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Abstract

Practical probabilistic programs, especially those with approximate condition-

ing, by necessity combine a number of sampling techniques in sequence in

order to produce samples - as well as certain complex language features in

order to implement those techniques. Sufficiently complex probabilistic pro-

grams therefore require a compositional approach to verification, beginning

with the fundamentals of language design, syntax, and semantics, and build-

ing to the higher-level questions about samplers and their statistical properties.

In this thesis, we design a typed probabilistic programming language which is

equipped with the features necessary to serve as a setting for the verification

of sampling techniques. These features include: continuous random variables;

higher-order functions; dependent types; compatibility with deterministic, that

is to say pseudorandom, generation of samples; and samplers for (the marginal

distributions of) stochastic processes. We give a semantics for the language

in terms of concrete concepts, and show equivalence of the denotational and

operational semantics. We present a set of rules for the effective verification of

sampler equivalence in a suitable subset of the language. Stating, in this set-

ting, the desired targeting relationship between samplers and the probability

measures that they are to produce samples from, we then lay out a calculus

centred on this targeting relationship, which enables the compositional ver-

ification of sampling techniques such as importance sampling and rejection

sampling. These verification procedures are then extended so as to enable the

verification of samplers which produce samples targeting (the marginal dis-

tributions of) stochastic processes. We conclude by arguing that a sampling
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language with these features is a natural compilation target for a probabilis-

tic programming language with approximate Bayesian conditioning, flexible

enough to frame many Bayesian inference methods in common use without

incorporating features that hinder effective verification.



Impact Statement

Outside academia.Programs which use random sampling have become ubiq-

uitous. Any field of research which uses statistics, which is to say any field

of research, makes use of them at some level. The more complex these uses

are, the more important the task of program verification becomes. In particu-

lar, applied machine learning and machine learning research inevitably include

large-scale and complex use of random sampling. This thesis deals with the

problem of verifying that the outputs of programs which use random sampling

have statistical properties which must hold in order for their use to be for-

mally valid. In principle, subtle bugs and mistaken assumptions in the use

of random samplers could yield invalid conclusions in research (whether in in-

dustry or academia) or improper behaviour of deployed programs – including

bugs which cannot reasonably be detected with unit tests. The development

of techniques to check statistical correctness, possibly in real time as programs

are written, therefore, has the potential to affect research in any field which

relies heavily on statistical modelling and machine learning, such as applica-

tions within – to name just a few – physics, advertising, climate modelling,

and public health.

Inside academia.We have already discussed the applications of the verifi-

cation of statistical properties for programs which use random sampling to

research in any field which uses statistical modelling – whether that research

takes place within or outside of academia. We will instead discuss contribu-

tions to the field of verification itself. In this thesis, we lay out an approach

to verifying statistical properties for programs which use random sampling,
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including pseudorandom number generation. We do this by providing the syn-

tax and semantics of a probabilistic programming language designed in order

to easily state the sampler operations we will consider; formally defining the

properties we are to verify; and then building a system for verification within

this language. We then extend this language, including its syntax, semantics,

and its verification system, to incorporate the verification of programs which

in some sense sample from a stochastic process (i.e. infinite families of sam-

plers with certain consistency properties). Aside from the first-order goal of

potentially preventing errors in research, our secondary aim includes popular-

ising and spurring interest in verifying statistical properties of probabilistic

programs within the academic community.
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Chapter 1

Introduction

John von Neumann’s famous remark, ‘Anyone who considers arithmetical

methods of producing random digits is, of course, in a state of sin’ [1], is

endlessly quoted in papers on pseudorandom number generation and proba-

bility theory. We won’t break from this tradition; it’s pithy, entertaining, and

quoting von Neumann has the tendency to make one feel intelligent by associ-

ation. We will differ from this established practice, though, by discussing the

context.

Monte Carlo methods were first applied in 1947 by Stanisław Ulam and

John von Neumann, as part of their research at Los Alamos, to estimate neu-

tron multiplication rates [2]. That these first simulations were carried out

on the ENIAC, the first true digital computer, illustrates that Monte Carlo

methods were among the very first successful applications of digital computing;

that these first simulations were applied to the task of designing nuclear fission

weapons illustrates a much broader truth that is less relevant to computing.

Von Neumann wrote the above-quoted lines several years later, in 1951,

in a short article which discusses some of the techniques that he and Ulam

had successfully applied in their research. This article discussed the tech-

niques which are today called inverse-transform sampling, rejection sampling

(implemented in our language in listing 3.2), and the von Neumann extractor

(implemented in listing 3.1), and also included a few remarks on arithmetic

methods for generating random numbers. On that last subject, von Neumann
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writes,

Any one who considers arithmetical methods of producing random

digits is, of course, in a state of sin. For, as has been pointed out

several times, there is no such thing as a random number – there are

only methods to produce random numbers, and a strict arithmetic

procedure is not such a method. (It is true that a problem that we

suspect of being solvable by random methods may be solvable by

some rigorously defined sequence, but this is a deeper mathematical

question than we can now go into.) We are here dealing with

mere “cooking recipes” for making digits; probably they can not

be justified, but should merely be judged by their results. Some

statistical study of the digits generated by a given recipe should be

made, but exhaustive tests are impractical. If the digits work well

on one problem, they seem usually to be successful with others of

the same type. [ibid]

Von Neumann’s remark that many problems solvable by randomised methods

are also often solvable by non-randomised methods is profound, and we will

soon discuss many instances in which this is possible. For now it suffices to note

that while formal methods for program semantics and verification were still

several decades in the future, von Neumann was concerned from the beginning

with the question of verifying these arithmetic procedures – though the primary

method he had access to was black-box experimentation.

Since von Neumann’s time, Monte Carlo methods and probabilistic pro-

gramming have seen wide adoption in near every quantitative field, and have

taken advantage of massive improvements in the available hardware. With the

introduction of Markov chain Monte Carlo methods to the field of machine

learning in the 1990s, this trend has only accelerated. The size and the com-

plexity of these programs have grown significantly, and their societal impor-

tance continues to grow as well. As new techniques are invented and combined

with existing techniques, formally articulating the preconditions necessary for
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these composite programs to be sound quickly passes beyond the reach of ex-

isting methods. With the advent of true probabilistic programming languages

in the 1990s and 2000s [3, 4, 5, 6, 7, 8, 9], including such features as condi-

tioning, higher-order functions, continuous variables, and recursion, the task

of verifying these programs has begun to necessitate the use of more complex

formal methods. This process of verification will be the primary focus of this

thesis.

A system for demonstrating that probabilistic programs are statistically

sound statistically naturally begins with a semantics – a fully-specified map-

ping from a program to a mathematical function implemented by this program.

These semantics, beginning with [10], necessarily became more complex as the

features available to these probabilistic programs grew, reaching into fields such

as order theory, topology, and category theory for useful models [11, 12, 13, 14].

We will draw on this literature as necessary for the remainder of this thesis.

Having chosen a semantics, our verification task is then to show that this

mathematical object representing the program has certain required features.

In our case, we aim to verify samplers : our desired verification task is to show

that these samplers generate samples that, at least in a certain sense, behave

as if they were taken from a desired probability distribution. The particular

techniques von Neumann discusses in his monograph – in particular, rejection

sampling and pseudorandom number generation – will serve as our motivating

examples, and are discussed in more detail in the introduction to chapter 3.

Contributions. Our aim with this thesis is to pull together the progress which

has been made in these disparate fields since von Neumann’s remark, and

summarise procedures by which computer programs which rely upon random

sampling can be proven to be correct, even if that random sampling is in

fact pseudorandom – that is to say, deterministic. This thesis focuses on the

verification of samplers and sampling languages, a useful subset of probabilistic

programming languages that encompasses many of their practical applications

in the quantitative sciences.
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We present a sampling language which is complex enough to include such

procedures as rejection sampling, importance sampling, pseudorandom num-

ber generation, higher-order samplers, and stochastic processes, and yet simple

enough that samplers within it can be effectively verified. This language is

specified by an operational semantics (given in section 3.1.2) and denotational

semantics (given in section 3.1.3), which are shown to be compatible in theo-

rem 3.1.10. Our operational and denotational semantics are then extended to

include dependent types in section 4.1.

Definition 3.3.7 states the natural notion of sampler correctness in this

setting, a relationship that we refer to as ‘targeting’. Intuitively, a sampler

‘targets’ a probability distribution if samples produced by this sampler be-

have, at least asymptotically, as if they were samples from the desired distri-

bution. We introduce in fig. 3.5 a system for verifying samplers by applying

equivalence rules to reduce them to simpler forms, and prove soundness in

theorem 3.2.2. We then present a set of inference rules which preserve this

targeting relationship, enabling the verification of samplers, and show their

validity in theorem 3.3.10. This approach to verification is extended to include

stochastic processes in section 4.3.

The majority of the material included is based on two papers which were

joint work with Frederick Dahlqvist and Alexandra Silva; the first of these

papers [15] forms the basis for chapter 3, while the second (unpublished) forms

the basis for chapter 4.

Applications. This thesis is concerned with the semantics and verification

of programs which incorporate random (or pseudorandom) sampling. That

is, our focus is not on developing new techniques for sampling ourselves, but

instead on aiding the formal verification of existing sampling schemes.

Problems involving random, pseudorandom, and approximate sampling

are ubiquitous in statistics and applied science. To provide context for what is

to come, we mention briefly here two broad (admittedly overlapping) categories

of applications: Monte Carlo simulation and Bayesian inference.
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In Monte Carlo simulation, our aim is to evaluate the expectation E [f ]

of a function f with respect to a certain probability distribution P , but we

cannot do this closed-form. As a result, we write a program which, we claim,

will produce samples xn distributed according to our target distribution P ,

perhaps only approximately in some sense, and we then approximate this ex-

pectation as E [f ] ≈ 1
n

∑n
i=1 f(xn) (an approximation which, we should be able

to prove, converges almost surely to the correct expectation as n → ∞). For

example, consider a case in which the function f is a complex but determin-

istic program, such as a physics simulator, and x includes a set of unknown

initial conditions distributed according to P . Then, in order to prove that

Monte Carlo simulation does in fact converge, we must show that our chosen

sampler, perhaps a pseudorandom number generator, does in fact generate

samples from the desired distribution P .

In a typical Bayesian setting, a practitioner aims to generate approximate

samples from a posterior distribution, a distribution over some set of param-

eters z which are to be estimated, conditioned on observed data x. Like the

previous class of problems, we might aim to compute some expectation E [f ]

with respect to this posterior distribution. However, in a general Bayesian

inference problem, generating useful approximate samples from the posterior

distribution is not immediate. Rather than one single, universal technique for

generating representative samples, there are a number of approximate sam-

pling techniques (we will discuss several over the course of this thesis) that

one might choose from and, especially, combine with one another, to obtain

an approximate sampler. It is the verification of this compositional process of

combining sampling techniques that we aim to simplify. Example applications

to Bayesian-type problems are given in Example 3.3.17 and Example 4.3.8.

Outline. A short outline of the contents of each chapter follows.

Chapter 2 reviews some necessary concepts from probability theory, in-

cluding the basics of measure-theoretic probability, laws of large numbers,

convergence of empirical measures, and stochastic processes. These prelimi-
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naries will be necessary in order to formally state the semantics of and define

the task of verification for the programming languages that will be discussed

in the following two chapters, and also as the motivation for the probabilistic

programs that we will verify. The reader is advised to read these preliminaries

alongside the main chapters as necessary, as they are referred back to in the

main body of the text.

Chapter 3 will introduce a probabilistic programming language which is

particularly well-suited to the verification of samplers. This probabilistic pro-

gramming language will be deterministic in construction, will feature samplers

as first-class objects, and crucially, will be able to cleanly express many of the

sampling techniques discussed in chapter 2, making their verification straight-

forward. We will introduce (denotational and operational) semantics for this

language, formally state the problem of sampler verification, and introduce

a sound calculus for the verification of samplers. As stated previously, this

chapter primarily presents the approach taken in [15], though with significant

simplifications in presentation, corrections, and further development.

Chapter 4 extends the language introduced in the previous chapter to

a more general setting, one which features dependent types. This extension,

based on unpublished work, is necessary in order to incorporate stochastic pro-

cesses, more specifically samplers that can generate samples from the marginal

distributions of stochastic processes, within our framework. The semantics of

the language is extended to incorporate this change, and the task of verifying

a sampler is suitably generalised – though the results of the previous chapter

will still apply in a restricted subset of this language.

Finally, chapter 5 reviews our approach and contrasts it with other ap-

proaches to similar problems discussed in the literature. We also discuss pos-

sible extensions of this approach to semantics.



Chapter 2

Preliminaries

This chapter reviews the fundamentals of measure-theoretic probability, the

axiomatic development of which occurred largely concurrently with the emer-

gence of probabilistic programming. The following outline of the fundamentals

of measure-theoretic probability can be found in any textbook on the subject,

such as [16].

We recall here definitions and properties that will be required in the tech-

nical developments of chapters 3 and 4. None of the results in this section are

new, but the notations, definitions, and terminology used will be essential in

the following chapters.

We begin with a modern review of measure theory as the axiomatic foun-

dation for probability theory, the first compelling presentation of which was

made by Kolmogorov in 1933 [17], building on the Lebesgue integral intro-

duced in [18]. We continue by outlining a few relevant developments of the

theory that have been made since, in particular introducing the essentials of

ergodic theory and stochastic processes.

2.1 σ-algebras
Definition 2.1.1 (σ-algebra). A σ-algebra, or σ-field, ΣX on a set X is a

collection of subsets of X satisfying the following three properties:

1. ∅, X ∈ ΣX

2. Closure under complement: A ∈ ΣX =⇒ X \ A ∈ ΣX
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3. Closure under countable union: ∀n ∈ N, An ∈ ΣX =⇒
⋃∞
n=1 An ∈ ΣX

Note that properties (1), (3) together imply closure under finite union

(choosing all but finitely many sets An to be the empty set); properties (2),

(3) together imply closure under countable intersection (noting
⋂∞
n=1An =

X \
⋃∞
n=1(X \ An)); and so properties (1), (2), (3) also imply closure under

finite intersection.

In settings in which the container set X and σ-algebra ΣX on X are

understood, sets A ∈ ΣX are often called measurable, and sets A /∈ ΣX

non-measurable; the tuple (X,ΣX) is often referred to as a measurable

space.

Definition 2.1.2 (Measurable function). A function f : X → Y , when X and

Y are each equipped with σ-algebras ΣX ,ΣY , is called (ΣX ,ΣY )-measurable

if the preimage of each measurable set in Y is measurable in X: that is, if

∀B ∈ ΣY , f
−1(B) ∈ ΣX . When the choice of σ-algebra on each set is clear

from context, we will simply say that the function f is measurable or non-

measurable. If there exists an invertible mapping f : X → Y such that f

and f−1 are both measurable, we say that the measurable spaces X and Y are

isomorphic.

Each nonempty set X has two trivial σ-algebras: the indiscrete algebra

ΣX = {∅, X}, in which the only measurable sets are ∅ and X, and the discrete

algebra ΣX = 2X , in which all subsets of X are measurable. If X is equipped

with a topology, a natural choice of σ-algebra is the Borel algebra, defined

as the smallest σ-algebra containing all of the open sets of X (which is also

the smallest σ-algebra containing all of the closed sets of X). It follows that

continuous functions on R are a subset of measurable functions; that they are

a strict subset is easily seen by considering simple examples such as 1Q, the

indicator function on the rational numbers. Of special interest in the case of

Euclidean space RN are also the Lebesgue σ-algebras, which are refinements of

the Borel algebra generated by the standard Euclidean topology on RN ; these

will be discussed shortly, when introducing Lebesgue measure.
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A Polish (i.e. separable and completely metrisable) space X equipped

with its Borel algebra is often referred to as a standard Borel space. This

terminology is motivated by the following theorem due to Kuratowski: two

standard Borel spaces X and Y are isomorphic if and only if the cardinalities

of X and Y are the same [19]. As the largest Polish spaces have the cardinality

of the continuum, it follows that every standard Borel space is isomorphic to

either a finite set (equipped with its discrete σ-algebra), Z (likewise), or R. We

will not be concerned exclusively with standard Borel spaces here, but many of

the spaces we consider will fall under this umbrella, and many of the standard

theorems of the field are framed in this setting.

Measurable spaces support many (but not all; see Remark 2.1.7) of the

natural constructions one would expect. It will be useful, for the reader less

familiar with category theory, to explicitly define the product of measurable

spaces, Definition 2.1.3, the coproduct of measurable spaces Definition 2.1.4,

pullbacks Definition 2.1.5, and the initial sigma algebra, Definition 2.1.6.

Definition 2.1.3 (Product σ-algebra). The product of two measurable spaces

X, Y is the Cartesian product X×Y equipped with the smallest σ-algebra such

that the sets A×Y,X×B are all measurable, where A ⊆ X,B ⊆ Y range over

measurable sets. Equivalently, the product can be defined as X × Y equipped

with the smallest σ-algebra such that the canonical projections πX : X × Y →

X, πY : X × Y → Y are measurable. It is natural to write the product of

the σ-algebras ΣX and ΣY as ΣX ⊗ ΣY , in order to avoid confusion with the

Cartesian product of sets.

More generally, for an indexed collection (Xi)i∈I of measurable spaces, the

product σ-algebra can be defined either as the coarsest σ-algebra such that all

of the projections πi :
∏

j∈I Xj → Xi are measurable, or alternatively as the

σ-algebra generated by the cylinder sets
∏

i∈I Ui, in which only finitely many

Ui are different from X.

Definition 2.1.4 (Coproduct σ-algebra). Dual to the product, the coproduct

of two measurable spaces X, Y is the disjoint union X + Y equipped with the
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largest σ-algebra such that the natural injections ιX : X → X + Y, ιY : Y →

X+Y are measurable maps. The corresponding generalisation to an arbitrarily

large indexed collection is obvious.

Definition 2.1.5 (Pullback σ-algebra). Let f : X → Z, g : Y → Z be mea-

surable maps into the measurable space Z. The pullback, or fibred product,

of these maps consists of the set P = {(x, y) : f(x) = g(y)} of points at which

these functions coincide, often written P = X ×Z Y in contexts in which the

maps f and g are implicit, equipped with the weakest σ-algebra making the

natural projections pX : P → X, pY : P → Y measurable.

Definition 2.1.6 (Initial σ-algebra). Let (X,ΣX) be a measurable space, and

f : Y → X a function from the set Y to the set X. The induced initial

σ-algebra ΣY on Y consists of the preimages of all the measurable sets in X

under f ; that this collection of preimages is a σ-algebra is easily seen.

Remark 2.1.7. Other familiar limits and colimits of measurable spaces, such

as coproducts, can be easily defined, though we will not need them here. It

is important to note, though, that exponentials of measurable spaces do not

exist for many nontrivial spaces of interest. For example, there is no σ-algebra

on the set of measurable functions RR such that the evaluation function evR :

RR×R→ R is measurable, where R is equipped with its Borel algebra [20, 21];

the same holds for the spaces [0, 1] and 2ω.

2.2 Measures
Definition 2.2.1 (Measure). Given a measurable space (X,Σ), a measure is

a map µ : Σ→ R̄, taking values in the extended real numbers, satisfying

1. µ(∅) = 0

2. Nonnegativity: for all measurable A, µ(A) ≥ 0

3. Countable additivity: for a countably-infinite collection of pairwise-

disjoint measurable sets An, i.e. such that ∀m,n ∈ N, Am ∩ An = ∅

iff m 6= n, µ (
⋃∞
n=1An) =

∑∞
n=1 µ(An)
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Note that as trivial consequences of (3), measures satisfy finite additivity

and monotonicity A ⊆ B =⇒ µ(A) ≤ µ(B); for any measurable A,B, we have

µ(A ∪ B) = µ(A \ B) + µ(B \ A) + µ(A ∩ B); and for any measurable A,

µ(X \ A) = µ(X)− µ(A).

A measurable space (X,Σ) equipped with a measure µ is often referred

to as a measure space. Measurable sets A such that µ(A) = 0 are often said

to be µ-null, or simply null if the measure is clear from context.

A measure is called finite when µ(X) is finite, and σ-finite when there

exists a countable cover X =
⋃∞
n=1An such that each An has finite µ-measure.

A probability measure is a measure P such that P (X) = 1.

Simple examples of measures include the zero measure µ(A) = 0; the

infinite measure, for which µ(A) = ∞ for all non-empty A; and the counting

measure, which assigns each finite set to its cardinality, and each infinite set

to ∞. Sums of measures are easily seen to be measures; scalar multiples of

measures (by nonnegative real numbers) are as well.

Definition 2.2.2 (Empirical measure). Given a point x ∈ X, the Dirac

measure on any σ-algebra on X assigns unit measure to a set A iff it contains

the point x:

δx(A) =

1 x ∈ A

0 x /∈ A
.

Given a finite sequence of points x1, . . . , xn ∈ X, the resulting empirical

measure is defined as the normalised sum of the resulting Dirac measures.

Let Pn be the function taking such a sequence of points to the corresponding

empirical measure; that is,

Pn(x1, . . . , xn)(A) =
1

n

n∑
i=1

δxi(A).

The choice of notation Pn is motivated by the convergence of empirical mea-

sures under i.i.d. sampling xn ∈ P ; see theorem 2.6.5. Given a sequence of

corresponding nonnegative weights wn ≥ 0, the corresponding definition for a
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weighted empirical measure is obvious (provided at least one of the weights is

nonzero).

Definition 2.2.3 (Product measure). Given two measure spaces (X,ΣX , µX)

and (Y,ΣY , µY ), a product measure µX ⊗ µY is any measure on the product

σ-algebra such that (µX ⊗ µY )(A× B) = µX(A)µY (B) for all measurable sets

A ∈ ΣX , B ∈ ΣY .

In general, there is not always one unique product measure on the product

σ-algebra, though this does hold when both µX and µY are σ-finite [16, Section

35, Theorem B].

Definition 2.2.4 (Subspace). Given a measure space (X,ΣX , µX) and a mea-

surable subset A ⊆ X, define the corresponding subspace1 (A,ΣA, µA) as the

measure space which equips A with the σ-algebra ΣA = {S ∩ A : ΣX} and the

measure µA(E) = µX(E ∩ A).

Another very important technique for constructing new measures is the

pushforward:

Definition 2.2.5 (Pushforward). Given a measure space (X,ΣX , µX) and a

measurable function f : X → Y , where Y is equipped with σ-algebra ΣY , define

the pushforward of µX through f , written f∗µX , to be the measure on (Y,ΣY )

given by

f∗µX(B) = µX(f−1(B))

which assigns to each measurable set in Y the measure of its preimage in X.

This concept of the pushforward is commonly used in probability theory

to specify a particular joint distribution, via the concept of random variable.

Definition 2.2.6 (Random variable). In probability theory, it is typical to

begin by fixing a base space (Ω,Σ,P). The particular structure of the base

space typically need not be specified; its primary function is to induce probability
1Measure spaces can, with a little more effort, be restricted to non-measurable subsets

as well, though we will not need this construction here.
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measures on other spaces via pushforwards, implicitly functioning as a ‘source

of all randomness’.

Having chosen a base space, measurable functions x : Ω → X, where X

is a measurable space, are commonly called (X-valued) random variables,

naturally associated with the pushforward measure PX = x∗(P). Given two

random variables x : Ω → X, y : Ω → Y , their joint distribution PX×Y is

naturally the pushforward measure of the product (x, y) : Ω → X × Y . In

this way, it is common to define a measure on a product space by specifying a

collection of functions out of Ω, the ‘base space’, i.e. a collection of random

variables.

Doubtless the central example of a measure on R is the Lebesgue measure,

which reifies the intuitive concept of the length of a set.

Definition 2.2.7 (Lebesgue measure). The Lebesgue measure is defined as

the unique2 measure λ on the Borel sets of R satisfying

1. For all closed intervals [a, b] where a ≤ b, λ([a, b]) = b− a

2. Translation invariance: for all measurable A and x ∈ R, λ(A + x) =

λ(A), where A+ x = {a+ x : a ∈ A}

The Lebesgue measure of a (Lebesgue-measurable) set can be more explicitly

obtained as the infimum of the lengths of all possible coverings of that set by a

countable collection of open sets:

λ(A) = inf

{
∞∑
n=1

(bn − an) : an, bn ∈ R ∧ A ⊆
∞⋃
n=1

(an, bn)

}

In the same way that the Lebesgue measure on R reifies the intuitive concept of

length, there is a unique Lebesgue measure on R2 reifying the intuitive concept

of area, and so on in arbitrary RN , which can be defined analogously – though

see the following Remark.
2Uniqueness is typically obtained by application of extension theorems such as [16, Sec-

tion 13, Theorem A].
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Remark 2.2.8 (Lebesgue algebra). For technical reasons, the Lebesgue mea-

sures on RN are often considered as measures on MN , the Lebesgue σ-

algebra, which is a refinement of the Borel algebra that also includes all subsets

of null sets.

A measure space (X,Σ, µ) is called complete if, for any null sets µ(A) =

0, all subsets of A are measurable A ∈ Σ (and hence, by monotonicity, null

as well). Define the completion (X, Σ̄, µ̄) of a measure space as consisting of

X, equipped with Σ̄, the smallest σ-field including Σ such that all µ-null sets

are measurable, and with µ̄, the unique measure on Σ̄ that coincides with µ on

Σ while assigning zero measure to all subsets of µ-null sets.

As the completion of a measure space is unique, the distinctions between

the Borel and Lebesgue algebras are often not so important. But one crucial

difference that motivates the use of the Lebesgue algebras is the fact that the

Lebesgue measure on the Borel sets of R, multiplied by the Lebesgue measure

on the Borel sets of R, does not in fact yield the Lebesgue measure on the Borel

sets of R2 (due precisely to the absence of these null sets), while if we consider

the Lebesgue measure as a measure on the Lebesgue algebras, the corresponding

statement does hold.

Definition 2.2.9 (Equality a.e.). It is natural in a measure-theoretic context

to identify functions f : X → Y which differ only on (subsets of) null sets.

Explicitly, if f, g : X → Y satisfy f(x) = g(x) ∀x ∈ X \ N where N is

null, we say that f and g are equal almost everywhere (a.e.). Thus in

a measure-theoretic context, when we consider spaces of measurable functions,

the elements of these spaces will typically not be individual functions, but rather

classes of measurable functions partitioned up to a.e.-equivalence.

2.3 Lebesgue integration
Each measure space (X,Σ, µ) naturally corresponds to a particular integration

operator on real-valued measurable functions f : X → R, where R is assigned

the Borel algebra, known as the Lebesgue integral.
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Definition 2.3.1 (Lebesgue integral). Defining the Lebesgue integral of indi-

cator functions 1A(x) to be the measure of the corresponding set:

∫
X

1A(x) dµ(x) = µX(A).

Then, as this integral is to be a linear operator, define the Lebesgue integral

of ‘simple functions’ , i.e. weighted sums ϕ(x) =
∑N

n=1wn1An(x) of indicator

functions, to be

∫
X

ϕ(x) dµ(x) =
N∑
n=1

wn

∫
X

1An(x) dµ(x) =
N∑
n=1

wnµ(An).

Based on that, define the Lebesgue integral of any nonnegative measurable func-

tion f : X → R≥0 as

∫
X

f(x) dµ(x) = sup

{∫
X

ϕ(x) dµ(x) : ϕ simple, 0 ≤ ϕ ≤ f

}

where this supremum exists. The Lebesgue integral of a measurable function

f : X → R which is not necessarily nonnegative is straightforwardly defined by

partitioning its domain into negative and nonnegative regions.

