Semantic Cross-Pose Correspondence from a Single Example
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Abstract— This article focuses on predicting how an object
can be transformed to a semantically meaningful pose relative
to another object, given only one or few examples. Current
pose correspondence methods rely on vast 3D object datasets
and do not actively consider semantic information, which limits
the objects to which they can be applied. We present a novel
method for learning cross-object pose correspondence. The
proposed method detects interacting object parts, performs
one-shot part correspondence, and uses geometric and visual-
semantic features. Given one example of two objects posed
relative to each other, the model can learn how to transfer
the demonstrated relations to unseen object instances. Supple-
mentary details can be found at https://sites.google.
com/view/semantic-pose—-correspondence

I. INTRODUCTION

Many skills humans use to interact in the real world
involve object manipulation, for instance, cutting a loaf of
bread or hanging a painting. People naturally acquire and
transfer this knowledge to novel objects, enabling them to
perform a wide range of tasks with ease. Replicating this
ability in robots remains challenging. One key challenge is
that object manipulation often involves cross-object interac-
tions. Predicting the correct object pose for such interactions
requires understanding the relative transformations between
the objects, which can vary depending on the specific objects.

Recent approaches to learning object manipulation from
demonstrations have focused on identifying ‘“bottleneck”
poses, or intermediate configurations relevant to the task
[1], [2]. By limiting the search space, robots are able to
more easily learn new interactions. Inspired by these works,
we focus on identifying and transferring bottleneck poses
across different object pairs (i.e. finding the semantically cor-
responding cross-poses). However, this is not trivial — while
object geometry can provide some clues, it is insufficient due
to variations in appearance and texture. Moreover, obtaining
multi-view object data, such as complete point clouds, is
particularly difficult in live settings where a robot must
operate autonomously with limited sensory information.

Relevant approaches from skill imitation learning do not
transfer well to novel out-of-distribution environments [3],
[4] or objects [5], or rely on large category-level datasets [6].
Meanwhile, some geometric approaches have shown success-
ful cross-pose correspondences [7], however, they still strug-
gle with occluded single-view observations, which are often
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Fig. 1: Given one or few example poses of an object-object
interaction, we predict a semantically corresponding pose of
a pair of unseen objects with the same relation.

the only available data in practical scenarios. Additionally,
they also fail to make use of the rich semantic information
from the visual observations.

To address these challenges, we propose a novel approach
for one-shot semantic correspondence of object poses from
single-view examples. Our method leverages semantic in-
formation from visual inputs and unsupervised detection of
interaction regions to learn correspondences between objects
involved in cross-object interactions. This enables us to
generalize to novel objects using just one demonstrated
example pose (see Figure 1). We demonstrate the ability of
the model to transfer object cross-pose relations to novel
object pairs, across a plethora of simulated and real example
scenes. In this work, we use example poses that can be
extracted automatically from an RGB-D video demonstration

We leave the problem of executing high-precision tasks
that require learning the interaction dynamics, as future
work; for instance by using the cross-pose correspondences
to bootstrap the imitation learning of skills with new tools.

Contribution: This work contributes the following:

o A novel method for predicting semantically accurate
cross-pose correspondences using one or few demon-
strated interactions, without requiring data-intensive
pre-training.

o Integration of semantic visual features with unsuper-
vised interaction region detection for robust generaliza-
tion across novel object pairs.

o Validation through extensive experiments, showing
competitive performance and successful deployment.

II. LITERATURE REVIEW

Predicting how novel objects can be used is a challenging
problem. Imitation learning works often assume test-time
object distribution and struggle with visual variability [1],
[3]. Other methods integrate language models for abstract



reasoning and skill transfer across different objects [8],
[9], enhancing adaptability to new tasks. These methods
highlight the complexity of skill transfer to novel objects
and inference from unknown demonstrations. Despite recent
advancements in semantic correspondence [10], [11], [12], it
is underutilised in learning how to use similar objects.

