the LTL setting.

The authors of [10] consider the case of nonlinear representation learning, using the same
training loss as equation (1) in [28], but with performance evaluation on a single test task, as
in our setting. Again defining I' € F, they obtain a learning rate of O(G(F)/vnN + \/s/n)
for the excess risk [10, Theorem 5.1, where G(-) measures the Gaussian width of F (a data-
dependent complexity measure, and consequently a function of n, N; see, e.g., [27], for further
details). The instantiation of G(F) for specific instances of F was not pursued further in this
work; however, [27] shows that the Gaussian width is of order vnN in n and N, in the case
where F is a projection onto a subspace of an RKHS with Lipschitz kernel.

The problem of learning a “meaningful” low-dimensional representation I' has also been
addressed in the field of sufficient dimension reduction. The works [14, 24, 41] give different
criteria for obtaining such I' and establishing consistency; however, they do not address the
risk analysis of downstream learning algorithms that employ I'. The authors of [23] intro-
duce the so-called principal support vector machine approach for learning both linear and
nonlinear I". The idea is to learn a set of support vector regression functions, each mapping
to different “features” of the output Y (e.g., restrictions to intervals, nonlinear transforms).
The estimator I of T is then constructed from the principal components of these solutions.
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In the linear setting, the authors provide the \/n-consistency of I". The authors of [40] provide a
kernelization of sliced inverse regression, which yields a subspace I" in an RKHS (the so-called
effective dimension reduction space). Consistency of the projection by I' of an RKHS feature
map ¢(z) is established; and an O(n~/4) convergence rate is obtained, under the assumption
that all I' components can be expressed in terms of a finite number of covariance operator
eigenfunctions. The learning risk of downstream estimators using I' remains to be established,
however.

Outside of the regression setting, meta-learning has been studied for classification: [15]
investigates the generalization error in this setting, with the representation I'" being a fully
connected ReLU neural net of depth @, common to all tasks. The authors of [1] study
the sample complexity per task when the task-specific classifiers are halfspaces in R® and
the samples per task are extremely low. Finally, there are analyses for other meta-learning
schemes such as domain adaption [3, 26], domain generalization [5], and covariate shift [25],
as well as alternative gradient-based approaches to refine algorithms on novel test domains,
e.g., [9, 11, 12, 20, 29].

2. Background and notation. Function spaces and basic operators. Let u be a probability
measure on X X R, uy denotes the marginal distribution of x4 on X, and pu(-|z) denotes the
conditional distribution on R given z € X. Let K : X x X — R be a symmetric and positive
definite kernel function and H be a vector space of X — R functions, endowed with a Hilbert
space structure via an inner product (-,-)y. K is a reproducing kernel of H if and only
if 1. Vo € X,¢(x) = K(-,z) € H;2.Vx € X and Vf € H, f(z) = (f,o(x))y. A space H
which possesses a reproducing kernel is called a reproducing kernel Hilbert space (RKHS) [4].
Lo(X, puy), abbreviated Lo(u), denotes the Hilbert space of square-integrable functions with
respect to (w.r.t.) puy.'

|A|| and ||Al| s denote, respectively, the operator and Hilbert-Schmidt norm of a linear
operator A on H. For f,g e H, g f = (f,-)ng is the generalization of the Euclidean outer
product. The covariance operator is defined as ¥ =Ex.,[K(X, ) ® K(X,)].

We require some standard technical assumptions on the previously defined RKHS and
kernel: 1. H is separable; this is satisfied if X’ is a Polish space and K is continuous [33,
Lemma 4.33]; 2. ¢(x) is measurable for all € X; 3. sup, ,cy K(z,2') = k? < co. Note that
those assumptions are not restrictive in practice, as well-known kernels such as the Gaussian,
Laplacian, and Matérn kernels satisfy all of the above assumptions on R? [32].

Matriz notation of basic operators. For a set of vectors {uy,...,un} € H, U = [u1,..., uy)
denotes the operator with the vectors as “columns,” formally U : R" — H,a— > 7" | u;a;. Its
adjoint is U* : H — R™, u— ((u;, u)p ).

Kernel ridge regression and regularization. Given a data set D = {(z;,v;)};—, inde-
pendently sampled from p, kernel ridge regression aims to estimate the regression function
fu=E,[Y | X], with the following kernel-based regularized least-squares procedure:

1) fxzargmin{iZ@i —f(xi))2+/\||f|!3{}a

feH i—

!To simplify notation, when we integrate over px a function defined on X, we use E, instead of E,, -
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with A > 0 the regularization parameter R W(f)=E, [(Y f(X 2] is the squared expected
risk and the excess risk is given by &,( \/R Ru(fu) = Eu [(f(X) — fN(X))2]1/2.
We also introduce the population version of f,\ as

(2.2) fA:arJggLin {E, [(V = £(X))?] + M fI5}-

The normed difference f,\ — f» is referred to as the estimation error and is a central object for
the study of kernel ridge regression (see, e.g., [13]).

Further notation. For n,m € N*,n <m,[n]={1,...,n},[n,m] ={n,...,m}. For two real
numbers a and b, we denote a V b=max{a,b} and a A b=min{a,b}.

3. Nonlinear meta-learning.

3.1. Population set-up. We consider a setting with NV source distributions {Hi}z’e[N} de-
fined on X x R, with corresponding regression functions of the form f;(z) = g;(I'(x)). We are
interested in minimizing the excess risk for a target distribution pu7, with regression function
fr(z)=gr(I'(x)). In the mostly common linear case, it is assumed that I" projects into a sub-
space of R? = X. However, in this manuscript, we assume that I' is a projection of nonlinear
feature maps in an infinite dimensional space.