It is easily shown that the class of Lebesgue-integrable functions is closed

under linear combination, and that it includes all continuous functions. With

more effort, it can be shown that this class includes all piecewise-continuous

functions as well, and that the Lebesgue integral (with respect to the Lebesgue

measure) and (proper) Riemann integral coincide whenever the latter is de-

fined:

Theorem 2.3.2 ([22, Theorem 4.33]). When f : [a, b] → R is (proper)

Riemann-integrable, we have

∫
[a,b]

f(x) dλ(x) =

∫ b

a

f(x) dx.

Once partitioned up to a.e.-equivalence, spaces of Lebesgue-integrable
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functions are Banach in a natural way.

Definition 2.3.3 (Lebesgue space). Given a measure space (X,Σ, µ), de-

fine the Lp spaces Lp (X,µ), for p ∈ [1,∞), as the spaces of measur-

able functions f : X → R such that the Lebesgue integral
∫
X
|f(x)|p dµ(x)

is defined, partitioned up to a.e.-equivalence, and equipped with the p-norm

‖f‖p =
(∫

X
|f(x)|p dµ(x)

)1/p; for p = ∞, take ‖f‖∞ = ess supx∈X |f(x)|,

where the essential supremum is defined as the smallest C > 0 such that

f(x) < C for almost all x (i.e. outside of a µ-null set).

Theorem 2.3.4 (Riesz-Fischer, [23, Theorem 4.26]). The Lebesgue spaces are

Banach; for separable X and p <∞, the spaces Lp (X,µ) are also separable.

In the context of probability theory, Lebesgue integrals with respect to

probability measures P , referred to as expectations, are often written using

the notation

E [f ] = EP [f ] =

∫
X

f(x) dP (x)

with the probability measure P often left implicit. For probability measures

on R, the expectation of the identity f(x) = x (if defined) is called the mean

µ of P , the expectation of f(x) = (x − µ)2 the variance σ2 of P (and its

root the standard deviation), and the expectations of the centralised and

standardised polynomials f(x) =
(
x−µ
σ

)n, for n ≥ 3, the (standardised)

moments of P .

Lebesgue integration has a natural relationship with the pushforward mea-

sure construction, referred to as the change-of-variables formula.

Theorem 2.3.5 (Change of variables). Given a measure space (X,Σ, µ) and

measurable functions f : X → R, g : R → R such that both f and g ◦ f are

Lebesgue-integrable, the change-of-variables formula relates the integral of

g under the pushforward measure f∗µ to the integral of the composition g ◦ f

under the original measure µ:

∫
R
g(y) d(f∗µ)(y) =

∫
X

g(f(x)) dµ(x).
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Its validity is immediate from the definitions of the pushforward measure and

Lebesgue integration.

Fubini’s theorem analogously clarifies the relationship between Lebesgue

integration and the product measure construction.

Theorem 2.3.6 (Fubini, [16, Section 36, Theorem C]). In the event that
(X,ΣX , µX), (Y,ΣY , µY ) are σ-finite measure spaces, Fubini’s theorem states
that for Lebesgue-integrable f : X × Y → R, integrals over the product space
can be evaluated in either order:

∫
X×Y

f(x, y) d(µX⊗µY )(x, y) =

∫
X

(∫
Y

f(x, y) dµY (y)

)
dµX(x) =

∫
Y

(∫
X

f(x, y) dµX(x)

)
dµY (y).

2.4 Densities
Fix a measure space (X,Σ, µ).

Definition 2.4.1 (Density). Any nonnegative f : X → R≥0 which is Lebesgue-

integrable with respect to µ defines, via Lebesgue integration, a new measure

f · µ on X given by

(f · µ)(A) =

∫
A

f(x) dµ(x).

We say that f is the density of the measure f · µ, relative to the measure µ.

When the ambient measure µ is clear from context, in particular when it is

Lebesgue measure, it is common to neglect to mention it.

Definition 2.4.2 (Absolute continuity). If, for some measure ν, a density f

exists such that ν = f ·µ, we say that the measure ν is absolutely continuous

with respect to µ. It is immediate that any such density f is unique up to a.e.-

equivalence. Note also that if µ(A) = 0, then it follows that (f · µ)(A) = 0 for

all f .

The Radon-Nikodym theorem provides a converse to the previous state-

ment.

Theorem 2.4.3 (Radon-Nikodym, [16, Section 31, Theorem B]). For σ-finite

measures µ and ν, ν is absolutely continuous with respect to µ if and only if
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µ(A) = 0→ ν(A) = 0 for all measurable A. The density f such that ν = f ·µ,

unique up to a.e.-equivalence, is called the Radon-Nikodym derivative of ν

with respect to µ, and is often written using the differential notation dν
dµ
.

Definition 2.4.4 (Probability density function). In probability theory, the

density p : Rn → R≥0 of a probability measure P on Rn with respect to

Lebesgue measure λ (if it exists) is referred to as its probability density

function (pdf); in order for P to be a probability measure, we must have∫
Rn p(x) dλ(x) = 1. By the Radon-Nikodym theorem, probability measures

which are absolutely continuous with respect to Lebesgue measure are uniquely

specified by such a density.

Example 2.4.5 (Gaussian density). The Gaussian density, with mean µ

and standard deviation σ, is defined as the density on R given by

N (x | µ, σ) =
1√

2πσ2
exp

(
−(x− µ)2

2σ2

)

with respect to Lebesgue measure.

The multivariate Gaussian density on Rn, with parameters µ ∈ Rn

and positive-definite Σ ∈ Rn×n, is defined as

N (x | µ,Σ) =
1√
|2πΣ|

exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)

with respect to Lebesgue measure on Rn.

Definition 2.4.6 (Cumulative density function). Probability measures on R

can also be uniquely specified by a cumulative density function (cdf) –

whether the measure is absolutely continuous with respect to Lebesgue measure

or not, in fact. The cumulative density function of a probability measure P on

R is defined as the function F : R→ [0, 1] given by

F (x) = P ((−∞, x]);

in particular, we have the limiting values F (−∞) = 0, F (∞) = 1.
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In the event that P is absolutely continuous with respect to Lebesgue

measure with Riemann-integrable density p, its cdf and pdf are related by

F (x) =

∫
(−∞,x]

p(x) dλ(x) =

∫ x

−∞
p(x) dx,

hence the name ‘cumulative density function’.

Definition 2.4.7 (Quantile). As the cdf F : R→ [0, 1] is always nondecreas-

ing, we can define the generalised inverse

Q(u) = inf {x ∈ R : u ≤ F (x)} ;

this function is called the quantile function of P . In the event that the cdf

F is monotonically increasing, the quantile function Q is its inverse.

Let P be a probability measure on R, F its cumulative density function,

and Q its quantile function. Now consider the pushforward of the Lebesgue

measure λ on [0, 1] through the quantile function Q. The cumulative density

function of the resulting pushforward measure is

(λ∗Q)((−∞, x]) = λ(Q−1(−∞, x]) = λ((F (−∞), F (x))) = λ((0, F (x)) = F (x),

where the second equality follows from the fact that F (x) is nondecreasing (the

others following from the definitions of the pushforward, cdf, and Lebesgue

measure). It follows that any probability distribution on R can be obtained

as a pushforward of the uniform distribution on the unit interval through its

quantile function Q.

2.5 Spaces of probability measures
Let X be a topological space and let PX be the set of probability measures on

the Borel sets of X. This section is concerned with the structure, topological

and measurable, of the space PX, and primarily follows [24, Appendix A].

The space PX is not closed under linear combination, as neither scalar
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multiples nor sums of probability measures are themselves probability mea-

sures, but it can be equipped with several natural topologies. For our pur-

poses, the most important of these will be the weak topology, under which

PX is metrisable, separable when X is, completely metrisable when X is, and

compact when X is [25]. This weak topology of probability measures, often

called the weak-* topology for the sake of consistency with the terminology

used in operator theory, can be defined in a number of equivalent ways. To

motivate the operator-theoretic perspective, consider that each (probability)

measure P defines a natural map f 7→
∫
X
f dP on the space of continuous and

bounded maps C(X,R).3

Definition 2.5.1 (Weak convergence). A sequence of Borel probability mea-

sures Pn on X is said to converge weakly to a limit P if, for all continuous

bounded f : X → R, limn→∞
∫
X
f dPn =

∫
X
f dP .

Definition 2.5.2 (Weak topology). The weak topology on measures is simply

the topology that yields the weak convergence. As weak convergence of measures

will be heavily used here, we will adopt the notation Pn
∗→ P .

The weak topology on PX can be also be characterised as the weakest

topology under which the maps P 7→
∫
X
f dP are measurable for all continuous

bounded f : X → R.

Lemma 2.5.3 (Portmanteau, [24, Theorem A.2], [26, Theorem 11.1.1]). The

well-known portmanteau lemma gives a number of equivalent conditions for

weak convergence, in the case that X is a metrisable Borel space:

1. limn→∞
∫
X
f dPn =

∫
X
f dP for all bounded continuous f

2. limn→∞
∫
X
f dPn =

∫
X
f dP for all bounded Lipschitz f

3Note that in general, this map is neither a surjection nor an injection; it is one-to-one only
in certain restricted settings. The most well-known result in this area is the Riesz-Markov-
Kakutani representation theorem, which states that Radon measures on locally σ-compact
Hausdorff spaces X are isometrically isomorphic to positive bounded linear functionals on
the space of continuous real-valued functions on X that vanish at infinity. Regardless of
whether the relationship is one-to-one, though, given only that measures have a natural
interpretation as linear operators, concepts from operator theory can be applied to study
them.
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3. lim supn→∞ Pn(C) ≤ P (C) for all closed C

4. lim infn→∞ Pn(U) ≤ P (U) for all open U

5. limn→∞ Pn(A) = P (A) for all Borel sets A with measure-zero boundary

P (∂A) = 0

2.6 Laws of large numbers
This overview will primarily follow [26, Chapters 8, 11], [22, Chapter 8]. We

will begin by discussing several notions of convergence of random variables,

and then discuss a few important settings in which this convergence can be

shown, results that are typically called ‘laws of large numbers’.

Fix a Borel spaceX and equip its countable productXω with a probability

measure P; we will take Xω equipped with P as our base space, in the sense

of Definition 2.2.6. Let Xn : Xω → X be each of the natural projections, and

let E[·] =
∫

Ω
· dP represent integration under P. Let L : Xω → X be an X-

valued random variable. We will need to differentiate between three types of

convergence of the random variables Xn to L, in increasing order of strength:

Definition 2.6.1 (Weak convergence). Xn converges weakly to L if, for all

continuous bounded f : X → R, limn→∞ E [f ◦Xn] = E [f ◦ L].

Note that the above definition is an application of our previous definition

of weak convergence for measures to the pushforward distributions of each Xn;

accordingly, it is natural to use the notation Xn
∗→ L.

Definition 2.6.2 (Convergence in probability). When the Borel space X

has metric d, Xn converges in probability to L if, for all ε > 0,

limn→∞ P [d(Xn, L) ≥ ε] = 0.

Definition 2.6.3 (Almost sure convergence). Xn converges almost

surely to L if Xn converges to L pointwise on a set of measure 1, i.e.

P [limn→∞Xn = L] = 1.
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In the case that L(x1, x2, . . .) = x is a constant random variable and

Xn converges (in any of the above senses) to L, it is natural to say that Xn

converges to the constant x. In the case of convergence to a constant, con-

vergence in probability and convergence in distribution are equivalent; almost

sure convergence remains stronger.

Consider now the case in which P = P ω is a product measure – in other

words, the case in which Xn is a sequence of independent and identically-

distributed (i.i.d) random variables, each distributed according to P . Let also

X = R, with the standard Borel structure.

Theorem 2.6.4 (Strong law of large numbers, [22, Theorem 8.32]). The

strong law of large numbers (SLLN) states that, provided that the mean

µ =
∫∞
−∞ x dP is defined, the sequence of empirical means 1

n

∑n
i=1Xi converges

to µ almost surely:

P

[
lim
n→∞

1

n

n∑
i=1

Xi =

∫ ∞
−∞

x dP

]
= 1.

Correspondingly, the weak law of large numbers (WLLN) most often4 refers to

the weaker statement that the empirical means converge weakly to the popula-

tion mean µ.

We finish this section with a statement of some basic results from empirical

process theory that we will need. Consider again an arbitrary base measure P

on the product space Xω, with projections Xn : Xω → X, and consider the

resulting sequence of empirical measures as in Definition 2.2.2, i.e. the random

variables Pn : Xω → PX given by

Pn(x1, x2, . . .)(A) =
1

n

n∑
k=1

δXn(x1,x2,...)(A).

As each of these empirical measures is a PX-valued random variable, it is
4There is a constellation of related statements referred to as the laws of large numbers,

which are focused on weakening the i.i.d. assumption we’ve adopted for this exposition. We
will not need these alternative versions here.
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natural to ask whether and how they they converge to the constant measure

P . It is an immediate consequence of the strong law of large numbers that,

when Xn are i.i.d. (i.e. P = P ω), then for any bounded and continuous

f : X → R, we have almost sure convergence

P
[

lim
n→∞

∫
X

f dPn =

∫
X

f dP

]
= 1

of expectations under the empirical measures to the corresponding expectation

under P . More interestingly, the following theorem shows that the quantifi-

cation over the test function f made by the SLLN can be pulled inside P.

This theorem, and the perspective it represents, will be crucial in the coming

chapters.

Theorem 2.6.5. [26, Theorem 11.4.1] For standard Borel X, empirical mea-

sures almost surely converge weakly; that is,

P
[
Pn

∗→ P
]

= 1.

The actual sequences produced by i.i.d. sampling from a standard Borel

measure P , that is, have a certain special property: their empirical measures

converge to P . We will refer to this property in the coming chapters as P -

typicality.

Definition 2.6.6 (Typical sequences). Given a measure P on X, we will

refer to the countably-infinite sequences of samples (x1, x2, . . .) ∈ Xω such

that limn→∞
1
n

∑n
i=1 f(xi) =

∫
X
f(x) dP (x) for all continuous bounded f as P -

typical sequences. Theorem 2.6.5 is then the statement that, with probability

one, i.i.d. sampling from P produces a P -typical sequence.

As we will discuss in the next section, and in the remainder of this thesis,

P -typical sequences can be produced for many P without assuming the ability

to generate i.i.d. samples from P directly.

It will be useful in chapter 3 to generalise this notion of typicality to
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weighted sequences of samples; this extension is obvious. We will say that

the weighted sequence ((x1, w1), (x2, w2), . . .), where xn ∈ X and wn ≥ 0, is

P -typical if

lim
n→∞

∑n
i=1wif(xi)∑n

i=1wi
=

∫
X

f(x) dP (x)

for all continuous bounded f ; obviously Definition 2.6.6 is a special case when

all weights wi are unity.

2.7 Ergodic theory

Ergodic theory supplies a natural way to construct P -typical sequences using

purely deterministic means; we will recap the basic definitions and results of

the field, primarily following [25], beginning with the field’s historical origins.

Example 2.7.1 (Irrational rotation). The historical development of modern

ergodic theory began with the definition of uniformly-distributed sequences,

also called equidistributed sequences, and the proof that irrational rotation

gives such a sequence. This result was proved independently by Weyl, Sierpin-

ski, and Bohl in 1909-1910 [27, 28, 29]. As defined by Weyl and his contem-

poraries, a uniformly distributed sequence was a sequence xn ∈ [0, 1] of points

on the unit interval such that, for all open intervals (a, b) ⊆ [0, 1], we have

lim
n→∞

1

n

n∑
i=1

1(a,b)(xi) = b− a

where 1A is the indicator function on the set A. Noting that open intervals (a, b)

are a generating set for the Borel σ-algebra on R, it follows immediately that

this definition is a special case of Definition 2.6.6, in the case that X = [0, 1]

and P is the uniform distribution.

To Weyl, Sierpinski, and Bohl, the archetypal example of (nontrivial)

uniformly-distributed sequences were the irrational rotations

xn = nα mod 1,
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where α is irrational; in fact, they showed that these sequences are uniformly

distributed if and only if α is irrational.

In its modern form, ergodic theory generalises Weyl’s, Sierpinski’s, and

Bohl’s original result, broadening its setting from only the uniform distribu-

tion on the unit interval to arbitrary probability measures on Borel spaces,

and providing a sufficient condition for constructing such sequences: ergodic

transformations.

Definition 2.7.2 (Measure-preserving dynamical system). A measure-

preserving dynamical system refers to a tuple (X,P, T ) where:

• X is a standard Borel space;

• P is a probability measure on the Borel sets of X called the stationary

distribution of the dynamical system;

• T : X → X is a measurable function on X under which P is invariant:

that is, T∗P = P .

Definition 2.7.3 (Ergodicity). A measure-preserving dynamical system

(X,P, T ) is called ergodic if the only T -invariant Borel subsets of X are either

P -null or P -full; that is, if for all Borel A ⊆ X,T−1(A) = A→ P (A) ∈ {0, 1}.

Remark 2.7.4. Ergodic measures are naturally interesting from a geometric

perspective, as they are extremal points of the set of invariant measures. That

is: let M(X,T ) represent the set of probability measures which are invariant

under a transformation T : X → X, and note that this set is obviously closed

under convex combination. The extremal points of this set, i.e. those which

cannot be written as nontrivial convex combinations P = αP1 + (1 − α)P2

(“trivial” here meaning that either α = 0, 1 or P1 = P2) are then precisely the

probability measures with respect to which T is an ergodic transformation [25,

Proposition 4.3.2].

Theorem 2.7.5 (Birkhoff, [30, Theorem 9.6]). The Birkhoff ergodic the-

orem states that, for any ergodic dynamical system (X,P, T ), P -almost all
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initial points generate P -typical sequences in the sense of Definition 2.6.6.

That is, where Pn refer to the empirical measures of Definition 2.2.2,

P
{
x ∈ X : Pn(x, T (x), . . . , T n−1(x))

∗→ P
}

= 1.

As a result of Birkhoff’s theorem, if our aim is to produce samples from a

given probability distribution P , it suffices to find a transformation T which,

with P , forms an ergodic dynamical system, and choose any initial point x ∈ X

which belongs to this privileged measure-1 subset.

This final condition of the Birkhoff ergodic theorem, that of avoiding a

measure-zero subset of initial points that are not P -typical, is difficult to relax.

However, the following result shows one approach:

Proposition 2.7.6 ([25, Proposition 6.1.1]). For compact X and continuous

T : X → X, the following are equivalent:

1. All initial points x ∈ X yield P -typical sequences;

2. T is uniquely ergodic – that is, P is the only measure with respect to

which T is invariant5.

Having introduced measure-preserving dynamical systems, it is natural,

and will be useful, to define a notion of homomorphism and isomorphism

between them. In ergodic theory, the natural notion of isomorphism is referred

to as conjugacy.

Definition 2.7.7 (Conjugacy). Let (X,PX , TX) and (Y, PY , TY ) be two (Borel)

measure-preserving dynamical systems. A (Borel) homomorphism consists of

a continuous map f : X → Y such that PY = f∗PX and such that the following

diagram commutes:

X Y

X Y

f

TX TY

f

5Note that if P is the only measure with respect to which T is invariant, then it is trivially
an extremal point of the set of invariant measures, and thus the system is ergodic as well.
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The systems (X,PX , TX), (Y, PY , TY ) are (topologically) conjugate if there

exists a (bicontinuous) isomorphism f : X → Y such that f and f−1 are each

homomorphisms of measure-preserving dynamical systems.

Example 2.7.8 (Logistic map). Consider the dynamical system on [0, 1] given

by T (x) = rx(1 − x), the logistic map, in particular in the case r = 4.

This case was analyzed by von Neumann in his earliest overview of sampling

techniques [1], though he attributes to Stanisław Ulam the original sugges-

tion. In modern terms, this transformation T is well-known to be ergodic

with respect to the arcsine distribution; to understand why this is, simply

verify that the homeomorphism x = f(y) = sin2(2πy) on the unit inter-

val shows the logistic map (for r = 4) to be conjugate to the dyadic map

S(y) =

2y 0 ≤ y < 1
2

2y − 1 1
2
≤ y < 1

= (2y) mod 1. That the uniform distribution on

the unit interval is invariant and ergodic under this transformation is easily

verified. As a result, it follows that the logistic map with r = 4 is invari-

ant and ergodic under the pushforward of the uniform distribution through

f−1(x) = 1
2π

sin−1√x, which yields a distribution known as the arcsine distri-

bution.

The dyadic map is also called the bit-shift map, as if we represent

points in [0, 1] using their binary expansions y =
∑∞

n=1 bn2−n, a little thought

quickly shows that the dyadic map can be written as a bit-shift operation

S(y) =
∑∞

n=1 bn+12−n. For rational initial points y, the sequence given by

iterating the bit-shift map is necessarily periodic with a finite period (this being

the definition of a rational number), and so cannot possibly be equidistributed

with respect to the uniform distribution on the unit interval. Despite this, the-

orem 2.7.5 tells us that for almost all points on the unit interval, iterating the

bit-shift map yields uniformly-distributed sequences – though as noted by von

Neumann in [1], this makes it impractical for use as a pseudorandom number

generator.

As one would expect, isomorphisms of dynamical systems preserve most
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properties of dynamical systems studied in the field. We will only need one

result in this area.

Proposition 2.7.9 (Homorphisms preserve ergodicity). Let (X,PX , TX) be an

ergodic system, let (Y, PY , TY ) be a dynamical system (not necessarily ergodic),

and let f : X → Y be a homomorphism of dynamical systems. It follows that

(Y, PY , TY ) is ergodic.

Proof of Proposition 2.7.9.

In order for TY to be ergodic with respect to PY = f∗PX , we must know

that for all measurable B ⊆ Y , T−1
Y (B) = B implies f∗PX(B) = 0 or

f∗PX(B) = 1. Consider the inverse image A = f−1(B). Then, as f is a

homomorphism, T−1
X (A) = T−1

X (f−1(B)) = f−1(T−1
Y (B)). Then, assuming

that T−1
Y (B) = B, we immediately obtain T−1

X (A) = A; as TX is ergodic,

we have PX(A) = 0 or PX(A) = 1. By the definition of the pushforward

f∗PX(B) = PX(f−1(B)) = PX(A), it follows that TY is ergodic with respect

to PY .

As the following chapter will involve some discussion of products and

iterates of dynamical systems, it will be necessary to introduce the definition of

a weak mixing dynamical system, which is a useful strengthening of ergodicity.

Definition 2.7.10 (Weak mixing). A measure-preserving dynamical system

(X,P, T ) is called weak mixing if, for all measurable A,B ⊆ X, we have

lim
n→∞

1

n

n−1∑
i=0

∣∣P (T−i(A) ∩B
)
− P (A)P (B)

∣∣ = 0.

Weak mixing is, naturally, weaker than strong mixing, which requires the

stronger but simpler condition limn→∞ P (T−n(A) ∩ B) = P (A)P (B); we will

not need the latter concept here.

It is immediate from the definition that if (X,P, T ) is weak mixing, then all

iterates (X,P, T k), k ≥ 1, of the system are weak mixing as well [25, Exercise

7.1.3]. It is also easy to show that
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Proposition 2.7.11 (Weak mixing =⇒ ergodicity). If (X,P, T ) is weak mix-

ing, then it is ergodic.

Proof of Proposition 2.7.11.

Assume that (X,P, T ) is weak mixing, let A be a T -invariant set, and choose

B = Ā = X\A the complement of A. We will show that the set A is necessarily

either of zero or full measure, which is the definition of ergodicity. Applying

the definition of weak mixing, as A is invariant under T (and hence T i for any

i ≥ 1), we quickly obtain

lim
n→∞

1

n

n−1∑
i=0

∣∣P (T−i(A) ∩ Ā)− P (A)P (Ā)
∣∣ = 0

lim
n→∞

1

n

n−1∑
i=0

∣∣P (A ∩ Ā)− P (A)P (Ā)
∣∣ = 0

P (A)P (Ā) = 0;

therefore, the system (X,P, T ) is ergodic.

Less obvious from the definition of weak mixing is the connection between

weak mixing of a system and ergodicity of its product system, which follows.

Proposition 2.7.12 ([25, Proposition 7.1.11]). The following conditions are

equivalent:

1. (X,P, T ) is weak mixing;

2. (X ×X,P × P, T × T ) is weak mixing;

3. (X ×X,P × P, T × T ) is ergodic.

The extension to all finite products is immediate.

Simply combining the above results regarding weak mixing of products

and iterates, as well as Birkhoff’s ergodic theorem, we can obtain the following

result:
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Proposition 2.7.13. If (X,P, T ) is weak mixing, then for any k ≥ 1, P k-

almost all initial points (x1, . . . , xk) ∈ Xk of the iterated product system

(Xk, P k, T k × . . .× T k) generate P k-typical sequences.

2.8 Stochastic processes
An important application of our sampling language will be verifying samplers

for stochastic processes. Stochastic processes, essentially structured collec-

tions of random variables that can model time-changing random quantities,

have been objects of formal study since Kolmogorov’s axiomatisation of prob-

ability theory in the early 1930s, but the modern presentation of the theory of

stochastic processes dates to the early 1950s, drawing on the work of Joseph

L. Doob, Paul Lèvy, Eugene Dynkin, and others [31].

In what follows, fix a probability space (Ω,Σ,P), a set T , and a Borel

space S.

Definition 2.8.1 (Stochastic process). A T -indexed, S-valued stochastic

process is a T -indexed collection of random variables X : T → (Ω→ S).

As the terminology ‘process’ suggests, the index sets T most often con-

sidered, N and R≥0, are typically interpreted as indexing time. However, the

concept of a stochastic process is more general than time-varying processes,

extending to any indexed collection of random variables.

Definition 2.8.2 (Law). A stochastic process X naturally induces a measur-

able map X : Ω → ST , where ST is assigned the product σ-algebra. The

pushforward X∗(P), which we will write as PX , is known as the law of the

process X.

Note that as the product σ-algebra is very coarse, the law of a stochastic

process contains a limited amount of information about the process itself;

stochastic processes that differ in important ways can have the same law.

Definition 2.8.3 (Marginals). Let X be a T -indexed, S-valued stochastic

process. For any (t1, . . . , tn) ∈ T n, let ev(t1,...,tn) : ST → Sn represent the
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functional ev(t1,...,tn)(f) = (f(t1), . . . , f(tn)), which evaluates its input f at a

specified collection of points in T . Pushing the law of X through the evalu-

ation functional gives the joint distribution P(t1,...,tn) of the random variables

(X(t1), . . . , X(tn)) : Ω → Sn. These random variables are called the (finite-

dimensional) marginals of the stochastic process X. If the marginals of two

T -indexed, S-valued stochastic processes X(t), Y (t) all have the same distribu-

tions, we will say that the two processes are identically distributed.

It can be shown that two stochastic processes induce the same law if and

only if they have the same marginal distributions [32].

Consider the finite-dimensional marginals P(t1,...,tn) of a T -indexed, S-

valued process X. For any permutation π on {1, . . . , n} and any topologi-

cal space X, let πX : Xn → Xn represent the corresponding automorphism

πX(x1, . . . , xn) = (xπ(1), . . . , xπ(n)). It is straightforward to show that for any

stochastic process, the collection of marginal distributions satisfies:

1. For every permutation π, P(tπ(1),...,tπ(n)) = (πS)∗P(t1,...,tn).

2. For every m < n and Borel A: P(t1,...,tm)(A) = P(t1,...,tn)(A× Sn−m).

The Kolmogorov extension theorem states that, under broad assumptions,

this correspondence goes both ways, and the finite-dimensional marginals are

sufficient to identify the process (up to equivalence in law).

Theorem 2.8.4 (Kolmogorov, [32]). If S is a standard Borel space and

P(t1,...,tn), n ∈ N, ti ∈ T is a collection of probability measures on Sn satis-

fying the above conditions, then there exists a unique probability measure PX

on ST (equipped with the product algebra6) whose finite-dimensional marginals

are P(t1,...,tn), that probability measure being the law of our stochastic process.

