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Fast PET reconstruction with
variance reduction and prior-
aware preconditioning
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Department, University College London, London, United Kingdom, *Department of Imaging and
Pathology, KU Leuven, Leuven, Belgium

We investigated subset-based optimization methods for positron emission
tomography (PET) image reconstruction incorporating a regularizing prior. PET
reconstruction methods that use a prior, such as the relative difference prior
(RDP), are of particular relevance because they are widely used in clinical
practice and have been shown to outperform conventional early-stopped and
post-smoothed ordered subset expectation maximization. Our study evaluated
these methods using both simulated data and real brain PET scans from the
2024 PET Rapid Image Reconstruction Challenge (PETRIC), where the main
objective was to achieve RDP-regularized reconstructions as fast as possible,
making it an ideal benchmark. Our key finding is that incorporating the effect
of the prior into the preconditioner is crucial for ensuring fast and stable
convergence. In extensive simulation experiments, we compared several
stochastic algorithms—including stochastic gradient descent (SGD), stochastic
averaged gradient amelioré (SAGA), and stochastic variance reduced gradient
(SVRG)—under various algorithmic design choices and evaluated their
performance for varying count levels and regularization strengths. The results
showed that SVRG and SAGA outperformed SGD, with SVRG demonstrating a
slight overall advantage. The insights gained from these simulations directly
contributed to the design of our submitted algorithms, which formed the
basis of the winning contribution to the PETRIC 2024 challenge.

KEYWORDS

PET, MAP, preconditioning, variance reduction, stochastic gradient methods,
regularization methods, image reconstruction

1 Introduction

1.1 Context

Positron emission tomography (PET) is a pillar of modern clinical imaging, widely
used in oncology, neurology, and cardiology. Most state-of-the-art approaches for the
image reconstruction problem in PET imaging can be cast as an optimization problem

x" € arg min {D(Ax + 1, y) + R(x)}, (1)

where the data fidelity term D:) x Y — [0, 0] measures how well the estimated data
Ax +r matches the acquired data y and the regularizer R:X — [0, ©] penalizes
unwanted features in the image. A: X — ) is a linear forward model for the PET
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physics, which includes effects such as scanner sensitivities or
attenuation, and r is the additive background term to account for
scattered and random coincidences. Due to the Poisson nature of
the data, the data fidelity is usually taken as the Kullback-Leibler
The
negativity constrains and terms that promote smoothness.

(KL) divergence. regularizer commonly entails non-
A vparticularly successful model for smoothness in PET is the
relative difference prior (RDP) (1).

This paper focuses on algorithms for the fast reconstruction of
x*. Particularly, we present our winning contribution to the
2024 PET Rapid Image Reconstruction Challenge (PETRIC) (2),
where the task was to reconstruct data from various PET
scanners using RDP-regularized reconstruction methods. PET
image reconstructions that use the RDP are of particular current
relevance because RDP is widely used in clinical practice, being
implemented by a major commercial vendor, and has been

shown to outperform conventional early-stopped and post-

smoothed ordered subset-maximum likelihood expectation
maximization (OS-MLEM) reconstructions (3-5). Although
implementations based on block sequential regularized

expectation maximization (BSREM) (6), they have been shown to
be slower than an algorithm that uses ideas from machine
learning and tailored preconditioning (7). In this paper, we
outline the process used to find the winning algorithm and share
the insights obtained along the way. For context, the task had to
be completed within the Synergistic Image Reconstruction
Framework (SIRF) (8), and speed was measured as walltime until
an application-focused convergence criterion was reached.

1.2 Problem details

Traditionally, fast algorithms for PET reconstruction have been
subset-based (9), meaning only a subset of the data is used in every
iteration. In the last decade, algorithms using a similar strategy but
derived for machine learning have entered the field and shown
state-of-the-art performance (7, 10-14). They exploit the fact that
the KL divergence is separable in the estimated data

D(Ax+1,y) = > > d(Aix+1;, ), ()

i—1 jESs;

where # denotes the number of subsets and function d is defined by

s—t+tlog(t/s), ift>0,s>0
ds, t) = < s, ift=0,s>0.
00, otherwise

Here, S; denotes a subset of the data, e.g., all data associated to a
“view.”