Assumption 1. We let I' : X — H be a map from x € X to a subspace H, of dimension
s > 1 of an RKHS H as follows: given a projection operator P onto H, I'(z) = PK(x,-).
Furthermore, all link functions gr, {g;}}¥, are assumed linear H + R, i.e., Jwr,w; € Hs s.t.
gr(I'(z)) = (wr,I'(2))y, and g;(I'(z)) = (w;, ['(z))n.

Remark 3.1. Given an orthonormal basis (ONB) V = [vy,...,vs] of Hs, we may rewrite
gr(C(2)) = apV*K(z,-), ie., for ar € R®, for an s-dimensional (nonlinear) representation
V*T'(z) =V*K(z,-) of . The same is true for {g;}2; with respective {a;}¥ ;. The represen-
tations are nonunique, although their corresponding regression functions and H, are unique
(see Remark 3.3 below).

Remark 3.2. Since P is self-adjoint, we have fr(x) = (Pwp, K(z,-))s; hence, by the
reproducing property, fr = Pwp € H,. Similarly, we have that all { fz}f\; , are in Hs.

Remark 3.2 indicates that span ({ fi}ie[N]) C Hs. We therefore need the following richness
condition, similar to previous works on meta-learning in the linear representation case [10],
without which we cannot hope to learn H;.

Assumption 2 (source richness). We have that span ({f;}ie(n)) = Hs-

Remark 3.3. For any projection P onto some complete subspace Hs, (-, PK(z,-))y eval-
uates every function in Hs at x and in fact is well known as the kernel of the sub-RKHS
defined by Hs. The same fact implies uniqueness of Hs and in particular that it equals

span{l'(z) = PK(x,-)}.

3.2. Learning set-up. In this section we present the high level ideas of our meta-learning
strategy with nonlinear representation. The first step is to learn a subspace approximation
Hs ~ Hs from source tasks. This process aims to find a suitable representation that facilitates
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the learning of the target task. We refer to this step as pre-training. The second step involves
directly learning the target task within the subspace H,. We refer to this step as inference.

Source tasks: Pre-training. Our approach to approximate H; is inspired by [21], which
focused on finite-dimensional linear meta-learning. We extend this strategy to encompass (po-
tentially infinite dimensional) nonlinear meta-learning. Under the source richness assumption
(Assumption 2), H, is equal to the range of the rank-s operator (see Proposition SM2.1 in
the supplementary material)

N
o1
(3.1) CNZNZ;fiQin, ranCn = Hs.

Therefore, we estimate Hg via the range of
L N
(3.2) CNpa = N Z; Fin® fix
1=

where fz’ A fl A are i.i.d. copies of a ridge regression estimator for source task i € [N]. Here,
we use a data-splitting strategy to obtain the following:

N
B[Oyl = 3 DO ELf 0] @ Efial

i=1
This property plays a crucial role in deriving approximation rates for Hs. Data-splitting
is similarly employed in [21]. Avoiding data-splitting remains an open problem even in the
finite-dimensional linear representation setting.

Each source task is learned from a dataset D; = {(a:i,j,yi,j)?il},i € [N], of i.i.d. observa-

tions sampled from p;, via regularized kernel regression as in (2.1),

(3.3)
) n ) 2n
fir=argmin Y~ (yij — f(2i)* +nAfI3, iy =argmin > (yij — f(xi)” + 0l fIl3

For task i € [N], let K;,L; € R™™ be the Gram matrices such that (K;);; = K(zij, ),
(4,0) € [n], and (L)1 = K(z5,%i1), (j,1) € [n+1:2n]. Then for all x € X,

(3.4) Jr@) =Y, (K +nAL) ke fLy(@) = (V)T (L4 nAL) " b,

)

where ki, = (K(2;1,%),...,K(zin,2))T € R, iy = (K(%ini1,2),.. ., K(zion, )T € R,
Yi=(its--¥in) €R™ and Y] = (Yins1,- .-, ¥i2n) " €R™ A

After obtaining Cx , x, we cannot directly compare ran Cy to ranCy , x, since the latter
is not guaranteed to be of rank s. We therefore consider the singular value decomposition of

CNn:

N
O =) Aiti ®0;=UDV",
i=1
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where 41 > --- > 4y > 0 are the singular values and stored in the diagonal matrix D e
RY*N  The right and left singular vectors are stored as V = [o1,...,0x] and U = [ay, . .., 4n],
respectively. We use the right singular vectors to construct the approximation of Hg as follows
(note that a similar approach can be applied to the left singular vectors):

A~

Hs =span{vy,...,0s}.

We define the orthogonal projection onto H, as P.

Remark 3.4. In nonparametric regression, as employed in this approach, regularization
becomes necessary. This leads to biased estimators since E[f; z] # fi. For subspace approxi-
mation, it is crucial to effectively control this bias since it cannot be averaged out.

Target task: Inference. We are given a target task dataset Dr = {(zr1;,y7;);%,} €
(X x R)" sampled from pp in order to approximate fr. As mentioned in Remark 3.3, H, =
P(”H) C H forms an RKHS on X having the same inner product as H and with reproducing
kernel K (z,y) = (Po(x), p(y))n, (x,y) € X2. Consequently, we can estimate fr via regularized

A~

kernel regression within H, as shown in (2.1). For A\, >0,

(3.5) fro. =argminy  (f(xr,) — yrj)* + nodl| £I5
fers j=1

Since M is s-dimensional, it can be treated as a standard regularized regression in R® (see
section 3.3). The following remark highlights the main technical difficulties compared to the
linear case.

Remark 3.5 (differences from linear case). We point out that, while the algorithm used in
our meta-learning approach draws inspiration from [21], there are significant differences due
to the complexities of the nonlinear setting, as opposed to the linear one, as outlined below.

