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We investigated subset-based optimization methods for positron emission

tomography (PET) image reconstruction incorporating a regularizing prior. PET

reconstruction methods that use a prior, such as the relative difference prior

(RDP), are of particular relevance because they are widely used in clinical

practice and have been shown to outperform conventional early-stopped and

post-smoothed ordered subset expectation maximization. Our study evaluated

these methods using both simulated data and real brain PET scans from the

2024 PET Rapid Image Reconstruction Challenge (PETRIC), where the main

objective was to achieve RDP-regularized reconstructions as fast as possible,

making it an ideal benchmark. Our key finding is that incorporating the effect

of the prior into the preconditioner is crucial for ensuring fast and stable

convergence. In extensive simulation experiments, we compared several

stochastic algorithms—including stochastic gradient descent (SGD), stochastic

averaged gradient amelioré (SAGA), and stochastic variance reduced gradient

(SVRG)—under various algorithmic design choices and evaluated their

performance for varying count levels and regularization strengths. The results

showed that SVRG and SAGA outperformed SGD, with SVRG demonstrating a

slight overall advantage. The insights gained from these simulations directly

contributed to the design of our submitted algorithms, which formed the

basis of the winning contribution to the PETRIC 2024 challenge.

KEYWORDS

PET, MAP, preconditioning, variance reduction, stochastic gradient methods,

regularization methods, image reconstruction

1 Introduction

1.1 Context

Positron emission tomography (PET) is a pillar of modern clinical imaging, widely

used in oncology, neurology, and cardiology. Most state-of-the-art approaches for the

image reconstruction problem in PET imaging can be cast as an optimization problem

x� [ arg min
x

D(Ax þ r, y)þR(x)f g, (1)

where the data fidelity term D :Y � Y ! [0, 1] measures how well the estimated data

Ax þ r matches the acquired data y and the regularizer R :X ! [0, 1] penalizes

unwanted features in the image. A :X ! Y is a linear forward model for the PET
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physics, which includes effects such as scanner sensitivities or

attenuation, and r is the additive background term to account for

scattered and random coincidences. Due to the Poisson nature of

the data, the data fidelity is usually taken as the Kullback–Leibler

(KL) divergence. The regularizer commonly entails non-

negativity constrains and terms that promote smoothness.

A particularly successful model for smoothness in PET is the

relative difference prior (RDP) (1).

This paper focuses on algorithms for the fast reconstruction of

x�. Particularly, we present our winning contribution to the

2024 PET Rapid Image Reconstruction Challenge (PETRIC) (2),

where the task was to reconstruct data from various PET

scanners using RDP-regularized reconstruction methods. PET

image reconstructions that use the RDP are of particular current

relevance because RDP is widely used in clinical practice, being

implemented by a major commercial vendor, and has been

shown to outperform conventional early-stopped and post-

smoothed ordered subset-maximum likelihood expectation

maximization (OS-MLEM) reconstructions (3–5). Although

implementations based on block sequential regularized

expectation maximization (BSREM) (6), they have been shown to

be slower than an algorithm that uses ideas from machine

learning and tailored preconditioning (7). In this paper, we

outline the process used to find the winning algorithm and share

the insights obtained along the way. For context, the task had to

be completed within the Synergistic Image Reconstruction

Framework (SIRF) (8), and speed was measured as walltime until

an application-focused convergence criterion was reached.

1.2 Problem details

Traditionally, fast algorithms for PET reconstruction have been

subset-based (9), meaning only a subset of the data is used in every

iteration. In the last decade, algorithms using a similar strategy but

derived for machine learning have entered the field and shown

state-of-the-art performance (7, 10–14). They exploit the fact that

the KL divergence is separable in the estimated data

D(Ax þ r, y) ¼
X

n

i¼1

X

j[Si

d(Ajx þ rj, yj), (2)

where n denotes the number of subsets and function d is defined by

d(s, t) ¼
s� t þ t log (t=s), if t . 0, s . 0
s, if t ¼ 0, s � 0
1, otherwise

8

<

:

:

Here, Si denotes a subset of the data, e.g., all data associated to a

“view.”