A great deal of effort has been put into finding good prior
models (i.e., regularizers) for PET, including smooth and non-
smooth priors, which either promote smoothness of the image to
be reconstructed or anatomical

encourage similarity to
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information (15-18). In Nuyts et al. (1), the authors proposed a
smooth and convex prior that takes into account the scale of
typical PET images, resulting in greater smoothness in less active
regions. Mathematically, for non-negative images x, the resulting
regularizer can be defined by

1 (xi—xj)z
S(x) = = KK, i 3
() ZZZW“JK’Kin+xj+y|x,-ij|+s 3)

i JjEN,

where the first sum is over all voxels i and the second sum is over
all “neighbors” j. Parameter y > 0 allows placing more or less
emphasis on edge preservation, and parameter & > 0 ensures
that the function is well-defined and twice continuously
differentiable. Terms w;j, k;, and k; are weight factors accounting
for distances between voxels and are intended to create a
uniform “perturbation response” (19). Note that the essential
part of the prior is

d2

)= —————,
(s, d) STdTe

which has two important properties. First, if the sum of activities s
between voxels is small compared to the scaled absolute difference
v|d|, the regularizer essentially reduces to total variation:
¢(s, d) ~ |d|/7y. Second, the larger the activity in both voxels, i.e.,
the larger s, the less weight is placed on penalizing their
difference, justifying the name of the regularizer. See also
Appendix Al for formulas of derivatives.

Combined with the indicator function of the non-negativity
constraint,

if x; > 0 for all i
, otherwise

>

(o]

t>o(x) = { 0

we arrive at the regularization model used in PETRIC

R(x) = BS(x) + 120(x). “)

This formula has to be interpreted to be oo for infeasible images
with negative voxel values and has the finite RDP value
everywhere else.

The rest of the paper is structured as follows. In Section 2, we
introduce the building blocks of our algorithms and discuss
proximal stochastic gradient approaches for solving Equation 1,
stepsize regimes, preconditioning, and subset selection. In
Section 3, we thoroughly investigate the effects of different
choices of building blocks in a simulated setting. In Section 4, we
present the algorithms we ended up using in PETRIC and their
performance on real data. We conclude with final remarks in
Sections 5 and 6.
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2 Building blocks

Combining the modeling choices in Equations 1, 2, and 4, we
arrive at the optimization problem

mxin{zj"(x) + Lzo(X)}: (5)
i—1

where we define Ji(x) = Di(x) + gS(x) and
Di(x): =) jes, d(Ajx +1j, ;). The variety of optimization
methods for solving instances of problem 5 is extensive and has
grown in recent decades; see Ehrhardt et al. (13) and references
therein. For linear inverse problems, such as in PET image
reconstruction, the most common approaches are based on either
(proximal) gradient descent or on primal-dual approaches.

In this work, we consider stochastic gradient methods for

solving problem 5. They take the form
K = prox, , (x# — DB, ©)

where 70 > 0 is a stepsize, V~(k) is an estimator of the gradient of
the smooth part of the objective function J(x) = > 1, Ji(x), DWw
is a matrix that acts as a preconditioner (PC), and prox, is the
proximal operator associated with the non-negativity constraint,
which can be efficiently computed entrywise,
[proxL20 (%)]; = max (0, xj).~(k)

All three components V', D®, and 7% are critical for fast and
stable algorithmic performance. In realistic image reconstruction
settings, and in the context of the PETRIC challenge, the
selection of these three components must balance accuracy and
computational costs. In the remainder of this section, we review
stochastic estimators, discuss their trade-offs, and address the
stepsize selection and preconditioners. Finally, we consider the
role of subset selection and sampling regimes, namely, how to
choose the sets S; in Equation 2 and decide which subsets to use

at each iteration of the algorithm.

2.1 Stochastic gradient methods

Let us turn our attention to the selection of gradient
estimators V~(k).

Stochastic gradient descent (SGD) defines the gradient
estimator by selecting a random subset index i in each iteration
and evaluating

5(

v = av g, ()

to compute the update in Equation 6. Each iteration only requires
storing the current iterate and computing the gradient for only one
subset function. This can lead to large variances across updates,
which increase with the number of subsets. To moderate this,
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vanishing stepsizes, satisfying

0 0
ZT(k) = o and Z(T‘k))2 < o0,
k=1 k=1

are required to ensure convergence but at the cost of
convergence speed.

Stochastic averaged gradient amelioré (SAGA) controls the
table
(gi(k))?’:1 € X". Each iteration uses a computed subset gradient

variance by maintaining a of historical gradients
combined with the full gradient table to update the gradient

estimator
~() -
VY = (V) - gP) + 3 g @)
i=1

followed by updating the corresponding entry in the table

J g}k), otherwise

(k+1) _ {Vjik(x(k))’ if j =ik

In contrast to SGD, SAGA guarantees convergence to a minimizer
with constant stepsizes and preconditioners for Lipschitz-smooth
SAGA has the
computational cost as SGD, but it requires storing n gradients.

problems. In its standard form, same
The memory cost is not a practical limitation for most PET
problems (even for relatively large n). If this is a concern,
alternative formulations of SAGA exist with other memory
footprints; see Ehrhardt et al. (13) for a further discussion.