First, from the algorithmic perspective, proper regularization is crucial in an infinite di-
mensional space to prevent overfitting. [21] did not employ a regularization scheme but instead
relied on OLS regression, which does not directly extend to infinite dimension where some
form of regularization is needed to control a learner’s capacity. A second algorithmic difference
arises in the instantiation of the procedure in input space R%: while our procedure appears
similar to [21)’s when described in the RKHS H, i.e., after embedding, its instantiating in R4
is nontrivial, as it involves translating operations in H—e.g., projections onto subspaces of
H—into operations in R%. Section 3.3 below addresses such technicality in depth.

Second, many crucial difficulties arise in the analysis of the infinite dimensional setting
which are not present in the finite-dimensional case. Importantly, in infinite dimensional
space, the analysis effectively concerns two separate spaces: the RKHS H, which encodes the
nonlinear representation, and the Lo regression space. Thus a main technical difficulty is to
relate rates of convergence in H (where all operations are taking place) to rates in Lo, in
particular via the covariance operator, which links the two norms || - |5 and || - ||z,; this is
relatively easy in finite dimension by simply assuming an identity covariance (or bounds on its
eigenvalues), as done in [10, 21, 37], but such assumptions do not extend to infinite dimension
where concepts such as “identity covariance” are not defined. Namely, an infinite dimensional
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covariance operator must be compact, which implies that its eigenvalues decay to zero. Our
analysis reveals that the speed of that decay (encoded in Assumptions 3 and 4) determines
the rate at which we can learn. Furthermore, unlike in [10, 21, 37], where there was no need
to regularize the task-specific regressors, much of our analysis focuses on understanding the
bias-variance trade-offs induced by the choice of regularizers. This is nontrivial but is crucial
for guaranteeing gains in our nonlinear case, as explained in the paper’s introduction. Thus,
in the present infinite dimensional setting, as we will see, such crucial trade-offs will depend
on specific measures of smoothness—of the RKHS H and the regression functions therein—as
introduced in the main results in section 4.2 (see Assumptions 3, 4, and 5).

3.3. Instantiation in data space. In this section, we describe in detail the steps outlined in
section 3.2 to offer a comprehensive understanding of the computational process. In particular,
we focus on the computation of the right singular vectors of C N.n,x, Which plays a crucial role
in constructing s Additionally, we provide insights into the projection of new data points
onto H, which is essential during the inference stage. We emphasize that such instantiations
were not provided for kernel classes in the nonlinear settings addressed by [10, 28]; given the
nonconvexity of the loss (equation (1) in both papers), this task is nontrivial.

Singular value decomposition of CA'N%,\. We start by explaining how we can compute
the SVD of CA’N%,\ in closed form from data. Let {0;};_; and {@;}]_; be the right and left
singular vectors corresponding to the largest s singular values, and denote V, = [01,...,0s]
and U, = [G1,...,Us]. The next proposition shows that (US, Vs) can be obtained through the
solution of a generalized eigenvalue problem associated to the matrices J,Q € RY*YN  where
for (i,7) € [N]?

Jij = {fi, [))n =nY;" (K; +nAL,) " Kij (Kj 4+ n\L,) Y,
Qij={fl, fJ/>H =n(Y))T (L; +nA\L,) " Lij (Lj +n\,) 7! Y.

Proposition 1. Consider the generalized eigenvalue problem, which consists of finding gen-
eralized eigenvectors (a',87)7 € R2N and generalized eigenvalues v € R such that

0 QJ||al _ |Q 0|«

JQ o |8~ "o J||8]"
Define A=[f},..., fi] and B=1f1,..., fn] and let {(&] , 5] )T }5_, be the generalized eigenvec-
tors associated to the s-largest generalized eigenvalues of the above problem and re-normalized
such that o Qo = B JB; = 1,i € [s]. The following two families of vectors {t;};_; and
{A@i}fﬂ are orthonormal systems and correspond to top-s left and right singular vectors of
CNma:

N N

= Adi =Y (i);fj, =BBi=Y (B)fs, i€ls].

j=1 j=1

In other words, we can define the projection onto the subspace ., via {0:i}5_4:

Hs =span{vi,...,05} = span{BBl, e B@S}.
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Projection onto H, and inference. Next, we explain how we can project a new point onto
‘Hs and perform inference on such representations. The projection onto H, satisfies P = V V'
A new point x € X' can be projected into Hs as P¢(z) and identified to R® via

(3.6) 7=V o(x) = ((01,6(2)) 1, -, (05, 0())30) | = (01(2),.., 05(2)) | €R®.

By Proposition 1, £ can be computed as
Fi = bi(x) = (05, () ) = (BB, () = 5 B*d(x), i€ s],

where B*¢(x) = (fi(z),..., fn(z))T € RY. Recall that after pre-training, at inference, we
receive a target task dataset Dr = {(z1,;,yr;)};Z;. We denote by Z7,; € R* the embedding of
the covariate 7 ; into H, according to (3.6), and by X7 = [Z71,...,Z7n,) € R the data
matrix that collects the embedded points as columns; K1 = X:—pr X7 € R"*"7 ig the associated
Gram matrix and n;lXTX; € R*** the associated empirical covariance.

Proposition 2. fT)\* = VSﬁT,A*, where

. 2T 2
Bra. =argmin» (ﬂTiTJ - yT,j> + B3 = Xr (K1 + npdedn, ) Yr,

per*

and Y7 = (y7.1,. .- ,ygpvnT)T eR"". Forallze X, fT,A* (x) = 5;7/\*5:.
4. Main results.

