Detection of Reverse Engineering Activities before the Attack

Paolo Falcarin
Dip. di Scienze Ambientali, Informatica e Statistica
Ca’ Foscari University of Venice
Venice, Italy
paolo.falcarin@unive.it

Matteo De Giorgi
NATO Communications and Information Agency
NATO
The Hague, The Netherlands
matteo.degiorgi @ncia.nato.int

Abstract—In typical cybersecurity scenarios, one aims at
detecting attacks after the fact: in this work, we aim at
applying an active defence, by detecting activities of attackers
trying to analyse and reverse engineer the code of an Android
app, before they will be able to perform an attack by
tampering with the application code. We instrumented an
app to collect various runtime data before and after deploy-
ment, in normal behaviour and under malicious analysis. We
introduce the concept of partial execution paths as subsets of
a program trace suddenly interrupted, as possible indicators
of debugging activities. Such clues, along with system calls
sequences and delays between them, stack information, and
sensors data, are all data that are collected to help our system
in deciding whether our app is under analysis and its device
has to be considered compromised.

Index Terms—Reverse Engineering, Mobile Apps Monitor-
ing, Anomaly Detection, Software Protection, Anti-Piracy

1. Introduction

Software piracy is a longstanding problem in software
security: according to the European Union Intellectual
Property Office [1], software piracy in 2017-2023 has
steadily increased for mobile devices while in desktops
it has slowly decreased. The creation of pirated software
copies can be the result of various types of attacks: the
2025 Application Security Threat Report [2] shows an
increasing number of environment attacks (when apps runs
on rooted or jailbroken devices), instrumentation attacks
(which involve dynamic code modification), and integrity
attacks (where the app is modified and repackaged).
Such attacks falls into the wide category of Man-At-
The-End (MATE) attacks [3], where the end user is the
attacker, who could try understanding how the code works
through the process of reverse engineering, copy and
disclose without any authorisation codes in violation of
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copyright laws, modify and tamper with the code so that
it behaves differently (such as removing license and pay-
ment checks), take advantage of some code vulnerabilities
and much more. The typical MATE attack model consists
of a sequence of three main types of activities, often in
iterations, to achieve a particular malicious goal:

1) Static Analysis (using reverse engineering tools
to analyse the app files)

2) Dynamic Analysis (typically debugging to collect
runtime data from the app under analysis)

3) Code Tampering (modify the code to implement
the attack)

Software protections against MATE attacks adopt dif-
ferent strategies, targeting the above activities to make it
more difficult for the attackers: obfuscation makes static
analysis harder for the attacker [4] often combined with
software diversity [5] [6] to increase code variability; other
runtime protections have been designed to thwart dynamic
analysis with anti-debugging techniques [7] [8] while
integrity verification has been used for tamper-detection
[9]. More recently, such protections have been extended
by the use of trusted servers for implementing tamper-
detection with remote attestation [10], with mobile code
[11] or coupled with native libraries [12]; trusted servers
have also been used to renew and diversify Android app
native code [13] to contrast dynamic analysis.

The goal of our work is designing a system able to
stop an attacker before performing an attack, while they
are still analysing our app code: we aim at monitoring,
collecting, and then analyse and correlate multiple types
of data gathered from an Android device during our app
execution, in order to combine different clues that might
indicate the presence of reverse engineering activities.

We assume that protected apps cannot be easily at-
tacked with static analysis only, and that the attacker needs
to run and debug our app before implementing an attack:
at the same time, during its normal usage, our protected
app will collect runtime data to be sent to a trusted server,
where these device data and user behaviour are analysed
to detect anomalies and unauthorised reverse engineering
activities such as debugging.



In the next sections we will describe our proposed
software architecture, list the collectable data that could
hint about the presence of reverse engineering activities,
describe our approach, and show an initial validation on
a simple Android application.

2. Reverse Engineering Detection

Detecting reverse engineering activities require the
installation of additional software libraries to collect data
from the app runtime and from the device.

We have designed a software architecture (Fig. 1) that
creates an interaction and protection mechanism between
an Android application and a Trusted server. Information
at different levels are collected from the device starting
from low-level system calls up to multiple high-level data
such as sensors, and device settings; then the trusted server
will check these data to detect anomalous behaviour, or
the presence of debugging, or other reverse engineering
activities.
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Figure 1. Architecture for Reverse Engineering Detection.

