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Abstract—In this work, we propose a distributed framework
based on the federated learning (FL) for beamforming design in
multicell integrated sensing and communications (ISAC) systems.
Our aim is to address the following dilemma: 1) Beamforming
strategies based on solely local information may cause severe
inter-cell interference (ICI) affecting both communication users
and sensing receivers in adjacent cells, leading to degraded
performance in communication and sensing, 2) Centralized
beamforming requires global knowledge of global communica-
tion and sensing channel information, which incurs additional
transmission overhead and latency. In the proposed framework,
multiple base stations (BSs) jointly train a deep neural network
(DNN) to cooperatively design the optimal beamforming matrices,
aiming at maximizing the weighted sum of communication rate
and radar information rate. To implement a fully decentralized
design without channel information exchange among BSs, we
develop a novel loss function to manage the interference leakage,
which can be computed by only using local channel information.
Numerical results demonstrate that the proposed method achieves
performance comparable to optimization-based algorithms and
surpasses closed-form solutions in terms of both communication
rate and radar information rate.

Index Terms—Integrated sensing and communication, multicell
system, federated learning, beamforming.

I. INTRODUCTION

Integrated sensing and communications (ISAC) has been
recognized as a key enabler for the next-generation networks
[1]. By employing unified radar and communication spec-
trum/waveform/platforms, ISAC systems greatly improve the
utilization efficiency of energy and hardware resources. With
the deployment of multi-antenna arrays on base stations (BSs),
transmit beamforming can enable tradeoffs and mutual benefits
between the communication and sensing functionalities by
leveraging the available spatial degrees of freedom (DoFs).
Most existing beamforming strategies [2]-[4] are performed
on a per-cell basis, while the effect of inter-cell interference
(ICI) is ignored. However, ICI has been proven detrimental
to the network-level S&C performance in [5], with sensing
being particularly sensitive due to the round-trip path loss of
echo signals. One potential solution to this problem involves
the exchange of local information for multi-BS coordinated
beamforming, or alternatively, the collection of global in-
formation to design the optimal beamformer in a central-
ized manner [6]. Specifically, the authors in [7] proposed
a framework where BSs cooperatively serve the users and
localize each target for enhancing the ICI management and
S&C performance. Nevertheless, centralized strategies suffer

from expensive transmission overhead and additional latency,
especially for large-scale networks. Thus, it is critical to design
a distributed beamforming method to manage the ICI without
requiring information exchange.

In the realm of beamforming/precoding design, whether for
communication-only systems or ISAC systems, the majority
of existing works [2]-[4], [8] are based on optimization
techniques and rely heavily on iterative algorithms with high
computational complexity and latency, making it challenging
to implement them in practical systems. As low latency and
low cost are generally demanded in real-time applications,
learning-based methods provide a novel approach to solve
complex optimization problems [9]-[11]. Unlike the methods
based on rigorous mathematical models, the offline-trained
deep neural network (DNN) can be deployed online, operating
with limited matrix multiplications and additions. Specifically,
the authors in [11] designed a communication-only beam-
former by training a DNN in an unsupervised manner to
maximize the sum rate under the transmit power constraints,
which achieves the performance close to WMMSE method
[8]. Moreover, in [12], the authors proposed a beamforming
neural network for ISAC systems to maximize the target
illumination power while ensuring the signal-to-interference-
plus-noise ratio (SINR) for communication users. Despite
achieving low computational complexity, the aforementioned
references often fall short in effectively managing the ICI.

The above discussion motivates us to adopt the federated
learning (FL) technique for beamforming design in multicell
ISAC systems. FL [13] is a paradigm of distributed learning
framework that leverages the datasets spread across numer-
ous local nodes without explicitly exchanging them. Recent
research efforts are applying FL for low-overhead precoding
design in massive MIMO systems [14] [15]. However, these
methods can not be directly extended to ISAC systems where
sensing functionality should also be considered.

In this work, we propose a distributed beamforming frame-
work for multicell ISAC systems based on FL. During offline
training, multiple dual-functional BSs use their local datasets
to update the global DNN model under the coordination of
a central server. To support a fully decentralized implemen-
tation, we design a novel loss function which maximizes
the communication rate and radar information rate while
mitigating interference leakage to undesired receivers. The
loss function can be independently optimized at each BS,
thereby eliminating the need for exchanging global channel
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Fig. 1. The considered multicell ISAC system.

information during both training and inference stages. Nu-
merical simulations demonstrate that the proposed solution
achieves performance comparable to centralized methods, of-
fering substantial improvements in efficiency and feasibility
for practical deployments. To the best of our knowledge, this
study represents the first application of FL for beamforming
design in multicell ISAC systems.

