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Abstract:

Oncomicrobes are estimated to cause 15% of cancers worldwide. When cancer whole genome
DNA sequencing data (WGS) is collected, microbes present are also sequenced, allowing
investigation of potential aetiological and clinical associations. Interrogating the microbial
community for 8,908 patients encompassing 22 cancer types from the Genomics England WGS
dataset revealed that only colorectal tumours exhibited unmistakably distinct microbial
communities that can reliably be used to distinguish anatomical site (PPV=0.95). This pattern
was validated in two other datasets. Potential clinical uses uncovered included accurate
detection of alphapapillomaviruses (HPV) in oral cancers when compared to current clinical
standards, and the detection of rare, highly pathogenic viruses (Human T-Lymphotropic Virus-
1). Biomarker investigations demonstrated statistically significant associations (P<0.05)
between a subset of anaerobic bacteria and survival in certain subtypes of sarcoma. Our results
contradict previous claims that each cancer type has a distinct microbiological signature, but
highlight the potential value of microbial analysis for certain cancers as WGS of tumour
samples becomes common in the clinic.

Introduction
Well characterised oncomicrobes (/) are attributed with causing 15% of cancers globally (2).
These include Helicobacter pylori (gastric carcinoma), human papillomavirus (oral, cervical



cancer, and others), hepatitis B & C viruses (hepatocellular carcinoma), Epstein-Barr virus
(Hodgkin’s lymphoma, Burkitt’s lymphoma and nasopharyngeal carcinoma) (2), and HTLV
viruses (Kaposi sarcoma and leukaemias) (3). Specific bacteria such Fusobacterium
nucleatum, genotoxin-producing Escherichia coli, and sets of anaerobic bacteria have been
implicated in colorectal and prostate cancer development, with proposed mechanisms
including DNA damage and immune modulation (4-10).

Large-scale national sequencing initiatives are leading to the establishment of genomic national
medicine services (//-14). Whole genome sequencing (WGS) of tumour biopsies is likely to
become routine, and its integration into standard clinical care is being considered (/5). We
previously used WGS data to survey the landscape of viral associations in human cancer (/6)
and have developed SEPATH (/7) - abenchmarked approach to identifying microbes in human
tissue WGS data. This approach removes human reads and classifies the remaining reads using
Kraken (/7, 18), which has demonstrated applications in clinical diagnostics and surveillance
(19-22). WGS cancer data are considered low-biomass and are challenging to analyse,
particularly distinguishing between biologically relevant and contaminant taxonomic
classifications (23). The latter can arise through various forms of sample contamination as well
as contaminated reference genomes.

The Cancer Genome Atlas (TCGA) dataset has been investigated for microbial content several
times (23-25). Poore ef al. (25) investigated microbial classifications in the TCGA dataset
(whole genome and RNA sequencing of blood and cancer samples) and reported that 32 cancer
types exhibited distinct populations of microorganisms with machine learning predictors
giving near-perfect accuracy at distinguishing between cancer types. There were several
surprising findings in this manuscript. Notably, a high total number of sequencing reads were
found in many tumours from sites with no established microbiome, for example glioblastoma..
Classifications of cancer types were also obtained using bacterial sequences in blood, even
though the presence of microbial nucleic acids remains controversial (26-29)

When re-examining this work, we found two fundamental methodological flaws(30, 31).
First, errors in the processing methods and databases used resulted in millions of DNA
sequence reads being misclassified as microbial across all cancer types. Second, errors in the
methods used to correct batch effects created artificial signatures even when taxa (often
extremophile and nonsensical) were absent in the raw data (30, 37). These observations led
us to conclude that the microbiome classifiers of cancer presented by Poore et al. are
incorrect and the article has since been retracted in light of our findings. Nevertheless, the
authors still claim that the cancer microbiome signal is robust over a range of methodological
variation(32), Also a, predominantly theoretical argument has emerged proposing that
sparse/non-existent features becoming associated with disease type may not be evidence of
information leakage (33). Underlying this controversy is that the machine learning models
lack biologically plausible associations and confirmation in independent datasets.