The whole process is composed of the following
phases:

1) Running test-suites at development time for ex-
tracting data by means of the two libraries to
monitor the app installed on the device: the na-
tive library extracts low-level information such as
system calls, their sequences, and stack informa-
tion, while the Java library for extracts data from
sensors, settings, and configuration files;

2) Transmission to the Trusted Server of all these
data extracted from the Android device, to be
stored in a graph model for further processing;

3) After deployment, collecting data, comparing
these with the stored model and decide which
actions to perform in case of suspect behaviour:
disconnection from the network, further monitor-
ing, device blacklisting.

4) The trusted server can run an anomaly detection
to detect differences in the configuration and
sensors data of the device, and it can run the
debugging detection to compare the runtime data
with the pre-built model.

In Figure 2, it is possible to see the point of view that
can be obtained using this native library on an Android
application; in fact, it can be notified every time an
action from the kernel is requested either directly by the
application code or indirectly by one of the underlying
layers. Moreover, our native library can also extract stack

traces, allowing tracking of the sequence of nested func-
tions called from the application code through the ART
framework and standard libraries.
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Figure 2. The native library in an Android environment

Mapping any interaction between the Android appli-
cation and the underlying Linux kernel is a starting point
to get a complete view of the actual behaviour of the
application. We developed a native library for tracing any
interaction of the protected app with the underlying Linux
kernel: this low level library allows identifying the set of
system calls used by the app, the various sequences of
calls that form the program traces, and to collect the parts
of stack data we are interested in monitoring.

We introduce the concept of partial execution path
as a subset of a program trace suddenly interrupted: the
appearance of such incomplete traces and corresponding
delays between consequent system calls are a typical
evidence of the activities of a debugger utilised to explore
the app behaviour and collect runtime data from memory.

We also developed a Java high-level library, linked to
the app, whose goal is to collect other data that might give
away the presence of dynamic analysis by the user of the
device.

2.1. Collecting Data from the App Runtime

We developed a native library for tracing any inter-
action of the protected app with the underlying Linux
kernel: its main outputs are the set of runtime traces,
where a single trace is a sequence of Linux system calls
happening at runtime, and the stack memory contents of
such calls. The ptrace interface in the Linux kernel
enables a process (“tracer”) to monitor and manage the
execution of another process (“tracee”), and to inspect
and modify the tracee’s memory and registers. The tracee
could also be a lightweight process, such as a thread.
This interface can be used via the system call ptrace,
which allows one first to specify the process’s identifier
to trace and then how it should be traced. The identifier
is generally known as the Process ID (PID), but it also
accepts a Thread ID, which in Linux terms is often
referred to as SPID. Moreover, it is essential to note that
once a tracer is attached to a tracee, no other tracers for
the same process (or thread) are allowed. In an Android
environment, the usage of ptrace is further restricted in
such a way that only the parent of a process can trace



it. Therefore, it is impossible to attach to any application,
since they are always executed by the same parent. A
way around this limitation is running the tracer process as
root, allowing it to attach to any process. Alternatively, an
application can trace itself by spawning a tracing process
and explicitly allowing it to be a tracer.

Using the Linux process trace interface ptrace, it
is possible to attach to a specific Identifier for a Process
(PID) or Thread (TID) and be notified every time a
system call is invoked, or signal is received, hence every
time the kernel takes over control. One of the main
advantages of this technique is that it cannot be easily
evaded and allows modification of system call parameters
and return values.

Thanks to ptrace, it is possible to wait for noti-
fications from a traced process using the library function
waitpid, which is typically used to wait for the termina-
tion of a child process and, in this case, is utilized to wait
for events. It will be necessary to filter those notifications
to ensure they are coming from the tracing interface and
handled differently if they correspond to the reception of
a signal by the tracee, the invocation of a system call,
its conclusion, or the termination of the entire process.
Moreover, it is also necessary to correctly recognize and
implement special cases for some system calls that create
new processes or replace the running program.