II. SYSTEM MODEL

In the considered multicell ISAC system, each dual-
functional BS is equipped with a half-wavelength spaced
uniform linear array (ULA) of Np transmit antennas and Np
receive antennas, serving K downlink single-antenna users
while sensing a target simultaneously. The FL framework
is carried out by M BSs and a central server. During the
training stage, the participating BSs use local communication
and sensing channel data to update their model and upload
the parameters to the server via backhaul links for model
aggregation. Subsequently, the updated model is fed back to
the BSs for the next iteration until convergence.

A. Communication model

In the downlink, the mth BS transmits a unit-power data
stream S,, € CX*Z with length L to the K communication
users (CUs) which are uniformly distributed within the cover-
age area of each cell. The baseband transmitted symbol matrix
X,, € CNTxL at the mth BS is denoted by

K
m = Zwm,ksm,k; (1)

where W,,, = [Win1, Wi 2, .. Wi K] e CNT>xK ig the
beamforming matrix to be designed and s € CLx1 denotes
the data stream intended for the kth user in the mth cell. We
assume the data streams are orthogonal when L is sufficiently
large so that: (1/L)S,,SZ = Ix. In this case, the received
signal at the kth user in the mth cell is the summation of the
intended signal and both intra-cell and inter-cell interference,
given by

K
c H H
Ym,k = hm,m,kwm,ksm’k + E hm,mA,kaalSm’l
—_—————

. . l#k
intended signal
intracell interference
2
v K (2)
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+ n,m7kwn,lsn,l +Zm,k7
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intercell interference
where h; ; , € CN7*1 denotes the block fading channel vector
from the ith BS to the kth user in the jth cell, and z,,  is
the additive white Gaussian noise (AWGN) vector, i.e., each
entry is independent and identically distributed and follows
the Gaussian distribution with zero mean and variance o2.

The received SINR of user & is

|hm m,kWm, k|

Zl;&k |hm sm,k Wm, 12+ Zn¢m Zizl |hgm,kwn7i|2 + 5(733).

The first two terms in the denominator of (3) are the
power of intra-cell interference and inter-cell interference,
respectively, which are to be minimized to improve the system-
level performance. As the communication performance metric
adopted in this work, the achievable global rate of the ISAC
network is written as

M K
= Z Z 10g2 1 + 77n k) (4)

m=1k=1

c
Ym,k =

B. Sensing model

We consider a point target located in the far field of each
cell and sensed by its nearest BS, which is commonly adopted
in the literature [3], [16]. As the BS works as a monostatic
radar, the angle of departure (AoD) and angle of arrival (AoA)
are the same. Following the network-level sensing interference
model in [5], it is the ICI channels from neighboring BSs to
the serving BS that impact the reception of the target echoes
and therefore dominate the network’s sensing performance.
The received signal at the mth serving BS is the summation
of the echo signal reflected by the target and ICI from the
surrounding BSs, given by

an = amb(em)aH(em)wmsm(t - 27—m)
target echo signal
M (5)
+ Z Gn,mwnsn(t - Tn,m) +Zm7

n#m

intercell inteference
where G, ., € CNrXN7 i the interference channel from
the nth BS to the mth BS. In (5), a., incorporates the
effect of the round-trip pathloss and radar cross section (RCS)
of the target, and z,, is the AWGN vector with variance
o2, The transmit and receive steering vectors are repre-
sented by a(f,,) = [1,...,edTNr=Dsin(@m)]T ¢ CNTX1 gpd
b(0,,) = [1,...,ed"Nr=1)sin@m)]T ¢ CNrX1 respectively,
and 0, denotes the angle of the target with respect to its
nearest BS, which is assumed to be estimated from a previous
crude observation. To maximize the received signal-to-noise
ratio (SNR) and ensure computational efficiency, the mth



BS applies the maximum-ratio combining (MRC) beamformer
H — pH(p,,) € C*Nr 1o process the received signal, the
echo after processing is
Vi = VinYom
= NRamaH(Hm)Wmsm(t —27)
M (6)
+ Z Bn,mggmwnsn(t - Tn,m) + Zpy,

n#m

where gl = vE G, € CY*N7 s the equivalent interfer-
ence channel. Let g/}, = a,a’?(6,,) denote the equivalent
sensing channel from the mth BS to the intended target, the
SINR of received signal at the mth BS can be denoted by

K H 2

’YS - Zk‘:l |gm7mwmyk| %)

m T M K :

Zn;ém Zl:l ‘g{’;{mwnul ‘2 + O‘E
We propose to use the system radar information rate to
evaluate the sensing performance in the considered system,
as the accuracy of parameter estimation is proportional to the

information rate, which is given by

M
Ry=Y logy(1+5,). (8)
m=1

In (7), the numerator represents the illumination power
for the intended target, which is expected to be improved
for achieving better sensing performance [17]. Apparently, to
maximize the performance from the network perspective, we

also need to eliminate the sensing ICI received at each BS.