Here, we investigate the microbial content found within 8,908 patients from 22 different
cancer types within Genomics England’s 100,000 Genomes Project sequencing data. This
dataset demonstrates minimal batch effect, circumventing the need for batch correction
approaches. We show that colorectal cancers demonstrate distinctive microbial features and
validate this on two additional datasets (improved classifications of TCGA produced by Ge et
al. (34) and PCAWG), utilising a total of n=21,327 whole genome sequencing samples to
identify patterns in pancancer microbial structure and potential opportunities for translational



benefit. We additionally identify avenues for translational benefit in terms of infectious
disease diagnosis and potential prognostic markers in sarcoma.

Results

Multiple steps were used to remove potential contamination including human sequence
depletion, confidence thresholding and taxa exclusion. Homo sapiens sequences were still
detected in 99.9% of samples despite the use of two methods of depletion (2 to 2,251,317 reads,
median=368, Q1=225, Q3=578). These human counts were excluded as were known common
bacterial contaminants (35) (full list of the genera identified and the taxa removed from
community matrices are provided in table S1 and S2 respectively. All supplementary tables
can be found in data file S1).

Colorectal and oral cancers are dominated by genera with a high number of sequencing reads
compared to other cancer types. Bacteroides, Parabacteroides, Blautia, Alistipes and
Clostridium were the most common genera in colorectal cancer, whereas Prevotella,
Fusobacterium, Veillonella, Actinomyces and Gemella were the most common genera in oral
cancers (figure S1). Clustering of microbial detections revealed limited discernible structure
by tumour site (figure 1). The strongest batch effect involved FFPE status, with weak batch
effects observed for clinical sample geographical location and laboratory sample genomic
medicine centre (figure S2). Biological sex demonstrated a strong split by the number of
unclassified sequencing reads (figure S2G), likely reflecting additional low-complexity regions
within the Y-chromosome. Within FFPE samples, colorectal cancer samples showed a small
grouping, suggesting that there may be some use for identifying microbes in FFPE tissues from
tumours with a higher microbial load. Recognising these variations, we filtered the dataset to
limit these batch effects (for example by removing FFPE and PCR amplified samples) and
curated a list of 495 genera that had potential to be informative of tumour site (table S3).
Clustering the community matrix demonstrated that oral and colorectal microbial communities
contain distinguishing features when compared to other cancer types (Figure 1). 201 genera
were enriched (¢<0.05, Fisher’s exact test with Benjamini-Hochberg Correction) in colorectal
cancer and 114 in oral cancer (Tables S4 and S5, respectively).

Elucidating Pan-Cancer Microbial Structure

Our finding that only colorectal and oral tumours contain immediately distinctive microbial
communities contrasts previous publications suggesting that the intra-tumoral microbial
community is highly predictive of tumour site (25, 32, 36) including an updated analysis
conducted on partitions of the TCGA data (32). We found that batch effects still exist even
after this partitioning. The metadata features used in batch correction predicted disease type
with high performance (median AUC: 0.975, Q1=0.94, Q3=0.99, 15 models contained PPV
values between 0.99-1, figure S3). Additionally, when partitioning the data by the submitting
centre, a single metadata feature ‘tissue source site label” was highly predictive of disease
type (median AUC: 0.92, Q1=0.89, Q3=0.96, figure S4). It is therefore unclear whether high
performance in the updated models(32) is really due to biological signal. We therefore
constructed models in a similar fashion on the Genomics England dataset, with less
observable batch effects (figure 2, S5, S6, S7).