Bochner’s theorems [34, Ch.2] are alternatives to Kolmogorov’s theo-

rem in which assumptions are made about the structure of the space S and
6As mentioned earlier, the coarseness of the product algebra is often limiting. Many

applications, in particularly any requiring continuity, will require extending this law to a
finer σ-algebra; see [33, Appendix A.2]).
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where the system of products above is replaced by the more general notion of

a projective system. One version of the theorem states:

Theorem 2.8.5 (Bochner, [34, Ch.2, Thm 5.5]]). If (I,≤) is a directed set,

(Xi)i∈I is a system of locally compact spaces, and for each i ≤ j, πji : Xj → Xi

are surjections such that for i ≤ j ≤ k, πki = πji ◦ πkj – in other words

if (Xi, πji)i,j∈I is a projective system – then P0(lim←−iXi) ∼= lim←−iP
0Xi, where

P0X is the set of regular7 Borel probability measures on X.

This theorem strengthens Kolmogorov’s for sufficiently nice spaces. Sup-

pose all measures on S are regular (e.g. if S is Polish) and consider the set

I =
⋃
n T

n of all T -tuples. For every t = (t1, . . . , tm) and t′ = (t′1, . . . , t
′
n) in I

define the relation t ≤ t′ whenever t = t′ ◦ it,t′ for some injection it,t′ : m→ n

mapping the position of each ti in the tuple t to its position in the tuple

t′. Then (I,≤) is directed and we can define a projective system by putting

St = Sn and πt′,t : Sn → Sm, (s1, . . . , sn) 7→ (sit,t′ (1), . . . , sit,t′ (m)). Bochner’s

theorem then gives

lim←−tPSt = lim←−tP
0St ∼= P0(lim←−t St) = P0(ST ).

Note that every πt′,t in this system is the composition of a permutation and a

projection. From this observation, it is not hard to see that an element of the

left-hand-side of the equation is precisely a collection of marginals satisfying

the conditions 1. and 2. of Kolmogorov’s extension theorem. On the right-

hand-side we gain regularity8. We will return to this system in section 4.3.

Just as a (real-valued) probability distribution is frequently summarised
7A measure µ on a Hausdorff space X is called regular if, for all measurable A, µ(A) =

sup{µ(K) : K ⊆ A ∧K compact} = inf{µ(U) : U ⊇ A ∧ U open}. Since all Borel measures
on a Polish space are regular, P0Xi = PXi, the space of all Borel measures, when Xi is
Polish. However, lim←−i

Xi will in general not be Polish (though it is when I is countable),
and thus P0(lim←−i

Xi) 6= P(lim←−i
Xi)ingeneral.

8To see that lim←−t
St = ST note that T = lim−→t

l(t) where l(t) = n, the set with n ele-
ments, if t is n-dimensional (every set is the injective limit of its finite subsets), and since
the hom functor hom(−, S) turns colimits into limits, we get ST = hom(lim−→t

l(t), S) =

lim←−t
hom(l(t), S) = lim←−t

St as sets. It is straightforward to check that the topologies on ST

and lim←−t
St are the same.
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by its mean and (co)variance, so a (real-valued) stochastic process can be

summarised by its mean function and covariance function.

Definition 2.8.6 (Mean and covariance function). Define themean function

µ : T → R of an R-valued, T -indexed stochastic process X(t) as the map

µ(t) = E [X(t)] =

∫
Ω

X(t)(ω) dP(ω)

and the covariance function (also often called the covariance kernel) κ :

T × T → R as the map

κ(t1, t2) = Cov [X(t1), X(t2)] = E [(X(t1)− µ(t1))(X(t2)− µ(t2))]

where each of these integrals exist. We will refer to σ2(t) = κ(t, t) as the

variance function.

Example 2.8.7. A Gaussian process is an R-valued stochastic process9 such

that all finite-dimensional marginals are Gaussian. Because a normal distri-

bution is fully specified by its mean and covariance, it immediately follows that

all the marginal definitions of a Gaussian process are fully specified by a choice

of mean and covariance function.

For example, the mean and covariance functions µ(t) = 0, κ(t1, t2) =σ
2 t1 = t2

0 t1 6= t2

specify an i.i.d. collection of standard Gaussian random vari-

ables with variance σ2; the functions µ(t) = 0, κ(t1, t2) = min(t1, t2) specify the

Wiener process, or Brownian motion, a central object of study in finance

and physics, among other fields; and the square-exponential covariance func-

tion k(t1, t2) = exp
(
− 1

2σ2 ‖t1 − t2‖2) gives a smooth Gaussian process com-

monly used in Gaussian process regression.

9The generalisation to RN -valued processes, and further, is mostly straightforward, but
we will not use it here.





Chapter 3

Deterministic stream-semantics for

higher-order probabilistic

programming languages

In this chapter, we introduce a language, semantics, and calculus for verifying

a certain class of probabilistic programs: those intended to solve problems of

approximate sampling. We will begin by introducing the problem of approxi-

mate sampling and discussing its importance, and then we will motivate some

of the sampler operations our language will make use of before we give their

formal syntax and semantics. After formalising our language’s syntax and se-

mantics, we can then go on to discuss the verification of sampling techniques

within this language.

Approximate sampling. Our purpose for developing this language is to be

able to state and analyse algorithms for approximate sampling. Given a desired

target probability distribution P , we want to verify that a proposed sampler,

i.e. program, is able to generate samples which, informally speaking, behave as

if they are taken from target distribution P , by making use of other samplers

and transforming their samples in various ways. This informal idea that our

samples must ‘behave as if they are taken from P ’ will be formalised here as

P -typicality Definition 2.6.6, i.e. based on weak convergence. This formulation

of the problem of approximate sampling would have been well-understood by
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von Neumann and his contemporaries; what they may not have understood

quite as well, without our hindsight, is its centrality within a wide array of

fields – many of which (such as machine learning) did not exist at that time.

A particularly important class of approximate sampling problems are

those posed by Bayesian inference. Bayesian inference itself can be under-

stood as a method for transforming the problem of statistical inference – of

making probabilistic inferences based on data – into a problem of approxi-

mate sampling. Our aim in Bayesian inference is to generate samples from a

posterior distribution, a distribution over some set of parameters z which are

to be estimated, conditioned on observed data x. This posterior distribution

p(z | x) is specified by choosing a prior distribution p(z) over parameter values,

and by a likelihood p(x | z), i.e. Markov kernel, which gives the probability of

observing a set of data given certain parameter values. Having chosen a prior

and a likelihood, and having observed some data, the posterior distribution

then follows from Bayes’ theorem1

p(z | x) =
p(x | z)p(z)

p(x)
=

p(x | z)p(z)∫
Z
p(x | z)p(z) dz

,

but cannot in general be obtained in closed form.

Instructive examples of Bayesian models include: filtering problems, in

which case z = (z1, . . . , zT ) are latent states with a transition model p(zt | zt−1)

and observation model p(xt | zt), and our aim is to characterise the distribution

of these latent states conditional on the observations x = (x1, . . . , xT ); i.i.d.

regression problems, in which case we observe covariates p(zt | θ) and response

variables p(xt | zt, θ), and we aim to estimate some regression parameters θ,

to which we assign a prior p(θ); and joint filtering and parameter estimation

problems, such as parameter estimation for state-space models and hidden

Markov models, in which case we observe temporal data z = (z1, . . . , zT ) ac-

cording to a transition model p(zt | zt−1, θ) and noisy observations p(xt | zt, θ)
1We assume for simplicity here that the necessary conditions hold such that Bayes’ theo-

rem can be stated in terms of probability densities dominated by common ambient measures
dz and dx.
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with parameters θ, over which we take a prior p(θ), and our aim is to obtain

either the posterior distribution p(θ | x) over parameters with respect to our

observations, or the joint posterior distribution p(z, θ | x) of latent states and

parameters with respect to our observations.

In any case, as the posterior distribution in the above problems cannot in

general be calculated analytically, it is natural to approximate properties of the

posterior distribution, such as the posterior mean or variance, by Monte Carlo

– that is to say, by using approximate samples from the posterior distribution.

This is the sense in which Bayesian inference recasts the problem of statistical

inference – of characterising the values of some unknown parameters using

observed data – as a problem of approximate sampling.

Our language is designed to be a setting for verifying approximate sam-

plers. In particular, it contains built-in operations corresponding to some of the

essential operations of approximate sampling. It will therefore be worthwhile

to introduce a few approximate sampling techniques in advance, to illustrate

the need for certain language constructs; in particular, we will quickly intro-

duce four. These operations will be discussed in much more detail, and verified,

in section 3.3.2.

1. Inverse-transform sampling we have already discussed in section 2.4.

Consider the problem of generating a random variable distributed accord-

ing to desired probability measure P on R. In section 2.4, we showed that

if F−1 is the (generalised) inverse of the cumulative distribution function

F (x) = P ((−∞, x]), then if a random variable U is distributed uniformly on

the unit interval, it follows that F−1(U) is distributed according to P . There-

fore, given the ability to invert the desired cumulative function, exact samples

can be taken from any desired probability distribution on R. This technique

was well-known to von Neumann and his contemporaries, and was discussed

in their monograph [1]. Inverse-transform sampling is typically infeasible out-

side of the univariate case, but fortunately, multivariate sampling problems

can sometimes be reduced to a collection of univariate sampling problems;
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for example, Cholesky decomposition of the covariance matrix allows one to

transform n independent Gaussian samples into one sample from a Gaussian

distribution on Rn with arbitrary mean and covariance matrix.

2. Pseudorandom number generation we have also already touched on

in section 2.7. Approximate samples from a probability distribution P on a

Borel space X can be generated by specifying a measure-preserving dynamical

system (X,P, T ), which consists of a map T : X → X with respect to which

the desired target distribution P is invariant and ergodic. It follows by the

Birkhoff ergodic theorem that P -almost all initial points x0 ∈ X yield P -typical

sequences by iterating T – see sections 2.6 and 2.7.

Von Neumann, in [1], discussed two such samplers in detail. First, he

discussed the logistic map, in which case T is the function T (x) = 4x(1 −

x) on X = [0, 1], which was discussed in Example 2.7.8. That the logistic

map was ergodic with respect to the arcsine distribution, and that the logistic

map was conjugate to the bit-shift distribution, were both well-known to von

Neumann. Second, von Neumann mentions the middle-square method, an

early pseudorandom number generator which has since fallen out of favour.

The samples from this PRNG are formed by squaring a four-digit number,

and then dropping all but the middle four digits. For the reasons discussed in

section 2.7, it is natural to require that our samplers be formed from ergodic

systems – which the middle-square method clearly cannot be, as it was well-

known even by von Neumann’s time that it has multiple short cycles (e.g.

3600→ 9600→ 1600→ 5600→ 3600→ ...).

3. Rejection sampling we have not yet discussed. Let P be our target

measure, and assume the ability to sample from a proposal measure Q, both

defined on a Borel space X; assume also the ability to generate independent

uniform samples U on the unit interval. In order for rejection sampling to

be possible, we must assume that the target P is absolutely continuous with

respect to the proposal Q, and that we can evaluate (at least up to some

constant of proportionality) the resulting density f(x) ∝ dP
dQ

(x). Let K be
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any upper bound f(x) ≤ K, i.e. any K such that f(x) ≤ K for Q-almost all

x. To perform rejection sampling, we sample independently x ∼ Q from our

proposal and u from the uniform distribution on the unit interval. If u ≤ f(x)
K

,

then x is distributed according to our target distribution P ; if u > f(x)
K

, then

we discard the samples x, u and try again. This technique may in fact have

been introduced in [1].

4. Importance sampling is in essence a continuous variant of rejection

sampling, in which rather than rejecting or accepting proposed samples, we

instead assign each sample a positive-valued weight. Again, let P be our

target measure and Q our proposal, assume P is absolutely continuous with

respect to Q, and let f(x) ∝ dP
dQ

(x) be proportional to the resulting den-

sity. To perform (self-normalised) importance sampling [35], generate samples

xi ∼ Q from the proposal, and for each sample, first compute the unnormalised

weight w̃i = f(xi). Having taken n such samples, we can then compute the

normalised importance weights wi = w̃i/
∑N

k=1 w̃k. These unnormalised sam-

ples can be used to approximate integrals with respect to the target distri-

bution limn→∞
∑n

i=1 wig(xi)
a.s.→
∫
X
g dP , which is another way of saying that

these weighted sequences of samples are almost surely P -typical (see Defini-

tion 2.6.6).

Sampler types. In this chapter, we will formalise each of the above construc-

tions as procedures that output samplers. To that end, our language introduces

a sampler type, in which samplers are understood as weighted sequences. Sam-

plers are defined as sequences in order to incorporate pseudorandom generation

of samples, and are weighted in order to incorporate importance sampling (and

rejection sampling, once one recognises that assigning a sample zero weight is

essentially the same as rejecting it). Traditional pseudorandom number gen-

erators are samplers, as are more complex samplers produced by applying any

of the sampling techniques or operations previously discussed.

Sampler operations. Section 3.1 introduces a set of sampler operations.

These sampling techniques are chosen primarily to implement sampling tech-
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niques like the ones discussed above, and are defined coinductively. For exam-

ple, the sampler operation prng, ‘pseudorandom number generator’, constructs

a sampler using a measure-preserving dynamical system. The sampler oper-

ation map applies the same operation to each sample, making it analogous

to the pushforward operation in measure theory (necessary to implement, for

instance, inverse-transform sampling). The operation reweight continuously

reweights our samples; this is used to implement both importance sampling

and rejection sampling.

We include also a product of samplers, as well as certain stream opera-

tions such as ‘thinning’ samplers (i.e. dropping certain samples). Particular

attention will be paid to the operation we call the ‘sampler self-product’, which

implements the operation of taking multiple adjacent samples from the same

sampler. We provide a denotational and operational semantics for our sam-

pling language, and prove an adequacy relationship between the two.

Verification. Rather than existing as objects within our language, probability

measures are relegated to a meta-theoretic status used in program verification;

the natural relationship between samplers and probability measures, targeting,

will be defined in section 3.3. We introduce a calculus governing this targeting

relation, the application of which can verify the above-mentioned sampling

techniques, among others. We also introduce an effective equivalence relation

between samplers, in order to aid sampler verification. With this said, we are

ready to introduce our formal syntax and semantics.

3.1 Language

3.1.1 Syntax

Formally, our language is implemented as a λ-calculus with a notion of subtype

/, a call-by-name evaluation strategy, and a type constructor Σ for samplers.

The types of our language are generated by the mostly standard grammar
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in fig. 3.1a, choosing as the set of ground types

Ground , {B, N, R, R+} ∪ {f−1(i) | f ∈ {≤, <,≥, >,=, 6=}, i = 0, 1}.

Our ground types include the natural, real and nonnegative real numbers,

Boolean values, and, more interestingly, certain important sets of pairs of reals,

such as <−1(1), 6=−1(0), and the rest. To understand the meaning of these sets,

consider for a moment the operator < as a function < : R×R→ {0, 1}; the

inverse image <−1(1) then refers to set of pairs of reals whose first component

is strictly stronger than the second, and <−1(0) to its complement. These

special sets, we will see, are included as ground types in order to give sensible

semantics to the binary operations ≤, <,≥, >,=, and 6=.

The only unusual type constructors that appear in fig. 3.1a are the pull-

back types Ts t and the sampler types Σ T. Pullback types Ts t, as will soon be

explained, will be interpreted as (categorical) pullbacks of the term s : A→ T

along the term t : B → T, though in chapter 4 we will better illustrate this

construction as a dependent type. Sampling types Σ T will be defined as the

coinductive (stream) types defined by the (syntactic) functors T × R+ × −,

allowing samplers to be weighted; this covers the special case of unweighted

samplers, in which every weight is set to 1. As these are the only coinductive

types we will need, and to highlight the central role played by samplers, we

choose not to add generic coinductive types to the language.

Terms

Figure 3.1b presents the grammar generating the set Expr of terms in our

language. We will refer to terms produced by the small sub-grammar fig. 3.1c

as values; this sub-grammar will be used in the construction of our operational

semantics in section 3.1.2.

We include a set Func of built-in functions which come equipped with

typing information f : T → G, where G is a ground type. Some built-in

functions will be continuous w.r.t. to the standard topologies, such as the



56 Chapter 3. Deterministic stream-semantics

T ::= G ∈ Ground | 1
| T× T | T + T | Ts t | T→ T | Σ T s, t : T

(a) Type grammar

t ::= x ∈ Var | b ∈ {True, False} | n ∈ N | r ∈ R Variables and constants
| f(t, . . . , t), f ∈ Func | cast〈T〉t Built-in functions
| case t of {(i, xi)⇒ t}i∈n Programming constructs
| λx: T.t | t(t) | let x = t in t "
| (t, t) | fst(t) | snd(t) | ini (t) Products and coproducts
| prng(t, t) | t⊗ t | map(t, t) | reweight(t, t) Sampler operations
| hd(t) | wt(t) | tl(t) | thin(t, t) "

(b) Term grammar

v ::= x ∈ Var | b ∈ {True, False} | n ∈ N | r ∈ R
| (v, v) | ini (v) | λx: T. v

(c) Value grammar

Figure 3.1: Grammars

addition operation + : R × R → R, but others will be discontinuous with

respect to the standard topologies, such as the comparison operators {≤, <,≥

, >,=, 6=} : R × R → B. Dealing with such functions is the main reason for

adding coproducts to the grammar, as we will discuss in section 3.1.3.

We define if-statements as simple Boolean cases, employing the syntactic

sugar

if b then sTrue else sFalse , case (b,_) of {(i,_)⇒ si}i∈B .

Most of our language constructs are standard for a typed functional language

without recursion, but we crucially endow our language with certain nonstan-

dard sampler operations:

• The operation prng(f, t) is used to construct a sampler as a pseudo-

random number generator, using an initial value t and a deterministic
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endomap f .

• s⊗ t represents the product of samplers s, t.

• The syntax map(f, t) maps the function f over the elements produced by

the sampler t to produce a new sampler, in analogy to the pushforward

of a measure.

• The operation reweight(f, t) applies the reweighting scheme f to the

sampler t to form a new sampler.

• Given a sampler t, the operation hd(t) returns the first sample produced

by t, wt(t) the weight of the first sample produced by t, and tl(t) returns

the sampler t but with its first sample-weight pair dropped.

• The operation thin(n, t), given a natural number n and a sampler t,

returns the sampler which includes only those elements of t whose index

is a multiple of n.

The precise meaning of these language constructs will be made clearer when we

introduce their semantics in sections 3.1.2 and 3.1.3. The purpose of introduc-

ing them, if not already clear, will be further illustrated in section 3.3, when

we use them to represent and then verify certain common sampling techniques.

Note that our language does not have an operation sample(s) for a sampler

s, as our samplers do not have internal state. This operation can nevertheless

be mimicked by using the ‘sample’ hd(s), and then let-binding all subsequent

occurrences of s to tl(s).

Well-formed terms

Our typing system is mostly standard and presented in fig. 3.2a, and the sub-

typing relation / on types is the reflexive-transitive closure of the relation

generated by the rules of fig. 3.2b. The purpose of the subtyping relation, as

we will discuss, is to encode topological information which will allow the in-

terpretation of functions which are discontinuous with respect to the standard

topologies.
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The only non-standard typing rules are the context-restriction rule on

the third line of fig. 3.2a, and the typing rules for the sampler operations,

which should be straightforward given their descriptions above. The purpose

of the context-restriction rule is, in a nutshell, to be able to pass the result of a

computation of type T which is continuous w.r.t. a topology τ on the denotation

of T, to a computation using a variable of type T but which is continuous w.r.t.

to a finer topology τ ′ ⊃ τ on the denotation of T. After application of this

rule, it is no longer possible to λ-abstract on the individual variables of the

context. There are good semantic reasons for this feature, which we discuss in

section 3.1.3. For readability and intuition’s sake, the rule is written using the

syntactic sugar

t−1(Ti) , Tcast〈T〉ini(x) t where x : Ti, t : T; (3.1)

for the subtyping rules fig. 3.2b, we use the syntactic sugar

Si ∩ S′j , S
cast〈S〉ini(xi) cast〈S〉inj(x′j)

where xi : Si, x
′
j : S′j.

Remark 3.1.1 (Recursion). Our typed lambda calculus, the reader will notice,

does not feature recursion. This is because our aim is to restrict attention to

samplers which are produced via techniques which are sensible from a proba-

bilistic perspective, so that verification of these probabilistic properties can be

accomplished straightforwardly by following the program structure. Allowing

unrestricted recursion undermines that goal: it expands massively the class of

programs that can be written, but where the vast majority of these programs do

not have an interpretation which is sensible from a probabilistic perspective.

Moreover, recursion is not strictly necessary for our purposes. While the

author is not aware of a general definition of the notion of ‘recursive sampler’,

which would be necessary to formalise this argument, many of the sampling

techniques which are typically given recursively can be recast in our language by
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Γ ` g : G
g ∈ JGK , G ∈ Ground

Γ, x : T,∆ ` x : T

Γ ` t : T

Γ ` f(t) : G
Func 3 f : T→ G

Γ ` t : Tj

Γ ` inj (t) :
∑
i∈n Ti

j ∈ n ∆ ` t : S

Γ ` cast〈T〉t : T
S / T,Γ /∆

x1 : S1, . . . , xn : Sn ` t : T

(x1, . . . , xn) :
∑
i∈m t−1(Ti) ` t :

∑
i∈m Ti

∑
i∈m Ti / T

Γ ` t :
∑
i∈n Ti Γ, xi : Ti ` si : T

Γ ` case t of {(i, xi)⇒ si}i∈n : T

Γ ` t : S× T

Γ ` fst(t) : S

Γ ` s : S Γ ` t : T

Γ ` (s, t) : S× T

Γ ` t : S× T

Γ ` snd(t) : T

Γ, x : S ` t : T

Γ ` λx : S . t : S→ T

Γ ` s : S Γ ` t : S→ T

Γ ` t(s) : T

Γ, x : S ` t : T Γ ` s : S

Γ ` let x = s in t : T

Γ ` t : Σ T

Γ ` hd(t) : T

Γ ` t : Σ T

Γ ` wt(t) : R+

Γ ` t : Σ T

Γ ` tl(t) : Σ T

Γ ` s : Σ S Γ ` t : Σ T

Γ ` s⊗ t : Σ (S× T)

Γ ` s : T→ T Γ ` t : T

Γ ` prng(s, t) : Σ T

Γ ` n : N Γ ` t : Σ T

Γ ` thin(n, t) : Σ T

Γ ` s : S→ T Γ ` t : Σ S

Γ ` map(s, t) : Σ T

Γ ` s : T→ R+ Γ ` t : Σ T

Γ ` reweight(s, t) : Σ T

(a) Typing rules

f−1(0) + f−1(1) / R× R
f ∈ {<,≤, >,≥,=, 6=} S1 / S2 T1 / T2

S1 × T1 / S2 × T2

S1 / S2 T1 / T2

S1 + T1 / S2 + T2

S / T
Σ S / Σ T

∑
i∈n Si / S

∑
j∈m S′i / S∑

i∈n,j∈m Si ∩ S′j /
∑
i∈n Si

∑
i∈n Si / S

∑
j∈m S′j / S∑

i∈n,j∈m Si ∩ S′j /
∑
j∈m Sj

(b) Subtyping rules

Figure 3.2: Typing and subtyping rules

using its native operations in a non-recursive manner. For example, rejection

sampling, while it is most commonly thought of as a recursive procedure, can

alternatively be implemented using the operation reweight, as we will show

in section 3.3.2. More complex recursive samplers which feature loops with

state can be incorporated as well, but as these samplers are less amenable to

verification using our methods, we will not pursue this direction (though see

section 5.2 for a sketch of how this can be done).

Finally, the categorical semantics of a true typed, probabilistic, higher-

order lambda calculus with recursion are a more recent area of investigation

[13]. As a result, we consider the inclusion of recursively-specified samplers,
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along with corresponding verification techniques for recursively-specified sam-

plers, to be further work; see section 5.2.

3.1.2 Operational semantics

In practice, in order to evaluate a program containing a sampler, one must

specify a finite number of samples N ∈ N which are to be produced. Our

(big-step) operational semantics correspondingly takes the form of a reduction

relation (t, N) → v, where the left side consists of a well-typed closed term

t ∈ Expr and a number of samples N , and the right side is a value v ∈ Value,

i.e. a term generated by the grammar fig. 3.1c.

For the more common language constructs like let and function evalu-

ation, the rules of this big-step operational semantics, given in fig. 3.3a, are

mostly standard with the additional input N , the number of samples which

will be taken. The big-step operational semantics of sampler operations, which

do make use of the inputted number of samples N , are given in fig. 3.3b.

For notational simplicity, these operations make use of lists (a, b, c, d),

which are in fact interpreted within our language as nested pairs (a, (b, (c, d))).

In order to keep the rules readable, we also introduce the shorthand (t, N)→

((v1, w1), . . . , (vN , wN)) to denote the N reductions

(hd(t), wt(t))→ (v1, w1),

(hd(tl(t)), wt(tl(t)))→ (v2, w2),

. . . ,

(hd(tlN−1(t)), wt(tlN−1(t)))→ (vN , wN).

Note that the product of two weighted samplers has as its weights the

product of its factors’ weights. The product and the operation reweight are

the only operations modifying the weights of samplers.

The following proposition shows that the operational semantics is well-

formed in that for any N ∈ N, programs of sampler type can only reduce to

weighted lists of length N .
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(v,N)→ v
v a value

(t,N)→ v

(cast〈T〉t,N)→ v

(t,N)→ v

(f(t), N)→ f(v)
Func 3 f : T→ G

((λx : T.t)(s), N)→ v

(let x = s in t,N)→ v

(t[x := s], N)→ v

((λx : T.t)(s), N)→ v

(t,N)→ v

(ini (t) , N)→ (i, v)

(t,N)→ (j, vj) (sj [xj := vj ], N)→ v

(case t of {(i, xi)⇒ si}i∈n), N)→ v
j ∈ n

(t,N)→ (v1, v2)

(fst(t), N)→ v1

(s,N)→ v1 (t,N)→ v2

((s, t), N)→ (v1, v2)

(t,N)→ (v1, v2)

(snd(t), N)→ v2

(a) Big-step operational semantics of standard operations

((s(hd(t)), wt(t)), N)→ (v1, w1) . . . ((s(hd(tlN−1(t)), wt(tlN−1(t))), N)→ (vN , wN )

(map(s, t), N)→ ((v1, w1), . . . , (vN , wN ))

((hd(t), s(hd(t))wt(t)), N)→ (v1, w1) . . . ((hd(tlN−1(t)), s(hd(tlN−1(t)))wt(tlN−1(t))), N)→ (vN , wN )

(reweight(s, t), N)→ ((v1, w1), . . . , (vN , wN ))

(s,N)→ ((v1, w1), . . . , (vN , wN )) (t,N)→ ((v′1, w
′
1), . . . , (v′N , w

′
N ))

(s⊗ t,N)→ (((v1, v′1), w1 · w′1), . . . , ((vN , v
′
N ), wN · w′N ))

(t,N)→ ((v1, w1), . . . , (vN , wN ))

(hd(t), N)→ v1

(t,N)→ ((v1, w1), . . . , (vN , wN ))

(wt(t), N)→ w1

(t,N)→ ((v1, w1), . . . , (vN , wN ))

(tl(t), N − 1)→ ((v2, w2), . . . , (vN , wN ))

(s,N)→ i (t,Ni)→ ((v1, w1), . . . , (vNi, wNi))

(thin(s, t), N)→ ((v1, w1), (vi+1, wi+1), (v2i+1, w2i+1), . . . , (v(N−1)i+1, w(N−1)i+1))

(t,N)→ v1 (s(t), N)→ v2 . . . (sN−1(t), N)→ vN

(prng(s, t), N)→ ((v1, 1), . . . , (vN , 1))

(b) Big-step operational semantics of sampler operations

Figure 3.3: Big-step operational semantics

Proposition 3.1.2. If ` s : Σ S is a closed sampler, then for any N ∈ N, if

(s,N) → v, then v has the form ((v1, w1), . . . , (vN , wN)), where vn are values

and wn ∈ R≥0 are weights. If S is not a sampler type, then vn : S; more

generally, each vn might be a weighted list itself.