C. Problem Description
To achieve good performance tradeoff between communi-
cations and sensing, we aim to solve the following global
optimization problem
max
w

pRc + (1 - p)Rs

9
st. uw(W,,WI) < P

Ym,

where p € [0, 1] is the weighting factor to select between the
communication metric and sensing metric, and Pr denotes the
transmit power constraint at each BS. However, finding the
optimal solution of problem (9) is challenging not only due to
its non-convexity but also because it requires the knowledge of
global channel information, such as ICI channels from other
BSs to its intended users and beamforming vectors designed
by other BSs. To avoid the need for channel information
exchange, we design a distributed beamforming method to
solve the problem (9) based on the FL framework, which is
detailed in the next section.

III. FL FRAMEWORK FOR BEAMFORMING

In this section, we propose to train a DNN to fit the mapping
from channel information to the optimal beamformer W*
which maximizes the weighted sum of communication rate
R. and sensing rate R;.

A. The proposed loss function

As mentioned in the previous discussion, it is essential to
understand the inherent complexity for calculating ICI (3) and
(7) at each local BS due to the lack of global information, i.e.
the local information of transmitter /mn is limited to the channel
between itself and all downlink receivers gy, m, By n ok, V10, k
and W,,,m = 1,..., M. This makes it infeasible to directly
define the performance metric as the object function of learn-
ing as existing methods [10], [12]. Given the constraint of local
information, we propose a loss function to control the ICI that
does not rely on direct access to global channel information
from other BSs. Following the workaround mentioned in [18],
we rewrite the ICI as the communication interference leakage
(CIL) to others, which can be controlled by minimizing a
penalty term

Z Z|hm n,t m|2~

n#m i=1
Specifically, the aim is to force the interference caused to

undesired receivers to zero via generating the beamformer
from the null space spanned by the interfered channels. By
explicitly minimizing the CIL term above, we can approximate
the sum rate in the cell m as

K
log (1+
Z : zluhmmkwmma?

It can be revealed that (11) can achieve a good approx-
imation of the original objective function in (4) when the
interference caused to the mth cell is eliminated by other
BSs. Based on the above approximation, the communica-
tion loss function £.(W,,) is formulated by combining the
approximated sum rate and inter-cell interference leakage,
which is given in (12). The weighting factor v decides the
importance of eliminating the interference leakage to other
BSs. Maximizing this approximated sum rate (11) is readily
verified to achieve a good performance through simulations as
shown in Section IV-B

Similarly, to improve the system sensing performance, each
BS should also avoid the interference caused to other BSs
when sensing the target, which can be achieved by minimizing
the sensing interference leakage (SIL)

M

H 2
— Z lgm  Wo|*.
n#m
Meanwhile, we maximize the illumination for intended

target to ensure the sensing performance, so the sensing loss
function £,(W,;,) is formulated as the summation of negative
target illumination power and sensing interference leakage
power weighted by a factor 3, which is given in (14). Both (12)
and (14) can be calculated using purely local information, thus
a fully decentralized training framework can be implemented.

B. DNN architecture

Multilayer perceptrons (MLP) are recognized as universal
function approximators [19] and widely used in approaching
complex nonlinear functions. In this work, we propose to use
a 6-layers MLP with 512 neurons in each hidden layer, the
details are as follows.

(10)

Rc m =

1)

13)
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1) Input layer: During local training at each BS m, m =
1,..., M, the DNN takes the locally collected communication
channels H,, = {(hynk)vnr} € CMEXNT and sensing
channels realizations G,, = {(gmn)vwn} € CM*XNT ag
the input. As complex number operations are not supported
by the current DNN software, we transform the channel
vector to real-valued coefficients before feeding it into the
input layer. Specifically, the communication channel matrix
H,, is split into the real part %(H,,) and imaginary part
S(Hyy), which are then stacked to form a real-valued input
vector H) = [R(H,,), S(H,,)]. Similarly, we process the
sensing channel matrix G, using the same pipeline and get
GS}L) = E?R(Gm),%(Gm)]. The concatenated matrix X =
[HSQ, Gn?] is then flattened and fed into the first layer of
the neural network. The learning model can be represented by
f(X®;w), where w is the model parameter set.