Stochastic variance reduced gradient (SVRG) also reduces the
variance by storing reference images and gradients, but unlike
SAGA, these are updated infrequently. Algorithmically, SVRG is
usually implemented with two loops: an outer loop and an inner
loop. At the start of each outer loop, subset gradients and the
full gradient estimator are computed at the last iterate as

G=VIi®, §=> &
i=1

In the inner loop, the gradients are retrieved from memory and
balanced against a randomly sampled subset gradient at the
current iterate, giving the gradient estimator

v~(

Y =m0 T,60) - ) + 2. ®)
Note the similarity between the gradient estimators of SAGA and
SVRG given by Equations 7 and 8, respectively.

After wn iterations, the snapshot image and the full gradient
estimator are updated. The update parameter w € N is typically
chosen as 2 for convex problems.

It is most common to store only the snapshot image X and the
corresponding full gradient . &, which then requires
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recomputing the subset gradient g; at each iteration. This lowers
the memory footprint (requiring only the snapshot image and
the full gradient to be stored) but increases the computational costs.

2.2 Stepsizes

Theoretical convergence guarantees often require stepsizes
based on Ly = max;—;__,{L;}, where L; is the Lipschitz
constant of V.7;. In PET, global Lipschitz constants are usually
pessimistic, yielding conservative stepsize estimates.

Many stepsize approaches exist for stochastic iterative methods,
ranging from predetermined choices made before running the
algorithm (constant or vanishing) to adaptive methods [e.g.,
Barzilai-Borwein (BB) (20) and “difference of gradients”-type
(21) rules] and backtracking techniques [e.g., Armijo (22)]. Due
to the
computational time is a key metric), in this work, we focus on

constraints imposed by the challenge (where
the first two categories.

Constant is the baseline stepsize rule. The specific value
requires tuning to ensure convergence.

Vanishing rules consider stepsizes of the form
70 = 79 /(1 + nk/n), which satisfy the SGD convergence
conditions, for 7¥ >0 and the decay parameter >0 that
needs to balance convergence and stability: small enough to
maintain speed but large enough to ensure convergence.

Adaptive stepsize tuning via the BB rule is achieved by
minimizing the residual of the secant equation at the current
iterate. It converges for strongly convex problems and is
applicable to SGD and SVRG (20). We tested several variants of
the BB

combinations, diagonal BB, etc.) but settled on the short-form

rule (long and short forms, geometric mean
BB for its performance and stability. When applied to gradient
descent, short-form BB sets the stepsizes according to
™0 =pTq/(q"q), where p = x® — x* =D and q = v o v,
When applied to SVRG, these values are computed during the

iterations when the full gradient is recomputed.

2.3 Preconditioning

Preconditioners are essential for accelerating iterative
reconstruction algorithms by stabilizing admissible stepsize and
adapting them to individual components of the solution.
Effectively, image components with large gradient variance
receive smaller updates, and vice versa. This can have a dramatic
effect in PET image reconstruction (and machine learning
applications) due to the widely varying range of local Lipschitz
constants. Motivated by Newton’s method, many preconditioners
aim to approximate the inverse of the Hessian to allow for unit
stepsizes. However, computing a full Hessian is impractical in
high-dimensional need for

problems, motivating the

efficient approximations.
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Preconditioners based only on data fidelity are standard in
PET. The most prominent example is

. x4+ 8
Dyipm(x) = diag (ﬁ)’

which can be derived from the gradient descent interpretation of
MLEM. Here, the division of the two vectors is interpreted
componentwise. Since x >0 and AT1>0, a small constant
6 > 0 ensures that the every diagonal entry of the preconditioner
is non-zero. Dyiem tends to work well for weak priors (e.g., in
low-noise scenarios). However, it often underperforms because it
does not account for the strength of the prior. This can either
jeopardize the convergence behavior or require significant
stepsize tuning.
Let

) 1
Dgs(x) = diag (Wﬁg(x)))

be the inverse of the diagonal of the Hessian of the prior. In this
work, we used diagonal preconditioners that combine the data
fidelity and prior terms via the (scaled) harmonic mean between
Dyiem and Dgs. For scalars a, b > 0, the harmonic mean is
given by

Since our preconditioners are diagonal, this concept can be readily
extended to define for some a > 0

D) = 2 hDyissa(®), @' Dys())

= <D1\_AILEM(X) + aDEé(x)) -1 ©)

— & ( x+ 0
= P\ AT1 + adiag(Hps(0))(x + 9) )

Note that it satisfies D(x) < min {Dmiem(x), @ 'Dgs(x)}. While
this may look like an ad hoc choice, if Dyipm and o 'Dgs are
good approximations to their respective Hessians, then the
harmonic mean D will be a good approximation to Hessian of
the entire smooth term 7. Note also that by the definition of the
harmonic mean, the proposed preconditioner is diagonal with
strictly positive diagonal elements. As such, standard results on
convergence follow, e.g., with sufficiently small stepsizes.