A great deal of effort has been put into finding good prior

models (i.e., regularizers) for PET, including smooth and non-

smooth priors, which either promote smoothness of the image to

be reconstructed or encourage similarity to anatomical

information (15–18). In Nuyts et al. (1), the authors proposed a

smooth and convex prior that takes into account the scale of

typical PET images, resulting in greater smoothness in less active

regions. Mathematically, for non-negative images x, the resulting

regularizer can be defined by

S(x) ¼
1

2

X

i

X

j[Ni

wi,jkikj
(xi � xj)

2

xi þ xj þ gjxi � xjj þ 1
, (3)

where the first sum is over all voxels i and the second sum is over

all “neighbors” j. Parameter g . 0 allows placing more or less

emphasis on edge preservation, and parameter 1 . 0 ensures

that the function is well-defined and twice continuously

differentiable. Terms wi,j, ki, and kj are weight factors accounting

for distances between voxels and are intended to create a

uniform “perturbation response” (19). Note that the essential

part of the prior is

f(s, d) ¼
d2

sþ gjdj þ 1
,

which has two important properties. First, if the sum of activities s

between voxels is small compared to the scaled absolute difference

gjdj, the regularizer essentially reduces to total variation:

f(s, d) � jdj=g. Second, the larger the activity in both voxels, i.e.,

the larger s, the less weight is placed on penalizing their

difference, justifying the name of the regularizer. See also

Appendix A1 for formulas of derivatives.

Combined with the indicator function of the non-negativity

constraint,

i�0(x) ¼
0, if xi � 0 for all i
1, otherwise

�

,

we arrive at the regularization model used in PETRIC

R(x) ¼ bS(x)þ i�0(x): (4)

This formula has to be interpreted to be 1 for infeasible images

with negative voxel values and has the finite RDP value

everywhere else.

The rest of the paper is structured as follows. In Section 2, we

introduce the building blocks of our algorithms and discuss

proximal stochastic gradient approaches for solving Equation 1,

stepsize regimes, preconditioning, and subset selection. In

Section 3, we thoroughly investigate the effects of different

choices of building blocks in a simulated setting. In Section 4, we

present the algorithms we ended up using in PETRIC and their

performance on real data. We conclude with final remarks in

Sections 5 and 6.
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2 Building blocks

Combining the modeling choices in Equations 1, 2, and 4, we

arrive at the optimization problem

min
x

X

n

i¼1

J i(x)þ i�0(x)

( )

, (5)

where we define J i(x) ¼ Di(x)þ
b
n
S(x) and

Di(x) : ¼
P

j[Si
d(Ajx þ rj, yj). The variety of optimization

methods for solving instances of problem 5 is extensive and has

grown in recent decades; see Ehrhardt et al. (13) and references

therein. For linear inverse problems, such as in PET image

reconstruction, the most common approaches are based on either

(proximal) gradient descent or on primal-dual approaches.

In this work, we consider stochastic gradient methods for

solving problem 5. They take the form

x(kþ1) ¼ proxi�0 x(k) � t(k)D(k) ~r
(k)

� �

, (6)

where t(k) . 0 is a stepsize, ~r
(k)

is an estimator of the gradient of

the smooth part of the objective function J (x) ¼
Pn

i¼1 J i(x), D
(k)

is a matrix that acts as a preconditioner (PC), and proxi�0 is the

proximal operator associated with the non-negativity constraint,

which can be efficiently computed entrywise,

[ proxi�0 (x)]j ¼ max (0, xj).

All three components ~r
(k)
, D(k), and t(k) are critical for fast and

stable algorithmic performance. In realistic image reconstruction

settings, and in the context of the PETRIC challenge, the

selection of these three components must balance accuracy and

computational costs. In the remainder of this section, we review

stochastic estimators, discuss their trade-offs, and address the

stepsize selection and preconditioners. Finally, we consider the

role of subset selection and sampling regimes, namely, how to

choose the sets Si in Equation 2 and decide which subsets to use

at each iteration of the algorithm.

2.1 Stochastic gradient methods

Let us turn our attention to the selection of gradient

estimators ~r
(k)
.

Stochastic gradient descent (SGD) defines the gradient

estimator by selecting a random subset index ik in each iteration

and evaluating

~r
(k)

: ¼ nrJ ik (x
(k))

to compute the update in Equation 6. Each iteration only requires

storing the current iterate and computing the gradient for only one

subset function. This can lead to large variances across updates,

which increase with the number of subsets. To moderate this,

vanishing stepsizes, satisfying

X

1

k¼1

t(k) ¼ 1 and
X

1

k¼1

(t(k))2 , 1,

are required to ensure convergence but at the cost of

convergence speed.

Stochastic averaged gradient amelioré (SAGA) controls the

variance by maintaining a table of historical gradients

(g(k)i )ni¼1 [ Xn. Each iteration uses a computed subset gradient

combined with the full gradient table to update the gradient

estimator

~r
(k)
¼ n rJ ik (x

(k))� g(k)ik

� �

þ
X

n

i¼1

g(k)i , (7)

followed by updating the corresponding entry in the table

g(kþ1)j ¼
rJ ik (x

(k)), if j ¼ ik
g(k)j , otherwise

(

:

In contrast to SGD, SAGA guarantees convergence to a minimizer

with constant stepsizes and preconditioners for Lipschitz-smooth

problems. In its standard form, SAGA has the same

computational cost as SGD, but it requires storing n gradients.