Generally, our models achieved high AUC values (median: 0.85, Q1=0.79, Q3=0.89), high
specificity (median=0.85, Q2=0.81, Q3=0.96), and reasonable sensitivity (median=0.67,
Q1=0.56, Q3=0.73), but produced comparatively low positive predictive values (PPV; the
probability of disease for a positive test result) (median=0.18, Q1=0.1, Q3=0.34) (figure 2).
The model to predict colorectal cancer samples from all other tumour sites was the only
model to perform significantly better than the negative predictor, with a high PPV of 0.95. It
is noteworthy that the tumour sites with highest positive predictive values are those from
bodily sites with more prominent and widely studied microbial biomass (colorectal, oral,
upper gastrointestinal; PPV=0.95, 0.45, 0.39, respectively). Similar results were observed
with models that were trained on data after applying a read threshold (figure S6) and after
removing the majority of common sequencing contaminants (figure S7). Model feature
importance can be found in table S6.

Recently, the microbial composition of tumour samples from the TCGA dataset were profiled
using updated methods revealing a much more sparse community than originally reported
(34). We reanalysed this updated data and found that although there is still a strong batch
effect, the results replicated our finding from the Genomics England cohort: that colorectal
and head and neck tumours (including oral cancer) demonstrate distinctive microbial
communities (figure S8). We identified 85 genera as significantly differentially present in the
TCGA colorectal cohort (Benjamini-Hochberg adjusted Fisher’s exact tests, g<0.05, table
S7). 69 of these (81%) were also significantly different in the Genomics England cohort
(table S8). Of note, the overlapping genera contained known colorectal constituents as well as
established taxa associated with cancer (for example Helicobacter and Fusobacterim). The
colorectal cancer result was confirmed in a third cohort, Pan-Cancer Analysis of Whole
Genomes (PCAWG) (n=5,041), containing n=2,462 tumour samples. 52 taxa exhibited
differential abundance across all three cohorts (table S9, figure S9-S10). From these
investigations, we conclude that microbial data would only be useful for predicting disease
classification for a restricted set of human cancer types, with only colorectal cancer
exhibiting statistical significance.

Fungal Genera in Genomics England Dataset

Fungal genera were sparse in the dataset. There was evidence for 113 distinct fungal genera in
the dataset across 6,429 samples. After applying a read threshold of 10, filtering samples to be
PCR-free, non-FFPE primary tumours, only 886 samples remained. 173 samples and 27 fungal
genera had over 100 sequencing reads classified across all samples: Saccharomyces,
Penicillium, Enterocytozoon, Clavispora, Sordaria, Fusarium, Cyberlindnera, Debaryomyces,
Nakaseomyces, Aspergillus, Malassezia, Exophiala, Botrytis, Trichosporon, Alternaria,
Moesziomyces, Meyerozyma, Fomitiporia, Pseudogymnoascus, Rhodotorula, Agaricus,
Verruconis, Purpureocillium, Pyrenophora, Chaetomium, Beauveria, and Wickerhamomyces.
100 of these samples were from colorectal tumours, 17 from lung, 16 from breast, 13 from
sarcoma, 7 ovarian, and 6 renal. The remainder tumour types had fewer than five counts.
Some of these genera may represent environmental or pathobiont species (such as Aspergillus
(37) or Malassezia (38)) and some may originate from dietary sources (Saccharomyces (39)
and Agaricus (40)).



Translational Opportunities for Intratumoural Microbial DNA

We identified several potential clinical uses for identifying the microbial profile from tumour
WGS data: Alphapapillomavirus detection that overlaps with somatic tumour features,
identification of infectious disease (HTLV-1), and the use of anaerobic bacteria in
prognostics.

Head and neck cancer HPV-positive cases represent a distinct disease typically lacking
somatic 7P53 mutations and are associated with a favourable prognosis (4/). We compared
48 cases of Alphapapillomavirus detection in WGS data against the current gold standard test
of mRNA PCR high-risk/tumourigenic subtypes of HPV. The performance using WGS data
was excellent, with only one sample not matching the gold standard (n=48; sensitivity=100%,
specificity=97.3%; Figure 3A). This sample had high HPV burden as detected by WGS and
was likely a false negative result for the PCR-based test. As expected, all HPV-positive cases
detected as positive (by Kraken or clinical diagnostics) lacked 7P53 mutations (Figure 3).
This highlights the use of applying a minimum read threshold for microbial classification
using this pipeline, although a threshold of ten may not be optimal for other pipelines.