For example, when a system call like clone, fork or
vfork is executed, then the tracee will spawn a new
process or thread (depending on the clone parameters),
which will need to be traced. To do that in the safest way
possible, one can leverage on ptrace, which, thanks to
some initialization options, allows one to attach to the
generated children of all types automatically. When an
execve system call is executed, the running program
will be replaced by a new one. This implies that they will
all terminate if it comprises multiple threads, and only the
thread group leader will be left. Such behaviour must be
recognised, and all the data structures used to keep track
of the system calls modified accordingly.

Moreover, there are special system calls that never return
and will generate only one notification at their invocation
(contrary to all other calls that generate another one when
they terminate). One example is rt_sigreturn which
should never be called directly and is used to return from a
signal handler, hence used every time a signal is received.

Using the ptrace interface implies being exposed
to various special behaviours that Linux processes can
assume and which need to be correctly addressed. For
example, it is necessary to correctly handle fork family
system calls and ensure that the generated child is traced,
or correctly reflect the change that an execve family
system call causes on a process (or thread family). To
improve security, our native library will forcefully termi-
nate the tracee, if the corresponding tracer process dies
for any reason: in this way, it is possible to prevent the
tracee from killing the tracer in an attempt to free itself
from its monitoring and control.

Each captured notification from the traced processes
will be printed on the standard output, and its internal
representation will be made available for further internal
processing by the Analyser component. In Figure 3, it is
possible to see an extract output generated from tracing the

execution of the command 1s in an Android environment
and disabling the stack trace acquisition.

The execution of this command is single-threaded and
does not generate any child process; hence, the output
will be a sequence of pairs of system call entries and their
relative exit if no signals are received. In fact, for each
system call invoked by the tracee, the tracer will receive
two notifications (three in case of some special calls), one
when the kernel has just received the invocation and the
second when it has terminated its execution. In the exam-
ple, it is possible to see the entry notification of a write
system call (which identifier in the AArch64 Linux table
of system calls is 64), with the Process Identifier (PID)
and Thread identifier (SPID) of the process requesting the
call.

Moreover, starting from line 8, the parameters passed to
the system call are extracted from the CPU registers and
reported, together with the Program Counter (PC) and
Stack Pointer (SP) in lines 19 and 20.

The subsequent notification type, starting from line 24,
is a system call exit. Hence, the notification is received
when the kernel has performed the operation and allows
the call’s return value to be seen.

1. —-———SYSCALL ENTRY START —-——-—
2. Notification origin: 1ls

3. PID: 18470

4. SPID: 18470

5. Timestamp: 1673561040240989
6. NOT Authorized

7. Syscall = write (64)

8. Parameters = {

9. 0x0000000000000001

10. 0x00000078be7e4989

11. 0x0000000000000001

12. Oxffffffffffffffff

13. Oxffffffffffffffff

14. 0x0208001182080800

15. 0x0000000000000020

16. 000000000000000000

17. 1}

18. Registers = {

19. PC: 0x0000007a2e962258
20. SP: 0x0000007f££c286370
21. RET: 0x0000000000000001
22. }

23. —-———SYSCALL ENTRY STOP —--——-—
24. ————-SYSCALL EXIT START —-——-—
25. Notification origin: 1s

26. PID: 18470

27. SPID: 18470

28. Timestamp: 1673561040241834
29. Authorized

30. Return value: 0x00000000000001
31. —-———SYSCALL EXIT STOP ———-

Figure 3. Partial output of tracing 1s in Android without capturing the
stack trace

For each system call, it is possible to read the stack
trace that leads to its generation leveraging on the library
libunwind [14] on generic Linux-based systems and
libunwindstack [15] on Android. These libraries of-




fer the possibility to iterate over all the stack frames on
a stopped process via ptrace and generate a backtrace,
effectively fetching the function name and offset from its
entry point for each frame.

Their main difference lies in the supported stack frame
formats, which can vary greatly in Android systems. There
are multiple ways to generate a backtrace, and they are
heavily dependent on the used architecture: one basic way
could consists of leveraging on the calling convention that
imposes a prologue and epilogue for every function, where
the first saves the base stack pointer on the stack and the
second restores it when the function execution is over.

The information provided by this prologue and epi-
logue would allow linking all the stack frames as a list,
starting from the most nested one and unwinding the stack
upwards; moreover, thanks to the fact that not only the
stack pointer is on the stack but also the return address
(used by the final ret), it will also be possible to identify
the entry point of every function and match it with the
relative symbol representing its function name in the
dedicated ELF section. Unfortunately, this first method
will not work in all those cases where the frame pointer
has been excluded for the sake of optimization.