The memory cost is not a practical limitation for most PET

problems (even for relatively large n). If this is a concern,

alternative formulations of SAGA exist with other memory

footprints; see Ehrhardt et al. (13) for a further discussion.

Stochastic variance reduced gradient (SVRG) also reduces the

variance by storing reference images and gradients, but unlike

SAGA, these are updated infrequently. Algorithmically, SVRG is

usually implemented with two loops: an outer loop and an inner

loop. At the start of each outer loop, subset gradients and the

full gradient estimator are computed at the last iterate as

ĝi ¼ rJ i(x̂), ĝ ¼
X

n

i¼1

ĝi:

In the inner loop, the gradients are retrieved from memory and

balanced against a randomly sampled subset gradient at the

current iterate, giving the gradient estimator

~r
(k)
¼ n(rJ ik (x

(k))� ĝik )þ ĝ : (8)

Note the similarity between the gradient estimators of SAGA and

SVRG given by Equations 7 and 8, respectively.

After vn iterations, the snapshot image and the full gradient

estimator are updated. The update parameter v [ N is typically

chosen as 2 for convex problems.

It is most common to store only the snapshot image x̂ and the

corresponding full gradient
Pn

i¼1 ĝi, which then requires

Ehrhardt et al. 10.3389/fnume.2025.1641215

Frontiers in Nuclear Medicine 03 frontiersin.org

https://doi.org/10.3389/fnume.2025.1641215
https://www.frontiersin.org/journals/nuclear-medicine
https://www.frontiersin.org/


recomputing the subset gradient ĝik at each iteration. This lowers

the memory footprint (requiring only the snapshot image and

the full gradient to be stored) but increases the computational costs.

2.2 Stepsizes

Theoretical convergence guarantees often require stepsizes

based on Lmax ¼ maxi¼1,...,n{Li}, where Li is the Lipschitz

constant of rJ i. In PET, global Lipschitz constants are usually

pessimistic, yielding conservative stepsize estimates.

Many stepsize approaches exist for stochastic iterative methods,

ranging from predetermined choices made before running the

algorithm (constant or vanishing) to adaptive methods [e.g.,

Barzilai–Borwein (BB) (20) and “difference of gradients”-type

(21) rules] and backtracking techniques [e.g., Armijo (22)]. Due

to the constraints imposed by the challenge (where

computational time is a key metric), in this work, we focus on

the first two categories.

Constant is the baseline stepsize rule. The specific value

requires tuning to ensure convergence.

Vanishing rules consider stepsizes of the form

t(k) ¼ t(0)=(1þ hk=n), which satisfy the SGD convergence

conditions, for t(0) . 0 and the decay parameter h . 0 that

needs to balance convergence and stability: small enough to

maintain speed but large enough to ensure convergence.

Adaptive stepsize tuning via the BB rule is achieved by

minimizing the residual of the secant equation at the current

iterate. It converges for strongly convex problems and is

applicable to SGD and SVRG (20). We tested several variants of

the BB rule (long and short forms, geometric mean

combinations, diagonal BB, etc.) but settled on the short-form

BB for its performance and stability. When applied to gradient

descent, short-form BB sets the stepsizes according to

t(k) ¼ p`q=(q`q), where p ¼ x(k) � x(k�1) and q ¼ ~r
(k)
� ~r

(k�1)
.

When applied to SVRG, these values are computed during the

iterations when the full gradient is recomputed.

2.3 Preconditioning

Preconditioners are essential for accelerating iterative

reconstruction algorithms by stabilizing admissible stepsize and

adapting them to individual components of the solution.

Effectively, image components with large gradient variance

receive smaller updates, and vice versa. This can have a dramatic

effect in PET image reconstruction (and machine learning

applications) due to the widely varying range of local Lipschitz

constants. Motivated by Newton’s method, many preconditioners

aim to approximate the inverse of the Hessian to allow for unit

stepsizes. However, computing a full Hessian is impractical in

high-dimensional problems, motivating the need for

efficient approximations.

Preconditioners based only on data fidelity are standard in

PET. The most prominent example is

DMLEM(x) ¼ diag
x þ d

A`1

� �

,

which can be derived from the gradient descent interpretation of

MLEM. Here, the division of the two vectors is interpreted

componentwise. Since x � 0 and A`1 . 0, a small constant

d . 0 ensures that the every diagonal entry of the preconditioner

is non-zero. DMLEM tends to work well for weak priors (e.g., in

low-noise scenarios). However, it often underperforms because it

does not account for the strength of the prior. This can either

jeopardize the convergence behavior or require significant

stepsize tuning.