We tested several alternatives to Equation 9, such as taking an
componentwise minimum between Dyigm and Dgs, reweighing
their contributions, using the Kailath variant of the Woodbury
identity (together with the diagonal approximation) to estimate
the inverse of the Hessian, and other variants. The selected
preconditioner provided the best balance between computational
cost and algorithmic performance. Traditional second-order
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methods update the preconditioner in every iteration, which is
costly. Preconditioner (Equation 9) is much cheaper and, as
experiments show, requires updating only in the first three
epochs, after which it stabilizes with no performance gain from
further updates.

2.4 Subset selection and sampling

Subset-based
convergence speed of traditional iterative methods by dividing

reconstruction  algorithms  enhance the
the projection data into multiple subsets and performing updates
using partial measurement data. While this approach can offer
significant computational advantages, careful selection of the
number of subsets is critical. Using too many subsets can
introduce artifacts and amplify noise, especially when subsets
lack sufficient angular coverage, and increases the variance
between successive updates, which can compromise the stability
and convergence properties. Conversely, selecting too few subsets
diminishes the acceleration benefit and causes behavior similar to
classical methods, such as MLEM, which are known for their
slow convergence. The number of subsets # is typically chosen as
a divisor of the total number of projection angles (or views),
allowing the data to be partitioned evenly. Subsets are then
constructed to ensure that each is representative and uniformly
distributed. We found that using approximately 25 subsets
provides a good trade-off between reconstruction quality and
computational speed in most scenarios, given the current
computational requirements and scanner configurations.

To determine the order in which subsets are accessed, we
consider the following standard choices:

Herman-Meyer order (23) is a well-established deterministic
choice based on the prime decomposition of the number of subsets.

Uniformly random with replacement is the most common
choice in machine learning applications. In each iteration, the
subset index i is chosen by taking a sample from {1, ..., n}
uniformly at random.

Uniformly random without replacement randomizes access
to subset indices but ensures that over n successive iteration
cycles, all data are used by computing a permutation of
a, ..

Importance sampling uses a weighted variant of uniform

., n) in each epoch.

sampling with replacement. For each 1 <i<w#, we assign a
probability p; >0, such that > . ,p;=1. When Lipschitz
constants L; are known, p; = L;/ Z;-':l L; is a common choice.

Since Lipschitz constants L; are unknown in PET, we propose
an alternative importance sampling strategy for SVRG. Namely,
when the full gradient estimator is updated, we compute
pi = IVTi@l/ X, [IVT(x0)l, where x is the current image
estimate. This incurs minimal computational overhead since all
subset gradients are already recomputed in SVRG.

Finally, drawing inspiration from the Herman-Meyer ordering,
which is designed to maximize information gain between
successive updates and incorporating the concept of random
sampling without replacement to ensure full coverage of subsets
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in each epoch with varying order, we propose the following
novel subset ordering strategy.

Cofactor order begins by identifying all generators of the cyclic
group associated with the number of subsets, #n, which are
identified as positive integers k < n that are coprime with n,
These
generators are then ranked according to their proximity to two
0.3n and 0.7n,
randomness. In each epoch, the next available generator from

meaning that they share no prime factors with it.

reference points, to balance spread and
this sorted list is selected and used to define a new traversal of
the cyclic group, thereby determining the order in which subsets
are accessed (i.e., one subset index per iteration). Once the list of
generators has been exhausted, it is reinitialized, and the process
repeats for subsequent epochs.

For example, if n = 15, the coprimes (i.e., the set of generators)
are given by {2,4,7,8, 11, 13, 14}. The sorted list of coprimes,
based on their proximity to 03n and 0.7n, is
(4,11, 2, 8,7,13, 14). Thus, 4 will be the first generator, which
produces the subset indices: 0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3,
7, and 11. This exhausts the set of possible indices, so the next
generator is selected as 11, and the process is repeated.

3 Numerical simulation experiments

To validate and refine the algorithmic components introduced
in the previous section, we conducted a comprehensive suite of fast
inverse-crime simulations. By simulating a simplified yet realistic
PET scanner using the pure GPU mode of parallelproj v1.10.1
(24), iterative reconstructions could be run in seconds. This
enabled a systematic exploration of the effects of various factors
on convergence behavior, including the choice of stochastic
algorithm, preconditioner, stepsize strategy, number of subsets,
subset sampling method, time-of-flight (ToF) vs. non-ToF data,
count levels, and regularization strength.