In order to prove this result by induction on the derivation tree of (t, N)→

v, though, we will see that we must first generalise it to include higher samplers.

Proposition 3.1.3. If ` s : Σ kS is a closed k-order sampler where S is not

a sampler type and k ∈ {0, 1, 2, . . .}, then for any N ∈ N, if (s,N) → v,
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then v has the form of a k-nested weighted list of values of type S. For

example, for k = 0, v : S is simply a value of type S; for k = 1, v =

((v1, w1), . . . , (vN , wN)) is a weighted list of values vn : S and wn ≥ 0; for

k = 2, v = (((v1
1, w

1
1), . . . , (v1

N , w
1
N)), w1), . . . , (((vN1 , w

N
1 ), . . . , (vNN , w

N
N )), wN))

is a weighted list of weighted lists of values of type vmn : S, and so on.

Proof of Proposition 3.1.3.

Base case. As values v cannot have sampler type, the only possibility for a

derivation (v,N) → v where v : Σ kT for some type T is k = 0, which makes

our result immediate.

Inductive case. We illustrate the inductive argument for each case,

depending on the last rule of the derivation of (t, N) → v, where ` t : Σ kT

is a k-order sampler for some k ∈ {0, 1, 2, . . .}, and T is by hypothesis not a

sampler type (i.e. contains no occurrences of Σ ).

1. Built-in functions. There are no built-in functions which either input

or output sampler types, so k = 0. Taking the induction hypothesis that

each input si : Gi reduces to a value vi : Gi, where Gn are ground types,

we immediately obtain that (f(s1, . . . , sn), N) → v evaluates to a value

v of ground type G, giving our result.

2. Case. Assuming that t = case (c, t′) of {(i, xi)⇒ si}i∈n, we must have

` si : Σ kT. Taking the induction hypothesis that (si[xi := t′], N) → v

evaluates to a k-nested weighted list, if (c,N) → i ∈ n, it immediately

follows that (t, N)→ v does as well.

3. Function application. Take t = (λx : Σ k
′
S.t′)(s) to be an instance of

function application, where the function in question inputs a k′-sampler

and outputs a k-sampler, where S does not contain any sampler types

itself; we must have ` s : Σ k
′
S in order for the expression to be well-

typed. In order to have (t, N) → v evaluate to a value, our operational

semantics requires (t′[x := s], N) → v; taking the induction hypothesis
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that t′[x := s] evaluates to a k-nested list of values of type S, our desired

result follows.

4. let-binding. Trivially follows from function application, as (let x =

s in t′, N)→ v iff ((λx : S.t′)(s), N)→ v.

5. Product. If t = (s, s′), the result is trivial as ` t : Σ kT implies k = 0

and so T = S × S′ where ` s : S,` s′ : S′ are each not sampler types;

therefore, (s, s′) is clearly a value of type T (i.e., a 0-nested weighted list).

6. Projections. If t = fst((s, s′)), then ` s : Σ kT, and so the induction hy-

pothesis (s,N) → v immediately implies our result; the same argument

applies to t = snd((s, s′)).

7. Head. If t = hd(s), then ` s : Σ k+1T. Taking the induction hypothesis

that (s,N)→ v implies that v is a (k + 1)-nested weighted list of values

of type T, we need only note that the first element of this list is itself a

k-nested weighted list of values of type T.

8. Weight. If t = wt(s), our result is trivially true, as the output of wt(s)

can only be a nonnegative real number ` t : R+.

9. Tail. If t = tl(s), then by our induction hypothesis, (s,N + 1) →

((v1, w1), . . . , (vN+1, wN+1)) where each vn is a (k − 1)-nested weighted

list of elements of type T. It immediately follows that (tl(s), N) evaluates

to a weighted list of N elements whose elements are each (k − 1)-nested

lists of type T.

10. Thin. If t = thin(i, s), then ` n : N and ` s : Σ kT, and by our induction

hypothesis, (s,Ni) → ((v1, w1), . . . , (vNi+1, wNi+1)) where each vn is a

(k−1)-nested weighted list of elements of type T. It immediately follows

that (thin(i, s), N) evaluates to a weighted list of N elements whose

elements are each (k − 1)-nested lists of type T.
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11. Map. If t = map(s, t′) and (t, N)→ v, the operational semantics of map

requires that

(
(s(hd(tln−1(t′))), wt(tln−1(t′))), N

)
→ (vn, wn)

for each n ∈ {1, . . . , N}. As t′ is a subterm of t, our induction hypothesis

implies that if ` t′ : Σ k
′
S for some k′ ∈ {1, 2, . . .}, then for any N ∈ N,

t′ evaluates to a k′-nested weighted list of values of type S. Note that in

order for t to be well-typed, we must have ` s : Σ k
′−1S → Σ k−1T. We

have already shown that if this is the case, then tln−1(t′) evaluates to a

k′-nested weighted list of values of type S, and then that hd(tln−1(t′))

evaluates to a (k′−1)-nested weighted list of values of type S of length N ,

and then that s(hd(tln−1(t′))) evaluates to a (k−1)-nested weighted list

of values of type T of length N . Our result follows by observing that if

((s(hd(tln−1(t′))), wt(tln−1(t′))), N)→ (vn, wn) for each n ∈ {1, . . . , N}

where each vn is a k−1-nested weighted list of values of type T, then the

expression ((v1, w1), . . . , (vN , wN)) is a k-nested weighted list of values of

type T, completing the proof.

12. Reweight. This proof works in exactly the same way as that of map.

13. Product of samplers. If t = s ⊗ s′ and ` t : Σ kT where T con-

tains no instances of Σ , then it must be that k ≥ 1, that ` s : Σ kS,

and that ` s′ : Σ kS′. Our induction hypothesis states that (s,N) →

((v1, w1), . . . , (vN , wN)) where each v1 is a (k − 1)-nested weighted list

of values of type S, and (s′, N)→ ((v′1, w
′
1), . . . , (v′N , w

′
N)) where each v′1

is a (k − 1)-nested weighted list of values of type S′. Our result then

follows by noting that the product (((v1, v
′
1), w1 ·w′1), . . . , ((vN , v

′
N), w′N))

is a k-nested weighted list of values of type S.

14. Pseudorandom number generators. Finally, assume t = prng(s, t′);

in order for this expression to be well-typed, we must have k ≥ 1, `

t′ : Σ k−1T, and ` s : Σ k−1T → Σ k−1T. In order for (t, N) to evaluate to



3.1. Language 65

anything, we must have (sn−1(t), N) → vn for each n ∈ {2, . . . , N}; as

we have already proven the case for function abstraction, we know that

each vn is a (k−1)-nested weighted list of values of type T. We need only

note then that ((v1, 1), . . . , (vN , 1)) is clearly a k-nested weighted list of

values of type T.

The self-product operation

Having clarified the meaning of the product and of the thin operation, we are

now in a position to formally define the ‘self-product’ of a sampler, which en-

ables us to use multiple adjacent samples from the same sampler. To motivate

it, consider a sampler t : Σ T which evaluates as (t, 2N)→ (x1, . . . , x2N), where

for notational clarity we have omitted the weights. Applying the above oper-

ational semantics, the lagged sampler thin(2, t ⊗ tl(t)) : Σ (T× T) evaluates

to

(thin(2, t⊗ tl(t)), N)→ ((x1, x2), (x3, x4), . . . , (x2N−1, x2N)).

We call this sampler the ‘self-product’ of t, and denote it t2. Note that, by

contrast, the sampler t ⊗ t will produce pairs of perfectly correlated samples:

the operational semantics gives (t⊗ t, N)→ ((x1, x1), . . . (xN , xN)).

More generally, for any k ∈ N, we define the k-fold self-product of a

sampler as

tk , thin(k, t⊗ tl(t)⊗ . . .⊗ tlk−1(t)). (3.2)

Sampling from tk is intended to allow the sampling of k-tuples of independent

deviates generated by the sampler k. Ultimately, it is primarily to define this

self-product operation that the sampler operation thin is included.
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3.1.3 Denotational semantics

Denotational universe. We will see in section 3.3 that continuous maps play

a special role in the verification of sampler properties. We therefore need a

denotational domain in which continuity is a meaningful concept. We also

need a Cartesian closed model in order to interpret the lambda-abstraction

operation of our language. A standard solution is to consider the category of

compactly generated topological spaces [36, 37, 38] (henceforth CG-spaces).

Definition 3.1.4 (CG-space, [36, §1]). A topological space X is compactly

generated if it is Hausdorff and has the property that C ⊆ X is closed iff

C ∩K is closed in K for every compact K in X.

We need not worry about the theory of these spaces, but the following

facts are essential in what follows.

Proposition 3.1.5 ([36, 38]).

1. The category CG of CG-spaces and continuous functions is Cartesian

closed.

2. The category CG is complete and cocomplete.

3. Every metrisable topological space is CG.

4. Locally closed subsets (i.e. intersections of an open and a closed subset)

of CG-spaces are compactly generated.

It is worth briefly describing the Cartesian closed structure of CG. The

product is in general different from the product inTop, the category of topolog-

ical spaces: if the usual product topology is not already compactly generated,

then it needs to be modified to enforce compact generation [36, §4]. However,

in most practical instances the usual product topology is already compactly

generated – for example, any countable product of metrisable spaces is metris-

able, and thus compactly generated by Proposition 3.1.5. The internal hom

[X, Y ] between CG-spaces X, Y is given by the set of continuous maps X → Y
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together with the topology of uniform convergence on compact sets, also known

as the compact-open topology [36, §5].

Semantics of types. With this categorical model in place we define the se-

mantics of types. The semantics of ground types is as expected: JNK = N,

equipped with the discrete topology, and JRK = R, JR+K = [0,∞) with the

usual topology. The spaces f−1(i), f ∈ {≤, <,≥, >,=, 6=}, i ∈ 2 are inter-

preted precisely as the notation suggests, e.g.

q
<−1(0)

y
= {(x, y) | x, y ∈ R ∧ x ≥ y},

q
=−1(1)

y
= {(x, x) | x ∈ R}

together with the subspace topology inherited from R × R. Since all these

spaces are metrisable, our ground types are interpreted in CG by Proposi-

tion 3.1.5.

Products (including the unit type) and function types are interpreted in

the obvious way using the Cartesian closed structure of CG. Coproduct types

are interpreted by coproducts in CG, and given two terms s, t : T interpreted

as CG-morphisms JsK : A → JTK , JtK : B → JTK, the pullback type Ts t is

interpreted as the pullback A ×JTK B of JsK along JtK. All these spaces live in

CG by Proposition 3.1.5.

Since sampler types are coinductive types, their semantics will hinge on

the existence of terminal coalgebras.

Theorem 3.1.6 (Adámek). Let C be a category with terminal object 1, and

F : C → C be a functor. If C has and F preserves ωop-indexed limits, then

the limit νF of 1 F1!oo FF1F !oo ...FF !oo is the terminal coalgebra of F .

Since CG is complete, it has ωop-indexed limits. Recall that we want

to interpret Σ T as the coinductive type defined by the ‘functor’ T × R+ × −.

Formally, given a type T we want

JΣ TK , ν(JTK× R+ × Id). (3.3)
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Since products are limits, and limits commute with limits, it is clear that

the functor JTK × R+ × Id preserves limits, and in particular ωop-indexed

ones. Adámek’s theorem thus guarantees the existence of an object satisfying

eq. (3.3). More concretely, since the termimal object 1 is trivially metrisable,

and since R+ is metrisable, each object in the terminal sequence will be metris-

able provided JTK is, and thus
∏

n(JTK×R+)n will be metrisable whenever JTK

is, and will therefore be equipped with the usual product topology. The limit

defining eq. (3.3) is a closed subspace of this product, which means that the

limit in CG defining JΣ TK is the same as in Top when JTK is metrisable (for

example, if T is a ground type or a product of ground types). However, by

defining JΣ TK coinductively rather than simply as (JTK×R+)ω, we obtain a ter-

minal coalgebra structure on JΣ TK, and therefore the ability to define sampler

operations coinductively.

Semantics of the subtyping relation. Our language contains the predi-

cates f ∈ {≤, <,≥, >,=, 6=} (essential for, among other applications, rejection

sampling theorem 3.3.16) – and yet is meant to be interpreted in a universe

of topological spaces and continuous maps. These predicates are of course not

continuous maps R × R → 2 for the usual topology on R × R. However, for

each such predicate f , the sets Jf−1(0)K and Jf−1(1)K are locally closed sets,

that is to say the intersection of an open set and a closed set (for the usual

topology on R× R), and therefore CG-spaces by Proposition 3.1.5.

Our central idea for dealing with discontinuities is that since CG is co-

complete, the space Jf−1(0)K+Jf−1(1)K is a CG-space. This space has the nice

property that f is continuous as a map f : Jf−1(0) + f−1(1)K→ 2. Since each

f−1(i) is a type, we can enforce this semantics by simply typing these built-in

functions in Func as f : f−1(0) + f−1(1)→ B.

The topology on Jf−1(0) + f−1(1)K is finer than the usual topology on

R × R, which means that the identity map Id : Jf−1(0) + f−1(1)K → R × R

is continuous. This is the semantic basis for the axiom in fig. 3.2b. From the

other rules it is easy to see by induction that the subtyping relation is only
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defined on spaces sharing the same carrier set and, semantically, coarsens the

space’s topology. In other words, if S / T, then JSK and JTK share the same

carrier, and the corresponding identity map Id : JSK→ JTK is continuous.

Example 3.1.7. Let p , if x = 0 then 1 else − 1; we will first show how

the context-restriction rule allows us to type-check this program. For read-

ability’s sake, let Eq , =−1(1) and Neq , =−1(0). We now derive, using

= : Neq + Eq→ R,

x : R ` x : R ` 0 : R
x : R ` (x, 0) : R× R

x : (x, 0)−1Neq + (x, 0)−1Eq ` (x, 0) : Neq + Eq
Neq + Eq / R× R

x : (x, 0)−1Neq + (x, 0)−1Eq ` x = 0 : B ` 1 : R ` −1 : R

x : (x, 0)−1Neq + (x, 0)−1Eq ` if x = 0 then 1 else − 1 : R

Anticipating the semantics on terms discussed shortly, it can easily be shown

that

q
(x, 0)−1Neq + (x, 0)−1Eq

y
= ((−∞, 0) ∪ (0,∞)) + {0}

and thus JpK is the continuous map

JpK : ((−∞, 0) ∪ (0,∞)) + {0} → R, x 7→

1 if x = 0

−1 else

Semantics of well-formed terms. Axioms, weakening, subtyping, product,

projections, let-binding, λ-abstraction, function application, injections and

pattern matching are interpreted in the expected way (given that CG is a

Cartesian closed category with coproducts).

Continuous built-in functions, for example + : R× R→ R or exp : R→ R,

are interpreted in the obvious way. As explained above, discontinuous built-

in functions {≤, <,≥, >,=, 6=} are typed in such a way that their natural

interpretations are tautologically continuous.
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We can now describe the semantics of the context-restriction rule. From

the premise, our semantics for the subtyping relation, and the side-conditions,

we have morphisms

JtK :
∏
j∈n

JSjK→ JTK , and Id :
∐
i∈m

JTiK→ JTK .

By eq. (3.1) we interpret each ‘inverse image type’ t−1(Ti) as the pullback

(inverse image) of JtK along the inclusion JTKi ↪→
∐

i∈m JTiK which is, as the

notation implies, simply given by JtK−1 (JTiK). Since
∐

i∈m JTiK and JTK share

the same carrier, it is clear that this defines a partition of JΓK, and we can

thus retype t as a continuous map
∐

i∈m Jt−1(Ti)K →
∐

i∈m JTiK, interpreting

the rule.

As mentioned earlier in this section, context-restriction prevents λ-

abstraction; the following example illustrates why this must be the case.

Example 3.1.8. Consider the simple program x < y, with derivation

x : R, y : R ` (x, y) : R× R

(x, y) : (x, y)−1(<−1(0)) + (x, y)−1(<−1(1)) ` (x, y) :<−1(0) +<−1(1)

(x, y) : (x, y)−1(<−1(0)) + (x, y)−1(<−1(1)) ` x < y : B

The interpretation of x < y is given by the continuous function

J<K :
q
<−1(0)

y
+

q
<−1(1)

y
→ 2

where J<−1(0)K = {(x, y) | x ≥ y} and J<−1(1)K = {(x, y) | x < y}, each

equipped with the subspace topology. While it has the same carrier R × R,

the domain of J<K is no longer a product of topological spaces – it is instead

a coproduct of topological spaces. This means that it is no longer possible to

λ-abstract over x or y using the Cartesian closed structure of CG.

In order to be able to λ-abstract the map < in this way, we would need

a topology on R× R with the property that for any given x0 ∈ R the function

x0 < − : R → 2 is continuous. This would introduce all of the open sets
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[x0,∞) to the topology of R, meaning that we must equip R with the notoriously

problematic lower limit topology (a.k.a. the Sorgenfrey line). Whether or not

this is a CG-space seems to be a thorny question, possibly independent of ZF

[39].

Finally, we define the denotational semantics of sampler operations using

the coinductive nature of sampler types. Recall that for a type T, JΣ TK ,

ν(JTK×R+×Id). In particular, JΣ TK comes equipped with a coalgebra structure

map

unfoldT : JΣ TK→ JTK× R+ × JΣ TK .

Moreover, for any other (continuous) coalgebra structure map γ : X → JTK×

R+×X, the terminal nature of JΣ TK provides a unique JTK×R+× Id-coalgebra

morphism

beh(γ) : X → JΣ TK .

Since JΣ TK is interpreted in CG, it follows automatically that both unfoldT

and beh(γ) are continuous. However, what is not immediately clear is that

beh is in fact continuous in γ.

Proposition 3.1.9. Let F : CG→ CG satisfy the condition of theorem 3.1.6

as well as the condition that int(νF ) 6= ∅ in
∏

i F
i1, and let behX : [X,FX]→

[X, νF ] be the (behaviour) map associating to any F -coalgebra structure on X

the unique coalgebra morphism into the terminal coalgebra. The map behX is

continuous, i.e. is a CG-morphism.

Proof of Proposition 3.1.9.

Let fn → f be a convergent sequence a coalgebra maps in [X,FX]; we need

to show that behX(fn)→ behX(f) in [X, νF ]. The topology on [X, νF ] is the

compact-open topology, which means that it is generated by the subbase of

open sets of the shape

(K,U) , {h : X → νF | h[K] ⊂ U}
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for some fixed compact set K ⊆ X and open set U ⊆ νF . Moreover, by

construction of νF (see theorem 3.1.6), we know that the topology is induced

by the product topology on
∏

i F
i1. A base for this topology is given by

intersections of cylinder sets with νF . Because we are also assuming that

int(νF ) 6= ∅ in
∏

i F
i1, it contains such an open set, and we can thus simply

start with an open neighbourhood of behXf of the shape (K,
∏

i Vi) where

for all but finitely many indices Vi = F i1, and for the other indices Vi is an

open subset of F i1 (and we don’t have to worry about intersecting with νF ).

Given such an open set, we need to find N ∈ N such that for all n > N

behX(fn) ∈ (K,
∏

i Vi).

By the construction of theorem 3.1.6 we have that

behX(f)(x) = (!X(x), F !X(f(x)), F 2!X(Ff(f(x))), . . .)

where !X : X → 1 is the unique morphism to the terminal object. For each

of the finitely many non-trivial open subsets Vik ⊂ F ik1, 1 ≤ k ≤ M , because

fn → f and composition with continuous functions is a continuous operation

on internal hom sets in CG ([36, 5.9]), it follows that there exists Nk such that

for every n > Nk

F ik !X ◦ F ik−1fn ◦ . . . ◦ fn ∈ (K,Vik)

By taking N = max1≤k≤M Nk, we get that for for all i ∈ N and all n > N

F i!X ◦ F i−1fn ◦ . . . ◦ fn ∈ (K,Vi)

In other words, for any n > N , behX(fn) ∈ (K,
∏

i Vi), which concludes the

proof.

Using unfold and beh we define the denotational semantics of all the sam-

pler operations in fig. 3.4. These definitions are precisely the infinite (coin-
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ductive) versions of the finitary transformations defined in the operational

semantics of fig. 3.3. All the maps involved in these definitions are continuous;

this follows from Proposition 3.1.9 and the fact that evaluation and function

composition are continuous operations on the internal homsets of CG ([36,

5.2,5.9]).

JΓ ` t : Σ TK = f

JΓ ` hd(t) : TK = π1 ◦ unfoldT ◦ f

JΓ ` t : Σ TK = f
r

Γ ` wt(t) : R+
z

= π2 ◦ unfoldT ◦ f

JΓ ` t : Σ TK = f

JΓ ` tl(t) : Σ TK = π3 ◦ unfoldT ◦ f

JΓ ` s : NK = f JΓ ` t : Σ TK = g

JΓ ` thin(s, t) : Σ (T)K = evΣ T,Σ T ◦ (idΣ T × behΣ T) ◦
(
idΣ T ×

(
unfoldT ◦ (π3 ◦ unfoldT)(· −1)

))
◦ 〈f, g〉

JΓ ` s : Σ SK = f JΓ ` t : Σ TK = g

JΓ ` s⊗ t : Σ (S× T)K = behΣ S,Σ T (π1 × π4 × (π2 · π5)× π3 × π6 ◦ unfoldS × unfoldT) ◦ 〈f, g〉

JΓ ` s : S→ TK = f JΓ ` s : Σ SK = g

JΓ ` map(s, t) : Σ TK = evΣ S,Σ T ◦ (idΣ S × behΣ S) ◦ (idΣ S × ((−× idR+ × idΣ S) ◦ unfoldS)) ◦ 〈f, g〉
q
Γ ` s : T→ R+

y
= f JΓ ` t : Σ TK = g

JΓ ` reweight(s, t)K = evΣ T,Σ T ◦ (idΣ T × behΣ T) ◦ (idΣ T × ((idT ×−× idΣ T) ◦ unfoldT)) ◦ 〈f, g〉

JΓ ` s : T→ TK = f JΓ ` t : TK = g

JΓ ` prng(s, t) : Σ TK = evT,Σ T ◦ (idT × behT) ◦ (idT × (idT × 1×−)) ◦ 〈f, g〉

Figure 3.4: Denotational semantics of sampler operations

Adequacy

Our language prominently features an interesting asymmetry: its denotational

semantics is written in terms of the coinductive sampler type JΣ TK, while

its operational semantics is written in terms of finitary operations on finite

sequences of samples. More specifically, the operational semantics is given

in terms of reductions to the values defined by fig. 3.1c, and values with no

free variables cannot be of sampler type. To establish a connection between

the two, we begin by defining a generic way to convert terms of arbitrary

type (including sampler type) into values, which are not samplers, mirroring

the rules of the operational semantics. Given a type T and an integer N we
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inductively define its associated value type valN(T) ∈ Value by

valN(G) = G,

valN(Σ T) =
(
valNT

)N
,

valN(S ∗ T) = valN(S) ∗ valN(T), ∗ ∈ {×,+,→}

where G ∈ Ground. Since we’re only interested in closed samplers here, and

pullback types can only occur in a context, we need not define valN on pullback

types.

We now define the generalised projection maps pNT : JTK →
q
valN(T)

y

recursively via

pNG = idJGK, pNS∗T = pNS ∗ pNT , ∗ ∈ {×,+}

pNS→T = idJS→TK pN
Σ T = π1:N ◦ (pNT×R+)ω

The reader will have noticed that we have defined pNS→T trivially. The reason

is that, as a quick examination of the rules of fig. 3.3 will reveal, there is

no conclusion and no premise of the type (t, N) → v where t is of function

type. The only occurrence of terms of function types are within a function

evaluation, or are values, i.e. terms trivially reducing to themselves.

Theorem 3.1.10. For any program ` t : T, we have

(t, N)→ v ⇔ pNT (JtK) = JvK .

Proof of Theorem 3.1.10.

⇐) By induction on the derivation tree of (t, N)→ v.

Base case. The base case is trivial: the only derivation of length 0

allowed by fig. 3.3 assumes that t = v is a value. It is easy to check that if

t : T is a value, then pNT = idJTK and thus pNT (JtK) = JtK = JvK tautologically.

Inductive case. Assume that the last rule of the derivation of (t, N)→ v

is:
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(i) Built-in function. t = f(s1, . . . , sn) : G for some si : Gi, 1 ≤ i ≤ n. This

means that the prior rules of the derivation were (si, N) → vi for each

i, and by our inductive hypothesis, pNG (JsiK) = JviK. Since for a ground

type G we have pNG = idJGK, we immediately get

pNG (Jf(s1, . . . , sn)K) , JfK (pNGi(Js1K), . . . , pNGi(JsnK))

= JfK (Jv1K , . . . , JvnK) induction hypothesis

(ii) Case. t = case (c, t′) of {(i, xi)⇒ si}i∈n. If c chooses the branch j ∈ n,

then pNT (JsjK (Jt′K)) = JvK by our inductive hypothesis, and

pNT
(q
case (c, t′) of {(i, xi)⇒ si}i∈n

y)
, pNT (JsjK (Jt′K))

= JvK induction hypothesis

(iii) λ-abstraction. t = (λx : S. t′)(s) : T for some s : S and some t′ : T.

pNT (J(λx : T. t′)(s)K) , pNT ◦ evJSK,JTK (Jλx : T. t′K× JsK)

, pNT ◦ evJSK,JTK

(
Ĵt′K× JsK

)
Currying Jt′K

= pNT ◦ evJSK,JTK (Jt′K× JsK) Jt′K has only one variable

= pNT (Jt′K (JsK))

= JvK induction hypothesis

(iv) let-binding. t = let x = s in t′ : T for some s : S and t′ : T.

pNT (Jlet x = s in tK) , pNT (Jt′K (JsK))

= pNT (Jλx. t′K (JsK))

= JvK induction hypothesis
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(v) Product. t = (s, s′) for some s : S, s′ : S′.

pNS×S′(J(s, s
′)K) , pNS×S′ (〈JsK , Js′K〉)

= 〈pNS (Js)K , pNS′ (Js
′K)〉 inductive definition of pNT

= 〈Jv1K , Jv2K〉 induction hypothesis

= J(v1, v2)K

(vi) Projections. t = fst(s, s′) for some s : S, s′ : S′.

pNS (Jfst(s, s′)K) , pNS (π1〈JsK , Js′K〉)

= pNS (JsK)

= Jv1K induction hypothesis

and similarly for snd.