Let

DbS(x) ¼ diag
1

diag(HbS(x))

� �

be the inverse of the diagonal of the Hessian of the prior. In this

work, we used diagonal preconditioners that combine the data

fidelity and prior terms via the (scaled) harmonic mean between

DMLEM and DbS . For scalars a, b . 0, the harmonic mean is

given by

h(a, b) ¼
2

1

a
þ

1

b

:

Since our preconditioners are diagonal, this concept can be readily

extended to define for some a . 0

D(x) ¼
1

2
h(DMLEM(x), a

�1DbS(x))

¼ D�1MLEM(x)þ aD�1bS(x)
� ��1

¼ diag
x þ d

A`1þ adiag(HbS(x))(x þ d)

� �

:

(9)

Note that it satisfies D(x) � min {DMLEM(x), a
�1DbS(x)}. While

this may look like an ad hoc choice, if DMLEM and a�1DbS are

good approximations to their respective Hessians, then the

harmonic mean D will be a good approximation to Hessian of

the entire smooth term J . Note also that by the definition of the

harmonic mean, the proposed preconditioner is diagonal with

strictly positive diagonal elements. As such, standard results on

convergence follow, e.g., with sufficiently small stepsizes.

We tested several alternatives to Equation 9, such as taking an

componentwise minimum between DMLEM and DbS , reweighing

their contributions, using the Kailath variant of the Woodbury

identity (together with the diagonal approximation) to estimate

the inverse of the Hessian, and other variants. The selected

preconditioner provided the best balance between computational

cost and algorithmic performance. Traditional second-order
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methods update the preconditioner in every iteration, which is

costly. Preconditioner (Equation 9) is much cheaper and, as

experiments show, requires updating only in the first three

epochs, after which it stabilizes with no performance gain from

further updates.

2.4 Subset selection and sampling

Subset-based reconstruction algorithms enhance the

convergence speed of traditional iterative methods by dividing

the projection data into multiple subsets and performing updates

using partial measurement data. While this approach can offer

significant computational advantages, careful selection of the

number of subsets is critical. Using too many subsets can

introduce artifacts and amplify noise, especially when subsets

lack sufficient angular coverage, and increases the variance

between successive updates, which can compromise the stability

and convergence properties. Conversely, selecting too few subsets

diminishes the acceleration benefit and causes behavior similar to

classical methods, such as MLEM, which are known for their

slow convergence. The number of subsets n is typically chosen as

a divisor of the total number of projection angles (or views),

allowing the data to be partitioned evenly. Subsets are then

constructed to ensure that each is representative and uniformly

distributed. We found that using approximately 25 subsets

provides a good trade-off between reconstruction quality and

computational speed in most scenarios, given the current

computational requirements and scanner configurations.

To determine the order in which subsets are accessed, we

consider the following standard choices:

Herman–Meyer order (23) is a well-established deterministic

choice based on the prime decomposition of the number of subsets.

Uniformly random with replacement is the most common

choice in machine learning applications. In each iteration, the

subset index i is chosen by taking a sample from {1, . . . , n}

uniformly at random.

Uniformly random without replacement randomizes access

to subset indices but ensures that over n successive iteration

cycles, all data are used by computing a permutation of

(1, . . . , n) in each epoch.

Importance sampling uses a weighted variant of uniform

sampling with replacement. For each 1 � i � n, we assign a

probability pi � 0, such that
Pn

i¼1 pi ¼ 1. When Lipschitz

constants Li are known, pi ¼ Li=
Pn

j¼1 Lj is a common choice.

Since Lipschitz constants Li are unknown in PET, we propose

an alternative importance sampling strategy for SVRG. Namely,

when the full gradient estimator is updated, we compute

pi ¼ krJ i(x)k=
Pn

j¼1 krJ j(x)k, where x is the current image

estimate. This incurs minimal computational overhead since all

subset gradients are already recomputed in SVRG.

Finally, drawing inspiration from the Herman–Meyer ordering,

which is designed to maximize information gain between

successive updates and incorporating the concept of random

sampling without replacement to ensure full coverage of subsets

in each epoch with varying order, we propose the following

novel subset ordering strategy.

Cofactor order begins by identifying all generators of the cyclic

group associated with the number of subsets, n, which are

identified as positive integers k , n that are coprime with n,

meaning that they share no prime factors with it. These

generators are then ranked according to their proximity to two

reference points, 0:3n and 0:7n, to balance spread and

randomness. In each epoch, the next available generator from

this sorted list is selected and used to define a new traversal of

the cyclic group, thereby determining the order in which subsets

are accessed (i.e., one subset index per iteration). Once the list of

generators has been exhausted, it is reinitialized, and the process

repeats for subsequent epochs.