One participant with invasive breast ductal carcinoma had a total of 172 reads with a
Deltaretrovirus classification that were found in tumour and in matching blood samples. We
described an ethical framework for reporting highly pathogenic sequences in WGS data and
HLTV-1 was identified as a reportable actionable finding (42). All reads in our current
analysis uniquely hit HTLV-1 sequences (E-values < 1x107° and percent identities of 100%
in all BLAST alignments) with reads across the length of the HTLV-1 reference genome
(Figure 3B). These results suggest-strong evidence for the computational detection of HTLV-
1 in this participant.

In previous work, we identified a set of five bacterial genera associated with aggressive
prostate cancer (Anaerobic Bacterial Biomarker Set, ABBS: Fenollaria, Peptoniphilus,
Anaerococcus, Porphyromonas, Fusobacterium) (4). The prostate cohort in Genomics
England has limited survival events (n=3, figure S11). However, within the sarcoma cohort
there was a significant association between the presence of at least one ABBS bacteria and
survival (log-rank P=0.0093, figure 3C). This significant association was confirmed in 3/12
sarcoma subtypes and within both genders (figure S12).

Colorectal Cancer-Specific Microbial DNA in Blood Samples

We investigated our list of recurrent genera specific to colorectal tumours (#=52) in blood
samples from the PCAWG cohort. Fishers’ exact tests for taxa showed that 34/52 (65.4%)
were significantly differentially present in blood samples from colorectal patients with cancer
compared to blood samples from patients with all other cancer types (¢<0.05, table S10).
These genera included Butyricimonas, Parabacteroides, Odoribacter, Shigella, Hungatella,
Roseburia, Porphyromonas, Faecalibacterium, Blautia, Phocaeicola, Akkermansia,



Ruminococcus, Barnesiella, Anaerotignum, Gordonibacter, Bacteroides, Dialister,
Clostridioides, Intestinimonas, Flavonifractor, Eubacterium, Parvimonas, Alistipes,
Lachnoclostridium, Collinsella, Eggerthella, Anaerostipes, Anaerocolumna, Adlercreutzia,
Christensenella, Phascolarctobacterium, Paraprevotella, Megasphaera, and Butyrivibrio .
These observations indicate that bacterial DNA in the blood may have utility in the diagnosis
of colorectal cancer.

Discussion

In this study we have demonstrated the landscape of microbes that can be identified in
tumour whole genome sequencing data and identified potential translational opportunities
including Alphapapillomavirus assessment, HTLV-1 identification and the potential use of
ABBS genera in sarcoma prognosis.

We show that oral and colorectal tumours contain distinctive microbial communities. To do
this, we used dimensionality reduction (#~-SNE), conventional statistics (Fisher’s exact tests)
and reconstruction of machine learning models on cleaner datasets than originally published
(tumour types included in different analyses is summarised in table S11) (25). This
observation is replicated in three datasets (Genomics England, TCGA and PCAWG).
Importantly and in contrast to previous analyses (37), the taxa that emerged as differentially
present in colorectal and oral samples generally made biological sense. The results, although
potentially of use in classification, may not have general relevance to cancer development,
with the exception that a small number of known oncomicrobes (e.g. Helicobacter,
Alphapapillomavirus and Fusobacterium) were identified.