4.1. Regularity assumptions. Our first two assumptions are related to the eigensystem
of the covariance operator. For i € [N] U {T'}, the covariance operator for task i, ¥; =
E,. [6(X) ® ¢(X)], is positive semidefinite and trace-class and thereby admits an eigenvalue
decomposition with eigenvalues \;; > Xj2 > --- > 0 and eigenvectors {\/V,jem}jzl [34,
Lemma 2.12].

Assumption 3. For i € [N], the eigenvalues of the covariance operator 3; from the (K, ;)
pair satisfy a polynomial decay of order 1/p, i.e., for some constant ¢ >0 and 0 <p <1, and
forall 7 >1, )\ ; <cj —1/P. When the covariance operator has finite rank, we have p = 0.

The assumption on the decay rate of the eigenvalues is typical in the risk analysis for
kernel ridge regression (see, e.g., [7, 13]).

Assumption 4. There exist a € [p,1] and kg0 > 0, such that, for any task ¢ € [N] and
pi-almost all x € X, 37,4 )\ffje?’j(:n) <k2
This assumption is known as an embedding property (into Loo; see [13]) and is a regularity
condition on the pair (K, i;). In particular, let T ; =" y Aij €ij @, () €i,j denote the integral
operator Lo(u;) — Lo(u;) induced by K; then the assumption characterizes the smallest «
such that the range of TI? 2.2 may be continuously embedded into Lo (). As is well known for

continuous kernels, ran Tll(/ 3 = H; thus the assumption holds for &« =1 whenever K is bounded.

Note that the interpolation spaces ranT Ioé/ i2 only get larger as o — 0, eventually coinciding
with the closure of span{e; ;};>1 in La(p;). Additionally, it can be shown that Assumption 4
implies Assumption 3 with p =« [13, Lemma 10].
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As alluded to in the introduction, « has no direct benefit for regression in our well-specified
setting with f; € H but is beneficial in meta-learning (see Corollary 4.5 and Remark 4.9
thereafter).

Assumption 5. There exist r € [0,1] and R > 0, such that for i € [IN], the regression
function f; associated with p; is an element of H and satisfies |3, f;||% = R < oc.

This assumption, imposing smoothness on each source task regression function, is standard
in the statistical analysis of regularized least-squares algorithms [7].

Remark 4.1. Assumptions 3, 4, and 5 only concern the source tasks towards nonlinear
meta-learning. We will see in section 4.2 that they are complementary in ensuring enough
smoothness of the source regression functions to allow for sufficient under-regularization to
take advantage of the aggregation of N source tasks. Thus, the main assumption on the
target task is simply that it shares the same nonlinear representation as the source tasks.

Finally, to control the noise we assume the following.

Assumption 6. There exists a constant Yo, > 0 such that for all Y ~ p;,7 € [N]U{T}:
Y] < Ya.

4.2. Main theorems.

Theorem 4.2. Under Assumptions 1, 2, and 6 with s > 1, for 1> 2.6, 0 <\, <1, and
nr 2 6520 (7 +log(s)),

with probability not less than 1 —3e™" and conditionally on {D;}Y,,

Eur (fra.) < co { ;S nT\ﬁ VA + HPLPH}

where P, = Iy — P and ¢y is a constant that depends only on Y, lfrllu, and k. Hence,
treating T as a constant, if we take A, = 12x2(log(s) V T)ny', conditionally on {D;}Y,, for
ny > 12x%(log(s) V 1), we get that £, (fr.x.) is of the order

\/T
— +
nr
Theorem 4.2 reveals that the excess risk for the target task consists of two components:
\/$/nr due to the inference stage, and ||PLP|| in the pre-training stage. In the upcoming
Theorem 4.3, we will see that the pre-training error || Py P|| decays with n and N. In other
words, if either N (number of tasks) or n (number of data within each task) is sufficiently
large, we can guarantee that the excess risk decays at the parametric rate O(y/s/nr), an
optimal rate achieved only by performing linear regression in a space of dimension s. ||1f’ L P||
is the sin-© distance between M, and 7, [35]. We can relate this distance to the difference

between Cy and CA'N% A using classic perturbation theory for singular vectors. Proposition 3
is a basic generalization of Wedin’s sin —© theorem [39].
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Proposition 3 (Wedin's sin —© theorem). Given Cx and Cy . defined in (3.1) and (3.2),
with vs smallest nonzero eigenvalues of Cn, we have

(4.1) 1PLPI| < 29[ Crvinr — Ol

We refer the reader to section SM1.2 in the supplementary material for the proof. Note that
the operator norm ||Cy 5, A —Cn || is dominated by the Hilbert-Schmidt norm |Cn A —Cn| as-
The following theorem provides high probability bounds on this quantity.

Theorem 4.3. Let Assumptions 3, 4, 5, and 6 hold with parameters 0 < p < a <1 and
r€[0,1]. Let 7 >1log(2), N >7, and 0 <A <1 Aminien ||| Define the following terms:
Ay = clog(Nn) (1+plog(A™H)) A7,
By = clog(Nn) (1 +plog(A~1)) A=(1H42))
where ¢ only depends on ko oo, D, k. We require n> Ay if r € (0,1/2] orn> By ifr € (1/2,1].