For example, if n ¼ 15, the coprimes (i.e., the set of generators)

are given by {2, 4, 7, 8, 11, 13, 14}. The sorted list of coprimes,

based on their proximity to 0:3n and 0:7n, is

(4, 11, 2, 8, 7, 13, 14). Thus, 4 will be the first generator, which

produces the subset indices: 0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3,

7, and 11. This exhausts the set of possible indices, so the next

generator is selected as 11, and the process is repeated.

3 Numerical simulation experiments

To validate and refine the algorithmic components introduced

in the previous section, we conducted a comprehensive suite of fast

inverse-crime simulations. By simulating a simplified yet realistic

PET scanner using the pure GPU mode of parallelproj v1.10.1

(24), iterative reconstructions could be run in seconds. This

enabled a systematic exploration of the effects of various factors

on convergence behavior, including the choice of stochastic

algorithm, preconditioner, stepsize strategy, number of subsets,

subset sampling method, time-of-flight (ToF) vs. non-ToF data,

count levels, and regularization strength.

3.1 Simulation setup

All experiments used a simulated cylindrical (polygonal)

scanner with a diameter of 600 mm and a length of 80 mm,

comprising 17 rings with 36 modules each (12 detectors per

module). Simulated ToF resolution was 390 ps, and a 4-mm

isotropic Gaussian kernel in image space was used to model

limited spatial resolution. Emission data were binned into a span

1 sinogram (289 planes, 216 views, 353 radial bins, 25 ToF bins).

A simple 3D elliptical phantom was forward-projected

(accounting for water attenuation), contaminated with a smooth

background sinogram, and corrupted by Poisson noise to

simulate realistic emission data. Low- and high-count regimes

were simulated with 107 and 108 true events, respectively.

Reconstruction was performed at an image size of

161� 161� 33 voxels with a 2.5 mm isotropic spacing.

Reference reconstructions (see Figure 1) were obtained by

running 500 iterations of the preconditioned limited memory

Broyden–Fletcher–Goldfarb–Shanno algorithm (L-BFGS-B) (25)
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with three relative regularization strengths ~b [ {1, 4, 16}. The

regularization parameter b was scaled as

b ¼ ~b� 2� 10�4 �
true counts

3� 107
:

This ensures that reconstructions with the same ~b at different

count levels show comparable resolution. All stochastic

reconstructions were initialized with one epoch of ordered subset

expectation maximization (OSEM) (with 27 subsets).

Convergence was measured by the normalized root mean square

error (NRMSE) excluding cold background around the elliptical

phantom, normalized by the intensity of the largest background

ellipsoid. In line with the NRMSE target threshold used in the

PETRIC challenge, we consider the point where NRMSE was less

than 0.01 as a marker of practical convergence. The data were

divided into n subsets by selecting every nth view. Unless stated

otherwise, in each epoch, subsets were drawn uniformly at

random without replacement. All runs were performed using an

NVIDIA RTX A4500 GPU. The code for all our simulation

experiments and submissions to PETRIC is available at https://

github.com/SyneRBI/PETRIC-MaGeZ. To reproduce the results,

users should use the tagged versions ALG1, ALG2, ALG3, or

2024_paper_simulation_results.

3.2 Main simulation results

Algorithm and preconditioner effects (see Figure 2): When

comparing SVRG, SAGA, and plain SGD under a vanishing

stepsize schedule t(k) ¼ t(0)=(1þ 0:02 k=n) with

t(0) [ {0:3, 1:0, 1:5} and n ¼ 27, we made the following

observations.

• SVRG and SAGA consistently outperform SGD in all count and

regularization regimes.

• The harmonic mean preconditioner (Equation 9) is crucial:

under strong regularization ~b ¼ 16, the classic MLEM

preconditioner diverges or converges extremely slowly

(depending on the chosen stepsize), whereas the harmonic

mean variant converges reliably in every scenario.

• SVRG with the harmonic preconditioner, t(0) ¼ 1 and h ¼ 0:02

(giving mild decay), yields the fastest convergence for medium

and high ~b. For low regularization, a slightly larger t(0) (up to

1:5 or 2:5) can accelerate convergence.