Microbial data in cancer whole-genome sequencing data as completed in our study presents
distinct challenges when compared to conventional microbial analysis. These investigations
are often considered “low biomass” and typically experimental protocols used to generate the
datasets are not specifically designed for microbial investigations (i.e. adequate controls,
extraction and sequencing protocols, large proportion of human sequencing reads). There is
also a comparatively high amount of contamination, which can arise from multiple sources
including exogenous (including sequencing reagents, ‘kitome’ and from sites distinct to the
sampling site, i.e. patient skin), well-to-well contamination ‘splashome’ (43). These
disproportionately impact low biomass studies, particularly when working with relative
abundance data.

We have minimised the impact of contamination on our results through various strategies
such as the removal of ubiquitous taxa, the focus on biologically relevant results and the
removal of microbes with low levels of evidence. We provide additional discourse on how
we have mitigated the impact of contamination in our study (supplementary materials and
methods). False positive classifications can arise through contaminated reference genomes.
We would advise the use of curated Kraken databases that have screened genomes for
contamination (such as EuPathDB(44) or GTDB(45)). To mitigate the misclassification of
human reads we include a human reference genome which substantially limits, but does not
entirely remove the misclassification entirely (further discussed in supplementary materials
and methods) (30). As an additional filter, we would expect results from the analyses to make
biological sense, which has not been the case in some studies (317).



With these improvements only the microbiome present in colorectal cancer can be reliably
used to distinguish between tumour sites. Other cancer types including oral cancer and upper
GI cancers had some distinct microbial features but these did not produce models
significantly better than a negative predictor. While we present robust findings across three
datasets, we for novel observations we advocate the validation of these results using an
orthogonal technology (16S ribosomal sequencing for example). It is important to note that
the TCGA and Genomics England datasets are not always directly comparable. For example,
within TCGA, data is split into colon and rectal, whereas in Genomics England it is grouped
as colorectal. Additionally, in Genomics England, “Upper Gastrointestinal” includes
oesophageal and gastric tumours. Classification performance might have been improved by
separating these subtypes. Cervical cancer is not available in the Genomics England dataset.
Some cancer types were omitted from analyses due to low sample numbers. and despite this,
the key finding that the use of microbiome in the classification of colorectal cancer was
validated in both the PCAWG and TCGA datasets.

Our results align with the expectation that there is a higher microbial biomass in
oral/colorectal tissue sites compared to other sites that do not hold a known microbial
community (e.g. brain), and do not support the existence of a specific ‘cancer microbiome’.
On the application of a minimal read threshold, most taxonomic classifications are removed
from non-oral non-colorectal tumours (figure S13). This is a necessary step to remove many
false positive classifications and we provide an additional description of (this supplementary
materials and methods).

Some tumour types are well known to have causal associations with the presence of viruses
and bacteria (2). Although they are often causal for a single cancer site, such sequences are
frequently found in multiple locations limiting their use as classifiers for individual cancer
types. This was demonstrated in our previous studies where we examined the landscape of
viruses in human cancer (/6). Despite the limited use of microbial composition in
distinguishing cancer types, our results support the clinical utility of using microbial data in a
number of additional specific contexts: in detecting specific viruses such as HPV and HTLV-
1, and in the use of anaerobic bacteria in predicting prognosis.

Detecting HPV in oral/oropharyngeal carcinoma indicates a distinct biology and is already
used in clinical staging (46). We show here that HPV can be identified at high performance
alongside tumour somatic features with no additional cost. HTLV-1 is a pathogen most
commonly known for causing adult T-cell leukaemia and lymphoma (2). It is a retrovirus that
causes lifelong infections and is predominantly transmitted through breast feeding, sexual
contact, needle sharing and blood transfusions. This highlights how identifying evidence of
infectious disease should be considered as whole genome sequencing increasingly becomes
adopted into clinical practice. Thirdly we identified anaerobic bacteria as a potential
prognostic marker in subtypes of sarcoma. This association is supported by mechanistic
considerations and further research could be done to uncover the exact nature of the
association (4, 47). We also demonstrate that identifying DNA from colorectal-specific
genera in blood samples from colorectal cancer patients could be useful for diagnosing
patients. However, the presence of microbial nucleic acids in blood is controversial (27), and
these results should be validated using an independent cohort. Further research could
establish whether the detected microbial DNA originates from viable microbes or degraded
fragments.