A modern approach to stack unwinding leverages par-

ticular sections of the ELF file format (e.g., .eh_frame
or .debug_frame) containing tables with the unwind-
ing information, which can be used to generate a full
backtrace.
There are various special cases in unwinding the stack,
which can be very platform-specific: for example, when a
signal is received, a special signal frame is placed on the
stack, and the process is resumed in the signal handler,
which will return to a trampoline that will clean the
stack and restore the previous situation. In such cases, the
unwinding library will need to recognize the trampoline
and the special frame to handle it correctly not to confuse
frames generated by the handler with the ones generated
by the normal program execution.

Android applications run on the Android RunTime
(ART) environment, and most are based on languages that
can generate Java bytecode with some parts of native code.
Therefore, in Android environments, it will be very com-
mon to see transitions between native and Java stack
frames, which makes it essential to understand both.
Moreover, there is an added complexity given by other
stack frame formats like Chrome C++ frames, jit-ted
Java frames and system library C++ frames, which can
have different call frame information (CFI) formats. Such
formats include debug data formats like DWARF and
MiniDebuglInfo, which describe additional ELF sections
containing unwinding data and much more, but also for-
mats like EHABI (Exception Handling ABI for the ARM
Architecture), which can help an unwinder in its job.
Thanks to the inclusion of libunwindstack and its
dependencies from the Android core, it is possible to
offload this complexity to the library, which needs to know
how to parse the different CFI and move up the stack.

The native library has been developed in C++ and
targets the x86_64 and ARMvS8-A (also called AArch64)
architectures running Linux or Android: different flavours
of the executable have been made for all four possible
combinations, and various adaptations are applied to each
one. This implies the project is compatible with the most

modern Android physical devices (tested on Android 12),
emulators, and any other Linux-based operating systems
(tested on Linux kernel versions 6.x and 5.X) running on
a supported CPU architecture.

2.2. Collecting Data from the Android Device

The high-level Java library is linked to the app code
and it takes care of extracting high-level information
from the Android device to be monitored, such as data
from sensors, the state of the application in relation to
the application lifecycle, any applications that have the
debuggable flag set to true, any types of debuggers that
can be connected while the user is using the device, and
the type of recharge of the device. The first type of useful
information to analyse to identify a possible debugger
connected to an application installed on an Android device
consists in the current state of the application to be traced
in relation to its entire life cycle. We extract the periods of
time in which the application is running and the periods
of time in which the application is in the background (not
running).

The main methods onResume and onPause can be
traced (logging their start and end timestamps) for this
purpose: the first method occurs when the activity be-
comes visible and can start interacting with the user, while
the second method occurs when the activity is paused
and this can precede putting it in the background or
terminating its execution.

In the Android environment there are two types of
debuggers: the first is the GDB debugger at native code
level, and the JDWP debugger at app level. The main
feature of the native library consists in the fact that it
traces the execution of the application by connecting to
its PID and consequently, knowing that in the Linux envi-
ronment a process can only be traced by another process,
we verify the name of the connected process for verify that
it is the correct process and not the GDB debugger. The
proc/pid/status file provides us with all the information
of the process with that particular pid such as the name,
the status, the connected process and much more. Conse-
quently, a very important line is the one that begins with
TracerPid which indicates the pid of the process connected
with the current one. If this TracerPid is equal to zero it
means that there is no connected process while if it is
different, this indicates the pid of the connected process.
Consequently the last step is to verify that the TracerPid is
non-zero and if it is, access the proc/TracerPid/status file
and extract its name. If this equals to our native library
process we know that there is no GDB debugger attached.
The android.os.Debug.isDebuggerConnected function can
also be used to indicate whether the JDWP debugger is
connected or not.

The developer settings contain also the usb debug set-
ting with which a user could connect a generic computer
and using the android debug bridge to access and modify
device information, monitor and record screen content and
install applications.