FIGURE 1

Stacked central transversal, coronal, and sagittal slices of L-BFGS-B reference reconstructions of the ellipse phantom. Each column shows a different

level of regularization (~b) increasing from left to right. The top row shows results for 107 true counts, and the bottom row shows results for 108

true counts.
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FIGURE 2

Reconstruction performance in terms of NRMSE vs. walltime for SVRG, SAGA, and SGD, for MLEM (dashed lines) and harmonic (solid lines) PCs and

three initial stepsizes (t(0)) represented by different colors, using 27 subsets, a gentle stepsize decay with h ¼ 0:02, 100 epochs, and subset selection

without replacement. Results are shown for three levels of regularization (~b) and two count levels. Note the logarithmic scale on the x- and y-axes. For

each combination of preconditioner and t(0), the outcome of one run is displayed. The thick solid line shows the NRMSE target threshold of 10�2 used

in the PETRIC challenge, and the dashed–dotted horizontal black line shows the NRMSE of the initial OSEM reconstruction.
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• Across all methods, convergence was slower in the case of low

regularization ~b ¼ 1.

Impact of the number of subsets (see Figure 3): Fixing the

harmonic preconditioner and vanishing stepsize rule

t(0) ¼ 1, h ¼ 0:02, we varied the number of subsets

n [ {8, 27, 54, 108}:

• SVRG achieves optimal walltime convergence at n ¼ 27 under

medium to high ~b. Lower ~b benefits from using a greater

number of subsets.

• Optimal values of n and t(0) for SAGA depend strongly on ~b:

high ~b favors a larger number of subsets with smaller t(0),

medium ~b favors n ¼ 27 with t(0) � 1, and low ~b favors n � 54.

• Overall, SVRG with optimized settings achieves faster

convergence compared to SAGA with optimized settings.

Stability across repeated runs using different subsets orders

(see Figure 4): We run five independent runs (changing the

random seed used for the random subset selection) of the

reconstructions using SVRG, the harmonic preconditioner,

t(0) ¼ 1, h ¼ 0:02, and n [ {8, 27, 54, 108}. The run-to-run

NRMSE variation is small, especially at n ¼ 27, confirming low

variance introduced by the stochastic subset selection in this

setting.

Subset sampling strategy (see Figure 5): Comparing the

Herman–Meyer order, uniform sampling at random with and

without replacement, importance sampling, and cofactor

FIGURE 3

Performance in terms of NRMSE vs. walltime for SVRG and SAGA, for different number of subsets n and initial stepsizes t(0), using the harmonic

preconditioner, a gentle stepsize decay with h ¼ 0:02, 100 epochs, and subset selection without replacement. Results are shown for three levels

of regularization ~b and two count levels. For each combination of n and t(0) , the outcome of one run is displayed. The thick horizontal black line

shows the NRMSE target threshold of 10�2 used in the PETRIC challenge.
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strategies for selecting the order of subsets for SVRG with

t(0) ¼ 1, n ¼ 27, and h ¼ 0:02, we observe negligible

differences between all subset selection rules in simulated

scenarios, with some minor benefits for sampling without

replacement and cofactor sampling.

Stepsize rules (see Figure 6): We see that for SVRG, n ¼ 27,

and the harmonic preconditioner:

• At low ~b, adaptive rules (short-form BB or heuristic ALG1)

modestly outperform a simple decay.

• However, in the medium-to-high ~b regime, a constant or

decaying initialization t(0) ¼ 1 yields superior ToF

reconstruction performance compared to adaptive

BB schemes.

3.3 Simulation-derived conclusions

The inverse-crime simulation study motivated the design of

our algorithms submitted to the PETRIC challenge in the

following way:

• The harmonic mean preconditioner was essential for achieving

stable convergence with t(0) � 1 across different count and

regularization regimes.

• SVRG slightly outperformed SAGA in robustness and speed,

and both outperformed SGD.

• A moderate number of subsets, n � 27, led to the fastest

convergence times.

FIGURE 4

Same as Figure 3 showing the results of five runs, using a different random seed for the subset selection.
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These guidelines directly informed our implementation choices for

the three submitted algorithms, which are explained in detail in the

next section.

4 Submitted algorithms and their
performance

Based on the insights gained from the inverse-crime

simulations in the previous section, we implemented and

submitted three closely related algorithms (termed ALG1,

ALG2, and ALG3) to the PETRIC challenge under the team

name MaGeZ. All three algorithms use SVRG as the underlying

stochastic gradient algorithm and apply the harmonic mean

preconditioner (Equation 9). The pseudocode that forms the

basis of all three algorithms is given in Algorithm 1 in

Appendix A2. Our SVRG implementation uses in-memory

snapshot gradients, adding only a small overhead compared to

plain SGD or BRSEM. In the context of sinogram-based PET

reconstructions of data from modern scanners, where gigabytes

are devoted to storing sinograms, this extra memory

requirement can be effectively neglected, as discussed in

Twyman et al. (7).