3.1 Simulation setup

All experiments used a simulated cylindrical (polygonal)
scanner with a diameter of 600 mm and a length of 80 mm,
comprising 17 rings with 36 modules each (12 detectors per
module). Simulated ToF resolution was 390ps, and a 4-mm
isotropic Gaussian kernel in image space was used to model
limited spatial resolution. Emission data were binned into a span
1 sinogram (289 planes, 216 views, 353 radial bins, 25 ToF bins).
A simple 3D
(accounting for water attenuation), contaminated with a smooth

elliptical phantom was forward-projected
background sinogram, and corrupted by Poisson noise to
simulate realistic emission data. Low- and high-count regimes
were simulated with 107 and 10% true events, respectively.
Reconstruction was performed at an image size of
161 x 161 x 33 voxels with a 2.5 mm isotropic spacing.

Reference reconstructions (see Figure 1) were obtained by
running 500 iterations of the preconditioned limited memory

Broyden-Fletcher-Goldfarb-Shanno algorithm (L-BFGS-B) (25)
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FIGURE 1
Stacked central transversal, coronal, and sagittal slices of L-BFGS-B reference reconstructions of the ellipse phantom. Each column shows a different
level of regularization (B) increasing from left to right. The top row shows results for 107 true counts, and the bottom row shows results for 108
true counts.

with three relative regularization strengths B € {1, 4, 16}. The
regularization parameter 3 was scaled as

true counts

=Bx2x107"*x
B=F 3 x 107

This ensures that reconstructions with the same B at different

count levels show comparable resolution. All stochastic

reconstructions were initialized with one epoch of ordered subset
(OSEM) (with 27  subsets).
Convergence was measured by the normalized root mean square

expectation  maximization
error (NRMSE) excluding cold background around the elliptical
phantom, normalized by the intensity of the largest background
ellipsoid. In line with the NRMSE target threshold used in the
PETRIC challenge, we consider the point where NRMSE was less
than 0.01 as a marker of practical convergence. The data were
divided into n subsets by selecting every nth view. Unless stated
otherwise, in each epoch, subsets were drawn uniformly at
random without replacement. All runs were performed using an
NVIDIA RTX A4500 GPU. The code for all our simulation
experiments and submissions to PETRIC is available at https://
github.com/SyneRBI/PETRIC-MaGeZ. To reproduce the results,
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users should use the tagged versions ALGI, ALG2, ALG3, or
2024_paper_simulation_results.
3.2 Main simulation results

Algorithm and preconditioner effects (see Figure 2): When
comparing SVRG, SAGA, and plain SGD under a vanishing

stepsize schedule ™ =70/(1 +0.02k/n) with
70 €{0.3,1.0,1.5} and n =27, we made the following
observations.

o SVRG and SAGA consistently outperform SGD in all count and
regularization regimes.

o The harmonic mean preconditioner (Equation 9) is crucial:
under strong regularization B =16, the classic MLEM
preconditioner diverges or converges extremely slowly
(depending on the chosen stepsize), whereas the harmonic
mean variant converges reliably in every scenario.

o SVRG with the harmonic preconditioner, 79 =1 and n = 0.02
(giving mild decay), yields the fastest convergence for medium
and high B. For low regularization, a slightly larger 7 (up to

1.5 or 2.5) can accelerate convergence.

frontiersin.org


https://github.com/SyneRBI/PETRIC-MaGeZ
https://github.com/SyneRBI/PETRIC-MaGeZ
https://github.com/SyneRBI/PETRIC-MaGeZ/releases/tag/ALG1
https://github.com/SyneRBI/PETRIC-MaGeZ/releases/tag/ALG2
https://github.com/SyneRBI/PETRIC-MaGeZ/releases/tag/ALG3
https://github.com/SyneRBI/PETRIC-MaGeZ/releases/tag/2024_paper_simulation_results
https://doi.org/10.3389/fnume.2025.1641215
https://www.frontiersin.org/journals/nuclear-medicine
https://www.frontiersin.org/

Ehrhardt et al.

10.3389/fnume.2025.1641215

B=1.0
_}ﬂ _‘_'\
c .
S w
0
S=
~ S
2= ~
—
-=  Tp=1.5, PC=MLEM ~~ T9=1.0, PC=MLEM -= T0=0.3, PC=MLEMI I
& st e o | s To=1.5, PC=harm —— Tp=1.0, PC=harm — Tp=0.3, PC=harm
Sw 107t ] 5
o L T
o= < e \
%2 102 i B~ SN il e s - AN
— e e
10_3 T T T T T T
10t 107 10! 10? 10! 107
walltime [s] walltime [s] walltime [s]
(a) SVRG
=10
2
= w 1071 5 3
8 = \
S = 1072 '
—
—
1073 T T
-=  T9=0.3, PC=MLEM
— T0=0.3, PC=harm
2
Sw 1071 5 E
oY =
b E x Y
wO =2 10_2 — - .4.‘:-|I
— l\‘
: AN
10_3 T T T T T + T
10! 102 10! 102 10? 102
walltime [s] walltime [s] walltime [s]
(b) SAGA
2
S w
w0
8=
~
oz
—
—
10_3 T T T T T T
—— To=1.5,PC=MLEM  -- To=1.0,PC=MLEM  -- T7,=0.3, PC=MLEM
w e — Tp=1.5, PC=harm —— Tp=1.0, PC=harm — T¢=0.3, PC=harm
€ 1074 :
8 E W
@ -2
2 =10 \\:
—
10_3 T T T T T T
10! 102 10! 10? 10! 102
walltime [s] walltime [s] walltime [s]
(c) SGD
FIGURE 2