Under both scenarios, with probability greater than 1—2e~" —o((nN) ') over the randomness
in the source tasks we have

SV UV
VNt T ar

where C1 only depends on Yoo, R, k, p, and kq -

A log(nIN)+/T 1
(4.2) ||C'N,n,,\—CNHHs§C1< g(nN)v'T +/\”>,

We highlight two key aspects of Theorem 4.3. First, the bound is comprised of two terms
that come from a bias-variance decomposition (refer to section 6 for details):

ICN o — CN s < ICNmx — E(Cpn) s + IE(Chnn) — Cn |l as -

TV
Variance Bias

The first and second terms in (4.2) correspond to bounds on the variance and on the bias,
respectively. Second, while we obtain the same upper bound in (4.2) for the two distinct
scenarios r € (0,1/2] and r € (1/2,1], the requirement on the number of training samples per
task is different. In particular, By > A, since A <1 and p+ 1> «. This means that we can
benefit from further smoothness r > 1/2, but at the cost of a higher number of samples per
source task. Our analysis in Theorem SM1.7 implies that the difference comes from bounding
the bias term. We specifically show that uniformly bounding the bias from each task when
r € (1/2,1] (which requires n > B)) is strictly harder than doing so when r € (0,1/2] (which
requires n > Ay ). As such, our results reveal the inherent difficulty of nonlinear meta-learning;:
analyzing the bias is more involved than analyzing the variance, a fact which cannot be seen
in the linear representation case.

Remark 4.4 (further smoothness and the well-specified regime). While in usual analyses,
consistency in Ly norm is ensured for » =0 (implying that the regression function is in #), we
require further smoothness on source regression functions (i.e., 7 > 0) to guarantee consistency
in our setting. The requirement for additional smoothness stems from the fact that the result
depends on convergence of regression estimates in the stronger RKHS norm rather than in Lo
norm, as the above || - || zs and projections are defined w.r.t. the RKHS itself.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/14/25 to 144.82.114.218 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

1606 D. MEUNIER, Z. LI, A. GRETTON, AND S. KPOTUFE

We point out that in kernel learning literature (see, e.g., [7, 13]), one often observes the
Tikhonov saturation effect, where the learning rate does not improve for r > 1/2. However,
we remark that this saturation happens only when the Ly norm is used. In particular, (4.2)
demonstrates that our learning rate can be improved up to r = 1. This reflects the fact that,
if the RKHS norm is employed, the Tikhonov saturation effect happens for r > 1. A similar
phenomenon is observed by [6].

Combining Theorem 4.2, Proposition 3, and (4.2) from Theorem 4.3, we obtain the fol-
lowing results on the meta-learning excess risk.

Corollary 4.5. Under the assumptions of Theorem 4.2 and Theorem 4.3, for T > 2.6 and
A = 1262 (log(s) V T)ngt, with probability 1 —5e~™ — o((nN)~10) over the randomness in both
the source and target tasks, we have the following regimes of rates for a constant C3 that only
depends on Yoo, R, K, 71, D, ¢, ||frll1, and ko co-

A. Small number of tasks. In this regime, with the number of tasks N being small, the
variance is significant compared to the bias. Therefore, we must choose X to balance the order

of the bias with that of the variance. If N <n” "= "~' and r € (0,1/2] or N < n s gnd
r € (1/2,1], for a choice of A= (log*(nN)/(nN))>++7,
: s log?(nN)\ ¥+ ¢
: < s (log®(nN) |
(4.3) Eur(frp.) <Csr { - + ( 0

B. Large number of tasks. In this regime, we consider larger N (see B.1 and B.2 below),
so that the variance term becomes negligible compared to the bias. Therefore, the rates below
correspond to the choices of A that minimize the bias in (4.2) (under the constraints n >
Ay, By). In what follows, w > 2 is a free parameter.

e B.1. Forre(0,1/2], ifn e tTI< N < o(e"), for a choice of A= (M)i,

(C/',LLT(JET,/\*) < C37' {\/nT+ log% (TLN) n_;} '
T

2rdldp

e B2. Forre(1/2,1], ifn »t "< N<o(e"), for a choice of A= (M)ﬁ,

SMT(fT,A*) < 037{\/7+10g:+r1(n]\7) np:l} .
T

Remark 4.6 (saturation effect on large N). Corollary 4.5 shows no further improvement
from larger N once N > nwfl, since the rates then only depend on n (as outlined in
case B). This is due to a saturation effect from the bias-variance trade-off, i.e., N only helps
decrease the variance term below the best achievable bias; at that point the bias (within each

task) can only be further improved by larger per-task sample size n.

Remark 4.7 (regime N = exp(n)). The regimes presented in Corollary 4.5 only cover
settings where N < exp(n), which is in fact the only regime covered by previous works (see,
for instance, [10, 38]). This is due to the constraints n > Ay, By, which prevent N 2 exp(n).
However, at the cost of a less tight rate we can obtain a bound on the pre-training error
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that is free of any constraint on n (see section SM1.6). As a corollary of this theorem, when
1
N Z exp(n), choosing A =n"2 results in the nontrivial rate

N S _r
Eur (fra) S — +n 2.
nr

Notice that this is a slower rate than shown for smaller N in regime B of Corollary 4.5.
Tightening the rates in the regime of N 2 exp(n) appears difficult and is left as an open
problem. We emphasize, as stated earlier, that this regime is in fact not addressed by previous
works, even under the stronger assumption of linear representations.

Regimes of gain. We want to contrast our results in the meta-learning setting with the
rates obtainable on the target task without the benefits of source tasks. Since no regularity
condition is imposed on the target distribution, the best target rate, absent any source tasks, is
of the form O(n;1/4) (see, e.g., [7]);” thus we gain from the source tasks whenever £, (fT7/\*) =

—1/4
o(ny ).

Our interest, however, is in regimes where the gain is greatest, in that the source tasks
permit a final meta-learning rate of &, ( fT7 A ) Sv/s/np; Corollary 4.5 displays such regimes
according to the number of source samples N and n, and the parameters r, «, and p, denote
the difficulty of the source tasks. While it is clear that larger r indicates smoother source
regression functions f; as viewed from within the RKHS H, smaller parameters « and p can
be understood as a smoothness level of the RKHS H itself—e.g., consider a Sobolev space H
of m-smooth functions; then we may take «,p o< 1/m (see Example 3). Thus the smoother
the source tasks, viewed under 7, «, and p, the faster rates we can expect, since our approach
aims at reducing the bias in each individual task (which is easiest under smoothness; see
Remark 4.8 below).