(vii) Pushforward. t = map(s, t) for some s : S → T and t : Σ S. To keep

the derivation readable we will write s instead of JsK, t instead of JtK,

and we also introduce the following notation. Let F denote the functor

JTK×R+× Id, let γ : νF → FνF denote the terminal coalgebra structure

map unfoldT, let δ , JsK× idR+ × idΣ S ◦ unfoldS, the coalgebra structure

map defining the map operation, let b = beh(δ), and let

h , π1 ◦ unfoldS, i.e. h(t) is the first sample of t

w , π2 ◦ unfoldS, i.e. w(t) is the weight of the first sample of t

f , π3 ◦ unfoldS, i.e. f(t) is the tail of t.
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With this we can now derive

pN
Σ T(Jmap(s, t)K)

, π1:N ◦
(
pNT×R+

)ω
(Jmap(s, t)K)

, π1:N ◦
(
pNT×R+

)ω
(b(t))

(1)
=
(
pNT×R+

)N ◦ π1:N(b(t))

(2)
=
(
pNT×R+

)N ◦ Fπ1:N−1 ◦ γ ◦ (b(t))

(3)
=
(
pNT×R+

)N ◦ FN−1π1 ◦ FN−2γ ◦ . . . ◦ F 0γ(b(t))

(4)
=
(
pNT×R+

)N ◦ FN−1π1 ◦ FN−1b ◦ FN−2δ ◦ . . . ◦ F 0δ(t)

(5)
=
(
pNT×R+

)N ◦ FN−1π1 ◦ FN−1b
(
(s(h(t)), w(t)), . . . , (s(h(fN−1(t))), w(fN−1(t))), fN−1(t)

)
(6)
=
(
pNT×R+

)N ◦ ((s(h(t))), w(t)), . . . , (s(h(fN−1(t))), w(fN−1(t)))
)

=
(
pNT×R+(s(h(t))), w(t)), . . . , pNT×R+(s(h(fN−1(t))), w(fN−1(t)))

)
=
(
(pNT (s(h(t))), w(t)), . . . , (pNT (s(h(fN−1(t)))), w(fN−1(t)))

)
(7)
= J((v1, w1), . . . , (vN , wN))K

where (1) is the simple observation that π1:N ◦(pNT )ω = (pNT )N ◦π1:N , (2) is

by definition of γ, (3) is by iteration of (2), (4) follows from the fact that

b is a coalgebra morphism, (5) is by definition of δ, (6) is by definition of

F , b and p1
T, and (7) is by the induction hypothesis on the N premises of

the rule.

(viii) Reweight. The proof is very similar to the case of map. Again, writing

δ , idJTK × (− · −)× idJΣ TK ◦ 〈idJTK, JsK〉 × idR+ × idJΣ TK ◦ γ
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for the coalgebra structure defining reweight and b = beh(δ), we get

pN
Σ T(reweight(s, t))

, π1:N ◦
(
pN
T×R+

)ω
(reweight(s, t))

,
(
pN
T×R+

)N
◦ π1:N ◦ b(t)

(1)
=
(
pN
T×R+

)N
◦ FN−1π1 ◦ FN−1b

(
(h(t), s(h(t))w(t)), . . . , (h(fN−1(t)), s(fN−1(t))w(fN−1(t))), fN−1(t)

)
(2)
=
(

(pNT (h(t)), s(h(t))w(t)), . . . , (pNT (h(fN−1(t))), s(fN−1(t))w(fN−1(t)))
)

(3)
= ((Jv1K , Jw1K), . . . , (JvN K , JwN K))

where (1) follows the same derivation as in the case of map but with the

definition of δ as above, (2) is by definition of F and pNT×R+ , and (3) is by

the the induction hypothesis applied to the N premises of the reweight

rule.

(ix) Product of samplers. The proof works in exactly the same way as for

map and reweight.

(x) Thin. The proof works in exactly the same way as for map and reweight.

(xi) Pseudorandom number generators. Consider the term prng(s, t) :

Σ T. Using

δ , 〈idJTK, 1, JsK〉

and b = beh(δ), the same steps as in the case of map and reweight yield

pN
Σ T(Jprng(s, t)K) , π1:N ◦ (pNT×R+)ω(Jprng(s, t)K)

=
(
pNT×R+

)N ◦ FN−1π1 ◦ FN−1b((t, 1), (s(t), 1), . . . , (sN−1(t), 1), sN(t))

= ((pNT (t), 1), (pNT (s(t)), 1), . . . , (pNT (sN−1(t)), 1))

= J(v1, 1), (v2, 1), . . . , (vN , 1))K

(xii) Head. Consider the term hd(t) for some t : Σ T. Using the same notation
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as above,

pNT ◦ Jhd(t)K , pNT ◦ π1 ◦ γ(JtK)

= π1 ◦ π1 ◦
(
pNT×R+

)N ◦ π1:N(JtK)

= π1 ◦ π1 J(v1, w1), . . . , (vN , wN)K induction hypothesis

= Jv1K

(xiii) Weight. Consider the term wt(t) for some t : Σ T. The proof is the same

as the above:

pNT ◦ Jwt(t)K , pNT ◦ π2 ◦ γ(JtK)

= π2 ◦ π1 ◦
(
pNT×R+

)N ◦ π1:N(JtK)

= π2 ◦ π1 J(v1, w1), . . . , (vN , wN)K induction hypothesis

= Jw1K

(xiv) Tail. Consider the term tl(t) f for some t : Σ T. It is immediate that

pN
Σ T ◦ Jtl(t)K ,

(
pNT×R+

)N ◦ π1:N(π3 ◦ γ(JtK))

=
(
pNT×R+

)N ◦ π2:N+1(JtK)

= π2:N+1 ◦
(
pNT×R+

)N+1 ◦ π1:N+1(JtK)

= π2:N+1 J(v1, w1), . . . , (vN+1, wN+1)K induction hypothesis

= J(v2, w2), . . . , (vN+1, wN+1)K

⇒) By induction on the typing-proof of t. Note that for any term t : T, pNT JtK

is necessarily a value, by definition of pNT .

Base case. The only programs which are type-checkable in 0 steps are

the constants. Since all constants are values and values operationally evaluate

to themselves, the base case holds trivially.

Inductive case. The proof is routine and we only show a few cases.
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Suppose that the last step of the rule applied in the type-checking of t was

(i) Product. Suppose ` (s, t) : S× T and that pNS×T(J(s, t)K) = JvK for some

value v. Since the last applied rule had premises ` s : S and ` t : T we

have

JvK = pNS×T(Js⊗ tK)

= pNS × pNT 〈JsK , JtK〉 inductive definition of pNS×T

= (pNS JsK , pNT JtK)

= (Jv1K , Jv2K)

for some values v1, v2. By the induction hypothesis it is therefore the

case that (s,N)→ v1 and (t, N)→ v2 for any N ∈ N and it follows that

(s⊗ t, N)→ (v1, v2) by definition of the reduction relation →.

(ii) λ-abstraction. If ` λx : S. t : S→ T, then the term λx : S. t is a value,

and thus (λx : S. t, N)→ λx : S. t trivially.

(iii) Head. Suppose that ` hd(t) : T, and that pNT (Jhd(t)K) = Jv1K for some

value v1. Since the last applied rule has the premise ` t : Σ T, and given

the semantics of hd, it must be the case that for any N ≥ 1,
(
pNT×R+

)N ◦
π1:N(t) = J((v1, w1), . . . , (vN , wN))K for some values vi, wi. By the induc-

tion hypothesis it must be the case that (t, N)→ ((v1, w1), . . . , (vN , wN)),

and thus that (hd(t), N)→ v1.

(iv) Weight. The proof is the same as that for hd. Suppose that ` wt(t) : T,

and that pNT (Jwt(t)K) = Jw1K for some weight w1 ≥ 0. Since the last

applied rule has the premise ` t : Σ T, and given the semantics of

wt, it must be the case that for any N ≥ 1,
(
pNT×R+

)N ◦ π1:N(t) =

J((v1, w1), . . . , (vN , wN))K for some values vi, wi. By the induction hy-

pothesis it must be the case that (t, N) → ((v1, w1), . . . , (vN , wN)), and

thus that (wt(t), N)→ w1.
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(v) Pushforward. Suppose that ` map(t, s) : Σ T and that pN
Σ T(Jmap(t, s)K) =

J((v1, w1), . . . , (vn, wn)K. The premises of the last applied rule must have

been ` s : Σ S and ` t : S→ T, and it follows from the semantics of

map that JviK = pNT Jt(hd(tli−1(s)))K) and JwiK = Jwt(tli−1(s))K. It fol-

lows from the induction hypothesis that (t(hd(tli−1(s)), N) → vi and

(wt(tli−1(s)), N) → wi, and thus by the definition of → we have that

(map(t, s), N)→ ((v1, w1), . . . , (vn, wn).

3.2 Sampler equivalence
In order to implement a system for reasoning about whether a deterministic

sampler targets a particular probability distribution, it is necessary to first

define a notion of equivalence between samplers, and methods for proving that

equivalence. Having such a system gives a natural path towards verifying a

sampler: first rewrite a given sampler s in an equivalent but simpler form,

and then prove that this simplified form targets the correct distribution. In

this section, we introduce a relation ≈ on programs which justifies this type

of reasoning.

Definition 3.2.1. We say that two programs Γ ` s : T and Γ ` t : T are

equivalent, notation Γ ` s ≈ t : T, if they are related by the smallest congruence

relation on well-typed terms containing the rules of fig. 3.5.2

The rules of fig. 3.5 employ a number of shorthand conventions for a

more concise presentation. We introduce identity functions idS , λx : S. x :

S→ S, constant functions 1S , λx : S. 1 : S→ R+, function composition t ◦
2By congruence relation, we mean that ≈ is an equivalence relation which is also preserved

by all operations in our language. For example, if Γ ` s ≈ t : Σ T holds, then Γ ` tl(s) ≈
tl(t) : Σ T must hold as well, and the same for all operations in the language; we omit these
rules for brevity. We have also omitted as trivial the evaluation of built-in functions on
ground types, e.g. rules such as Γ ` 3 + 6 ≈ 9 : R, as well as casts on ground types, e.g.
cast〈R× R〉(3, 6) ≈ (3, 6) : R× R, where the first (3, 6) is of a ground-truth subtype of R× R,
e.g., ≤−1 (0)+ ≤−1 (1).
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s , λx : S. t(s(x)) : S→ U where s : S→ T, t : T→ U, compositions f 0 ,

idS : S→ S, fn , f ◦ fn−1 for any n ∈ N, pointwise products s · t , λx : S, y :

T. s(x) ∗ t(y) : S× T→ R+ of real-valued functions s : S→ R+, t : T→ R+, and

finally Cartesian products s× t , λx : S, y : T. (s(x), t(y)) : S× T→ S′ × T′ of

functions s : S→ S′, t : T→ T′.

Theorem 3.2.2. The rules of fig. 3.5 are sound: if Γ ` s ≈ t : T, then

JΓ ` s : TK = JΓ ` t : TK.

Proof of Theorem 3.2.2.

Standard rules:

1. β- and η-equivalence.

JΓ ` (λx : S.t)(s) : TK = JΓ ` t[x := s] : T K ,

JΓ ` λx : S.t(x) : S→ TK = JΓ ` t : S→ TK

The soundness of β- and η-equivalence is well-known and immediate from

the properties of exponential objects.

2. let-reduction.

JΓ, s : S ` let x = s in t : TK = JΓ, s : S ` (λx : S.t)(s) : TK

True by definition of the denotational semantics of let.

3. Projections.

JΓ ` fst((s, t)) : SK = JΓ ` s : SK ,

JΓ ` snd((s, t)) : TK = JΓ ` t : TK

Immediate from the properties of Cartesian products.
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Γ ` (λx : S.t)(s) ≈ t[x := s] : T

Γ ` λx : S.t(x) ≈ t : S→ T

Γ ` let x = s in t ≈ (λx : S. t)(s) : T

Γ ` fst((s, t)) ≈ s : S

Γ ` snd((s, t)) ≈ t : T

Γ ` case inj (t) of {(i, xi)⇒ si}i∈n ≈ sj [xj := t] : T

{Γ ` op(case t of {(i, xi)⇒ si}i∈n) ≈ case t of {(i, xi)⇒ op(si)}i∈n : T | op ∈ {fst, snd, hd, wt, . . .}}

(a) Equivalence rules for general programming constructs

Γ ` hd(thin(n, t)) ≈ hd(t) : T Γ ` wt(thin(n, t)) ≈ wt(t) : R+

Γ ` hd(s⊗ t) ≈ (hd(s), hd(t)) : S× T Γ ` wt(s⊗ t) ≈ wt(s) ∗ wt(t) : R+

Γ ` hd(reweight(f, t)) ≈ hd(t) : T Γ ` wt(reweight(f, t)) ≈ s(hd(t)) ∗ wt(t) : R+

Γ ` hd(map(f, t)) ≈ f(hd(t)) : T Γ ` wt(map(f, t)) ≈ wt(t) : R+

Γ ` hd(prng(f, t)) ≈ t : T Γ ` wt(prng(f, t)) ≈ 1 : R+

{Γ ` tl(thin(n, t)) ≈ thin(n, tln(t)) : Σ T | n ∈ N}
Γ ` tl(s⊗ t) ≈ tl(s)⊗ tl(t) : Σ (S× T)

Γ ` tl(reweight(f, t)) ≈ reweight(f, tl(t)) : Σ T

Γ ` tl(map(f, t)) ≈ map(f, tl(t)) : Σ T

Γ ` tl(prng(f, t)) ≈ prng(f, f(t)) : Σ T

(b) Equivalence rules for hd, wt, tl

Γ ` thin(n, s⊗ t) ≈ thin(n, s)⊗ thin(n, t) : Σ (S× T)

Γ ` s⊗ reweight(g, t) ≈ reweight(1S · g, s⊗ t) : Σ (S× T)

Γ ` reweight(f, s)⊗ t ≈ reweight(f · 1T, s⊗ t) : Σ (S× T)

Γ ` s⊗ map(f, t) ≈ map(idS × f, s⊗ t) : Σ (S× T)

Γ ` map(f, s)⊗ t ≈ map(f × idT, s⊗ t) : Σ (S× T)

Γ ` prng(f, a)⊗ prng(g, b) ≈ prng(f × g, (a, b)) : Σ (S× T)

(c) Equivalence rules for ⊗

Γ ` thin(n, thin(m, t)) ≈ thin(n×m, t) ≈ Σ T
Γ ` thin(n, reweight(f, t)) ≈ reweight(f, thin(n, t)) : Σ T

Γ ` thin(n, map(f, t)) ≈ map(f, thin(n, t)) : Σ T

{Γ ` thin(n, prng(f, t)) ≈ prng(fn, t) : Σ T | n ∈ N}

(d) Equivalence rules for thin

Γ ` reweight(g, reweight(f, t)) ≈ reweight(f · g, t) : Σ T

Γ ` map(g, map(f, t)) ≈ map(g ◦ f, t) : Σ T

Γ ` reweight(g, map(f, t)) ≈ map(f, reweight(g ◦ f, t)) : Σ T

(e) Equivalence rules for map, reweight

Figure 3.5: Rules for sampler equivalence
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4. Pattern matching.

q
Γ ` case inj (t) of {(i, xi)⇒ si}i∈n : T

y
= JΓ ` sj[xj := t] : TK

Immediate from the denotational semantics of case and injections.

Congruence rules: Trivial in the denotational setting: if JΓ ` s : SK =

JΓ ` s′ : SK have identical semantics, then clearly, for any built-in operation

op : S → T, JΓ ` op(s) : TK = JΓ ` op(s′) : TK; the same extends to n-ary

operations.

Coinductive definitions: These rules all follow immediately from the coin-

ductive definitions of our sampler operations, and will be used heavily in the

proofs that follow.

1. Map.

JΓ ` hd(map(s, t)) : TK = JΓ ` s(hd(t)) : TK ,
q
Γ ` wt(map(s, t)) : R+

y
=

q
Γ ` s(wt(t)) : R+

y
,

JΓ ` tl(map(s, t)) : Σ TK = JΓ ` map(tl(t)) : Σ TK

Immediate from the coinductive definition of map.

2. Product.

JΓ ` (hd(s), hd(t)) : S× TK = JΓ ` hd(s⊗ t) : S× TK ,
q
Γ ` wt(s) ∗ wt(t) : R+

y
=

q
Γ ` wt(s⊗ t) : R+

y
,

JΓ ` tl(s)⊗ tl(t) : Σ (S× T)K = JΓ ` tl(s⊗ t) : Σ (S× T)K

Immediate from the coinductive definition of ⊗.
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3. Thinning.

JΓ ` hd(thin(n, t)) : TK = JΓ ` hd(t) : TK ,
q
Γ ` wt(thin(n, t)) : R+

y
=

q
Γ ` wt(t) : R+

y
,

∀n ∈ N, JΓ ` tl(thin(n, t)) : Σ TK = JΓ ` thin(n, tln(t)) : Σ TK ,

JΓ ` thin(1, t) : Σ TK = JΓ ` t : Σ TK

Immediate from the coinductive definition of thin.

4. Pseudorandom number generators.

JΓ ` hd(prng(s, t)) : TK = JΓ ` t : TK ,
q
Γ ` wt(prng(s, t)) : R+

y
=

q
Γ ` 1 : R+

y
,

JΓ ` tl(prng(s, t)) : Σ TK = JΓ ` prng(s, s(t)) : Σ TK

Immediate from the coinductive definition of prng.

5. Reweighting.

JΓ ` hd(reweight(s, t)) : TK = JΓ ` hd(t) : TK ,
q
Γ ` wt(reweight(s, t)) : R+

y
=

q
Γ ` s(hd(t)) ∗ wt(t) : R+

y
,

JΓ ` tl(reweight(s, t)) : Σ TK = JΓ ` reweight(s, tl(t)) : Σ TK

Immediate from the coinductive definition of reweight.

Composition rules:

1. Thinning over thinning.

JΓ ` thin(n, thin(m, t)) : Σ TK = JΓ ` thin(n ∗m, t) : Σ TK

For any possible value of the context γ ∈ JΓK, we show equal-

ity between the elements JΓ ` thin(n, thin(m, t)) : Σ TK (γ) and



86 Chapter 3. Deterministic stream-semantics

JΓ ` thin(n ∗m, t) : Σ TK (γ) of JΣ TK coinductively. As all of the ar-

guments we will make have precisely the same structure, we will only

give that structure in full detail for this proof; for the rest, we will only

present the bisimulation which gives our result.

We show this result by constructing, for each context γ, a bisimulation

R(γ) ⊆ JΣ TK×JΣ TK. This is a set of samplers satisfying three properties:

(a) ∀(s, t) ∈ R(γ), π1(unfoldT(s)) = π1(unfoldT(t)); that is, the head of

s and the head of t are the same

(b) ∀(s, t) ∈ R(γ), π2(unfoldT(s)) = π2(unfoldT(t)); that is, the first

weight of s and the first weight of t are the same

(c) ∀(s, t) ∈ R(γ), (π3(unfoldT(s)), π3(unfoldT(t))) ∈ R(γ); that is, ap-

plying tl to two samplers in the bisimulation yields two more sam-

plers in the bisimulation.

The structure of this bisimulation R(γ) is typically found by applying tl

to both sides of the equivalence we wish to show, and then applying the

rules we have previously shown (typically, the coinductive definitions of

each operation, in this case thin) to simplify what results. For example,

in this case, we can simplify

JΓ ` tl(thin(n, thin(m, t))) : Σ TK = JΓ ` thin(n, thin(m, tlm∗n(t))) : Σ TK

and

JΓ ` tl(thin(n ∗m, t)) : Σ TK = JΓ ` thin(n ∗m, tln∗m(t)) : Σ TK .
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This suggests as a bisimulation the following relation:

R(γ) = {(
q
(Γ ` thin(n, thin(m, tlk(t))) : Σ T

y
(γ),

q
Γ ` thin(n ∗m, tlk(t)) : Σ T)

y
(γ)

) | k ∈ N}

In future, as this expression is quite crowded, we will drop the dependence

on γ.

We must now show that this is a valid bisimulation. First, we must

show that applying hd and wt to each of these programs yields the same

result, which is always immediate. In this case, applying the rule we had

previously referred to as the coinductive definition of thin gives

q
Γ ` hd(thin(n, thin(m, tlk(t)))) : T

y
=

q
Γ ` hd(thin(m, tlk(t))) : T

y

=
q
Γ ` hd(tlk(t)) : T

y

and

q
Γ ` hd(thin(n ∗m, tlk(t))) : T

y
=

q
Γ ` hd(tlk(t)) : T

y
;

The same argument exactly applies for wt:

q
Γ ` wt(thin(n, thin(m, tlk(t)))) : R+

y
=

q
Γ ` wt(thin(m, tlk(t))) : R+

y

=
q
Γ ` wt(tlk(t)) : R+

y

and

q
Γ ` wt(thin(n ∗m, tlk(t))) : R+

y
=

q
Γ ` wt(tlk(t)) : R+

y
.

Finally, we must show that applying tl to each of these expressions
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yields another element of the bisimulation. This is essentially the same

argument as the one which led us to the bisimulation R, and follows from

the coinductive definition of thin as above:

q
Γ ` tl(thin(n, thin(m, tlk(t)))) : Σ T

y

=
q
Γ ` thin(n, tln(thin(m, tlk(t)))) : Σ T

y

=
q
Γ ` thin(n, thin(m, tln∗m+k(t))) : Σ T

y

and

q
Γ ` tl(thin(n ∗m, tlk(t))) : Σ T

y
=

q
Γ ` thin(n ∗m, tln∗m+k(t)) : Σ T

y

Therefore, for any γ, applying tl will yield another element of our bisim-

ulation, and so our proof is complete. Using this proof as a reference, we

will abbreviate the remainder of the bisimulation proofs in the Appendix,

as the structure of each argument is identical.

2. Map over map.

JΓ ` map(g, map(f, t)) : Σ TK = JΓ ` map(g ◦ f, t) : Σ TK

Applying the coinductive definition of map, we can easily see

JΓ ` tl(map(g, map(f, t))) : Σ TK = JΓ ` map(g, map(f, tl(t))) : Σ TK

and

JΓ ` tl(map(g ◦ f, t)) : Σ TK = JΓ ` map(g ◦ f, tl(t)) : Σ TK ;

which suggests the bisimulation

R = {(JΓ ` map(g, map(f, tln(t))) : Σ TK , JΓ ` map(g ◦ f, tln(t)) : Σ TK) | n ∈ N} ,
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This bisimulation is easily verified: simply apply hd to both sides and

reduce by applying the coinductive definition of map and we will see that

we obtain two equal expressions; apply wt to both sides and reduce by

applying the coinductive definition of map, and two equal expressions

will result; and finally apply tl to both sides and reduce by applying the

coinductive definition of map, and we will see that the resulting pair is

also included within this bisimulation.

3. Reweighting over reweighting.

JΓ ` reweight(g, reweight(f, t)) : Σ TK = JΓ ` reweight(f · g, t) : Σ TK

Applying tl to both sides and using the previous rule relating tl and
reweight, we easily obtain

JΓ ` tl(reweight(g, reweight(f, t))) : Σ TK = JΓ ` reweight(g, reweight(f, tl(t))) : Σ TK ,

JΓ ` tl(reweight(g · f, t)) : Σ TK = JΓ ` reweight(g · f, tl(t)) : Σ TK .

Equivalence then follows from the bisimulation

R = {(JΓ ` reweight(g, reweight(f, tlm(t))) : Σ TK , JΓ ` reweight(g · f, tlm(t)) : Σ TK) | m ∈ N}

which is easily verified, giving our desired equality.

4. Reweighting over map.

JΓ ` reweight(g, map(f, t)) : Σ TK = JΓ ` map(f, reweight(g ◦ f, t)) : Σ TK

Identical to the previous proof, replacing the inner map with reweight

and making the analogous changes.

5. Thinning over pseudorandom number generators.

∀n ∈ N, JΓ ` thin(n, prng(s, t)) : Σ TK = JΓ ` prng(sn, t) : Σ TK
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Applying tl to both sides of each expression and simplifying using the

coinductive definitions of thin and prng, we obtain

JΓ ` tl(thin(n, map(s, t))) : Σ TK = JΓ ` thin(n, map(s, tln(t))) : Σ TK

and

JΓ ` tl(map(s, thin(n, t))) : Σ TK = JΓ ` map(s, thin(n, tln(t))) : Σ TK .

This suggests the choice of bisimulation

{(JΓ ` thin(n, map(s, tlm(t))) : Σ TK , JΓ ` map(s, thin(n, tlm(t))) : Σ T)K) | m ∈ N}

which is easily verified and gives our result.

6. Thinning over map.

JΓ ` thin(n, map(s, t)) : Σ TK = JΓ ` map(s, thin(n, t)) : Σ TK

Using the coinductive definitions of map and thin, we obtain

JΓ ` tl(thin(n, map(s, t)) : Σ TK = JΓ ` thin(n, map(s, tln(t))) : Σ TK

and

JΓ ` tl(map(s, thin(n, t))) : Σ TK = JΓ ` map(s, thin(n, tln(t))) : Σ TK .

The desired result follows from

{(JΓ ` thin(n, map(s, tlm(t))) : Σ TK , JΓ ` map(s, thin(n, tlm(t))) : Σ TK) | m ∈ N}

which is easily seen to be a valid bisimulation.

Product rules:
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1. Thinning.

JΓ ` thin(n, s)⊗ thin(n, t) : Σ (S× T)K = JΓ ` thin(n, s⊗ t) : Σ (S× T)K

Use the coinductive definition of thin to show

JΓ ` tl(thin(n, s)⊗ thin(n, t)) : Σ (S× T)K = JΓ ` thin(n, tln(s))⊗ thin(n, tln(t)) : Σ (S× T)K

and

JΓ ` tl(thin(n, s⊗ t)) : Σ (S× T)K = JΓ ` thin(n, tln(s)⊗ tln(t)) : Σ (S× T)K ,

which suggests

R = {(JΓ ` thin(n, tlm(s))⊗ thin(n, tlm(t)) : Σ (S× T)K ,

JΓ ` thin(n, tlm(s⊗ t)) : Σ (S× T)K) : m ∈ N}

as a bisimulation.

2. Map.

JΓ ` s⊗ map(g, t′) : Σ (S× T)K = JΓ ` map(idS × g, s⊗ t′) : Σ (S× T)K

Applying tl to each expression yields

JΓ ` tl(s⊗ map(g, t′)) : Σ (S× T)K = JΓ ` tl(s)⊗ map(g, tl(t′)) : Σ (S× T)K

and

JΓ ` tl(map(idS × g, s⊗ t′)) : Σ (S× TK = JΓ ` map(idS × g, tl(s)⊗ tl(t′)) : Σ (S× T)K ,
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suggesting

R = {(JΓ ` tlm(s)⊗ map(g, tlm(s′)) : Σ (S× T)K ,

JΓ ` map(idS′ × g, tlm(s), tlm(s))) : Σ (S× T)K) | m ∈ N}

as a bisimulation.

JΓ ` map(f, t)⊗ s′ : Σ (S× T)K = JΓ ` map(f × idT, t⊗ s′) : Σ (S× T)K

Same proof as previous.

3. Reweighting.

JΓ ` s⊗ reweight(g, t′) : Σ (S× T)K = JΓ ` reweight(1S · g, s⊗ t′) : Σ (S× T)K

Applying tl to both sides and simplifying using the coinductive definition

of reweight gives

JΓ ` tl(s⊗ reweight(g, t′)) : Σ (S× T)K

= JΓ ` tl(s)⊗ reweight(g, tl(t′)) : Σ (S× T)K

and

JΓ ` tl(reweight(1S · g, s⊗ t′)) : Σ (S× T)K

= JΓ ` reweight(1S · g, tl(s)⊗ tl(t′)) : Σ (S× T)K .

Choosing the bisimulation

R = {(JΓ ` tlm(s)⊗ reweight(g, tlm(t′)) : Σ (S× T)K ,

JΓ ` reweight(1S · g, tlm(s)⊗ tlm(t′)) : Σ (S× T)K) | m ∈ N},
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our result follows.

JΓ ` reweight(f, t)⊗ s′ : Σ (S× T)K = JΓ ` reweight(f · 1T, s′ ⊗ t) : Σ (S× T)K

Same proof as previous.