In computer vision, semantic correspondence is often
achieved via proxy representations [13] or cyclic loss [14].
Reliance on pre-trained backbones is common [15], [16],
[17], [18], [19]. Most notably, features from pre-trained
DINO-VIiT [20] are effective in tasks benefiting from se-
mantic reasoning such as zero-shot co-segmentation [21],
pose estimation [22] and skill learning [23]. Some works
deal with the problem of finding semantically corresponding
manipulator poses with respect to novel objects that share
similar parts [24], [25], [26]. Bahl et al. [4] detail how
human hand-actions are split into pre-, during- and post-
interaction primitives. However, direct one-shot transfer to
a robot is not possible — the robot needs to fine-tune
its policy from safe interaction near the perceived goal.
[25] also consider correspondence based on “action” parts.
However, only geometric features are considered and part
matching is done by simply re-scaling, which limits the
method’s usability. Inspired by [27], leveraging neural fields
has become prevalent due to their continuous spatiotemporal
nature beneficial for optimizers, notably in grasping [6], [28],
[29], [26]. In recent works, shape models [30], [24], [13] fa-
cilitate skill transfers across objects with shared geometries,
albeit within constraints of similar poses and geometrically
akin parts. Being data-driven, these methods are not directly
comparable to our work, as they rely on training sets of
objects belonging to some particular category, while several
of these works also assume that any test object also belongs
to the same distribution as the training set.

Recent approaches propose the deformation of the demon-
stration objects followed by alignment to novel unseen
objects in order to geometrically find corresponding cross-
poses [31], [32]. Close to our work, DINObot [33] makes
use of DINO-VIT features for manipulation tasks, albeit the
method requires robot hand camera demonstrations and treats
the problem as camera alignment rather than tool alignment.
The closest to our method is TAX-Pose [7]. It takes in a few
demonstrations of a desired pose and transfers it successfully
to novel object instances. Unlike works that rely on full-
object matching for correspondence [13], [7], we propose to
limit the correspondence to a small region of the example
object where the interaction occurs. As shown in previous
works [30], [34], the point distribution in this small region
may be reliable and sufficient for cross-pose estimation.

III. PROBLEM STATEMENT

To distinguish between a tool and the object it manipulates,
we follow the terminology used in related literature and refer
to the instrument the agent manipulates with as the manip-
ulator, and to the object that the instrument is applied on as
the manipulandum. In other works, these may be referred
to as the Movable Object/tool and Receiver Object/anchor,

respectively. We also define a cross-object interaction as
the period during which the two objects are affecting each
other’s states.

Given a set of task demonstrations that depict interactions
between pairs of objects, and one novel scene containing
objects that could have a similar interaction, our goal is to
find a pose for the manipulator in the novel scene corre-
sponding to the demonstrated ones. As in related works [6],
[7], we assume the manipulandum is fixed, and only predict
the interaction pose, not a full trajectory.

Throughout this work, the superscript A is used for the ma-
nipulator and B for the manipulandum. Subscript 0 denotes
the initial frame in a demonstration. Each demo includes
aligned color and depth images (i.e., RGB-D) showing the
execution of a single task, and masks of the objects in the first
frame, M' and MP. Note that the masks may be provided
by annotation or generated without user supervision. In
this work, we use language-guided object segmentation for
demonstration masks and unsupervised object detection, such
as the one used in [19], for the novel scenes. Projecting these
masks onto 3D points, the respective point clouds of the
object Pg' and P are computed, having N4 and Ny points
respectively. Novel scenes, similarly, include a single RGB-
D frame and masks of the objects. Except for determining
the manipulator pose and interaction part at the start of the
interaction, we do not use the full demonstration.

IV. METHOD

We build upon TAX-Pose [7]. Given some demonstrations,
we first estimate the 2D object regions which are important
for the interaction (Section IV-A). A model is then trained
to predict how these regions interact in 3D (Section IV-B).
Given a novel pair of objects, we can find the corresponding
interaction regions using one-shot part correspondence [19].
Finally, we infer what the semantically corresponding inter-
action pose is. Refer to the system overview in Figure 2.