Reconstruction performance in terms of NRMSE vs. walltime for SVRG, SAGA, and SGD, for MLEM (dashed lines) and harmonic (solid lines) PCs and
three initial stepsizes (7)) represented by different colors, using 27 subsets, a gentle stepsize decay with n = 0.02, 100 epochs, and subset selection
without replacement. Results are shown for three levels of regularization (8) and two count levels. Note the logarithmic scale on the x- and y-axes. For
each combination of preconditioner and 7%, the outcome of one run is displayed. The thick solid line shows the NRMSE target threshold of 10~2 used
in the PETRIC challenge, and the dashed—dotted horizontal black line shows the NRMSE of the initial OSEM reconstruction.
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o Across all methods, convergence was slower in the case of low
regularization B = 1.

Impact of the number of subsets (see Figure 3): Fixing the
rule
subsets

and  vanishing

the

harmonic  preconditioner
719 =1,1=0.02
n € {8, 27, 54, 108}:

stepsize

we  varied number  of

o SVRG achieves optimal walltime convergence at n = 27 under
medium to high B. Lower B benefits from using a greater
number of subsets.

Optimal values of 7 and 7 for SAGA depend strongly on f3:
high B favors a larger number of subsets with smaller 7%,
medium S favors n = 27 with #? ~ 1, and low S favors n ~ 54.

10.3389/fnume.2025.1641215

Overall, SVRG with optimized achieves faster

convergence compared to SAGA with optimized settings.

. settings

Stability across repeated runs using different subsets orders
(see Figure 4): We run five independent runs (changing the
random seed used for the random subset selection) of the
reconstructions using SVRG, the harmonic preconditioner,
719 =1, n=0.02, and n € {8, 27, 54,108}. The run-to-run
NRMSE variation is small, especially at n = 27, confirming low
variance introduced by the stochastic subset selection in this
setting.

Subset sampling strategy (see Figure 5): Comparing the
Herman-Meyer order, uniform sampling at random with and
without replacement, importance sampling, and cofactor
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FIGURE 3
Performance in terms of NRMSE vs. walltime for SVRG and SAGA, for different number of subsets n and initial stepsizes 7, using the harmonic
preconditioner, a gentle stepsize decay with n = 0.02, 100 epochs, and subset selection without replacement. Results are shown for three levels
of regularization B and two count levels. For each combination of n and 7%, the outcome of one run is displayed. The thick horizontal black line
shows the NRMSE target threshold of 10~2 used in the PETRIC challenge.
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Same as Figure 3 showing the results of five runs, using a different random seed for the subset selection.
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strategies for selecting the order of subsets for SVRG with
=1, n=27 and n=0.02, negligible
differences between all subset selection rules in simulated

we observe
scenarios, with some minor benefits for sampling without
replacement and cofactor sampling.

Stepsize rules (see Figure 6): We see that for SVRG, n = 27,
and the harmonic preconditioner:

o At low B, adaptive rules (short-form BB or heuristic ALGI)
modestly outperform a simple decay.
« However, in the medium-to-high B regime, a constant or

decaying initialization 7® =1 vyields superior ToF
reconstruction  performance compared to adaptive
BB schemes.
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3.3 Simulation-derived conclusions

The inverse-crime simulation study motivated the design of
our algorithms submitted to the PETRIC challenge in the
following way:

o The harmonic mean preconditioner was essential for achieving
stable convergence with 7% ~ 1 across different count and
regularization regimes.

o SVRG slightly outperformed SAGA in robustness and speed,

and both outperformed SGD.
e A moderate number of subsets, n ~ 27, led to the fastest
convergence times.
frontiersin.org
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FIGURE 5
Same as Figure 3 (SVRG only) showing the results for different subset sampling strategies, n = 27 subsets, the harmonic preconditioner, an initial
stepsize 7% = 1, and gentle stepsize decay using n = 0.02 for non-ToF (top) and ToF reconstructions (bottom).

These guidelines directly informed our implementation choices for
the three submitted algorithms, which are explained in detail in the
next section.