4. Pseudorandom number generators.

JΓ ` prng(f, a)⊗ prng(g, b) : Σ (S× T)K = JΓ ` prng(f × g, (a, b)) : Σ (S× T)K

Using the coinductive definition of prng, we quickly obtain

JΓ ` tl(prng(f, a)⊗ prng(g, b)) : Σ (S× T)K = JΓ ` prng(f, f(a))⊗ prng(g, g(b)) : Σ (S× T)K

and

JΓ ` tl(prng(f × g, (a, b))) : Σ (S× T)K = JΓ ` prng(f × g, (f × g)(a, b)) : Σ (S× T)K ,

suggesting the bisimulation

R = {(JΓ ` prng(f, fm(a))⊗ prng(g, gm(b)) : Σ (S× T)K ,

JΓ ` prng(f × g, (f × g)m(a, b)) : Σ (S× T)K) | m ∈ N}

which gives our desired result.

The soundness of these rules with respect to operational equivalence then

follows from abstraction, though it is also straightforward to show directly.

Recall that an important application of our sampler operations is to pro-

vide a formal definition of the self-product of samplers, given in eq. (3.2). It

is crucial that our equivalence rules should show that this self-product is well-
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defined.

Proposition 3.2.3. For any Γ ` s : Σ S, m,n ∈ N, the self-product satisfies

Γ ` (sm)n ≈ smn : Σ (Smn).

Proof of Proposition 3.2.3.

Expanding eq. (3.2), for any well-typed sampler Γ ` s : Σ S, the nested self-

product (sm)n is defined as

thin(n, thin(m, s⊗tl(s)⊗· · ·⊗tlm−1(s))⊗· · ·⊗tln−1(thin(m, s⊗tl(s)⊗· · ·⊗tlm−1(s)))).

Applying the rule Γ ` tl(thin(m, t)) ≈ thin(m, tlm(t)) : Σ T from fig. 3.5

on the innermost expressions, it follows that this program is equivalent in the

context Γ to

thin(n, thin(m, tl0(s)⊗· · ·⊗tlm−1(s))⊗· · ·⊗thin(m, tlmn−m(s)⊗· · ·⊗tlmn−1(s))).

Next, applying the rule Γ ` thin(m, s⊗t) ≈ thin(m, s)⊗thin(m, t) : Σ (S×T),

we see that the nested self-product is equivalent to

thin(n, thin(m, tl0(s)⊗ tl1(s)⊗ · · · ⊗ tlmn−1(s))).

Applying the rule Γ ` thin(n, thin(m, t)) ≈ thin(mn, t) : Σ T for composition

of thin yields

thin(mn, tl0(s)⊗ tl1(s)⊗ · · · ⊗ tlmn−1(s)),

and the above is precisely the definition of the self-product smn.

The equivalence rules in fig. 3.5 are designed to yield an effective procedure

for simplifying samplers to a certain ‘normal form’ – for samplers which do

not feature the operation prng. To see this, consider the remaining sampler

operations, listed in order of priority from highest to lowest:
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1. hd, wt, tl

2. thin

3. ⊗

4. reweight

5. map

Verify that, for each valid combination, fig. 3.5 gives an operation for distribut-

ing a higher-priority sampler operation over a lower-priority one; for example,

fig. 3.5 shows us that we can distribute the higher-priority operation hd over the

lower-priority operation ⊗ using the equivalence rule hd(s⊗t) ≈ (hd(s), hd(t)).

We consider hd, wt, tl to be the same priority.

The only operations in our language which can output samplers are: the

operations given above, prng (which we have excluded from consideration),

function application, case statements, and casts (which are not relevant here,

as our casts only change the topology of each type, not its points). Note that

fig. 3.5 also features a rule for pulling case statements outwards through each

sampler operation. It follows, then, that by applying the rules in fig. 3.5, ev-

ery β-reduced closed sampler not including prng can be rewritten such that

its sampler operations are ordered according to priority (and non-sampler op-

erations, such as case statements, occur last).

Definition 3.2.4 (Sampler normal form). We will say that a sampler-in-

context Γ ` t : Σ T is in sampler normal form if it is β-reduced and its

sampler operations occur in priority order.

The reduction of samplers (that don’t include prng) to normal form is

straightforward: simply apply the rules of fig. 3.5 in any valid order until one

cannot be applied. We will see in section 3.3.2 that reduction to normal form

often makes the verification of a sampling technique immediate; as our primary

purpose is verification, we need make no claims regarding unique reduction to

normal form (to which trivial counterexamples are easy to formulate).
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We can also show that the self-product distributes over the operations map

and reweight; such operations are useful for representing the self-product of

a composite sampler in a simpler form whose correctness can then be verified.

Proposition 3.2.5. For any mapped sampler Γ ` map(f, s) : Σ T and any

n ∈ N, it follows that Γ ` map(f, s)n ≈ map(f × . . . × f, sn) : Σ (Tn);

for a reweighted sampler Γ ` reweight(f, s) : Σ S, it follows that Γ `

reweight(f, s)n ≈ reweight(f · . . . · f, sn) : Σ (Sn).

Proof of Proposition 3.2.5.

• Map: Applying the definition of the self-product eq. (3.2), the syntax

map(f, s)n is shorthand for the sampler

thin(n, map(f, s)⊗ tl(map(f, s))⊗ · · · ⊗ tln−1(map(f, s)))

In a context Γ in which this sampler is well-typed, applying the rule

Γ ` tl(map(f, s)) ≈ map(f, tl(s)) : Σ T shows that the above sampler is

equivalent to

thin(n, map(f, tl0(s))⊗ · · · ⊗ map(f, tln−1(s))).

For the purposes of this proof, abbreviate the n-fold Cartesian product

of a program f : S → T as f×n : Sn → Tn. Applying the rule Γ `

map(f, s)⊗ map(g, t) ≈ map(f × g, (s, t)) : Σ (S× T), this sampler can also

be written in the equivalent form

thin(n, map(f×n, tl0(s)⊗ · · · ⊗ tln−1(s))).

Finally, applying the rule Γ ` thin(n, map(f, s)) ≈ map(f, thin(n, s)) :

Σ S yields

map(f×n, thin(n, tl0(s)⊗ · · · ⊗ tln−1(s))))
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which is, by the definition of the self-product, our desired result

map(f×n, sn).

• Reweight: This proof proceeds the same as the above, but with map

replaced with reweight and the Cartesian product × replaced with the

pointwise product ·; nevertheless, we will go through it. Applying the def-

inition of the self-product eq. (3.2), the syntax reweight(f, s)n is short-

hand for

thin(n, reweight(f, s)⊗tl(reweight(f, s))⊗· · ·⊗tln−1(reweight(f, s)))

In a context Γ in which this sampler is well-typed, applying the rule

Γ ` tl(reweight(f, s)) ≈ reweight(f, tl(s)) : Σ T shows that the above

sampler is equivalent to

thin(n, reweight(f, tl0(s))⊗ · · · ⊗ reweight(f, tln−1(s))).

For the purposes of this proof, abbreviate the n-fold pointwise product

of a program f : S → R as f ·n : Sn → R. Applying the rule Γ `

reweight(f, s)⊗ reweight(g, t) ≈ reweight(f · g, (s, t)) : Σ (S× T), this

sampler can also be written in the equivalent form

thin(n, reweight(f ·n, tl0(s)⊗ · · · ⊗ tln−1(s))).

Finally, applying the rule Γ ` thin(n, reweight(f, s)) ≈ reweight(f, thin(n, s)) :

Σ S yields

reweight(f ·n, thin(n, tl0(s)⊗ · · · ⊗ tln−1(s))))

which is, by the definition of the self-product, our desired result

reweight(f ·n, sn).
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3.3 Verification
The fundamental correctness criterion for a sampler is that it should produce

samples which, speaking informally for the moment, behave as if they are

distributed according to the desired target distribution. We refer to this rela-

tionship between a sampler and a probability distribution as targeting, and will

give its formal definition shortly. This section provides and justifies a simple

‘targeting calculus’ to compositionally verify this property.

3.3.1 The empirical transformation

First, we need to formalise what we mean when we say that a sampler s :

Σ T targets a probability distribution on JTK. We define this relationship in

terms of weak convergence and typicality, as defined in Definition 2.5.1 and

Definition 2.6.6.

Weak convergence is the natural choice for our setting, because under

stronger notions of convergence, such as strong convergence or convergence in

total variation, sequences of discrete measures on continuous spaces will typi-

cally fail to converge to a continuous measure. One might ask about intermedi-

ate notions of convergence, such as that metrised by the Kolmogorov-Smirnov

metric or uniform convergence over certain classes of functions; we view this

as an interesting extension to our work, but one perhaps less suited to the

compositional techniques of program verification.

As in section 2.5, given a topological spaceX, let us write PX for the space

of probability measures on the Borel sets of X, equipped with the topology

of weak convergence, i.e. limn→∞ µn = µ in PX if for any bounded continuous

map f : X → R, limn→∞
∫
f dµn =

∫
f dµ.

Note that P defines a functor Top→ Top: if f : X → Y is a continuous

map, then P(f) , f∗ : PX → PY is the pushforward map. The continuity of

the pushforward follows from the definition of the weak topology: if µn → µ in

PX, and if g is any bounded continuous function on Y , then g ◦ f is bounded
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continuous on X and

lim
n→∞

∫
g d(f∗µn) = lim

n→∞

∫
g ◦ f dµn =

∫
g ◦ f dµ =

∫
g d(f∗µ).

A note of caution: we do not know if PX is a CG-space when X is, and in

particular we do not know if P can be given a monad structure on CG. These

questions are, however, orthogonal to this work, since P plays no role in our

semantics – its role is purely in verification.

In this section, let Σ : Top→ Top be the functor defined as in eq. (3.3),

i.e. the denotation of Σ . (Technically, for CG spaces X, the topology of ΣX

might depend on whether this limit is taken in Top or CG, but this will not

matter for our purposes here; we are only interested in the elements of this

set, which are X-valued weighted streams.)

For any such stream σ : N→ X × R+, we define σ̂n ∈ PX as

σ̂n ,
1

n

n∑
i=1

π2(σ(i))∑n
j=1 π2(σ(j))

δπ1(σ(i)),

the empirical measure based on the first n (weighted) samples of σ. We also

define P⊥X , PX + 1, where 1 = {⊥} is the terminal object and + the

coproduct in Top.

Definition 3.3.1. The empirical measure transformation is the Topobj-

collection of maps

εX : ΣX → P⊥X

defined as

εX(σ) =


lim
n→∞

σ̂n if it exists

⊥ ∈ 1 else

The empirical measure transformation is not a natural transformation, as

the following counterexample shows.

Example 3.3.2. Let σ ∈ ΣX be a diverging unweighted sampler on X, i.e.

εX(σ) = ⊥ with unit weights, and let ! : X → 1 represent the map to the
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terminal object. Then (ε1 ◦ Σ!)(σ) = ε1((⊥, 1), (⊥, 1), . . .) = δ⊥, but (P⊥! ◦

εX)(σ) = P⊥!(⊥) = ⊥.

While the empirical measure transformation is not natural, it is in a cer-

tain sense ‘locally natural’. If a sampler does correspond to a probability

measure via ε, this property is preserved by continuous maps.

Proposition 3.3.3. Let σ ∈ ΣX be a weighted sampler and f : X → Y be

continuous. If σ̂n converges to a probability measure µ, then Σ̂f(σ)n does as

well: (εY ◦ Σf)(σ) = (P⊥f ◦ εX)(σ) = f∗µ.

Proof of Proposition 3.3.3.

Let g : Y → R be a bounded continuous function. Then g ◦ f : X → R is also

bounded continuous, and it follows from the definition of weak convergence

and of ε that

lim
n→∞

∫
X

g dΣ̂f(σ)n = lim
n→∞

∫
X

g ◦ f dσ̂n by definition

=

∫
X

g ◦ f dµ since εX(σ) = µ

=

∫
X

g df∗µ change of variable

Thus Σ̂f(σ)n −→ f∗µ weakly, i.e. (εY ◦ Σf)(σ) = f∗(µ).

It is tempting to try to generalise this nice property of continuous maps

to more general maps – for example, measurable maps. The following example

shows that this is not possible.

Example 3.3.4. Let X = [0, 1] and σ = ((x1, w1), (x2, w2), . . .) ∈ Σ[0, 1] de-

note any sampler such that ε[0,1](σ) is the Lebesgue measure on [0, 1]. Now

consider the map f : [0, 1] → {0, 1} defined by f(x) = 1 if x = xi for some

i and 0 else. This function is the indicator function of a countable, there-

fore closed, set, and so is Borel-measurable. On the one hand we have that

ε{0,1}(Σf(σ)) = δ1 since Σf(σ) is a constant stream of ones. On the other,



3.3. Verification 101

we have P⊥(f)(ε[0,1](σ)) = f∗ε[0,1](σ), the pushforward of the Lebesgue measure

through f . As f only takes a countable set of points to 1, the measure of the set

{1} under this pushforward is zero. Therefore, the property Proposition 3.3.3

does not hold for this sampler σ and this function f .

Even for functions with finitely many discontinuities, it is impossible to

extend the class of functions for which Proposition 3.3.3 holds. However, the

semantic framework we adopt allows us to bypass this problem altogether. We

illustrate these two points by revisiting Example 3.1.7.

Example 3.3.5. Consider the sampler s , prng(λx : R . x/2, 1) and the term

p , if x = 0 then 1 else − 1 of Example 3.1.7. Assume first that R is

equipped with its standard topology, i.e. that JpK is not continuous at 0. Since

R is a metric space we can use the Portmanteau lemma, Lemma 2.5.3, and

rephrase weak convergence by limiting ourselves to bounded Lipschitz functions.

It is then easy to show that ε(JsK) = δ0: letting f : R→ R be bounded Lipschitz,

we have

lim
n→∞

∣∣∣∣∫ f dĴsKn −
∫
f dδ0

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ 1n
n∑
i=1

f

(
1

2i

)
− f(0)

∣∣∣∣∣
≤ lim

n→∞

∣∣∣∣∣ 1n
n∑
i=1

1

2i

∣∣∣∣∣ ≤ lim
n→∞

2

n
= 0

Proposition 3.3.3 now fails on JpK, since ε(JpK ◦ JsK) = ε(−1,−1, . . .) = δ−1 6=

P(JpK)(ε(JsK)) = JpK∗ (δ0) = δ1.

Let us now equip R with the topology given by type-checking p as described

in Example 3.1.7. This makes JpK bounded and continuous, and we therefore

no longer have ε(JsK) = δ0; indeed limn

∫
JpK dĴsKn = −1 6= JpK (0) = 1. In

fact we now have ε(JsK) = ⊥, i.e. s is no longer a sampler targeting anything

for this topology, which prevents the failure of Proposition 3.3.3 on JpK.

This example also shows that our semantics has provided us with many

more morphisms satisfying Proposition 3.3.3 than would have been the case

had we only considered programs which are continuous w.r.t. the usual topol-
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Γi ` randi : Σ Ti  µi
i ∈ I

Γ ` s ≈ t : Σ T Γ ` s : Σ T µ

Γ ` t : Σ T µ

Γ ` s : Σ S µ

Γ ` tl(s) : Σ S µ

Γ ` s : Σ S µ Γ ` f : S→ T

Γ ` map(f, s) : Σ T γ 7→ (JfK (γ))∗µ(γ)

Γ ` s : Σ S µ Γ ` f : S→ R+

Γ ` reweight(f, s) : Σ S γ 7→ JfK (γ) · µ(γ)

∫
JSK JfK (γ) dµ(γ) ∈ (0,∞)

Γ ` prng(f, x) : Σ S µ
JfK : JSK→ JSK ergodic w.r.t. µ, x typical

Γ ` prng(f, x) µ Γ ` h : S→ T

Γ ` prng(g, h(x)) (γ 7→ JhK (γ)∗µ(γ))
JgK (γ) ◦ JhK (γ) = JhK (γ) ◦ JfK (γ)

Figure 3.6: Rules for asymptotic targeting

ogy on the denotation of types. Our semantics allows us to push forward a

sampler s through any piecewise continuous function, except in the narrow

case where this function has a point of discontinuity which is asymptotically

assigned positive mass by s. We illustrate this further in the next example.

Example 3.3.6. Consider the sampler of Example 3.3.5, but now let p ,

if x = 2 then 1 else − 1 instead. To make this function continuous, our

semantics adds the open set {2} to the usual topology of R. This does not

interfere with the derivation that ε(JsK) = δ0, since we can write
∫
f dĴsKn =∫

{2}c f dĴsKn +
∫
{2} f dĴsKn =

∫
{2}c f dĴsKn, and similarly for δ0. Because the

discontinuity of JpK is not assigned any mass by δ0, the topology on R making

JpK continuous no longer prevents ε(JsK) from converging, and we can therefore

safely push s forward through p using map.

3.3.2 Calculus for asymptotic targeting

Definition 3.3.7. We will say that the sampler Γ ` s : Σ S asymptotically

targets, or simply targets, the continuous map µ : JΓK→ P JSK if,

εJSK ◦ JsK = µ.
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In particular, for all γ ∈ JΓK , ĴsK (γ)n converges as n→∞; diverging samplers

do not target anything.

We will say that Γ ` s : Σ S is k-equidistributed with respect to µ : JΓK→ P JSK

if

εJSK ◦
q
sk

y
= µk

where the self-product sk is defined in eq. (3.2) and µk(γ) = µ(γ)k is the k-fold

product of measures.

The concept of ‘equidistribution’ as discussed above is a generalisation of

a concept of ‘k-equidistribution’ common to the literature on pseudorandom

number generation [40, 41, 42], which is typically only considered for samplers

without context targeting a discrete uniform distribution.

‘Equidistribution’ as defined above is also highly related to the concept of

weak mixing of dynamical systems, defined in Definition 2.7.10. Concretely,

if a dynamical system is weak mixing, then its sampled trajectories (starting

from typical points, of course) are k-equidistributed for all k; this is simply a

rewording of Proposition 2.7.13.

We introduce in fig. 3.6 a relation  which is sound with respect to

asymptotic targeting: that is, if Γ ` s : Σ S  µ, then s is a parametrised

sampler on S which asymptotically targets a parametrised distribution µ on

JSK. Here, we use Greek lower case letters µ, ν to represent (parametrised)

distributions in order to emphasise their role as meta-variables, used only in

the context of the targeting calculus, and not within the language itself. In the

rule for reweight, we write the operation of reweighting a measure µ on X by

f : X → R≥0 as the renormalised product (f · µ)(A) =
∫
A f(x) dµ(x)∫
X f(x) dµ(x)

, assuming

that the integral in the denominator is finite and nonzero.

The primary purpose of the rules of fig. 3.6 is to verify the sampling

techniques discussed in the introduction to this chapter. For example, our rule

for reweight is simply a statement that importance sampling is valid. Recall

that importance sampling inputs samples from a proposal distribution Q, and

produces weighted samples which target a desired probability distribution P by
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reweighting these proposal samples proportionally according to the density dP
dQ

,

which we assume exists. Our rule for reweight simply reverses this argument,

observing that a nonnegative f is a valid density as long as it has positive,

finite integral under Q. Similarly, the validity of inverse-transform sampling,

also discussed in the introduction, follows trivially from our map rule. We will

shortly see examples of more complex sampling techniques that will require

the application of several of our rules.

Note that while our targeting calculus is sound (see theorem 3.3.10) but

not complete. See Remark 3.3.11 for a discussion of why the natural notion of

completeness does not hold in this setting.

Example 3.3.8 (Von Neumann extractor). Verifying the simple von Neumann

extractor, introduced in [1], will serve as a useful illustration of the techniques

we advocate. Let Ber(p) represent the Bernoulli distribution with parameter p,

i.e. the Boolean-valued distribution with probability p of a true outcome, and

probability 1 − p of a false one. Assume access to a closed sampler flip of

Boolean type such that the self-product flip2 targets Ber(p)2 for p ∈ (0, 1); that

is, flip produces the sample True with asymptotic frequency p and False with

asymptotic frequency 1− p, and flip is 2-equidistributed. The von Neumann

extractor, which we will denote here v : Σ B, is then the sampler given in

listing 3.1.

let accept = λ(x, y) : Σ (B×B) . 1 if x 6=y else 0
in let proj = λ(x, y) : Σ (B×B) . x in

map(proj , reweight(accept , flip2))
: Σ B

Listing 3.1: Von Neumann extractor

As this sampler (after standard let-reduction) is written in the sampler

normal form of Definition 3.2.4, its verification is a straightforward mathemat-

ical exercise. Figure 3.7 shows this procedure, applying first the reweight and

then the map rules of fig. 3.6. All that remains to show after fig. 3.7 is that the

measure JprojK∗ (JacceptK · Ber(p)2) obtained as our conclusion is identical
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` flip2 : Σ (B× B) Ber(p)2 ` accept : B× B→ R+

` reweight(accept, flip2) : Σ (B× B) JacceptK · Ber(p)2 ` proj : B× B→ B

` map(proj, reweight(accept, flip2)) : Σ B JprojK∗ (JacceptK · Ber(p)2)

Figure 3.7: Validity of the von Neumann extractor

to Ber(1/2), i.e. the standard demonstration of the validity of the von Neu-

mann extractor. This follows simply from the fact that accept assigns positive

probability only to adjacent samples (x, y) ∈ B2 which differ, and the samples

(False, True) and (True, False) occur with equal probability of p(1− p).

Many of the rules of fig. 3.6 illustrate methods of transforming samplers

targeting one distribution into samplers targeting another distribution using

different built-in operations; we include only two rules for constructing new

samplers from scratch. First, we allow a set of ‘axioms’ for built-in samplers

randi, each targeting distributions µi ∈ P JTiK. In some settings, it may be de-

fensible to assume access to ‘truly random’ samplers – consider ‘true’ quantum

random numbers, for instance. Second, fig. 3.6 incorporates a rule for build-

ing samplers from scratch as pseudo-random number generators defined by a

deterministic endomap f : T→ T and an initial value t : T via prng(f, t) : Σ T.

Applying this rule requires showing that the chosen initial point of the sam-

pler generates a µ-typical sequence; see theorem 2.7.5. Note that the side

condition on typicality of x can be demonstrated by appealing to unique er-

godicity as in Proposition 2.7.6. Note also that, applying Proposition 2.7.13

and prng(f, x)k ≈ prng(fk× . . .× fk, (x, f(x), . . . , fk−1(x))) (immediate from

the definition of the sampler self-product and fig. 3.5), we see that in the event

that the dynamical system denoted by prng(f, t) is weak mixing as opposed

to merely ergodic, we can further conclude that Γ ` prng(f, x)k : Σ Sk  µk

for all k ≥ 1.

The reader might wonder why fig. 3.6 does not have a rule for transforming

samplers using the thin operation: after all, if σ is a sampler targeting a

distribution µ, then only keeping only every n samples seems like it should
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produce a good sampler as well. Whilst this rule does hold for samplers which

are produced by weak mixing dynamical systems, it is in not in general sound,

as the following simple counterexample shows.

Example 3.3.9. Consider the sampler on {0, 1} defined by the program

prng(λx : R . 1− x, 0). This sampler, which generates the unweighted samples

(0, 1, 0, 1, . . .), targets the uniform Bernoulli distribution; however, applying

thin(2,−) to it yields a sampler which targets the Dirac measure δ0.

This example highlights the fact that samplers can be manifestly non-

random, and yet from the perspective of inference – that is to say, from the

perspective of the topology of weak convergence – target bona fide probability

distributions.3

Theorem 3.3.10. Targeting  is sound: if Γ ` s : Σ S µ, then εJSK ◦ JsK =

µ.

Proof of Theorem 3.3.10.

By induction on the derivation.

(i) Built-in samplers. These axioms – the base case – are true by assump-

tion.

(ii) Equivalence. The fact that equivalent terms target the same measure is

a simple consequence of the definition of targeting and of theorem 3.2.2.

(iii) Tail. The fact that the tail of a sampler σ targets the same measure as σ

is a simple consequence of the definition of targeting in terms of a limit.

(iv) Pushforward. A direct consequence of Proposition 3.3.3. Note, again,

that JSK , JT K may have finer topologies than the standard choices. As

a result, the premise of the pushforward rule, that εJsK (γ) = µ(γ), is

3This is well-known in the literature on Monte Carlo methods; in fact, certain deter-
ministic sequences can obtain faster, deterministic, convergence bounds than i.i.d. random
sampling. Many such sequences are studied under the name quasi-Monte Carlo methods
[43, 44] (about which we’ll say no more here).
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stronger than it would otherwise be, as the class of continuous test func-

tions g : JSK → R has been expanded – also expanding the set of con-

tinuous functions JfK : JSK → JT K. For example, if {x} is open in our

topology on JSK = R, then our premise requires that our samplers obtain

the correct asymptotic frequencies µ(γ)({x}), and f : JSK → JT K is al-

lowed to be ‘discontinuous’ (w.r.t. the standard topology) at this point.

Conversely, note that adding additional open sets to JT K shrinks the set

of continuous functions JfK : JSK→ JT K, while strengthening the conclu-

sion of our rule. For example, if {y} is open in our topology on JT K = R,

enabling the conclusion that our samplers asymptotically produce the

correct asymptotic frequencies for the set {y}, then JfK−1 ({y}) must be

open in JSK.

(v) Reweight. This rule simply encodes the validity of importance sampling.

Dropping the dependency in γ for clarity of notation, and letting ν = f ·µ

be the reweighted measure, the premise and side-condition of the rule

together say that there exists α ∈ R+ such that f = αdµ
dν
, and that f is

bounded on the support of µ. Since µ is a probability distribution, we

have ∫
f dµ = α

∫
dµ

dν
dν = α

∫
dν = α

Moreover, since s targets µ and f is bounded continuous, we get by

writing xi , π1(πi(JsK) and wi , π2(πi(JsK) that

α =

∫
f dµ = lim

N→∞

1

N

∑N
i=1 f(xi)wi∑N

k=1wk
(3.4)

Letting g be any bounded continuous function JSK→ R and noting that

the pointwise product g.f is bounded continuous on the support of µ and
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ν, we have

∫
g dν =

1

α

∫
g.f dµ

=
1

α
lim
N→∞

1

N

N∑
i=1

g(xi)f(xi)
wi∑N
k=1wk

Since s targets µ

=

(
lim
N→∞

1

N

∑N
i=1 f(xi)wi∑N

k=1wk

)−1(
lim
N→∞

1

N

∑N
i=1 g(xi)f(xi)wi∑N

k=1wk

)
By eq. (3.4)

= lim
N→∞

1

N

∑N
i=1 g(xi)f(xi)wi∑N

i=1 f(xi)wi

, lim
N→∞

∫
g d ̂reweight(f, s)n

also making use of the fact that the limit of a product equals the product

of the limits (where both exist). Therefore, reweight(f, s) targets ν.

(vi) Pseudorandom number generation. The unconditional prng rule is

just a restatement of theorem 2.7.5.

(vii) Homomorphism of dynamical systems. The conditional prng rule

essentially follows from the fact that Borel homomorphisms preserve er-

godicity; see Proposition 2.7.9. To see that typical points x yield images

which are also typical points, though, we will show this rule directly as

well. Our result is immediate if we note that, given a homomorphism

g ◦h = h◦f of the form hypothesised, it follows that gi(h(x)) = h(f i(x))

for any i ∈ N. Let u : JTK → R be any bounded continuous function;

again dropping the dependence on γ for clarity of notation, we have

lim
N→∞

1

N

N−1∑
i=0

u(JgKi (JhK (JxK))) = lim
N→∞

1

N

N−1∑
i=0

u(JhK (JfKi (JxK)))

=

∫
JSK

(u ◦ JhK) dµ

=

∫
JT K

u d(JhK∗ µ)

as prng(f, x) targets µ by hypothesis, and u◦ JfK is bounded continuous.
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Remark 3.3.11 (Completeness). It is easily seen that the most obvious notion

of completeness, εJSK ◦ JsK = µ → Γ ` s : Σ S  µ, does not hold and should

not be expected to; see the following example.