Focusing on the situation where the number of samples per task is roughly the same across
source and target, i.e., n < np, the conditions for meta-learning to provide the greatest gain,
i.e., achieving O(nfl/ 2) rate, under various regimes, are listed in Table 1.

Remark 4.8 (under-regularization/overfitting). In order for meta-learning to provide gain,
in particular for n oc n, we have to overfit the regression estimates in each source task, i.e., set

Table 1
Conditions for meta-learning to reach the parametric rate O(M); log terms are removed for clarity.
Cases Range of source tasks Choice of A Regimes of gain
A nTEE N <p I | ()T s <p<l
A R S N <p e (nN)~ 75175 Pl <y <
B.1 n" SN <o(e”) nh s<r<d
B.2 n r I <N <o(e") o Pl <r<1

2Note that the assumption that fr is in some subspace H, is irrelevant for usual kernel ridge regression,
since it is always true once we know that f belongs to H.
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A lower than would have been prescribed for optimal regression (choices of A for the different
regimes of gain are summarized in Table 1).

Overfitting is essential because, as highlighted in the introduction, the bias inherent in each
task during meta-learning cannot be averaged out. Deliberate under-regularization reduces
this bias at the expense of increased variance within each task. However, the variance in the
target task may subsequently be mitigated by aggregating across multiple tasks.

More specifically, in the regimes of gain discussed earlier, the choices of A 1in Corollary 4.5
are consistently lower than the optimal regression choice of A\xgrr < n 20A1/2+1+r (see, e.g.,
Theorem 1 in [13]) in the well-specified regime. This deviation from the optimal regression
setting indicates overfitting, which again reveals that understanding nonlinear meta-learning
is fundamentally more difficult than the linear setting due to the bias term. This effect is
similarly observed in nonparametric kernel regression when splitting the dataset and averaging
estimators trained on each split of the dataset [43].

Remark 4.9 (regularity beyond regression). N oicice that the choice of the regularization pa-
rameter in kernel ridge regression Axrr <n 2¢~i/2+1+» has no direct dependence on «: lower
values of 0 < a <1 yield no further benefit in regression once we assume f; € H, as opposed to
the misspecified setting where f; lies outside H.” By contrast, in meta-learning, we do benefit
from considering «, as « governs both the threshold level at which the saturation effect on
large N kicks in (see Remark 4.6) and the level of smoothness required for meta-learning
to provide the greatest gain (See Table 1 and associated discussion). Ultimately, if a — 0,
there is no saturation effect, and the rates always match the parametric rate O(nil/ 2). This
indicates that subspace learning is a fundamentally different problem from ridge regression.

Characterizing o, p, and r. As discussed above, smaller parameters o and p and higher
parameter r yield faster meta-learning rates. The next examples yield insights on these sit-
uations. Throughout, recall that by Lemma 10 in [13], we have p < «, i.e., p = « is always
admissible.

Ezample 1 (finite-dimensional kernels). Suppose H is finite dimensional, i.e., the covariance
operators YJ; each admit a finite number of eigenfunctions e; ;,j = 1,2,...k, for some k£ > 1.
Then clearly the eigenfunctions {e; ;} are bounded” and Assumptions 3 and 4 hold for a., p = 0.
Furthermore, Assumption 5 holds for any value of . In this regime,

. [s |k
< N

See Remark SM1.8 in the supplementary material for the detailed derivations. As an example,
for polynomial kernels K (z, ') = (2" 2’4+ b)™ on compact domains X C R%, we obtain k = d™.
Note that, since polynomial regression converges at rate O(y/d™/nr) (see, e.g., [2, 8, 16, 44]),
we can gain in meta-learning whenever the representation H; is of dimension s < d™.

Remark 4.10 (subspace learning guarantees in the linear setting). In the meta-learning
model with linear representations, with d the dimension of the input points and s the dimension

3Note, however, that p < a, and therefore a small o implies that we are in the small p regime (and the rates
do depend on p).
4As we employ a bounded kernel, every function in the RKHS is bounded [33, Lemma 4.23].
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of the subspace, [37, Theorem 5] provides an information-theoretic lower bound on the sin —©

distance ||P, P|| of the order \/ % valid for estimators that are functions of the nN data

points. Assuming that the eigenvalues of Cy are well conditioned (ys < s™1), estimators
with matching guarantees on the sin —© distance are obtained in [10, 31]. By the previous

example, if we employ a linear kernel on R? and under the assumption v, =< s~*, we obtain
d 2

N
in [37]. Generalizing the result of [37] to the nonlinear setting with a lower bound depending

on the parameters (N,n,s,p,r,«) represents a significant and valuable direction for future

a subspace learning error (up to a log term) of recovering the learning rate obtained

research.

Example 2 (Gaussian kernel). Let X C Rd be a bounded set with Lipschitz boundary,” u
a distribution supported on X x R, with marginal distribution uniform on X, and let K be a
Gaussian kernel. Then by Corollary 4.13 in [18], Assumption 4 is satisfied with any « € (0, 1],
implying that Assumption 3 is also satisfied with any p € (0, 1].

Ezample 3 (Sobolev spaces and Matérn kernels). Let X C Rd, be a nonempty, open,
connected, and bounded set with a C-boundary. Let pu be a distribution supported on
X x R, with marginal equivalent to the Lebesgue measure on X. Choose a kernel which
induces a Sobolev space H™ of smoothness m € N with m > d/2, such as the Matérn kernel
(see, e.g., [18, Examples 2.2 and 2.6]). Then by Corollary 5 in [13], Assumption 3 is satisfied
with p = %, and Assumption 4 is satisfied for every a € (%, 1]. Furthermore, it can be
shown that Assumption 5 is satisfied if and only if the {f;}& | belong to a Sobolev space (with
fractional smoothness) of smoothness m(2r + 1) (see [13]).