4 Submitted algorithms and their
performance

Based on the insights gained from the inverse-crime
simulations in the previous section, we implemented and
submitted three closely related algorithms (termed ALGI,
ALG2, and ALG3) to the PETRIC challenge under the team
name MaGeZ. All three algorithms use SVRG as the underlying
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stochastic gradient algorithm and apply the harmonic mean
preconditioner (Equation 9). The pseudocode that forms the
basis of all three algorithms is given in Algorithm 1 in
Appendix A2. Our SVRG implementation uses in-memory
snapshot gradients, adding only a small overhead compared to
plain SGD or BRSEM. In the context of sinogram-based PET
reconstructions of data from modern scanners, where gigabytes
devoted this
requirement can be effectively neglected, as discussed in

are to storing sinograms, extra memory
Twyman et al. (7).

The available PETRIC training datasets were primarily used to
fine-tune the algorithm hyperparameters, namely, (i) the number

of subsets, (ii) the subset selection strategy, (iii) the stepsize rule,
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FIGURE 6
Same as Figure 5 showing the results for different stepsize strategies, 27 subsets, and the harmonic preconditioner for non-ToF (top) and ToF

reconstructions (bottom).

and (iv) the update frequency of the preconditioner. These are the
only distinguishing features among the submitted algorithms, and
our choices are summarized in Table 1. ALG1 and ALG2 use the
number of subsets as the divisor of the number of views closest
to 25. ALG3 further modifies the subset count slightly using the
divisor closest to 24.2 (with the goal of selecting a smaller
number of subsets in some of the training datasets). In ALGI
and ALG2, subsets are chosen uniformly at random without
replacement in each iteration of each epoch. ALG3 uses the
proposed cofactor rule. ALGI updates the preconditioner at the
start of epochs 1, 2, and 3. ALG2 and ALG3 update the
preconditioner at the start of epochs 1, 2, 4, and 6. ALGI uses a
fixed, piecewise stepsize schedule, while ALG2 and ALG3 employ

Frontiers in Nuclear Medicine

a short BB rule for adaptive stepsize reduction, which is
computed at the start of epochs 1, 2, 4, and 6.

4.1 Performance on PETRIC test datasets

Figures 7 and 8 present the convergence behavior of all three
submitted algorithms in of whole-object NRMSE,
background NRMSE, and multiple volume-of-interest (VOI)
(AEMs). Each dataset
reconstructed three times with all three algorithms using a local
NVIDIA RTX A4500 GPU. From the two figures, we observe the
following:

terms

mean absolute error metrics was
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TABLE 1 Key hyperparameters of the three submitted algorithms.

10.3389/fnume.2025.1641215

Property ALG1 ALG? ALGS

Gradient estimator SVRG
Preconditioner Harmonic mean
Preconditioner update epochs 1,23

Number of subsets Divisor of the number of views closest to 25

Subset selection rule Fixed random sequence without replacement

Stepsize rule 3 k<10

2 10 < k < 100
1.5 100 < k < 200
1 200 < k < 300
0.5 300 <k

« All algorithms converge reliably across all datasets and runs.

o ALG2 and ALG3 perform similarly and slightly outperform
ALG1 in most cases. In the Vision600 Hoffman dataset, ALG1
takes almost twice as long as ALG2 and ALG3 to reach the
convergence threshold.

« For the DMI4 NEMA, NeuroLF Esser, and Mediso low-count
datasets, convergence is reached very quickly both in terms of
walltime and epoch count, typically within four epochs.

o The Vision600 Hoffman dataset the
convergence, requiring more than 23 epochs (594 updates) for
ALG2 and ALG3 and more than 47 epochs (1,184 updates)
for ALGI.

o Inter-run variability is low, with timing differences between

shows slowest

runs being within 1-2s.

o Across all datasets, whole-object NRMSE is the slowest metric
to converge, becoming the bottleneck in determining the final
convergence time.

A closer inspection of the stepsize behavior on the Vision600
Hoffman dataset reveals that the slower convergence of ALGI is
due to its lower final stepsize, which was implemented as a
“safety feature.” After 300 updates, ALG1 reduces its 70 to 0.5,
whereas ALG2 and ALG3 continue to use 7® = 1.0 since their
BB-based calculated adaptive stepsizes remained larger in this
dataset. This difference explains the kink observed in ALGI’s
convergence curves around 450 s.

5 Discussion

We now want to discuss what we believe are the important and
interesting aspects of this work.

In our view, the most important feature of our algorithms is the
improved preconditioner, which takes into account Hessian
information of the regularizer. This enhancement allowed for a
better generalization of stepsize choices across a range of
scanners, objects, noise levels, and regularization strengths. We
chose SVRG as our gradient estimator, although this choice is
not as clear-cut and might be different for other variants of the
reconstruction problem. Our experience suggests that while a
sophisticated method to control variance is important, the
specific approach (e.g, SVRG or SAGA) appears to be less
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Same as ALG1
Same as ALG1
1,2,4,6
Same as ALG1
Same as ALG1

Same as ALG1
Same as ALG1
1,2,4,6
Divisor of the number of views closest to 24.2

Cofactor

min (7®y,,3) k<10 Same as ALG2
min (7®,,2.2) 10 <k <2n
min (7P, 1) 2n<k

with 7%y, the short BB step, calculated at

the end of epochs 2, 4, and 6.
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critical. In contrast, other factors like stepsizes and sampling
strategies had a relatively minor impact, as the algorithms were
not particularly sensitive to these choices.