A. Estimating the Region of Interaction

We estimate the segmentation mask of each object, which
is important for the interaction, denoted as the region of
interaction (Rol). During cross-object interaction, the objects
often occlude each other, while before the interaction, they
are typically less occluded. We take the point clouds P({‘,
P(fg from the initial frame, and transform them to their
interaction poses using transforms obtained by an off-the-
shelf pose-tracker [35]. Thus, we can estimate their point
clouds despite occlusion, visual artifacts, and motion blur.
Transforming the initial manipulator points POA along the
trajectory using a transform 7; from the pose tracker, we
compute the Euclidean distance between the objects as:

d(T, P, PP) = lpt =2 (D

min
p{ €T Pt ,pP Py

We define the interaction frame, denoted with subscript
int, as the frame at which the distance between the two
objects’ point clouds is the smallest

int = arg mtin d(T, P, PE). (2)
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Fig. 2: Left: The demonstrations are pre-processed to determine the regions of interaction. The points belonging to those
areas are used as training data. Random transforms are applied to the object points at each training step. The model is trained
to predict the manipulator transformation that would bring it to the ground truth pose. During inference, the corresponding
interaction area is found and fed into the trained model to predict a semantically corresponding pose; Right: The model
architecture comprises point-wise embedder networks, encoder-decoder transformers (pointers) and differentiable SVD.

The closest pair of points is then noted as pZ, and pZ ,. This
is the frame in which contact would occur if the manipulation
involves physical contact. A subset of points

Pi1741t = {pf € Ttp(;qv s.t. prq‘zt *pfqu < dinres}, ()

within some Euclidean threshold d;j,.s, are selected for the
region of interaction (see Figure 3). Projecting the 3D points
to back 2D, an interaction region mask M/}, can be gener-
ated. The Rol M2, is also approximated similarly. Since the
manipulandum B is assumed static, the tracking transform
T; is the identity matrix throughout the demonstration.

B. Goal Pose Learning

Our cross-pose learning model extends TAX-Pose [7],
by introducing visual-semantic features and working with
object parts instead of full objects. The model used to
learn the desired pose of the manipulator is split into two
symmetrical streams, one predicting the transformation
from A to B; and another the reverse from B to A.
For brevity, the method outlined below in (1) and (2)
describes one of the streams (see Figure 2-right), while the
other is symmetrically identical (i.e. with A and B swapped).

1) Embedding: To embed semantic information, we use
the feature descriptors produced by the DINO-ViT back-
bone model ¢(.) at the initial RGB frame [y. Each feature
descriptor belonging to the Rol masks M;,; is projected
from its 2D location within the image to the existing point
cloud using 3D ray-casting. Any points that are considered
invalid or abnormal, due to typical sensor issues with depth
cameras, are filtered out via statistical outlier removal. Thus,
we obtain features F4 = ¢(Iy) ® M;,; associated with 3D
points, where © is the application of the mask. We opted for
using projected 2D features from a pretrained model as that
allows us to make use of the vast image datasets without
retraining for a specific object. We considered embedding
3D semantic features directly as in [36], [37]. However,
such networks cannot easily generalize to unseen objects
due to lack of 3D training data. Recently, projected 2D
features have proven more useful and scalable across several
computer vision tasks [23], [38], [39]. For 2D features, we

considered using a supervised network trained on semantic
correspondences, or a self-supervised network with emergent
semantic capabilities. We chose DINO-VIT features as they
performed best as local dense semantic descriptors at the
time of developing this method [21]. B

The points are re-centered via the point cloud mean P4
and concatenated with their respective visual features FA
to form point-feature vectors X4 = [F4, P4 — PA]. A
point-wise embedding network g (X“) then outputs an
embedding for each vector. Note that, unlike DCP [40]
and TAX-Pose [7], the embedding network proposed here
does not encode anything about the point cloud’s local or
global geometry. Since these features contain point-wise
information, we cannot use the DGCNN point-cloud encoder
that TAX-Pose uses. Instead, we opt to off-load point-cloud
processing to the following cross-pose correspondence
transformer, while point-wise encoding simply downsizes
the input features to more manageable dimensions.