Another important condition to verify is the presence
of a possible active connection between the device that
the user is using and a computer under control by an
attacker. To be able to do this, the type of USB charg-
ing can indicate that a connection has been established



between the device and a computer. In order to verify this
mechanism we implemented a BroadcastReceiver that via
the onReceive event, called whenever the event changes,
saves the new state of battery charge of the device.

Nowadays, mobile devices are often embedded with
many sensors that can provide helpful information regard-
ing the environment surrounding the platform; they can
also be used to determine if the application is running in
an emulator.

We are also gathering data from as many sensors as
possible to identify indicators that the running platform
is not an actual user device. For example, if the motion
sensor never detects any movement, not even when the
user touches the screen, this can be considered a first hint
that the platform might not be legit.

Sensors like the accelerometer, the gyroscope, the
temperature, the position, the ambient light can give away
some information that can be used to discriminate if our
app running on the device is being used while in the hands
of the user or while connected to a board to be remotely
debugged with the help of a computer. If we assume
that the attacker is debugging our application it means
that the attacker himself is actively using a computer
causing the device to remain in a stationary position over
time. To identify this situation, we can use the data from
the accelerometer, providing useful information about the
acceleration on the three axes of the device, and from the
gyroscope which provides information about the inclina-
tion of the device. To perform a more accurate analysis
based on these two sensors, an advanced sensor called
game rotation vector is used to put these data together by
directly providing three output data: azimuth, pitch and
roll which represent a measure in degrees in relation to
the three axes of the device (See Fig. 4).
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Figure 4. Rotation vector sensor

A fundamental point for the correct use and extraction
of data from this sensor consists in the calibration, a
process that is started a couple of seconds after starting
the application, the time in which the user brings the
device to a correct position and stable for the immediate
following use of the application, and it is used to be
able to subsequently identify invalid device positions: for
example, when the phone is too much inclined for the user
to actually use the app, or the screen is not visible from
the user, or the phone is upside down.

All these data are sent to the trusted server that will
mine these data to detect possible anomalies. All these
hints, from sensors, traces and other configuration data,

can be combined on the server and when multiple hints are
raised, the trusted server can decide to consider a device as
untrusted and take the appropriate measures, by stopping
the app and related service.

In order to make this decision the Trusted server must
be trained on the data so that it could actually check
whether the data coming from one deployed app are
producing too many hints of reverse engineering activities.

Depending on the training and the app, we can set the
“security level” as the maximum threshold of hints that,
when crossed, will determine that one device running our
app has been compromised.

2.3. Ethical Implications

We are aware of the importance of transparency in
communicating to users which data are being collected
and why in our experiments. In order to address concerns
about user privacy (according to GDPR article 4 [16]),
we ask users to give their informed consent to use some
of their personal data, namely: Android serial number, IP
address, IMEI number, accelerometer sensor’s data; we do
not need data on location, contacts, or any other pictures
or files in their phone.

3. Preliminary Evaluation

We developed a software architecture to collect any
possible data from an Android device and the protected
app’s runtime data, measuring executions times, tracing
system calls sequences and collecting sensors’ data: all
these data are sent to a trusted server. The trusted server
checks on these data for making a decision on whether our
protected app is under dynamic analysis from a malicious
user. We applied our approach on two simple Android
applications: a voice recorder and a calculator. The eval-
uation process consists of the following phases:

1) The training of the model created and used to
identify a correct behaviour of an Android appli-
cation through automated executions triggered by
Macdroid: any different behaviour observed after
deployment would be considered suspicious and
raise an alert;

2) Normal executions performed by users to verify
whether the libraries detect any incorrect / suspi-
cious behaviour based on the data collected and
analysed during the training phase and compar-
ing them with the data collected during the last
execution.

3) Correlating the anomalous executions, i.e. all
those executions which are carried out in order
to verify that, when various suspicious alerts
occur during the current execution, the system
functions correctly, i.e. detecting the alerts and
mapping between security levels and each device
are performed correctly.

4)  Actions that can be taken when the system detects
that a device has a high number of alerts: dis-
connecting the device from the network, uninstall
the app, or continuous monitoring to confirm or
refute the alert level.