Example 3.3.12. Let s , prng(λn : R.n + 1, 0); clearly, s does not tar-

get any (probability) measure. Transform s using map to yield the sampler

s′ , map(λn : R . 2∧(−1 ∗ n), s). While s does not target anything, and so our

targeting calculus cannot prove that the transformed sampler s′ targets any-

thing, it is clear that s′ does target the Dirac measure δ0.

Remark 3.3.13. Note that joint targeting Γ ` s ⊗ t  µ ⊗ ν is a strictly

stronger statement than independent targeting Γ ` s  µ,Γ ` t  ν. This

is reminiscent of the fact that the marginals of two probability distributions do

not determine their joint distribution. A trivial counterexample is given by

choosing s = t, in which case the product s⊗ t cannot possibly target a product

measure outside of a trivial setting.

We saw in section 3.3.1 how our (sub-)typing system can be used to safely

pushforward samplers through maps which are only piecewise continuous. Our

typing system also allows us to add additional constraints to samplers. Specif-

ically, we can ensure that a sampler visits certain subsets infinitely often.

Proposition 3.3.14. Assume Γ ` s : Σ S µ, S/T and JTK second-countable;

then Γ ` map(λx : S.cast〈T〉x, s) : Σ T targets the same measure µ on T.

Moreover, if JTK is metrisable, if U is in the topology of JSK but not JTK and

µ(∂TU) > 0 (where ∂T denotes the boundary in JTK) then s must visit ∂TU i.o.

(infinitely often).

Proof of Proposition 3.3.14.

The first part of the proof follows immediately if we can show that S / T

implies that JSK and JTK are the same measurable space; this will be shown by
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induction on the sub-typing derivation. We start by showing that the functor

Borel : Top → Meas commutes with coproducts. This will prove the base

case, the coproduct rule, and the last two rules of fig. 3.2b.

Let X, Y be two topological spaces (we will use the same name for topo-

logical (resp. measurable) spaces and their topologies (resp. σ-algebras)). We

use the π-λ lemma to prove Borel(X + Y ) = Borel(X) + Borel(Y ). First note

that Borel(X + Y ) = σ(X + Y ) by definition. Since X + Y is a topology, it

is trivially also a π-system, and since Borel(X) + Borel(Y ) is a σ-algebra it is

also trivially a λ-system. By definition, every open set U in X + Y has the

property that U = X ∩ U is open in X, and is thus an element of Borel(X).

Similarly Y ∩ U is open in Y and thus belongs to Borel(Y ). It follows that

U = (U ∩ X) ] (U ∩ Y ) belongs to Borel(X) + Borel(Y ) by definition of the

coproduct in Meas. The inclusion Borel(X + Y ) ⊆ Borel(X) + Borel(Y ) now

follows from the π-λ lemma.

Conversely, every measurable A in Borel(X)+Borel(Y ) is, by definition, of

the shape (A∩X)] (A∩Y ) with (A∩X) ∈ Borel(X) and (A∩Y ) ∈ Borel(Y ).

Using the π-λ lemma it is easy to show that Borel(X) ⊆ Borel(X + Y ) and

Borel(Y ) ⊆ Borel(X + Y ), and it thus follows, since Borel(X + Y ) is closed

under unions, that A = (A ∩ X) ] (A ∩ Y ) ∈ Borel(X + Y ) which proves

Borel(X + Y ) ⊇ Borel(X) + Borel(Y ).

To show that the functor Borel : Top →Meas commutes with products

we need the extra assumption that the spaces are second-countable. A proof

can then be found in e.g. [45, p244].

For the second part of the proof, let U be in the topology of JSK but not

in the topology of JTK. This means that ∂T(U) = U ∩ intT(U) 6= is open in

JSK (since it’s the intersection of two open sets in JSK). In particular it is a

continuity set in JSK (since it is open, its interior is the empty set and it can

therefore not have any µ-mass). By the Portmanteau lemma, Lemma 2.5.3,

which applies since the spaces are assumed to be metrisable, we must thus
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have

lim
n→∞

ĴsKn (∂T(U)) = µ(∂T(U)) > 0

In particular, this is clearly impossible if JsK only visits ∂T(U) finitely many

times.

Example 3.3.15. Suppose we want s : Σ R Bern(1/2). A sampler alternating

between the sampler z , prng(λx : R . x/2, 1) of Example 3.3.5 and its shifted

version map(λx : R . 1 + x, z) will satisfy the condition, but will never visit 0

or 1! We can use the previous result to enforce that a sampler s targeting

Bern(1/2) should visit 0 i.o. by constructing s in such a way that it has type

Σ((x, 0)−1Neq + (x, 0)−1Eq) (see Example 3.1.7). We can, in the same manner,

enforce that a sampler s′ targeting Bern(1/2) visits 1 i.o. Finally, using the

last two rules of fig. 3.2b which build the coarsest common refinement of two

topologies, we can combine s and s′ to create a sampler targeting Bern(1/2) and

guaranteed to visit 0, 1 i.o.

A more interesting application of our rules, which will make use of the

quirks of our typing system, is the verification of rejection sampling. Rejection

sampling makes use of two samplers: a proposal sampler s and a standard

uniform sampler rand. It also uses a real-valued function f : S→ R and an

upper bound K > 0 on f , and produces samples from its target distribu-

tion, which is the proposal distribution reweighted by the function f .4 Using

these ingredients, a general rejection sampling algorithm is implemented in

listing 3.2.

We will abbreviate the program given in listing 3.2 as reject(f,K, s).

Note that the type T has been left unspecified; we will find this type’s form as

we type-check below.

4Consider for the purposes of illustration a Bayesian setting in which s is a sampler from
our prior and f computes the likelihood of a set of data. In this case, rejection sampling
will give us samplers from the posterior distribution.
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let accept = λ(x, u) : T . if u ≤ f(x) / K then 1 else 0
in let proj = λz : T. fst(cast〈S×R+〉(z)) in

map(proj , reweight(accept , s ⊗ rand))
: Σ S

Listing 3.2: Rejection sampling

Theorem 3.3.16. Rejection sampling is valid:

Γ ` (s⊗ rand) : Σ S× R+  (µ⊗ U) Γ ` f : S→ R+ Γ ` K : R+

Γ ` reject(f,K, s) : Σ S γ 7→ JfK (γ) · µ(γ)
†

where the side conditions † necessary are

1.
∫

JSK JfK (γ) dµ(γ) ∈ (0,∞);

2. ∀x ∈ JSK , JK(γ)K ≥ JfK (γ)(x).

Proof of Theorem 3.3.16.

Before we discuss the verification of rejection sampling as an approximate

sampling procedure, we must first type-check this program in detail. The

type T was not specified in listing 3.2; we determine its form by type-checking

accept in fig. 3.8. To keep the derivation readable, we define t , (y, f(x)∗K).

x : S, y : R+ ` y : R+

x : S, y : R+ ` x : S ` f : S→ R+ ` K : R+

x : S, y : R+ ` f(x) ∗K : R+

x : S, y : R+ ` (y, f(x) ∗K) : R+ × R+

(x, y) : t−1(<−1(0)) + t−1(<−1(1)) ` (y, f(x) ∗K) : <−1(0) +<−1(1)
<−1(0) +<−1(1) / R+ × R+

(x, y) : t−1(<−1(0)) + t−1(<−1(1)) ` y < f(x) ∗K : B ` 0 : R+ ` 1 : R+

(x, y) : t−1(<−1(0)) + t−1(<−1(1)) ` if y < f(x) ∗K then 1 else 0 : R+

` λ(x, y) : t−1(<−1(0)) + t−1(<−1(1)) . if y < f(x) ∗K then 1 else 0 : t−1(<−1(0)) + t−1(<−1(1))→ R+

Figure 3.8: Type-derivation of accept

Next, we show that the entire rejection sampling algorithm type-checks

in fig. 3.9, defining T = t−1(<−1(0)) + t−1(<−1(1)) and proj , λz :

T . fst(cast〈S× R+〉z) for brevity.

We can now verify rejection sampling as an approximate sampling method.

In fig. 3.10, we begin by assuming that our samplers s and rand each target
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z : T ` z : T

z : T ` cast〈S× R+〉z : S× R+ T / S× R+

z : T ` fst(cast〈S× R+〉z) : S

` proj : T→ S

` accept : T→ R+

` s : Σ S ` rand : Σ R+

` s⊗ rand : Σ (S× R+)

` s⊗ rand : Σ T
Σ T / Σ (S× R+),Γ = ∅

` reweight(accept, s⊗ rand)) : Σ T

` map(reweight(accept, s⊗ rand), proj) : Σ S

Figure 3.9: Type-derivation of the rejection sampling algorithm

some proposal distribution µ and the uniform distribution U on the unit in-

terval – and that more strongly, these two samplers jointly target these two

probability distributions (see Remark 3.3.13). As shown in fig. 3.10, appli-

cation of our targeting calculus quickly shows that the samples produced by

rejection sampling target the probability measure JprojK∗ (JacceptK · (µ⊗U)).

` s⊗ rand : Σ T µ⊗ U ` accept : T→ R+

` reweight(accept, s⊗ rand) : Σ T JacceptK · (µ⊗ U) ` proj : T→ S

` map(proj, reweight(accept, s⊗ rand)) : Σ S JprojK∗ (JacceptK · (µ⊗ U))

Figure 3.10: Validity of rejection sampling

All that remains is to show that in fact JprojK∗ (JacceptK · (µ ⊗ U)) =

P . Given the denotational semantics JprojK (x, u) = x, JacceptK (x, u) =1 u ≤ JfK(x)
K

0 else

, and the fact that K is an upper bound on the nonnegative

function f , this is immediate. For measurable A ⊆ S, ignoring the normalisa-
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tion constant for readability,

JprojK∗ (JacceptK · (µ⊗ U)) (A) = (JacceptK · (µ⊗ U))
(
JprojK−1 (A)

)
∝
∫

JprojK−1(A)

JacceptK (x, u) d(µ⊗ U)(x, u)

=

∫
A

∫ 1

0

JacceptK (x, u) dU(u) dµ(x)

=

∫
A

∫ JfK(x)/K

0

dU(u) dµ(x)

=
1

K

∫
A

JfK (x) dµ(x).

Therefore, rejection sampling, like importance sampling, produces a sampler

targeting the probability distribution which has density (proportional to) JfK

with respect to the proposal distribution Q.

Example 3.3.17. For a simple application of listing 3.2, consider a small

Bayesian inference problem with prior q(z) and Gaussian likelihood p(x | z) =

N(x | z, 1). We will apply rejection sampling to generate samples from the

posterior distribution p(z | x) given by Bayes’ theorem, proposing samples from

a sampler s which we assume targets the prior q. Bayes’ theorem tells us that

the density of the posterior distribution with respect to the prior is (proportional

to) f(z) = p(x | z), neglecting the normalisation constant. To apply rejection

sampling, we then need to deduce a bound K = supz∈Z p(x | z) = supz∈Z N(x |

z, 1); by symmetry of the Gaussian density this is obviously maximised by

choosing z = x, yielding K = 1√
2π
. Therefore, it follows by theorem 3.3.16

(and a trivial application of the let-reduction rule in fig. 3.5) that listing 3.3

samples from the intended posterior distribution (given the assumption that s

targets our prior, and the requisite independence assumptions).
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let K = 1 / (2*π)^2 in
let f = λz : R . K * (z - x)^2 / 2 in
let accept = λ(x, u) : T . if u ≤ f(x) / K then 1 else 0
in let proj = λz : T. fst(cast〈S×R+〉(z)) in

map(proj , reweight(accept , s ⊗ rand))
: Σ S

Listing 3.3: Rejection sampling: example





Chapter 4

Construction and verification of

stochastic process samplers

This chapter extends the sampling language discussed in the previous chapter

to include samplers which meaningfully target stochastic processes, which can

be understood as infinite collections of random variables, or as function-valued

random variables; see section 2.8.

This extension to stochastic processes is necessary in order to formalise

a number of useful probabilistic programs. In the early days of computing,

the modern theory of stochastic processes had not yet been formalised, and it

would be decades until the theory and applications of continuous-time stochas-

tic processes and Gaussian processes were well-understood and commonplace.

These days, though, many of the most interesting and complex applications

of probabilistic programming languages feature stochastic processes. For ex-

ample, higher-order probabilistic programming languages can implement non-

parametric Bayesian techniques such as Gaussian process regression [46], in-

finite mixture models based on Dirichlet processes, continuous-time filtering

and smoothing, and diffusion models [47] (which have experienced a surge

of interest in recent years). The verification of these complex probabilistic

programs requires a language with a sound, succinct treatment of stochastic

processes. Fortunately, while these programs are complex, they can typically

be understood compositionally as being constructed from a small set of simpler
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procedures, which is key for scalable verification.

The contributions of this chapter are organised as follows. Section 4.1

first extends the language of the previous chapter, adding the features neces-

sary to construct samplers for stochastic processes – more concretely, families

of samplers which target the corresponding marginals of stochastic processes.

Framing this concept within the language will, as we’ll see, require the ad-

dition of dependent types, which will broaden but also significantly compli-

cate the presentation of the denotational semantics. Next, in analogy to how

the previous chapter verified samplers by relating the infinite sequences they

produce to probability measures, section 4.3.2 shows that we should verify

stochastic process samplers by relating the infinite family of finite-dimensional

marginal samplers they produce to the stochastic process in question by apply-

ing Bochner’s theorem (see the preliminaries, section 2.8). Having established

this link, section 4.3.3 and section 4.3.4 finish by demonstrate the soundness

of a number of techniques commonly used for constructing and transforming

stochastic processes, enabling the compositional verification of programs which

use stochastic processes. In particular, we identify sets of programs which prov-

ably construct stochastic process samplers, and which provably transform one

stochastic processes sampler into another.

Stochastic process samplers. Incorporating stochastic processes into a

probabilistic programming language, perhaps surprisingly, raises a number of

interesting type-theoretic questions. To see why, it is necessary to start by

considering the question, what does “sampling from a stochastic process” con-

cretely mean? As stochastic processes are probability measures over function

spaces, one answer could be that a program sampling from a stochastic process

with index set T taking values in a measurable space S is a program which,

given a seed, returns an object of function type T → S, i.e. a concrete sample

path. However, this understanding of “sampling from a stochastic process” is

not computationally achievable. Let T = R≥0, S = R, and assume that we

wish to sample from a normally distributed white noise process. Computing
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a sample path from this process means preparing an uncountable sequence of

independent normal samples (xt)t∈R≥0
, which is clearly not computationally

possible. More realistically, if we assume that reals are concretely represented

by the finite set F of floating-point numbers, and that T is a compact inter-

val, say [0,1], then returning a concrete sample path means returning a finite

but enormous (230 elements in single-precision) sequence of normal deviates

(xt)t∈F∩[0,1] every time the sampler is invoked. This is clearly not practical

from a memory perspective, but it is also doubtful that any practical pseudo-

random number generator could produce so many deviates independently. The

same problem will present itself for any choice of stochastic process indexed

by a sufficiently large set T . By virtue of the algorithmic “incompressibility”

of randomness, no sample path can have a shorter description than such an

enumeration.

Dependent types. Thus, sampling from a stochastic process cannot mean

producing sample paths. Instead, one usually understands sampling from a

stochastic process as the ability to sample from any finite-dimensional marginal

of the process [46, 5]. This perspective has profound type-theoretic implica-

tions. Given any tuple (t1, . . . , tn) of elements of T , a stochastic process sam-

pler must be able to return samples in Sn which are distributed according to

the joint distribution of the process observed at “times” (t1, . . . , tn). In partic-

ular, the output type of the sampler depends on the size of the input tuple.

This suggests that a stochastic process sampler should be described using the

language of dependent types. Specifically, if we write Σ S for the type of (stan-

dard) samplers returning samples of type S, then a sampler for a T-indexed

S-valued stochastic process will have the Π-type

Πn : N . Vecn(T)→ Σ (Vecn(S)) (4.1)

where Vecn(T) is the (dependent) type of n-dimensional vectors of type T. We

denote the type given in eq. (4.1), which will play a central role in the chapter

to come, by Marginal(T, S). Most programs of this type do not sample from
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a stochastic process—we will identify those that do in section 4.3.3—but in

order to sample from a stochastic process in the manner described above, a

program must have this type.

Since stochastic processes are implemented in terms of their finite-

dimensional marginals, their denotational semantics typically pays little at-

tention to the existence of the laws of stochastic processes, i.e. their defining

measures on (typically infinite-dimensional) function spaces. Instead, much

research on the semantics of these implementations has focused on laziness,

recursion, and on side-effects which are often hidden within their invocation

[48, 46, 11]. However, in order to verify correctness of a stochastic process

implemented as a program of type Marginal(T, S), we will need to check that

it targets the desired stochastic process, i.e. the correct law. Thus, whilst

stochastic processes are, as programs of type Marginal(T, S), described opera-

tionally in terms of their finite-dimensional marginals, to verify the correctness

of these programs is to link this perspective with the probability-measure-on-

sample-paths perspective described above. This verification task is this chap-

ter’s primary concern.

The sampling language we lay out in this chapter includes and extends the

sampling language of the previous chapter. All of the results of the previous

chapter will extend to this setting, if only to the subset of our now-extended

language which is identical to the language defined in the previous chapter.

As a result, we will avoid presenting details of the syntax, semantics, and

verification which were discussed in the previous chapter, focusing on the new

features necessary to enable constructing and verifying samplers for stochastic

processes. We will begin by introducing the syntax and semantics of these

new elements, so as to formalise the stochastic process sampler type defined

in eq. (4.1).
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4.1 Language

In this section, we extend the language of chapter 3 by adding certain de-

pendent types, giving the language the ability to package different finite-

dimensional samplers into a single object. The presence of these dependent

types complicates the language of chapter 3 somewhat, but as we shall see it is

semantically very natural; Π-types provide exactly the right structure in which

to construct stochastic processes via Bochner’s theorem (section 4.3.3). Just

as in chapter 3, the language is interpreted in a category of topological spaces

and continuous maps, in order to keep the targeting relation (which is defined

in terms of weak convergence) well-defined.

4.1.1 Syntax

The grammars of the various types and terms of our language are given in

fig. 4.1, which extends the the corresponding fig. 3.1 in the previous chapter

with a number of new language features. The rules for well-formed types are

given in fig. 4.2, and the rules for well-formed terms are given in fig. 4.3. Note

in particular that, following [49], our contexts φ; Γ now have two pieces: an

indexing context φ, which will keep track of all the indices on which types

depend in a program, and a standard context Γ, which can include variables

indexed in φ. We will now go through each of these new features in detail.

Indexing types and indexing terms.

We will only need a limited collection of dependent types, and so we follow a

restricted syntax in the spirit of dependent ML [49]. We begin by defining the

grammar of indexing types and indexing terms in figs. 4.1a and 4.1b, where

G ∈ Ground ranges over a set of ground types which includes B, N, R and R+; x

ranges over a set Var of variables; g ranges over constants taking values in one

of the ground types G ∈ Ground; and f ranges over a set of built-in functions

taking their values in one of the ground types.

An indexing context φ will be a context of indexing types x1 :

I1, . . . , xn : In (we broadly follow the notation of [49]). The rules for well-
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I ::= G | I× I

(a) Indexing type grammar

i ::= x | g | f(i, . . . , i) | (i, i) | fst(i) | snd(i) | cast〈I〉i

(b) Indexing term grammar

T ::= G ∈ Ground | 1
| T× T | T + T | T→ T | Σ T
| Π i : I . T | iIi | Veci(T) | Mati×i(T) i, i : I

(c) Type grammar

t ::= x ∈ Var | b ∈ {True, False} | n ∈ N | r ∈ R Variables and constants
| f(t, . . . , t), f ∈ Func | cast〈T〉t Built-in functions
| case t of {(i, xi)⇒ t}i∈n Programming constructs
| λx: T.t | t(t) | let x = t in t "
| (t, t) | fst(t) | snd(t) | ini (t) Products and coproducts
| prng(t, t) | t⊗ t | map(t, t) | reweight(t, t) Sampler operations
| hd(t) | wt(t) | tl(t) | thin(t, t) "
| vec(t)(t) | get(t)(t, t) | reduce(t)(t, t, t) Vector operations
| mat(t, t)(t) | get(t, t)(t, t, t) Matrix operations

(d) Term grammar

v ::= x ∈ Var | b ∈ {True, False} | n ∈ N | r ∈ R
| (v, v) | ini (v) | λx: T. v

(e) Value grammar

Figure 4.1: Grammars

formed indexing terms are given in fig. 4.2a.

(Sub-)Types.

The types of our language are given by the grammar fig. 4.1c. The types we

consider here are the types of chapter 3 plus Π-, vector and matrix types.

Unlike chapter 3, we have further rules for well-formed types; these are

given in fig. 4.2b. Types depending on open indexing terms will be called
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φ ` g : G
g ∈ JGK , G ∈ Ground

φ ` x : I
x ∈ dom(φ)

φ ` x1 : G1 . . . φ ` xn : Gn
φ ` f(x1, . . . , xn) : G

Func 3 f : G1 × . . .× Gn → G

φ ` t : I1 × I2

φ ` fst(t) : I1

φ ` t : I1 × I2

φ ` snd(t) : I2

φ ` s : I1 φ ` t : I2

φ ` (s, t) : I1 × I2

(a) Well-formed indexing terms

` G : Type
G ∈ Ground

φ ` T : Type

φ, i : I ` T : Type
i /∈ domφ

φ ` T : Type

φ ` Σ T : Type

φ, i : I ` T : Type

φ ` Π i : I . T : Type

φ ` S : Type φ ` T : Type

φ ` S ? T : Type
? ∈ {×,+,→}

φ ` s : I φ ` t : I φ ` I : Type

φ ` sIt : Type
s, t open

φ ` t : N φ ` T : Type

φ ` Vect(T) : Type

φ ` s : N φ ` t : N φ ` T : Type

φ ` Mats×t(T) : Type

(b) Type formation rules

f−1(0) + f−1(1) / R× R
f ∈ {<,≤, >,≥,=, 6=}

S / T
FS / FT

F ∈ {Σ (−), Vecn(−), Matm×n(−), Πn : N . (−)}

S1 / S2 T1 / T2

S1 ∗ T1 / S ∗ T2
∗ ∈ {+,×} S1 / S2 T1 / T2

S2 → T1 / S1 → T2

S1 / T S2 / T
S1 ∩ S2 / S1

S1 / T S2 / T
S1 ∩ S2 / S2

(c) Subtyping rules

Figure 4.2: Well-formed indexing terms, type-formation, and subtype rules



124 Chapter 4. Stochastic process samplers

dependent types. All other types will be called closed types.

Since we have a limited supply of Π-types, we need to explicitly include

function types S→ T, as opposed to considering these as Π-types themselves.

The sampler types Σ T should not be confused with the Σ-types of dependent

type theory, which do not feature in our language. As in chapter 3, Σ T is

interpreted as the set of weighted streams of type T. The pullback types sTt

of chapter 3, while they retain a particular syntax, will now be interpreted as

the dependent types they are. The only other dependent types we introduce

are vector types and matrix types.

The language also includes a subtyping relation / described in fig. 4.2c.

The purpose of this relation, as it was in chapter 3, is to encode topological

information which will allow the interpretation of functions which are dis-

continuous for the standard topologies. The first rule introduces the ground

types f−1(0) + f−1(1) which will be interpreted as R2 equipped with the

coarsest refinement of the usual topology making the comparison operator

f ∈ {<,≤, >,≥,=, 6=} continuous. The types S1∩S2 will be interpreted as the

coarsest common refinement of the topologies on S1, S2; they are as previously

syntactic sugar for the pullback types cast〈T〉x1:S1Tcast〈T〉x2:S2 .

Terms

The terms of our language are given by the grammar fig. 4.1d. The first

seven lines, containing standard programming constructs and sampler oper-

ations, are unaltered from chapter 3. The last two lines contain our new

vector and matrix operations, which will be essential for building samplers for

the marginal distributions of stochastic processes. More specifically, vec(n)(t)

(resp. mat(m,n)(t)) constructs a vector of type Vecn(T) (resp. a matrix of type

Matm×n(T)) given a map t : N → T (resp. t : N × N → T). The operation

get(n)(i, v) (resp. get(m,n)(i, j,M)) gets the ith (resp. (i, j)th) element of an

n-dimensional vector v of type T (resp. m × n-dimensional matrix M of type

T). The operation reduce(s)(f, t, v) repeatedly performs the binary operation

f to the elements of an s-dimensional vector v starting with an element t.
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The rules for well-formed terms are given in fig. 3.2a. Again, following

[49], we have split our contexts in two: a context φ; Γ consists of an indexing

context φ and a standard context Γ.

The rules on the first three lines of fig. 4.3a are standard, introducing

constants, built-in functions, variables, weakening and casting. Note that the

variable introduction and weakening rules ensure that a type must be con-

structed from the indexing context φ using the rules of fig. 4.2b before they

can be introduced into the (standard) context. The rule on the third line is the

“context-restriction” rule of chapter 3 adapted to our dependently-typed lan-

guage, the notation t−1(S) being as previously syntactic sugar for the pullback

type cast〈I〉x:SIt. Next, the rules for pairing, pattern matching, let binding,

lambda-abstractions and evaluations are the same as chapter 3 with the addi-

tion of the indexing context φ, as are the typing rules for sampler operations.

Only the rules for introduction and evaluation of Π-types, and for cre-

ating and manipulating vectors and matrices, contained within fig. 4.3c, are

substantial alterations from the previous chapter. These are implemented as

expected given the intended meaning sketched above.

4.1.2 Operational semantics.

The operational semantics of terms of dependent type is mostly straightfor-

ward, as they are naturally interpreted in the same way as λ-terms. For each of

our built-in dependent operations, such as get, and each possible size n ∈ N,

we add a corresponding rule to the operational semantics – in this case, one

which inputs a natural number i ∈ {1, . . . , n} and a vector of size n, and out-

puts the ith element of the vector. The operational semantics for these vector

and matrix operations is given in fig. 4.4, the operational semantics for all

other operations being unchanged from chapter 3.