5. Experimental results. In this section, we report the results of experiments on simulated
data to test the two main theoretical predictions of our paper: (1) with the proper number of
tasks it is possible to learn at the parametric rate; (2) overfitting is beneficial for meta-learning.
Consider the Sobolev space H = {f :[0,1] — R, f absolutely continuous, f’ € L?([0,1]), f(0) =
0}, equipped with the inner product (f,g)y = fol f'(x)g'(z)dz. H is the RKHS associated to
the kernel K : [0,1] x [0,1] = R, (z,2’) — min(z,2’) [17]. For a fixed parameter s € N, we
consider an orthonormal system (with respect to (-, -)3) of s splines of degree 2 (i.e., piecewise
quadratic functions with continuous derivative) (11, ...,%s) as shown in Figure 1. We then
take Hs =span{vy,...,¥s} and P = ijl 1j®1);, the projection onto H,. Note that P =VV*
with V =[1¢1,...,1s]. Any w € R? leads to an element of H as

F=> wie(w) = weltre, K(z, ) = (g, PK (2, ), 9= Y wethr.
=1 =1 =1

To generate each task, we proceed as follows. For i € [N]U{T}, w; ~ U(/sS*7Y), fi =
Ypoqwiethe, for j=1,...,2n (or j=1,...,ny for the target task),

Yij = fl(ZL’LJ) + €5, T 5 NU(O, 1), €i 5 NN(O, 02).

Throughout the experiments, o is fixed to 0.1. In Figure 1, we display an example of a
generated task for s = 10. Given an estimator f for the target task, we evaluate its performance

®For the definition of Lipschitz boundary see [19, Definition 3].
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Figure 1. Left—center: Orthonormal system in H spanning Hs for, respectively, s = 3 (left) and s = 10
(center). Right: Ezample of sampled task for s = 10 with 300 datapoints; the blue solid line represents the
ground truth.

by approximating the squared excess risk E,,,. [( f (X)—fr(X))?] on independent samples, where
pr is the Lebesgue measure on [0, 1].

Parameter values: p, «, and r. As the marginal probability distribution is the uniform
measure on [0,1] and K induces a Sobolev space of smoothness m = 1, by Example 3, As-
sumption 3 is satisfied with p = % and Assumption 4 is satisfied with every a € (%, 1]. Finally,
task functions are generated as linear combinations of order 2 splines and therefore belong to
H™(0,1) for every m < 2 (and do not belong to H™(0,1) for any m > 3). By Example 3,
Assumption 5 is therefore satisfied for every r € [0, %) (and Assumption 5 is not satisfied for
any r > %) In the experiments, we set r = %

Choice of regularization. We focus on the small number of tasks regime, Corollary 4.5(A),
where N < n™ a1 = nt. According to case A, we set A = (nN)_m = (nN)"% and
Ax = n;l. By Corollary 4.5, the excess risk on the target task is upper bounded (up to
constants and log terms) by /s/nr + (RN) 5.

Learning at the parametric rate. We have shown in Table 1 that given enough source tasks
and samples per source task it is possible to learn at the parametric rate y/s/np. To illustrate
this fact, we compare our meta-learning approach to an oracle estimator accessing the true
subspace. The oracle estimator has access to (¢1,...,1s) and is trained with linear ridge
regression. For x € [0,1], define its transform * = (¢ (z),...,9¥s(x))" € R®. Then, foracle(a:) =
BT 7%, with

. 1 &= 2
B =arg min — Z (yT,i - BT'%%,z) + )\oracleH/BH%'
pers NT {5
For Agracle = n;l, SMT(foracle) is of the order y/s/np [30]. In Figure 2 (left), for s = 25 and
n = 300 we show the evolution of the squared excess risk as we vary ny for the oracle estimator
and our meta-learning estimator trained with different values of N. Results are averaged over
100 runs, where for each run we sample new source and target tasks. For N = 250, the
performance of the meta-learning is identical to that of the oracle. It demonstrates that our
meta-learning strategy successfully leverages the source tasks and that given enough source
tasks, it learns at a rate similar to that of the oracle estimator, leading to a parametric rate
of convergence. We refer the reader to section SM4 for additional results.

Effect of overfitting. To assess the effect of overfitting (see Remark 4.8), we compare our
meta-learning approach trained with A\; = (niV )75 and Ay = n~:. In Figure 2 (right), for
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Mean Squared Error
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Figure 2. Left: Meta-learning versus oracle: Comparison of the squared excess risk on the target task for
the oracle estimator fomcze (dotted red line) and the meta-learning estimator fT,A* trained with different number
of tasks N (solid lines). The x-azis represents the size of the dataset for the target task (nr). Right: Effect
of under-regularization: Comparison of the squared excess risk of the meta-learning estimator trained with

A= (nN)_% (red dotted line) and \ = n=% (blue solid line). The x-axis represents the number of source tasks
(N). For both figures n =300, s = 25, and results are averaged over 100 generations of the source and target
tasks.

s =25, n =300, and np = 5000, we plot the evolution of the squared excess risk as we increase
N for A; (red dotted line) and A2 (blue solid line). Results are averaged over 100 runs. They
confirm the message of Remark 4.8 that overfitting (with respect to the usual regularization
of kernel ridge regression) on each source task is beneficial for meta-learning. We refer the
reader to section SM4 for additional results.