Overall, our results show that as whole genome sequencing of tumour samples becomes
increasingly used in hospitals, there is potential for the examination of microbial composition
to aid in clinical decisions with no additional financial burden.

Materials and Methods
Study design

In this study, the microbial content of N=11,735 human cancer samples from Genomics
England’s 100,000 Genomes Project was analysed (48). The aims were to investigate
microbial structure between tumour types and to search for potentially clinically useful
associations. This was carried out with conventional statistics (Fisher’s exact tests),
dimensionality reduction approaches and machine learning approaches. Findings were
validated in the PCAWG dataset (N=5,041, including n=2,462 tumour samples) (16, 49) and
the TCGA dataset (N=4,551) (34).

Data

Community matrices, analysis scripts and the reads unmapped to the human genome are
available within the Genomics England research environment for researchers to access. The
community matrix used can be located at the file path:

/re_gecip/shared_all GeCIPs/Abe/all kraken community.tsv. Community matrices for the
PCAWG cohort can be found in tables S12-S14 which depict the number of reads, the
number of k-mers and the coverage of the clade in the database, respectively. The TCGA
reclassifications of Ge ef al. (34) as used in this manuscript are included as table S15. Users
of these community matrices are strongly advised that they likely contain contamination and
false positive microbial classifications and should be interpreted with caution (37). These
datasets should be used within the context of hypothesis generation and ideally any claims
supported with additional experimental evidence.

Statistical analysis

Unless otherwise specified, all statistical analysis was carried out in R (version 4.2.1).
Fisher’s exact test was conducted using the fisher.test function. Statistical significance was
concluded at P<0.05 (or 0<0.05 for adjusted P-values). False discovery correction was
carried out using the p.adjust function in R using the Benjamini-Hochberg correction
(method="BH’). Gradient boosted machine learning models were constructed using scripts
adapted from Poore et al. (25). Training-test splits of the data (70% and 30% respectively)
were constructed using the splitstackshape R package and stratified by
‘tissue_source_site label’ for TCGA data partitioned by ‘data_submitting_center label’.

For survival analysis, metadata and clinical data was accessed via Rlabkey API within
Genomics England’s research environment using release version “main-
programme v12 2021 05 06”. Date of death was found in either “mortality” or
“death_details” datasets, which are provided to Genomics England from the Office of
National Statistics and NHS Digital, respectively. For non-deceased participants, date when
they were last seen was inferred from the most recent event from “hes_ae” “hes _apc”



“hes_cc” “hes_op” which detail hospital episode statistics from accident and emergency,
admitted patient care, critical care and outpatients respectively. Date of tumour collection
was obtained from the cancer analysis dataset. Days to event was calculated as time from
sample collection until date of death or the date the participant was last seen and was divided
by 365 to convert to years. Survival objects were created using the Surv function (survival R
package, version 3.2.3). Survival models were fit with the survfit function (survival R
package) and differences examined using log-rank test. Figures were produced with
ggsurvplot function (survminer R package, version 0.4.7). Sarcoma disease subtype was
inferred from disease sub_type of the cancer analysis data.