2) Correspondence: The correspondence process follows
[40], [7] for a fully differentiable model w.r.t. input points
P4, This is done by first determining a set of virtual points
corresponding to where the input points should be, and then
finding the optimal transform to bring the point cloud as
close as possible to its virtual correspondences. Firstly, for
each point p € P4 we assign some point v € V4 which
is within the convex hull of P? via a weighted mean

VA — PBWA_)B, (4)

where € RVe>xNa i5 a normalized weight matrix
such that ) WA=B = 1. We refer to V4 as “soft”
correspondences. Intuitively, this weight should determine
the importance of each pair of points from the two point-
clouds. To compute weight matrices that incorporate in-
formation about both point-clouds, we apply a transformer
network gA~5 (noted as “pointer”) which produces cross-
object point embeddings

WA%B

wA _ gAHB

-

(g (X™),92(XP))). (5)

The softmax of the last attention layer of the transformer
serves as the weights W 5~4 used above. Since these soft
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Fig. 3: To find the part of the interacting object Fig. 4: Correspondence stages: (a) A query region is matched to a target
which are involved in the interaction (1), the closest object. (b) Target region is projected to 3D (shown colored) and used as
3D point pair is found (2), and all points within some input to our model. (c) For each query point, a virtual correspondence
threshold distance from those points are selected (3). is computed. (d) The optimal transform is determined.

correspondences are constrained within the convex hull of the
object, they do not retain the same shape as the initial point
cloud — they need to be adjusted to get correspondences
that retain a similar shape. For this purpose, a displacement
residual vector & is used. The residual §4 = gr(y?) is
learned with a network gg that uses the point embeddings
as input. Finally, the correspondences are defined as

VA = pBwA=E 454, (6)

3) Optimal Transform: The optimal transform between
two sets of points is computed using Singular Value De-
composition (SVD). Specifically, we search for one homoge-
neous transformation matrix that transforms the manipulator
points P4 into their virtual correspondences V4, while
also transforming the virtual manipulandum points VB into
their correspondences PZ. Using differentiable SVD, we
decompose the cross-covariance matrix

)

pA _ pAY A _yalT
VBvB:| |:PBPB:|

|

into H = USDT, where P and V are point cloud centroids.
The optimal transform 7™ (see example in Figure 4) is
then comprised of a rotation R* = DU” and a translation

t*_lN VA—VA R PA_pA 8
o R [
where N is the number of points in the concatenated matri-
ces. Note that the model is translation-equivariant.

4) Training: Since the model’s architecture is not
rotation-equivariant, we apply random transformations to the
input points and re-compute the corresponding ground truth
T9. At each training step, random samples of the input
points are used to make the model more robust to different
point clouds and reduce the model’s reliance on the point
order. As [7] we use losses minimizing the distances between
virtual points, transformed input points, and ground truth
points. Specifically, we use point displacement loss

1
Laisp FrIAT AT

1 _ b
+7ZB |T*71PB 7Tgt 1PB|
Np

virtual correspondence loss

1
Leorr., NiZ‘L‘ [Va —TgtPA‘
T4 . a0
- Xp Ve =T PP
Np
and a consistency loss
1
]Lcons‘ 72,4 |T*PA - VA‘
Na (1n
+72A |T*71PB _ VB|
Np
The final objective with A\ mixing coefficients is
L= Adisp.ILfUlzLGp. + )\corr.]Lcorr. + )\cons.Lcons.~ (12)

C. Cross-Poses of Novel Object Pairs

Given some set of demonstrated interactions, each Rol
is first estimated. The points within those Rol and their
associated DINO-ViT features are used to train the Goal Pose
learning model. For inference in novel scenes, our model
takes in one of the demonstrated object pairs and finds the
2D semantic correspondences of the interaction regions in
the novel object pair using our model AffCorrs [19] (see
Figure 4-b). AffCorrs takes as inputs the initial Rol mask
Mint,demo of either demonstration object, the corresponding
RGB image, and the RGB image containing the novel
object. The model outputs the corresponding 2D Rol mask
Mint mover for either object. These masks are then used as
outlined in the training procedure to infer an optimal cross-
pose between the two objects. Since the semantic DINO-ViT
features belong to the same latent space and represent only
the Rol, we can use them directly as inputs for the goal pose
learning model to predict cross-poses.