6. Analysis outline. To prove Theorem 4.3, we proceed with a bias-variance decomposi-

tion:
(6.1) ICNmx = Cnllas S ICNmx = Cumallzs + ICnma — Cnll s,
Valr?gnce Bias

where C_'N%)\ = % > E(fm) & E(ﬁ)\) Next we consider both of these terms separately.
e The variance term can be written as follows:

N
ICNpx — Cnpllas = ]172& ,
? HS
with & = fz’/\ ® fi)\ - E(f“\) ® E(fm),z € [N]. Thus, the variance term being an average
with mean 0, we would naturally want to bound it via a concentration inequality. However,
this requires &; to be well behaved, e.g., bounded or sub-Gaussian. A naive upper bound on
l€ill s is of the order ||f7,/)\”H | fiall < A7 (see Proposition SM2.9); however, this would
lead to a loose concentration bound on the variance term; in particular, such a bound would
not go down with the per-task sample size n.
Therefore, we first establish a high probability bound on ||§;||gs in terms of n and X\ as
follows. First, recall f; y from (2.2), and let n; = fz/)\ ®fi7,\ — fiA® fix, whereby & =n; —E[n;].
With some algebra we can get 7

Inills < W Ffix = Firllal fix = Firllae + 1 fillae (1 fix = Firllae + 1 Fx = Finllz)-
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From existing results on kernel ridge regression (see, e.g., [13]), we can bound || fz A=
in terms of both n and A, in high probability. This leads to a high probability bound on
&l s that takes the form P (||&|lms <V (0,n,X)) > 1 —2e7% for all § > 0 and i € [N] (see
Theorem SM1.6 in section SM1.3 for details). Define the event En 5, 5 = NieN]Eisn,0, where
Eisnx={l&llus <V (0,n,\)}. We then have

| N | N

o p(|rye] so)<r(frye

i=1 HS =1 HS
For the first term on the right-hand side, we can now apply the Hoeffding inequality

(Theorem SM3.6) since §; conditionally on Epn s, is bounded. However, conditioning on

EN sn,x, the variable § may no longer have zero mean, a requirement for usual concentration

arguments. We therefore proceed by first centering & around E(&; | Ensna) =E (& | Eisn)

(by independence of the source tasks) and upper-bounding this expectation as

IE (& | Eignll = 1EE | Bigna) —EE < 2E (€] | Efg 0] P (Efsn) < 4e°A71

where we used the upper bound A~! on ||&| zs. Then, applying the Hoeffding inequality to
the first term, we obtain with probability greater than 1 —2e~7 — 2Ne ™0

1 N T 46_6 T 4
¥ 26| v T v
i=1 HS

by choosing ¢ (a free parameter) as 12log(nN). In that way, for our choices of A (see Corol-
lary 4.5), (AN'2n!2)~1 is always of lower order and 2Ne™® = o((nN)~1%). Our choice of
V(d,n, ) is given in Theorem SM2.6 (leading to (4.2)), with the constraint that n > Ay (see
Theorem 4.3 for the definition of Ay). For the detailed proof of the variance bound, please
refer to Theorem SM1.6 in section SM1.3.

e To bound the bias, we first notice that it can be decomposed in the following way:

> € EN,(S,n,A) + 2Ne™?

|1CNmx—CONlls S

s,

The key is therefore to obtain a good control on || f; —E(f;.»)||l%. We consider two different
ways of bounding this term, commensurate with regimes of r.
When r € (0,1/2], we proceed as follows:
| M= PR (122 (S -m) =) 1/2) _1/2fz

=B, =2 [E(E3) 4],

<a =5 | I+El/2<2 £ ) s,

For r <1/2, we have HE 1/2fZ
then have

_ Hzr 1/227'/\f’b

< XV/2 while Hz;j/zu <ATV2 We

(I +3.,/ (z —y ) Ei";/?)*l

=B, <X
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For n > Ay, with probability over 1 — 2e~%—where § is chosen as discussed for the variance
bound—we can show that ||(I + E;i/z(Ei — E,-E;;/Q)_IH < 3, whereby we get with the same
probability || f; — E(f;\)|l% <3A". Thus, conditioning on this event, we get a final bound

I1fi = E(fio) |l <3\ + 2¢7°|| filla,

using the fact that || f; — E(fix)|lx = /\HE(fJZ_i)fZHH is always at most || fi||#.
When r € (1/2,1], we proceed as follows:

fi— E(fi,)x)HH =A HE (2;,%) fi = A HE (f],-]lzi,x) Sy fi
‘E (531-_,%21',,\) H HEKlZZ;EgE;Tﬂ

H
<A

H

< [ (Ema)|| =¥ e (0]

We then use the following derivation:
1 e -1 N S o) !
Sa=(SiA) = (mAr-m-%) =3 (I-E-S)z)

We are left with bounding the term E||(I — (2; — f]i)E;i)_l |l, which can be obtained by using
a Neumann series. For a detailed analysis of the bias, see Theorem SM1.7 of section SM1.3

7. Conclusion. We address the problem of meta-learning with nonlinear representations,
providing theoretical guarantees for its effectiveness. Our study focuses on the scenario where
the shared representation maps inputs nonlinearly into an infinite dimensional RKHS. By
leveraging the smoothness of task-specific regression functions and employing careful regular-
ization techniques, the paper demonstrates that biases introduced in the nonlinear represen-
tation can be mitigated. Importantly, the derived guarantees show that the convergence rates
in learning the common representation can scale with the number of tasks, in addition to
the number of samples per task. The analysis extends previous results obtained in the linear
setting and highlights the challenges and subtleties specific to the nonlinear case. The findings
presented in this work open up several avenues for future research, which include exploration
of different types of nonlinear representations beyond RKHS, alternative subspace estimation
techniques, and further refinement of trade-offs between bias and variance.
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