Taxonomic Classification of Tumour Whole Genome Sequences

Samples were collected and processed as per the 100,000 Genomes Project Trial Protocol
(50) and sequenced with the Illumina HiSeq X platform. Sequencing reads were aligned to a
human reference genome (GRCh38) with Illumina iISAAC aligner to produce BAM files.
These BAM files were processed using the SEPATH pipeline (/7). In brief, paired-end reads
were extracted if either the forward or the reverse read was unaligned to the human reference
using the PySAM package. These sequencing reads were quality trimmed with Trimmomatic
with parameters: “SLIDINGWINDOW:4:20 MINLEN:35”. The remaining reads were
subject to additional human read depletion using BBDuK (57) using GRCh38, all CDS
sequences in the COSMIC database and additional African human genome variation, with
parameters k=30, mcf=0.5 such that at least 50% of the bases in a sequencing read must be
covered by k-mers present in the reference database for removal. The remaining reads were
subject to taxonomic classification with Kraken (version 1) (/8) using a database containing
the human genome (GRCh38) and all bacteria, viral (which includes bacteriophages), fungal
and protozoal genomes at the scaffold level and above (constituent genomes can be found at
https://zenodo.org/records/15739381). A confidence threshold of 0.2 was applied to Kraken
reports such that a minimum of 20% of the k-mers in a sequencing read must be assigned to a
clade for taxonomic classification or the read will remain unclassified.

Feature Selection and Dimensionality Reduction

The sample-taxa Kraken community matrix had a minimum number of 10 reads required for
classification, which appeared to remove a high proportion of classifications with low-level
of evidence (see figure 3A and figure S13). Samples were filtered to represent non-FFPE,
PCR-free, primary tumour samples from cancer types: adult glioma, colorectal, lung,
prostate, bladder, endometrial, malignant melanoma, renal, breast, haematological, oral,
sarcoma, hepatopancreatobiliary, and ovarian. Taxa with total counts across all samples
below 100 were removed from further analysis. Although they may contain biologically
relevant taxa, we removed human classifications and suspected sequencing contaminants
from the community matrices (table S2). This list was informed by investigations into
contamination (35, 52) and ubiquitous presence in the dataset (Toxoplasma, Mycobacterium,
Candidatus Pelagibacter). Although this list may contain biologically relevant taxa, it was
expected that removing these genera would increase biological signal relative to noise
introduced by contamination. Achromobacter was also highly prevalent in the dataset but as
ubiquitous as the former three bacteria. It was therefore left in but may resemble
contamination, an opportunistic pathogen or a mixture of both (53). Gradient-boosted


https://zenodo.org/records/15739381

machine learning models were constructed to predict the tumour site of a sample compared to
all others for each tumour site individually using scripts provided by Poore et al. (25)
(without supervised normalisation). The top 1,500 genera ranked by their feature importance
scores of each model were extracted. The community matrix was further filtered to include
any of the taxa that arose as informative in this feature selection. 495 microbial genera
remained after this filtering (table S3). Of the remaining samples and remaining taxa, a
distance matrix was constructed using the distanceMatrix function (ClassDiscovery R
package). The distance matrix was subject to -~-SNE (Rtsne R package) with parameters:
dims=2, perplexity=80, max_iter=2000, check duplicates=TRUE.

Mutation Calling and Analysis

All Genomics England somatic genomic samples have a matched germline, sequenced at
100x and 30x respectively. Samples were sequenced with 150bp paired-end reads in a single
lane of Illumina HiSeq X and processed by the illumina North Star Version 4 Whole Genome
Sequencing Workflow (NSV4, version 2.6.53.23). The workflow uses iSAAC Aligner
(version 03.16.02.19)(54) against the Homo Sapiens NCBI GRCh38 assembly with decoys
and the small variant caller Strelka2 (version 2.4.7) (55), which performs a probabilistic
subtraction of tumour-normal for the somatic calls. SNVs and indels were then annotated
using CellBase, an in-house tool with more than 99% agreement with the Ensembl VEP
Consequence type. Non-synonymous variants of moderate or high impact, according to the
Ensembl variant consequence list, were investigated in oral/oropharyngeal cohort. These
were identified by using functions provided by Genomics England (01.functions.R) available
within Genomics England’s research environment. These functions compile the variants for a
given gene across the cohort. Small gene variants of moderate or high impact were
determined by the following consequence types: transcript ablation, splice acceptor variant,
splice donor variant, stop gained, frameshift variant, stop lost, start lost, transcript
amplification, inframe insertion, inframe deletion, inframe variant, missense variant, splice
region variant. Samples with no identified small variants were considered wild-type.