D. Implementation

We use the DINO-VIiT-S model with patch size of 8.
While these features are derived from a complex model pre-
trained on ImageNet, their availability as pre-trained tools
allows for their use without requiring additional training on
datasets specific to each task. The point embedding networks
have four MLP layers with ReLU activations and 512 output
dimensions. Each pointer transformer has one encoding and
decoding layer, with standard attention. The residual models
have three MLP layers with ReL.U activations and one final
MLP layer downscaling to three dimensions. The coefficients



are Acons. = Acorr. = Adist. = 1. We used a learning rate of
10—* for 1000 training steps, which takes approximately 10
minutes to train on one NVidia RTX3080 GPU.

V. EVALUATION

A. Experimenal Setup

Baseline: We test our model against the TAX-Pose base-
line which it extends. For TAX-Pose, we use the official
implementation released by the authors. The baseline is
initialized with their provided checkpoint weights, which are
available for mug-related tasks. For each task outlined, all
models are trained for 1000 steps on the same data, with the
same training procedure and training augmentations.

Quantitative Tasks: 1) Mug-Pour. We simulate a pouring
task in PyBullet. The models are trained and tested on
random mug pairs — we use five mugs from GSOD [41] with
random image textures for training, and five mugs generated
with Shap-E [42] with random textures for testing. This
equates to 25 possible training pairs, and 25 testing pairs.
The models are trained on a random selection of a few (out
of 25 possible) training examples and tested on the 25 unique
pairs unseen by the models. The simulated manipulator mug
is transformed into the model-predicted pose and 100 balls
are simulated inside it. The fraction of balls successfully
poured into the manipulandum mug is the task success rate.
A mug collision is considered a failure with a 0% success.

2) Mug-Rack. We also simulate mug-rack task, similar
to [7], but with textured mugs from the set used for Mug-
Pour and only a single-view demonstration instead of full
textureless models. We focused on two settings: upright and
arbitrarily rotated mugs, defining success as the mug being
stable on the rack without falling or collision.

3) Survey. We use single viewpoint examples of three real
tasks (drill on bolt, hammer on cup and bottle pour in mug)
to train a model on each method. We conduct a survey of 24
people asked to evaluate the predictions on novel objects on
a scale from 1 (“does not resemble the interaction at all”) to
5 (“resembles the interaction as closely as possible”). Three
unique object combinations are used for each task.

B. Quantitative Results

1) Baseline Comparison: We first train five models in-
dependently for one-, two- and five-shot tasks on (1/2/5)
randomly selected training mug pairs from Mug-Pour. Our
method achieves 66%, 68%, and 78% success rates, in
comparison to TAX-Pose’s 53%, 55%, and 56% success
rates (see Figure 5). Similarly on Mug-Rack, both models
report a perfect success rate of 100% for the upright scenario,
while for arbitrarily rotated mugs, our method achieves 78%
in comparison with 41% for TAX-pose. In the survey, we
report the mean score of our method is 4.17 &+ 1.13, while
for TAX-Pose — 2.45 £ 1.07. The outputs of our method
are more aligned with the expected interaction. With a mean
score of less than 5, we identify that there is still room for
improvement.

2) Impact of Training Examples: Observing Figure 5,
we show that having multiple examples that likely contain
more different viewpoints of the mugs improves the model’s
performance. Our model’s mean and standard error decreases
as the number of demonstrations increases, suggesting that
performance scales with data.