The available PETRIC training datasets were primarily used to

fine-tune the algorithm hyperparameters, namely, (i) the number

of subsets, (ii) the subset selection strategy, (iii) the stepsize rule,

FIGURE 5

Same as Figure 3 (SVRG only) showing the results for different subset sampling strategies, n ¼ 27 subsets, the harmonic preconditioner, an initial

stepsize t(0) ¼ 1, and gentle stepsize decay using h ¼ 0:02 for non-ToF (top) and ToF reconstructions (bottom).
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and (iv) the update frequency of the preconditioner. These are the

only distinguishing features among the submitted algorithms, and

our choices are summarized in Table 1. ALG1 and ALG2 use the

number of subsets as the divisor of the number of views closest

to 25. ALG3 further modifies the subset count slightly using the

divisor closest to 24.2 (with the goal of selecting a smaller

number of subsets in some of the training datasets). In ALG1

and ALG2, subsets are chosen uniformly at random without

replacement in each iteration of each epoch. ALG3 uses the

proposed cofactor rule. ALG1 updates the preconditioner at the

start of epochs 1, 2, and 3. ALG2 and ALG3 update the

preconditioner at the start of epochs 1, 2, 4, and 6. ALG1 uses a

fixed, piecewise stepsize schedule, while ALG2 and ALG3 employ

a short BB rule for adaptive stepsize reduction, which is

computed at the start of epochs 1, 2, 4, and 6.

4.1 Performance on PETRIC test datasets

Figures 7 and 8 present the convergence behavior of all three

submitted algorithms in terms of whole-object NRMSE,

background NRMSE, and multiple volume-of-interest (VOI)

mean absolute error metrics (AEMs). Each dataset was

reconstructed three times with all three algorithms using a local

NVIDIA RTX A4500 GPU. From the two figures, we observe the

following:

FIGURE 6

Same as Figure 5 showing the results for different stepsize strategies, 27 subsets, and the harmonic preconditioner for non-ToF (top) and ToF

reconstructions (bottom).
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• All algorithms converge reliably across all datasets and runs.

• ALG2 and ALG3 perform similarly and slightly outperform

ALG1 in most cases. In the Vision600 Hoffman dataset, ALG1

takes almost twice as long as ALG2 and ALG3 to reach the

convergence threshold.

• For the DMI4 NEMA, NeuroLF Esser, and Mediso low-count

datasets, convergence is reached very quickly both in terms of

walltime and epoch count, typically within four epochs.

• The Vision600 Hoffman dataset shows the slowest

convergence, requiring more than 23 epochs (594 updates) for

ALG2 and ALG3 and more than 47 epochs (1,184 updates)

for ALG1.

• Inter-run variability is low, with timing differences between

runs being within 1–2 s.

• Across all datasets, whole-object NRMSE is the slowest metric

to converge, becoming the bottleneck in determining the final

convergence time.

A closer inspection of the stepsize behavior on the Vision600

Hoffman dataset reveals that the slower convergence of ALG1 is

due to its lower final stepsize, which was implemented as a

“safety feature.” After 300 updates, ALG1 reduces its t(k) to 0.5,

whereas ALG2 and ALG3 continue to use t(k) ¼ 1:0 since their

BB-based calculated adaptive stepsizes remained larger in this

dataset. This difference explains the kink observed in ALG1’s

convergence curves around 450 s.

5 Discussion

We now want to discuss what we believe are the important and

interesting aspects of this work.

In our view, the most important feature of our algorithms is the

improved preconditioner, which takes into account Hessian

information of the regularizer. This enhancement allowed for a

better generalization of stepsize choices across a range of

scanners, objects, noise levels, and regularization strengths. We

chose SVRG as our gradient estimator, although this choice is

not as clear-cut and might be different for other variants of the

reconstruction problem. Our experience suggests that while a

sophisticated method to control variance is important, the

specific approach (e.g., SVRG or SAGA) appears to be less

critical. In contrast, other factors like stepsizes and sampling

strategies had a relatively minor impact, as the algorithms were

not particularly sensitive to these choices.

A key aspect in our approach was to consider what could be

effectively computed and what could not. For the RDP, it is easy

to compute the gradient and the diagonal Hessian, but other

operations such as the proximity operator or the full Hessian are

much more costly. Similarly, the ideal number of subsets is

largely a computational efficiency question. It has been observed

numerous times that, theoretically, fewer epochs are needed with

a larger number of subsets. However, practically, this means that

the overhead per epoch increases, e.g., as the gradient is

computed in each iteration of the epoch. These two factors must

be traded off against each other.

Speaking of the RDP, we noticed a couple of interesting features

that we have not exploited in our work. First, the diagonal Hessian of

the RDP is very large in background regions where the activity is

small. Second, while its gradient has a Lipschitz constant, similar

to the total variation and its smoothed variants, algorithms that do

not rely on gradients might be beneficial.