2) Hidden layers: The proposed MLP contains 4 fully-
connected hidden layers. Each hidden layer is followed by
an activation layer and a dropout layer. As some elements
of the beamforming matrix can be negative, we adopts the
LeakyReLu function as the activation function which provides
a non-zero slope to negative values. The dropout layer with
probability factor ¢ = 0.15 can help to alleviate overfitting by
randomly setting input units to zero.

3) Output layer: The output layer is of size Ny x K x 2
and followed by a normalization layer to scale the output so
that the power constraint is satisfied, which can be denoted by

Pr

_ | tr
W tr(WWH)W' (15)

Finally, we split the output W(®) € CNT*KX2 jp the last
dimension to obtain the real and imaginary parts and recover
the designed beamformer W* of size Np x K by the C2R
block, given by

W* = WO 1] 4+ jWE L 2], (16)

C. Data Acquisition and Distributed training

To ensure the channel state information (CSI) can be
estimated via pilot symbols, we assume the time-division
duplex (TDD) scheme is applied in the considered system.
In traditional centralized approaches, the local nodes have
to upload collected channel data to the central server, where
global optimal beamformers are designed and then feed back
for local use. In contrast to the centralized methods, the data
acquisition process is introduced before the learning process
for the BS to collect local training data. First, each BS
transmits an orthogonal pilot signal X for channel estimation

and initial detection, the covariance matrix of the probing
signal is denoted by

Rf( = %INT7
this omnidirectional signal are received by both intended
users and targets, as well as the interference devices. The
BS m can estimate a general direction 6,, of the target
in its cell based on the echo signal. Upon receiving the
pilots, the users and neighboring BSs feed back the estimated
channel data to the transmitting BS. Finally, BS m obtains a
collection of channel realizations H,,, = {(hm’”’k)\m, .} and

a7

G, = {(g’rn,n)vn}, and the local dataset can be represented
by D™ = {(H,,),(Gy)}. Specifically, it is reasonable
to assume that BSs can obtain accurate channel estimation
because DNNs have strong robustness towards input data.

Based on the previous discussion, we aim to solve the
following global optimization problem corresponding to fit the
whole dataset D = {(D"))y,n} across the BSs

min 3 (pLe(Wa) + (1 - ). (W)

e (18)
st. tr(W,, W) < Pr. Ym=1,2, ..M.

With the FL framework and proposed loss function, the
above problem can be solved in a decentralized manner with
local dataset D("), by training with the following local loss
function at BS m, Vm C M

LW) = pLe(Ww) + (1 —p)Ls(Wy), VYm=1.M. (19)

IV. PERFORMANCE EVALUATION

In this section, we present the simulation results to evaluate
the performance of the proposed FL-based beamforming al-
gorithm. The proposed framework is implemented in Python
3.11.5 and Pytorch 2.1.0 on a PC with one NVIDIA RTX 3060
GPU and 8 Intel i7-11800 CPU cores.

A. System Setup and Sample Generation

Unless otherwise mentioned, we consider the number of
cells M = 3, while each BS has Ny = 12 transmit antennas
and Nr = 12 receive antennas. We produce channel samples
by randomly generating the positions of users and targets. The
distance between each BS is 500m. Specifically, the targets
are assumed to be located within the range of [—m/2,7/2]
in the angular domain with respect to each BS, while the
communication users are randomly distributed within the cell.
Moreover, both communication channels and sensing inter-
cell interference channels are assumed to be none-line-of-sight
(NLOS) Rayleigh fading channels with large-scale pathloss
factor a; = 3.6, while sensing channels are line-of-sight
(LOS) channels with pathloss factor 5, = 2. The AWGN
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Fig. 2. System sum rate R. with respect to transmit power Pr.

powers are set to be 02 = 02 = 30 dBm. Each local training
dataset and test dataset contains 30,000 and 3000 channel
realizations respectively. During training, we use the Adam
optimizer to train the model and set weight decay factor to be
1076 for further alleviating the risk of overfitting. The mini-
batch size is set to be 128 and the learning rate is 0.0001.
B. Numerical results