3) Impact of Semantic Features and Contact Threshold:
In Figure 5, we show how the model performs with and
without semantic features for Mug-Pour, one-shot from a sin-
gle viewpoint. Our model with semantic features consistently
performs better, significantly enhancing pose accuracy. Our
ablation over varying the contact threshold, also in Figure 5,
shows that for our full model in the Mug-Pour setting, perfor-
mance improves with a bigger contact threshold. While this
result may suggest that simply expanding the contact area
is sufficient, the benefit relies on the presence of semantic
correspondence. Without it, performance declines as the
model fails to relate object parts to their roles in the task. The
highest threshold yielding the best results also implies that
optimal thresholds may vary across objects, depending on
whether global context adds useful task-specific information.

C. Qualitative Results

1) Task Variety: To test the quality of the pose corre-
spondence, we train our model on a single example of some
interaction and show the predicted cross-pose for a novel
object pair. This is tested on five real tasks (cup-pour, bottle-
pour, drill, place, and stack), as well as five simulated tasks
in PyBullet with objects from GSOD (mug on rack, shoe on
rack, hat on toy, object in organizer, and plant in pot). See
subsample in Figure 6. The real tasks are captured from a
single viewpoint with a RS-D435 camera, which has notably
noisy point-clouds. Note that the method does not imitate
dynamic interactions, but only the pose correspondence. Our
model produces good pose correspondences from a single
example in many use cases, including when transferring to
objects with different scales, geometric shapes, or textures.
We observed that the correspondences are not ideal — while
the predicted poses are close to what is intuitively expected,
collisions between the novel objects are also observed.
Moreover, one demonstration from a single viewpoint may
be insufficient in providing enough task specificity.

2) Task Depth: The models are also qualitatively com-
pared in mug pouring. For each mug in a set of N = 9 mugs,
we provide a single demonstration. A model is trained on
each example and tested on all N mugs. Placing more focus
on geometric information, the baseline confuses between the
top and bottom of the mug in some occurrences. On the
other hand, some predicted tool poses from both models are
in collision with the manipulanda.

3) Real Robot Demonstration: The models can predict
good cross-poses across a variety of object pairs. However,
they are lacking the precision needed for many real robot
tasks — the proposed approach does not consider trajectory
imitation. It can be directly used for simple manipulation
tasks that involve cross-pose estimation. To validate that the
presented visual projections can be successfully transferred
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Fig. 6: (left) Real demonstrations and target scenes, with projections of the manipulator single-view mesh in the poses
predicted by the model. The tasks in order: bottle pour in mug, drill on bolt, mug pour in saucepan, place fruit in bowl
(right) Simulated demonstrations and target scenes, with simulated transformations of the poses predicted by the model. In
order: mug on rack, hat on toy, shoe on rack, rectangular object in an organiser

Fig. 7: The robot picks up a cup (top) and a bottle (bottom)
and moves it to its predicted pouring pose.

to the real world, we present two of the tasks: pouring with
bottle into a mug and pouring with mug into a saucepan, in
Figure 7. We predict the interaction pose between the two
observed objects, and execute a motion planned with RRT*.

VI. CONCLUSION

In both our quantitative and qualitative experiments, the
predicted cross-poses of our approach were consistently
better than the baseline. The proposed architecture alleviates

the need for point clouds from multiple viewpoints by
making use of semantic priors and the need for large-scale
datasets. The method works directly with RGB-D sequences
without ground truth object poses by leveraging an off-
the-shelf object tracker, though accuracy depends on the
tracker’s precision. Our approach inherits TAX-Pose’s main
limitations: the need to train a new model for each task which
may require significant memory resources as the number
of tasks increases. Future work should explore multi-task
approaches to cross-pose correspondence.

The cross-poses predicted by our model may serve as a
good initial guess for skill initialization but they are not accu-
rate enough for high-precision tasks. Future work stemming
from this work should aim to expand its capabilities, by in-
corporating object trajectory imitation or learning fine-tuned
policies with residual RL [43]; and address the limitations
of the approach, e.g., by using neural rendering [44] instead
of RGB-D cameras to represent the 3D world better and
alleviate issues with representing reflective or transparent
objects; and using novel architectures such as [45] to make
the model SE(3)-equivariant. Moreover, applications such as
assisted teleoperation of novel objects could be explored.
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