The possible sequences of system calls collected be-
fore deployment are used as an oracle to detect anomalies
with respect to the ones collected by our system after
deployment. Such collected paths are used to build a
graph where each path indicates an execution path mon-
itored during the testing phase, before deployment. Con-
sequently, a first point to be able to trace suspicious and
non-suspicious executions consists in checking the current
path in the graph and if this path is present then it means
that it was traced during the training phase. As we cannot
trace all the possible execution paths we must accept the
possibility that some paths not traced at design time might
appear after deployment whenever a user tries different
inputs or app behaviours: such paths can raise alerts of
suspicious behaviour that must be combined with other
alerts to decide whether the device has been compromised.
We used MacroDroid', an application for Android devices
that automate a wide range of actions and processes with
“macros”, which are sequences of commands executed
automatically in response to specific events or conditions.
We used MacroDroid to create customisable macros to
launch applications, press on the screen, access the file
manager, save the execution results in some variables in an
automated and repeatable way for collecting data before
deployment: low-level data such as system calls with
their sequences, characteristics, duration, common sub-
sequences, incremental executions, and high-level data
such as sensor data, developer settings, charging type,
device stationary. We created ten macros with MacroDroid
to describe valid execution paths and the same number
for invalid execution paths. Each of these macros was
executed twenty times to collect the following data on
valid and invalid paths within the trusted server.

e Analysis of each method: minimum, maximum,
average and variance time

o List of all execution paths to be able to observe
any incremental or partial executions

o List of all possible subsequent system calls

o Time ranges in which a device is stationary

o Time ranges in which the device assumes invalid
positions (such as the screen being upside down)

o If an already attached gdb or jdwp debugger is
identified

o Applications with the debuggable flag in the man-
ifest file enabled

o Time ranges in which the device is connected via
usb to another device

For this preliminary evaluation, we defined the security
level as the number of different types of alerts collected by
the trusted server. We have defined ten types of alerts and
we set at five the threshold to decide whether a device has
been tampered with. In the current implementation all the
alerts have the same weight but in a future versions it will
be possible to consider alerts as features (with different
weights) in a machine learning model for a more accurate
calculation of the security level of that particular app. We
tested our approach on two different Android applications:
an audio recorder, and a simple open source calculator.
We ran our two applications checking if the trusted server
correctly identifies an execution that is different from the

1. https://www.macrodroid.com/

previous ones stored in our model. In Fig 5 we see the
trusted server logs showing the present of alerts due some
suspicious device configurations, while Fig 6 shows that
the server as detected the presence of a Java debugger
attached to our application.

android - Connection from: #("192.168.1.3°, 38662)#
ptracer - Connection from: #('192.168.1.3", 43918)#

Found debuggable application.
Security level of device = 1

Found developer options enabled
Security level of device = 2

Found USB charging type.
Security level of device = 3

Low level library not started
Security level of device = 108, device blocked|

Figure 5. Suspicious Device Settings logged

ioctl has longer duration: 9449 vs 225->3346
gettimeofday has longer duration: 6729 vs 176->4058
read has longer duration: 9478 vs 183->8@43

A jdwp debugger is found
Security level of device = 1@, device blocked

Figure 6. Debugger JDWP found

4. Related Work

The OWASP foundation offers an extensive sec-

tion in their Mobile Application Security Testing
Guide (MASTG) [17] describing various Android Anti-
Reversing Defences.
The guide proposes various solutions that can be com-
posed together, forming a more extensive multi-layer ap-
proach to preventing and detecting reverse engineering
attempts. We implemented some of the above-mentioned
configuration checks: we control if the JDWP is connected
by checking the Debuggable Flag, and we use ptrace to
self-debug our application and prevent another debugging
instance from running.

Self-debugging has been used to tightly couple a cus-
tom debugger to the application to protect and migrates
code fragments to the debugger [7], effectively making
dynamic analysis and reverse engineering harder, and
preventing other debuggers from attaching to the appli-
cation. In Android such approach has been extended by
the Oblive project [8] by adding time-checks and hardware
breakpoint checks, while Lim et al. [18] proposed a Java-
based anti-debugging technique for Android and then a
native library [19] checking the integrity of the Java-
based protection, eventually detecting method hooking
and code modification attacks by examining the call stack
trace: in these cases the attacker may replace the entire
native module and bypass the protection. Another Android
debugger-detection was proposed by Wan et al. [20]: by
using checkpoints for integrity verification, their system
looked for the presence of open-source tools utilised to
hook methods and APIs.