Fig. 2 and Fig. 3 show the achievable system sum rate and
information rate when the number of cells M = 3 and each BS
has N = Nr = 12 antennas, serving K = 1 communication
user ' and one target. For evaluating communication perfor-
mance, we adopt the optimization-based scheme WMMSE ([8§]
as well as the closed-form solutions maximum ratio transmis-
sion (MRT) [20] and the interference minimizing transmission
(IMT) [21] as benchmarks. To demonstrate the effectiveness
of eliminating the ICI, we show the performance of the FL-
based method without interference leakage minimization by
setting the factor « in (10) to be zero. It can be observed that
the FL method without ILM and the MRT scheme both exhibit
saturation in communication rate as transmit power increases.
In contrast, the FL. method with ILM demonstrates superior
performance and improves the achievable rate up to 37% at
high SINRs, which is referred to as the interference nulling
gain. Throughout the increasing SINRs, WMMSE achieves the
highest performance. However, WMMSE involves intensive
computations and information exchange to manage the ICI,
making it less efficient in practical scenarios. On the other
hand, the distributed schemes FL method, MRT and IMT
operate with lower computational cost and latency, while the
proposed FL method outperforms the latter two schemes as it
directly optimizes the communication rate.

Fig. 3 illustrates the sensing performance of the proposed
method. We compare the sensing performance of our method
with the closed-form scheme conjugate beamforming [16],
where the transmit beamformer of the mth BS is towards the
direction 6,,, of the target to maximize the illumination power.

IHere, we study the case when ICI dominates the received SINR of CUs,
the result can also be extended to the multi-users scenario.

22

FL method with ILM
20 b —— FL method without ILM
— =% - - Conjugate Beamforming[17]

Sensing interference
18 b nulling gain

Radar Information Rate [bits/s/Hz]

45 50 55 60 65 70 75 80
Transmit Power (dBm)

Fig. 3. Radar information rate Rs with respect to transmit power Pr.

It can be observed that the proposed FL method with ILM
outperforms the closed-form solution by up to 29% in terms
of the information rate as transmit power increases, and the
benefits brought by ICI elimination manifest earlier compared
to that in communications. The result indicates that sensing ICI
becomes a more dominant factor than noises and useful signal
which suffers from round-trip pathloss affecting the sensing
performance, which aligns with the conclusion drawn in [5].
It is also worth noting that the curve of FL-based scheme
without ILM overlaps with the curve of conjugate beamform-
ing strategy. That is because when f in (14) is set to be zero,
minimizing the sensing loss becomes equivalent to maximizing
the target illumination power, which provides slightly better
performance at low SINRs. Overall, these findings highlight
the importance of incorporating ILM in FL-based beamform-
ing methods for optimizing both communication and sensing
performance in multicell ISAC systems. The beampatterns
obtained by FL method with varying ICI factor 3 are shown in
Figure. 4. We assume a point target located at § = 15°, while
two interfered BSs are located at —30° and 30° respectively.
The mainlobes of the transmit waveforms obtained using the
FL method align with the direction of the intended target,
thereby maximizing the target illumination power to ensure
the performance of detection and estimation. When S is set to
be one, the beampattern of FL. method closely resembles that
obtained by conjugate beamforming method, which disregards
the effect of sensing ICI towards the interfered directions. In
contrast, the sidelobes of the beampattern with decreased (3
exhibit a gradual attenuation at both —30° and 30°, which
results in less power leakage to the directions of interfered
BSs so that the sensing interference nulling gain is achieved.
The tradeoff profile of the communication performance and
sensing performance under different transmit powers is shown
in Fig. 5. Each point represents the achievable communication
rate R. and radar information rate R as p in (9) ranges from
0 to 1. The time-sharing scheme is introduced here to evaluate
the performance of our method. The boundary of the (R., Rs)
region is viewed as the Pareto front constituted by the achieved
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Fig. 4. Beampatterns for the scenario of a point target located at 15°
when K =2 and p = 0.1.

performance tradeoff. It can be observed that the boundaries
exhibit a gradual expansion as transmit power increases, thus
the (R., Rs) region of proposed method increases noticeably
compared to the time-sharing scheme at high SINRs, which
implies the increased performance gain with more allocated
power.

V. CONCLUSION

In this paper, we proposed a FL-based beamforming so-
lution for multicell ISAC systems to reduce both the com-
putational complexity and transmission overhead. The DNN
is jointly trained by multiple BSs with low communication
cost. When deployed online, the trained model designs the
beamformer with local channel data and operates with high
efficiency. Through numerical simulations, we demonstrated
that our FL-based beamforming solution achieves performance
comparable to traditional centralized methods while offer-
ing significant improvements in computational efficiency and
scalability, making it suitable for practical deployments in
multicell ISAC systems.
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