A key aspect in our approach was to consider what could be
effectively computed and what could not. For the RDP, it is easy
to compute the gradient and the diagonal Hessian, but other
operations such as the proximity operator or the full Hessian are
much more costly. Similarly, the ideal number of subsets is
largely a computational efficiency question. It has been observed
numerous times that, theoretically, fewer epochs are needed with
a larger number of subsets. However, practically, this means that
the overhead per epoch increases, e.g., as the gradient is
computed in each iteration of the epoch. These two factors must
be traded off against each other.

Speaking of the RDP, we noticed a couple of interesting features
that we have not exploited in our work. First, the diagonal Hessian of
the RDP is very large in background regions where the activity is
small. Second, while its gradient has a Lipschitz constant, similar
to the total variation and its smoothed variants, algorithms that do
not rely on gradients might be beneficial.

Between the three algorithms, ALG2 and ALG3 consistently
performed either similarly to or better than ALGIl. Comparing
them to the submissions of other teams, it is worth noting that for
almost all datasets, they performed far better than any of the other
competitors, which lead to MaGeZ winning the challenge overall (26).

Coordination between our simulation insights and algorithm
design was essential to our approach. Local testing allowed us to
the methods final
submission. favored over

validate generalization of our before

Across datasets, we robustness
aggressive tuning. Refinement came from iterative testing rather
than from theoretical guarantees alone. Above all, our goal was

to develop an algorithm that performs well out-of-the-box.

6 Conclusions

In this paper, we presented our strategy and thought process
behind designing our winning strategy for the 2024 PETRIC
challenge. We identified the key parameters for PET image
reconstruction algorithms using realistic yet very fast simulations.
The harmonic mean preconditioner helped us to overcome the
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FIGURE 7

Performance metrics of our three submitted algorithms evaluated on three representative PETRIC test datasets using three repeated runs. The vertical
lines indicate the time when the thresholds of all metrics were reached. Note the logarithmic scale on the y-axis and the linear scale on the x-axis. The
top right images show coronal and transaxial slices of the reference reconstruction alongside contour lines of the volumes of interest used for the
metrics. The bottom right image shows the same transaxial slice of the OSEM reconstruction used for the initialization of all algorithms.
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FIGURE 8
Same as Figure 7 for two more datasets.

biggest roadblock of the challenge: tuning of parameters for a
variety of settings with various scanner models, phantoms, and
regularization strengths.
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Appendix

. . BB Barzilai-Borwein
1 Gradient and Hessian of the RDP KL Kullback-Leibler
MLEM Maximum likelihood expectation maximization
For completeness, we present here the first and second NRMSE Normalized root mean square error
derivatives of the RDP (Equation 3), ie. the gradient and the OSEM Ordered subsets expectation maximization
. . R PET Positron emission tomography
diagonal of the Hessian. Both of these are used in our proposed — -
. PETRIC PET rapid image reconstruction challenge
solution. RDP Relative difference prior
Letdij = x; — xj, 5ij = x; + xj, and d)i,j =sij + 'Y|di,j‘ + &. Then SAGA Stochastic averaged gradient amelioré
the first derivative is given by SGD Stochastic gradient descent
SIRF Synergistic image reconstruction framework
SVRG Stochastic variance reduced gradient
42 (i + |d |)) ToF Time-of-flight
ij\2@i; — dij + Y|dij
0y, S(x) = Z WijKiK; B >
JEN; ij

and the second by

(sij — dij + &)
8;8()6) =2 Z Wi,jKin% .

JEN; irj

2 Pseudocode for submitted
preconditioned SVRG algorithm

Algorithm 1 Preconditioned SVRG algorithm.

Require: initial image: x, number of subsets: #, stepsize rule: stepsize, sampling
rule: subset, diagonal preconditioner rule: preconditioner, list of
iterations to update the preconditioner: update_pc_iters, update gradient
at anchor point every w epochs (default = 2)

l:for k=0,1, ... do

2: if k € update_pc_iters then

3: D « preconditioner(x) > update preconditioner via Equation 9

4:  end if

5: if kmod (wn) = 0 then

6: for i =1 to n do

7 £ — VJix) > calculate all subset gradients at snapshot image

8: end for

9: g - Y&

10: Vg

11:  else

12: i — subset(k)

13: vV — n(VJi(x) - g,) +g

14:  end if

15 7« stepsize(k)

16: x —x— DV

17:  if stopping criterion is reached then return x

18:  end if

19: end for
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