On the other hand, the novelties of our approach are
manifold: the NFA representation of system calls for



monitoring executions and detect anomalies, the detection
of partial execution paths, the use of sensors’ data to
detect mismatch between the device position and the app
execution, and the use of a trusted server to analyse these
data and decide if the device has been compromised.

System Call analysis has been extensively used by

intrusion detection systems; Forrest et al. [21] proposed
an n-gram model to validate small sequences of calls,
while other techniques aimed at determining the normal
behaviour of the program through static analysis [22], oth-
ers using dynamic analysis [23] or a combination of both
[24] to leverage on the advantages of both approaches.
There has also been an evolution in the models used to
capture the expected behaviour of an application; automa-
ton transition verification was first described in [23], then
formalized first as a Finite State Automaton (FSA) [25],
and then as a Non-Deterministic Finite State Automaton
(NFA) [22], showing that the call stack provides valu-
able information for detecting anomalies. The model has
been further improved using Push Down Automata (PDA)
leveraging on their stack to maintain the function call
context [22].
All the previously mentioned models are based on static
analysis. Most recent models such as Dyck [26], VPStatic
[27], and the Inlined Automaton Model IAM) [28], in the
attempt to reduce the overhead of the PDA approach.

Other more advanced paradigms have been developed
using a black-box approach to detect anomalies, similarly
to our approach. Some notable examples are: VtPaths,
which utilize return address information extracted from
the call stack to build virtual paths [29], Execution Graphs,
which provide a grey-box approach that accepts only
system call sequences consistent with the program control
flow graph [30], hidden Markov models where the hidden
stochastic process consists in the aggregated tasks per-
formed by the process (e.g., reading a file) and is observed
by the emitted system calls [31], and its improved STILO
model [32].

In the context of Android applications, similar models
have been applied to System Call monitoring to detect
anomalies as evidence of malware [33]-[35], where clas-
sification algorithms have been used to discern benign
behaviours from malicious ones.

Other works aimed to provide a different level of insight
on the actions performed by an application [36]-[38],
which can help analyse malware. Various tools can acquire
a similar level of detail on system calls as our native
library , but their final goal is fundamentally different.
For example, Perfetto [39] records the device activity
for performance instrumentation and tracing analysis, and
although it allows gathering a list of the invoked system
calls together with their stack traces, it does not look for
anomalies and it does not capture causal relationships in
the model.

Our work provides a practical approach that specifically
targets Android applications and aims to construct a be-
havioural model based on NFA and on Stack traces similar
to VtPaths [29] and Execution Graphs [30]. Moreover, it
aims to provide a deeper inspection of system calls to
provide a view of the intended actions behind them (e.g.,
the interactions with the Android IPC Binder).

Other tools use a combination of static and dynamic
analysis and leverage on the Linux process tracing in-

terface ptrace; for example, DroidTrace [36] has been
designed for studying malware and uses static analysis to
identify code sections that dynamically load new code,
and dynamic analysis to monitor all the application be-
haviours. Another relevant example is ProfileDroid [40];
it aims to be a system for monitoring and profiling An-
droid applications. It uses static analysis to identify what
permissions are requested by the application and if Intents
are used for accessing resources indirectly through other
apps; the tool strace is used to obtain a view of the
flow of system calls, and t cpdump is used for inspecting
the network layer, but it does not inspect Inter-Process
Communications (IPC) as our native library does.

5. Conclusions and Future Work

We proposed a software architecture for detecting re-
verse engineering activities such as debugging for a client-
server scenario, where the server needs to detect if their
client apps have not been tampered with: such information
can be used to identified a compromised device and its
related user and stopping the service as a countermeasure.
By intercepting and recording system calls, it is possible to
gain a detailed understanding of the application’s actions,
identify unusual patterns of behaviour, and detect the
presence of debuggers. Future developments will make
the model suitable also to very complex applications, and
apply machine learning to be able to predict with more ac-
curacy when an attacker is performing reverse engineering
activities on the device running our app. Future works will
be also focused on merging the two libraries in a unique
native library to be able to import all the functions in
the same logical level and immediately above the kernel
level in order to have immediate access to all the possible
extracted data without any necessary modification of the
code of the monitored application.
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