Between the three algorithms, ALG2 and ALG3 consistently

performed either similarly to or better than ALG1. Comparing

them to the submissions of other teams, it is worth noting that for

almost all datasets, they performed far better than any of the other

competitors, which lead to MaGeZ winning the challenge overall (26).

Coordination between our simulation insights and algorithm

design was essential to our approach. Local testing allowed us to

validate the generalization of our methods before final

submission. Across datasets, we favored robustness over

aggressive tuning. Refinement came from iterative testing rather

than from theoretical guarantees alone. Above all, our goal was

to develop an algorithm that performs well out-of-the-box.

6 Conclusions

In this paper, we presented our strategy and thought process

behind designing our winning strategy for the 2024 PETRIC

challenge. We identified the key parameters for PET image

reconstruction algorithms using realistic yet very fast simulations.

The harmonic mean preconditioner helped us to overcome the

TABLE 1 Key hyperparameters of the three submitted algorithms.

Property ALG1 ALG2 ALG3

Gradient estimator SVRG Same as ALG1 Same as ALG1

Preconditioner Harmonic mean Same as ALG1 Same as ALG1

Preconditioner update epochs 1, 2, 3 1, 2, 4, 6 1, 2, 4, 6

Number of subsets Divisor of the number of views closest to 25 Same as ALG1 Divisor of the number of views closest to 24.2

Subset selection rule Fixed random sequence without replacement Same as ALG1 Cofactor

Stepsize rule 3 k , 10
2 10 � k , 100
1:5 100 � k , 200
1 200 � k , 300
0:5 300 � k

8

>

>

>

>

<

>

>

>

>

:

min (t(k)bb , 3) k , 10
min (t(k)bb , 2:2) 10 � k , 2n
min (t(k)bb , 1) 2n � k

8

<

:

with t(k)bb , the short BB step, calculated at

the end of epochs 2, 4, and 6.

Same as ALG2
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FIGURE 7

Performance metrics of our three submitted algorithms evaluated on three representative PETRIC test datasets using three repeated runs. The vertical

lines indicate the time when the thresholds of all metrics were reached. Note the logarithmic scale on the y-axis and the linear scale on the x-axis. The

top right images show coronal and transaxial slices of the reference reconstruction alongside contour lines of the volumes of interest used for the

metrics. The bottom right image shows the same transaxial slice of the OSEM reconstruction used for the initialization of all algorithms.
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biggest roadblock of the challenge: tuning of parameters for a

variety of settings with various scanner models, phantoms, and

regularization strengths.
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Appendix

1 Gradient and Hessian of the RDP

For completeness, we present here the first and second

derivatives of the RDP (Equation 3), i.e., the gradient and the

diagonal of the Hessian. Both of these are used in our proposed

solution.

Let di,j ¼ xi � xj, si,j ¼ xi þ xj, and fi,j ¼ si,j þ gjdi,jj þ 1. Then

the first derivative is given by

@xiS(x) ¼
X

j[Ni

wi,jkikj
di,j(2fi,j � (di,j þ gjdi,jj))

f2
i,j

,

and the second by

@2
xi
S(x) ¼ 2

X

j[Ni

wi,jkikj
(si,j � di,j þ 1)2

f3
i,j

:

2 Pseudocode for submitted
preconditioned SVRG algorithm

Algorithm 1 Preconditioned SVRG algorithm.

Require: initial image: x, number of subsets: n, stepsize rule: stepsize, sampling

rule: subset, diagonal preconditioner rule: preconditioner, list of

iterations to update the preconditioner: update_pc_iters, update gradient

at anchor point every v epochs (default = 2)

1: for k ¼ 0, 1, . . . do

2: if k [ update pc iters then

3: D preconditioner(x) . update preconditioner via Equation 9

4: end if

5: if kmod (vn) ¼ 0 then

6: for i ¼ 1 to n do

7: ĝ i  rJ i(x) . calculate all subset gradients at snapshot image

8: end for

9: ĝ  
Pn

i¼1 ĝ i
10: ~r  ĝ

11: else

12: i subset(k)

13: ~r  n rJ i(x)� ĝ i
� �

þ ĝ

14: end if

15: t stepsize(k)

16: x  x � tD ~r

17: if stopping criterion is reached then return x

18: end if

19: end for

BB Barzilai–Borwein

KL Kullback–Leibler

MLEM Maximum likelihood expectation maximization

NRMSE Normalized root mean square error

OSEM Ordered subsets expectation maximization

PET Positron emission tomography

PETRIC PET rapid image reconstruction challenge

RDP Relative difference prior

SAGA Stochastic averaged gradient amelioré

SGD Stochastic gradient descent

SIRF Synergistic image reconstruction framework

SVRG Stochastic variance reduced gradient

ToF Time-of-flight
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