Clinical HPV Diagnostics

The diagnostic pathway for oropharyngeal cases involved routine testing for p16 by
immunohistochemistry. Samples were labelled HPV-positive if p16+ only (as this has
been accepted as a robust proxy measure for HPV status).

HTLV-1 Investigation

Participants demonstrating fewer than 20 genus level reads for each of the infectious agents
described in Magiorkinis et al. 2019 (42) (HIV, HBV, HCV, HTLV-1) were considered false
positive classifications. Only one participant in the cohort was identified as positive for
HTLV-I. In total, 172 sequencing reads from the tumour and germline sample with any
Deltaretrovirus classification as reported by Kraken were extracted and subject to a BLASTn
(56) via the online suite with standard databases (nr/nt nucleotide collection) optimised for
highly similar sequences (megablast). The query reads from both samples were aligned to
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HTLV-1 reference genome (NC _001436.1) using BWA-MEM (57) with standard parameters
which was subsequently visualised with IGV version 2.9.4 (58).

Supplementary Materials:

Figures S1-13

Tables S1-15 (in data file S1)

MDAR checklist

Supplementary Materials and Methods
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Figure 1 —Pan Cancer Microbial Structure in Genomics England cohort. A) Microbial load shown as total
bacterial reads per million human reads across tumour types. B) t-SNE plot of Kraken results of 8,103 non-FFPE,
PCR-free, primary tumour samples within Genomics England’s 100,000 Genomes Project that have been reduced
to include 495 genera (table S3. Each point represents a sample coloured by tumour site. t-SNE was carried out
on a matrix of Spearman’s correlation values between samples. This analysis shows on only the predominant
tumour types in the cohort. Tumour types with smaller sample sizes were omitted: carcinoma of unknown
primary, childhood, endocrine, nasopharyngeal, other, sinonasal, testicular, and upper gastrointestinal. Please
note that tumour types such as hepatopancreatobiliary cancer also contain multiple cancer types.

Figure 2 —Performance of machine learning classifiers to predict one tumour type from all others based on
microbial content in Genomics England. Data used is the raw community matrices data (Voom transformed).
Tumours included are only primary tumours, PCR free from fresh frozen tissue. Carcinoma of unknown primary,
nasopharyngeal, 'other’, endocrine and sinonasal tumours have been excluded due to small sample sizes.
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Figure 3 —Translational opportunities for identifying microbial DNA in human cancer sequencing data. A)
Alphapapillomavirus classification in oral/oropharyngeal primary (triangle) and metastatic (circle) tumour
samples. The y-axis denotes the number of genus-level Alphapapillomavirus reads and the x-axis denotes clinical
diagnostic test results for HPV. Point color indicates the consequence of small gene variants of the TP53 gene.
Samples with no consequence detected were presumed to be wild type (WT). 38 samples were HPV-negative by
clinical diagnostics, and 10 HPV-positive. B) Alignment of HTLV-1-classified reads (Kraken) from breast tumour
and germline samples from one participant. The image shows the alignment viewed with IGV. The top track
denotes coverage for particular regions (maximum coverage = 13). Coloured regions indicate single nucleotide
differences present in the reads and not the reference genomes (orange=G, blue=C, red=T, green=A). In total 172
quality-trimmed, human-depleted reads were subject to alignment (66 and 106 reads from the tumour and
germline sample, respectively). C) Kaplan-Meier plot investigating survival in the sarcoma cohort for samples
positive for at least one ABBS genus (Anaerobic Bacterial Biomarker Set). This includes Fenollaria, Ezakiella,
Peptoniphilus, Porphyromonas, Anaerococcus and Fusobacterium. P=0.0093 was obtained using the log-rank
test. Time was measured by years from sample collection.
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