4.1.3 Denotational semantics.

As explained in chapter 3, the key correctness criterion for a sampler is given

by the concept of targeting a probability measure. Since targeting is defined in
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φ; ∅ ` g : G
g ∈ JGK , G ∈ Ground

φ; Γ ` t1 : G1 . . . φ; Γ ` tn : Gn
φ; Γ ` f(t1, . . . , tn) : G

Func 3 f : G1 × . . .× Gn → G

φ; Γ,∆ ` t : T φ ` S : Type

φ; Γ, x : S,∆ ` t : T

φ ` T : Type

φ;x : T ` x : T
x ∈ Var

φ ` t : I

φ; (x1, . . . , xn) : t−1(S) ` t : S
S / I, φ = x1 : I1, . . . , xn : In

φ; Γ ` t : S× T

φ; Γ ` fst(t) : S

φ; Γ ` s : S φ; Γ ` t : T

φ; Γ ` (s, t) : S× T

φ; Γ ` t : S× T

φ; Γ ` snd(t) : T

φ; Γ ` t :
∑

i∈I Ti φ; Γ, xi : Ti ` si : T

φ; Γ ` case t of {(i, xi)⇒ si}i∈I : T

φ; ∆ ` t : S

φ; Γ ` cast〈T〉t : T
S / T,Γ /∆

φ; Γ ` t : Tj

φ; Γ ` inj (t) :
∑

i∈n Ti
j ∈ n

φ; Γ, x : S ` t : T

φ; Γ ` λx : S . t : S→ T

φ; Γ ` s : S φ; Γ ` t : S→ T

φ; Γ ` t(s) : T

φ; Γ, x : S ` t : T φ; Γ ` s : S

φ; Γ ` let x = s in t : T

(a) Typing rules for general programming constructs

φ; Γ ` t : Σ T

φ; Γ ` hd(t) : T

φ; Γ ` t : Σ T

φ; Γ ` tl(t) : Σ T

φ; Γ ` t : Σ T

φ; Γ ` wt(t) : R+
φ; Γ ` s : Σ S φ; Γ ` t : Σ T

φ; Γ ` s⊗ t : Σ (S× T)

φ; Γ ` s : T→ T φ; Γ ` t : T

φ; Γ ` prng(s, t) : Σ T

φ; Γ ` n : N φ; Γ ` t : Σ T

φ; Γ ` thin(n, t) : Σ T

φ; Γ ` s : S→ T φ; Γ ` t : Σ S

φ; Γ ` map(s, t) : Σ T

φ; Γ ` s : T→ R+ φ; Γ ` t : Σ T

φ; Γ ` reweight(s, t) : Σ T

(b) Typing rules for sampler-functions

φ, i : I; Γ ` t : T

φ; Γ ` (λi : I . t) : (Π i : I . T)
i /∈ FV (Γ)

φ; Γ ` t : Π i : I . T φ ` s : I

φ; Γ ` t(s) : T[i/s]

φ; Γ ` f : N→ T φ ` t : N

φ; Γ ` vec(t)(f) : Vect(T)

φ; Γ ` v : Vect(T) φ; Γ ` i : N

φ; Γ ` get(t)(i, v) : T

φ; Γ ` f : T× T→ T φ; Γ ` t : T φ; Γ ` v : Vecs(T)

φ; Γ ` reduce(s)(f, t, v) : T

φ; Γ ` f : N× N→ T φ ` s : N φ ` t : N

φ; Γ ` mat(s, t)(f) : Mats×t(T)

φ; Γ `M : Mats×t(T) φ; Γ ` i, j : N

φ; Γ ` get(s, t)(i, j,M) : T

(c) Typing rules for operations involving dependent types

Figure 4.3: Typing rules
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(s,N)→ m (t(1), N)→ v1 . . . (t(m), N)→ vm

(vec(s)(t), N)→ (v1, . . . , vm)

(s,N)→ m (t,N)→ i (v,N)→ (v1, . . . , vn)

(get(s)(t, v), N)→ vi
1 ≤ i ≤ m

(s,N)→ m (t,N)→ w0 (t′, N)→ (v1, . . . , vm)

(s′(w0, v1), N)→ w1 (s′(w1, v2), N)→ w2 · · · (s′(wm−1, vm), N)→ wm

(reduce(s)(s′, t, t′), N)→ wm

(s,N)→ m (s′, N)→ n (t(1, 1), N)→ v1,1 . . . (t(m,n), N)→ vm,n

(mat(s, s′)(t), N)→ ((v1,1, . . . , v1,n), . . . , (vm,1, . . . , vm,n))

(s,N)→ m
(s′, N)→ n

(t,N)→ i
(t′, N)→ j

(M,N)→ ((v1,1, . . . , v1,n), . . . , (vm,1, . . . , vm,n))

(get(s, s′)(t, t′,M), N)→ vi,j
†

† Note the side condition 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Figure 4.4: Operational semantics of vector and matrix operations

terms of weak convergence, we must provide our language with a semantics in

a category of topological spaces and continuous maps, as in chapter 3. As we

have λ-abstractions, this semantics also needs a Cartesian closed structure; as

in chapter 3, we choose the category CG of compactly-generated spaces (CG-

spaces) [36]. This category is Cartesian closed, complete, and co-complete,

and can in particular be used to interpret the coinductive types Σ T.

However, CG is not locally Cartesian closed [50], and as a result, it cannot

interpret a full dependently typed language [51]. Despite this, CG is rich

enough to interpret a language with only a restricted class of dependent types.

The addition of even a small collection of dependent types, though, will change

the semantics of our sampling language quite considerably. Following [51], we

now interpret judgements φ; Γ ` t : T as morphisms in the comma category

CG ↓ JφK.

Indexing types, contexts and terms.

Indexing types. Indexing types are interpreted as objects in CG. The

ground types B and N are interpreted as the sets 2 and N equipped with the
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discrete topology, and the types R, R+ are interpreted as R and R≥0 equipped

with their usual topology. Product types are interpreted by the product in

CG (which is not always the usual product of topological spaces, although it

is for all the indexing types we allow [36]).

Indexing contexts. Indexing contexts are inductively interpreted in the

usual way: J∅K , 1 = {∗}, the terminal object inCG, and Jφ, i : IK , JφK×JIK,

where the product is again taken in CG.

Well-formed indexing terms. Judgements φ ` t : I derivable from fig. 4.2a

are inductively interpreted as CG-morphisms JtK : JφK→ JIK in the usual way.

Well-formed types.

A judgment φ ` T : Type will be interpreted as an object in CG ↓ JφK. The

underlying CG-morphism JTK → JφK defining such an object will be referred

to as the indexing map. Define U : CG ↓ JφK→ CG as the forgetful functor

U(JTK→ JφK) = JTK.

Ground types. Since J∅K = 1, J∅ ` G : TypeK is interpreted as an object in

CG ↓ 1, which is equivalent to CG. Therefore, we can simply use the inter-

pretation of ground types defined above.

Index weakening. To interpret the index weakening rule of fig. 4.2b, we need

to define the notion of change of base functor. Given two CG-objects A,B

and a CG-morphism f : A→ B, there exists a functor f ∗ : CG↓B → CG↓A

called the change of base functor which is defined by taking pullbacks along

f . In particular, the projection πφ : JφK× JIK → JφK defines a change of base

functor π∗φ : CG↓JφK→ CG↓Jφ, i : IK. We can now interpret index weakening

by associating with Jφ ` T : TypeK the CG ↓ Jφ, i : IK-object

Jφ, i : I ` T : TypeK , π∗φ (Jφ ` T : TypeK) .

Remark 4.1.1. This rule shows that the interpretation of a type T changes
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with the indexing context. In particular, we have:

U Jφ, i : I ` T : TypeK ' U Jφ ` T : TypeK× JIK when i /∈ FV (T).

Products. Given two CG ↓ JφK-objects Jφ ` S : TypeK and Jφ ` T : TypeK,

Jφ ` S× T : TypeK is their product in CG ↓ JφK, viz. the CG-pullback

U Jφ ` S× T : TypeK U Jφ ` T : TypeK

U Jφ ` S : TypeK JφK

y

For example, Jn : N ` Vecn(R)× Vec2n(R)K is the space of pairs of vectors

of lengths (n, 2n), n ∈ N, sent to the same n by the indexing map by commu-

tativity of the pullback square.

Coproducts. Colimits in CG ↓ A are inherited from colimits in CG: given

a diagram D : J → CG ↓ A, colim D is constructed by first constructing

colim(U ◦D). Since A is, by definition, a cocone for this colimit, there exists a

unique morphism colim(U ◦D)→ A which defines colim D . For coproducts, if

Jφ ` S : TypeK and Jφ ` T : TypeK are CG↓JφK-objects, then Jφ ` S + T : TypeK

is given by the copairing U Jφ ` S : TypeK + U Jφ ` T : TypeK→ JφK in CG.

Function types. As mentioned above, CG is not locally Cartesian closed

[50], i.e. CG ↓ A is in general not Cartesian closed. However, CG ↓ A is

Cartesian closed for sufficiently nice objects A, and these objects include the

denotation of all indexing contexts that can arise in our language.

Theorem 4.1.2 ([52, 53]). If A is (weak) Hausdorff then the category CG↓A

is Cartesian closed.

Since 2, N, R and R≥0 are Hausdorff, and since the product of Haus-

dorff spaces is Hausdorff, theorem 4.1.2 allows us to define for every pair of

CG ↓ JφK-objects Jφ ` S : TypeK , Jφ ` T : TypeK the object Jφ ` S→ T : TypeK

as their internal hom in CG ↓ JφK. This object is quite subtle [52, 1.3.11], and

can informally be described as the space of partial maps from U Jφ ` S : TypeK

to U Jφ ` T : TypeK mapping a fibre indexed by x ∈ JφK in the domain
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to the fibre in the codomain indexed by the same x. The indexing map

U Jφ ` S→ T : TypeK → JφK naturally sends such a map to x ∈ JφK. See

op. cit. for information about how this space is defined and topologised. As an

example, Jm : N, n : N ` Matm×n(R)→ Vec2m(R)K contains the continuous maps

from the space of all real m × n-matrices to that of all real 2m-dimensional

vectors – for a fixed choice m,n ∈ N2. Such a map is not defined on m′ × n′-

matrices if m 6= m′ or n 6= n′ and is sent to (m,n) by the indexing map.

Sampler types. Let Jφ ` T : TypeK be a CG ↓ JφK-object. We define

Jφ ` Σ T : TypeK as the terminal coalgebra for an endofunctor on CG ↓ JφK,

in analogy to how we had defined it in chapter 3. Define the functor

F T(A) , Jφ ` T : TypeK×
q
φ ` R+ : Type

y
× A

where the product above is taken in CG ↓ JφK (and is thus a pullback in CG).

Note that CG ↓ JφK has as terminal object idJφK : JφK → JφK, and is

complete because CG is. Moreover, since the functor F T is defined by a

product, and limits commute with limits, F T preserves all limits. We can

therefore define Jφ ` Σ T : TypeK , νF T, the terminal coalgebra for F T, by using

the terminal sequence construction of theorem 3.1.6, just as in the previous

chapter. The carrier of JΣ TK is then given by the limit (in CG) of the following

diagram, which guarantees that all the components of streams are indexed

consistently.

JφK UF T1 UF T(F T1) . . .

JφK

For example, Σ Vecn(R) contains the streams of weighted vectors of iden-

tical lengths; a sampler in Σ Vecn(R) cannot return vectors of different lengths

because they are not in the limit.

Example 4.1.3. As discussed in the introduction to this chapter, choosing

to consider stochastic process samplers as programs returning sample paths of
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type T → S leads to programs which cannot be computationally realised. Nev-

ertheless the type of such programs is available to us as φ ` Σ (T → S) : Type.

Elements in the carrier of Jφ ` Σ (T→ S) : TypeK are weighted sequences of

continuous functions (sample paths) that share the same domain and codomain

fibres indexed by some x ∈ JφK.

Pullback types. As their name suggests, the semantics of pullback types is

straightforwardly given by the pullbacks

JsItK JφK

JφK U Jφ ` I : TypeK

JφK

y
JsK

JtK

Vector and matrix types. Consider Jφ ` T : TypeK inCG↓JφK. We interpret

the vector type Vecs(T); the case of matrices is treated in a similar way. An

indexing judgement φ ` t : N is interpreted as a CG-morphism JtK : JφK→ N.

To define Jφ ` Vect(T) : TypeK, we note that any element x ∈ JφK defines a

morphism x : 1→ JφK and therefore a change of base functor x∗ : CG ↓ JφK→

CG ↓ 1. With this definition, and using the cocompleteness of CG, we define

Jφ`Vect(T) :TypeK :
∐
x∈JφK

(x∗Jφ`T :TypeK)JtK(x)→ JφK , inx(y) 7→x

The products and coproduct are taken in CG ↓ 1, i.e. in CG, so the above

defines an object in CG ↓ JφK. Intuitively, x∗ substitutes the variables in φ

with the concrete values provided by x in the dependent type T, i.e. constructs

‘T[φ/x]’.

As an example of this complex-seeming definition, consider the type

Jx : N, y : N ` Vec2y(Matx×y(R))K .
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For each (m,n) ∈ N2, we have (m,n)∗(JMatx×y(R)K) = Rm×n, and therefore

Jx : N, y : N ` Vec2y(Matx×y(R))K =
∐

(m,n)∈N2

(
Rm×n)2n

with the indexing map sending 2n-tuples of m× n matrices to (m,n).

Π-types. Consider a type φ, i : I ` T : Type interpreted as an object

in CG ↓ Jφ, i : IK. The projection map πφ : JφK × JIK → JφK defines a

change of base functor π∗φ : CG ↓ JφK → CG ↓ Jφ, i : IK. Under the same

assumptions as theorem 4.1.2, namely that the object defining the comma

category is Hausdorff, it can be shown that this functor has a right adjoint

Ππφ : CG ↓ Jφ, i : IK→ CG ↓ JφK. We then define

Jφ ` Π i : I . TK , Ππφ Jφ, i : I ` T : TypeK .

Example 4.1.4. A particularly important Π-type for our purpose is the type

of samplers on JTK-indexed JSK-valued stochastic processes

Marginal(T, S) , Πn : N . Vecn(T)→ Σ (Vecn(S)).

whose development was motivated in the introduction to this chapter. Assum-

ing for simplicity’s sake that S and T are closed types, this type is interpreted

as

J` Marginal(T, S) :TypeK = Π!:N→1 (Ji : N ` Veci(T)→Σ (Veci(S))K)

=
∏
n∈N

{f : JTKn→ (JSnK× R≥0)ω continuous}

An element of U J` Marginal(T, S) : TypeK is thus a sequence of functions

(fn)n∈N, each of which associates to any tuple (t1, . . . , tn) a sampler on n copies

of S.

Remark 4.1.5. The reader may be wondering at this point: why not instead

introduce stochastic process samplers to the language as functional samplers of
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type s : Σ (T → S), each sample of which is a full trajectory, i.e. a function

f : T → S? In short, this is conceptually possible, subject to concerns about

continuity, but less practical. Regarding continuity, recall that our language

limits us to considering continuous functions f : T→ S, which means that the

only stochastic processes that will type are those whose sample paths are all

continuous.

Note that these functional samplers have a natural relationship to our

marginal samplers: clearly, given a functional sampler s : Σ (T → S), we can

construct its corresponding finite-dimensional variant:

λn : N . λt : Vecn(T) .
map(λf : T → S .

vec(n)(λi : N . f (get(n)(i, t))),
s)

: Marginal(T, S)

Listing 4.1: Projection from functional to marginal samplers

However, there is no clear procedure by which we can do the reverse on

uncountably large index sets T, i.e. use a system of marginal samplers to con-

struct a functional sampler. While functional samplers for those processes are

perfectly well-defined, nontrivial samplers targeting such processes cannot be

produced by any practical means. Consider the Wiener process: preparing a

full, single trajectory f : R→ R would require specifying its value at uncount-

ably many inputs.

Subtyping. Just as in chapter 3, the subtyping relation / defined by the rules

of fig. 4.2c is meant to carry topological information, and will always be in-

terpreted as an identity map. Its formal development proceeds the same as

in the previous chapter as well. For every boolean-valued comparison opera-

tor f ∈ {<,≤, >,≥,=, 6=} the ground type f−1(0) + f−1(1) is interpreted as

JfK−1(0) + JfK−1(1) where + is the coproduct in CG, which is a CG-space by

Proposition 3.1.5. Recall that S1∩S2 is syntactic sugar for cast〈T〉x1:S1Tcast〈T〉x2:S2 ,

i.e. JS1 ∩ S2K has the same carrier as JS1K and JS2K and the coarsest common

refinement of their topologies, making both identity maps JS1 ∩ S2 / S1K and
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JS1 ∩ S2 / S2K continuous. And since the subtyping relation is interpreted via

identity maps, the interpretation of S / T in CG transfers trivially to CG↓JφK.

Well-formed terms-in-contexts

The semantics of a judgement φ; Γ ` t : T will be given by aCG↓JφK-morphism

Jφ; Γ ` t : TK : Jφ; ΓK → Jφ ` T : TypeK. Apart from sampler operations, all

operations will be interpreted using completely standard categorical construc-

tions, albeit in the less-familiar comma categories CG ↓ JφK.

Contexts. As can be seen from fig. 3.2a, contexts are constructed using either

the variable introduction rule or the weakening rule. In particular, the indexing

context φ is fixed. We can therefore interpret contexts recursively using the

product of CG ↓ JφK in the usual way, viz. Jφ; ∅K = 1, the terminal object in

CG↓ JφK given by idJφK : JφK→ JφK, and Jφ; Γ, x : TK = Jφ; ΓK× Jφ ` T : TypeK.

Constants, variable introduction and built-in functions. The index

weakening rule allows us to interpret the judgement φ ` G : Type as

!∗φ J∅ ` G : TypeK where !φ : JφK→ 1. This interpretation is just the CG ↓ JφK-

object JGK× JφK→ JφK projecting away JGK. With this, we define Jφ; ∅ ` c : GK

by

JφKid JGK× JφK

JφK

x 7→(JcK,x)

π2

We define Jφ;x : T ` x : TK as the CG ↓ JφK-identity id : Jφ ` T : TypeK→

Jφ ` T : TypeK. Finally, each built-in function f is given a CG-interpretation

JfK : JG1K×. . .×JGnK→ JGK which, in turn, defines a CG↓JφK-interpretation of

the same formal type. Since products in CG↓JφK are (wide) pullbacks in CG,

input elements in JG1K× . . .× JGnK are tuples ((g1, x), . . . , (gn, x)), gi ∈ JGiK for

a common x of JφK. We can thus unambiguously send ((g1, x), . . . , (gn, x)) to

(JfK (g1, . . . , gn), x); this defines the CG↓ JφK-interpretation JfK. With this we

can define the usual interpretation

Jφ; Γ ` f(t1, . . . , tn) : GK = JfK ◦ 〈Jt1K , . . . , JtnK〉.
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Standard constructs. Casting, (co)products, (co)projections, let bindings,

lambda-abstraction and function application are interpreted in the usual way.

The last two operations rely on theorem 4.1.2 and the fact that indexing types

are interpreted as Hausdorff spaces.

Π-type abstraction and evaluation. The map πφ : JφK× JIK→ JφK defines

the change of base functor π∗φ : CG↓JφK→ CG↓Jφ; i : IK and its right adjoint

Ππφ : CG ↓ Jφ; i : IK→ CG ↓ JφK. Using this functor we define

Jφ; Γ ` (λi : I . t) : (Π i : I . T)K = Ππφ Jφ, i : I; Γ ` t : TK

For the Π-type evaluation rule, since the premise has a Π-type, it must be

that Jφ; Γ ` t : Π i : I . TK has the shape Ππφ Jφ, i : I; Γ ` t′ : TK for some term

t′ : T. In other words,

JtK ∈ homCG↓JφK
(
Jφ; ΓK ,Ππφ Jφ, i : I ` T : TypeK

)
.

By the adjunction, this corresponds to a unique CG ↓ Jφ, i : IK-arrow

ĴtK ∈ homCG↓Jφ,i:IK
(
π∗φ Jφ; ΓK , Jφ, i : I ` T : TypeK

)
.

The index term φ ` s : I defines 〈id, JsK〉 : JφK → JφK × JIK which provides a

concrete value of type I and satisfies πφ ◦ 〈id, JsK〉 = id. Using this map we

define

Jφ; Γ ` t(s) : T[i/s]K , 〈id, JsK〉∗ĴtK : Jφ; ΓK→ 〈id, JsK〉∗ Jφ, i : I ` T : TypeK

Intuitively, 〈id, JsK〉∗ substitutes the free variable i in T with the concrete value

computed by s and leaves all other free variables unchanged, as suggested by

the notation T[i/s].

Vector and matrix operations. The semantics is intuitively simple: given

f : N → A, vec(n)(f) builds the n-dimensional vector with entries in A

given by (f(1), . . . , f(n)). Matrices are defined analogously: given a map
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f : N× N→ A, the matrix mat(m,n)(f) is given by (f(i, j))1≤i≤m,1≤j≤n. The

difficulty is in showing that these simple constructions are compatible with the

indexed structure of the semantics. We only consider the case of vectors, as

the case of matrices is treated in the same way. Assuming

JfK : Jφ; ΓK→ Jφ ` N→ T : TypeK and JtK : JφK→ N

in CG ↓ JφK, we define

Jvec(t)(f)K : Jφ; ΓK→ Jφ ` Vect(T) : TypeK

via the CG-triangle

U Jφ; ΓKg U Jφ ` Vect(T) : TypeK

JφK

UJvec(t)(f)K

inx(y)7→x

where U Jvec(t)(f)K (γ) ,
(
U JfK (γ)(1), . . . , U JfK (γ)

(
JtK(g(γ))

))
.

Lemma 4.1.6. The triangle above commutes, i.e. the semantics of vec(t)(f)

is well-defined.

Proof. By the definition of the internal hom in CG ↓ JφK, JfK (γ) takes

a function from the g(γ)-indexed copy of N in the domain to the fibre

in U Jφ ` T : TypeK indexed by g(γ). It follows that U Jvec(t)(f)K (γ) ,(
U JfK (γ)(1), . . . , U JfK (γ)

(
JtK(g(γ))

))
belongs to the summand

(
g(γ)∗ Jφ, n : N ` T : TypeK

)JtK(g(γ))

in the coproduct defining Jφ ` Vect(T) : TypeK, and thus gets indexed by g(γ)

as desired.

The operation get(t)(i, v) deconstructs a vector, choosing its ith element;

its output is not indexed. Given

JvK : Jφ; ΓK→ Jφ ` N→ T : TypeK , JiK : Jφ; ΓK→ N, JtK : JφK→ N,
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having suppressed the forgetful functor U , define

Jget(t)(i, v)K : Jφ; ΓK→ J1 ` T : TypeK

as simply Jget(t)(i, v)K = JvK (γ)(JtK (γ))JiK(γ), i.e. choosing the ith element of

the vector v, assuming the choice is valid.

The operation reduce is also straightforwardly defined. It applies a binary

operation f : T× T→ T to a vector v : Vect(T), starting from the initial value

s : T, until all that remains is one value reduce(t)(f, v, s) of type T. And so,

given

JvK : Jφ; ΓK→ Jφ ` N→ T : TypeK , JfK : Jφ; ΓK→ Jφ ` T× T→ T : TypeK ,

JsK : JΦ; ΓK→ Jφ ` T : TypeK , JtK : JΦ; ΓK→ N

define

Jreduce(t)(f, v, s)K : Jφ; ΓK→ J1 ` T : TypeK

as

Jreduce(t)(f, v, s)K (γ) = JfK (γ)(JvK (γ)(JtK (γ)), . . . , JfK (γ)(JvK (γ)(1), JsK (γ)))

For example, in the case that JfK (γ)(x, y) = x + y, JtK (γ) = 3, JsK (γ) = v0,

and JvK (γ) = (v1, . . . , v3), Jreduce(t)(f, v, s)K = v3 + (v2 + (v1 + v0)).

Sampler operations. Remember that sampler operations were defined

purely coinductively in chapter 3. Since judgements Jφ ` Σ T : TypeK are analo-

gously defined as terminal coalgebras in CG↓ JφK, all the definitions of op. cit.

transfer immediately to our indexed semantics. For example, Jφ; Γ ` hd(t) : TK

is defined from the usual head operation (F T!), then projecting away the weight

Jφ; Γ ` t : Σ TK F T!−→ F T1
π1−→ Jφ ` T : TypeK .
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4.2 Sampler equivalence
Figure 4.5 extends the equivalence calculus of section 3.2 with two additional

rules pertaining to our new built-in vector and matrix operations, whose proof

(whether in the operational or denotational semantics) is immediate. These

two simple rules are the only additional rules we will need in order to justify

the results in section 4.3.

Note that all of the proofs of our equivalence calculus given in section 3.2

extend immediately to this setting as well. These proofs, aside from those

that are trivially true in our denotational semantics, worked by leveraging

the coinductive definitions of our sampler operations. While the addition of

dependent types has added additional structure to our denotational semantics

of terms and types, our coinductive definitions of sampler operations are in

fact unchanged, and so the purely coinductive proofs of section 3.2 carry over

with no changes.

φ ; Γ ` T ` get(n)(i, vec(n)(f)) ≈ f(i) : T

φ ; Γ ` get(m,n)(i, j, mat(m,n)(f)) ≈ f(i, j) : T

Figure 4.5: Equivalence rules for vector and matrix operations

The get-reduction rules of fig. 4.5 follow immediately from the denota-

tional semantics of vec and get given in section 4.1; it can also be easily

demonstrated in the operational semantics.

Proof of soundness for fig. 4.5.

Jget(n)(i, vec(n)(f))K (γ) = Jget(n)(i, (JfK (γ)(1), . . . , JfK (γ)(JnK (γ))))K

= (JfK (γ)(1), . . . , JfK (γ)(JnK (γ)))JiK(γ)

= JfK (γ)(JiK (γ))

assuming that the selector JiK (γ) is valid. The same argument holds for get

over mat.
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λn : N .
λ(v1, v2) : Vecn(R)× Vecn(R) .

vec(n)(λi : N . get(n)(v1, i) + get(n)(v2, i))
: Πn : N . Vecn(R)× Vecn(R)→ Vecn(R)

Listing 4.2: Definition of vadd

λn : N .
λv : Vecn(R) .

reduce(n)(λ(x, y) : R× R . x+ y, 0, v)
: Πn : N . Vecn(R)→ R

Listing 4.3: Definition of vsum

4.3 Verification

In this section, we apply the language we developed in section 4.1 to demon-

strate the soundness of a number of techniques which are commonly used in

the literature for constructing and transforming stochastic processes. In par-

ticular, we will identify sets of programs which provably construct stochastic

process samplers, and which provably transform one stochastic processes sam-

pler into another.

4.3.1 Vector and matrix operations

In this section, we include implementations of several vector and matrix op-

erations used within the example programs we will consider in the coming

sections. As the purpose of this chapter is to discuss the verification of sam-

plers for stochastic processes, rather than to to discuss the verification of linear

algebra and list operations, we restrict attention to only a few simple, mostly

self-explanatory operations that are necessary for our chosen examples.

The purpose of each of these programs should be self-explanatory. vadd

(implemented in listing 4.2) adds two vectors of the same size elementwise;

vsum (implemented in listing 4.3) sums the elements of one vector; vprod

(implemented in listing 4.4) multiplies two vectors of the same size elementwise;

and so on.
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λn : N .
λ(v1, v2) : Vecn(R)× Vecn(R) .

vec(n)(λi : N . get(n)(v1, i)*get(n)(v2, i))
: Πn : N . Vecn(R)× Vecn(R)→ Vecn(R)

Listing 4.4: Definition of vprod

λn : N .
λ(v1, v2) : Vecn(R)× Vecn(R) .

vsum(n)(vprod(n)(v1,v2))
: Πn : N . Vecn(R)× Vecn(R)→ R

Listing 4.5: Definition of dot

λn : N .
λ(v, x) : Vecn(T)× T .

vec(n+ 1)(λi : N .
if i = n+ 1 then
x

else
get(n)(i, v))

: Πn : N . Vecn(T )× T → Vecn+1(T )

Listing 4.6: Definition of cons

λ(m,n) : N× N .
λv : Vecm(T ) .

vec(n)(λi : N . get(m)(i, v))
: Π (m,n) : N2 . Vecm(T )→ Vecn(T )

Listing 4.7: Definition of take

λn : N.λ(i,M) : N× Matm×n(T ) .
vec(n)(λj : N.get(m,n)(i, j,M))

: Π (m,n) : N2 . Matm×n(T )→ Vecn(T )

Listing 4.8: Definition of row

λn : N.λ(j,M) : N× Matm×n(T ) .
vec(n)(λi : N . get(m,n)(i, j,M))

: Π (m,n) : N2 . Matm×n(T )→ Vecm(T )

Listing 4.9: Definition of col

λ(m,n) : N× N.λ(M,v) : Matm×n(R)× Vecn(R) .
vec(m)(λi : N.dot(n)(row(m,n)(i,M), v))

: Π (m,n) : N2 . Matm×n(R)× Vecn(R)→ Vecm(R)

Listing 4.10: Definition of matvec
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4.3.2 Targeting for dependent samplers

We first recall how standard (finite-dimensional) samplers can be shown to pro-

duce samples which asymptotically behaves as if they were drawn from a given

distribution. As in chapter 3, we formalise this idea using weak convergence.

Let X be a topological space; a sequence of weighted samples (xn, wn)n∈N con-

verges weakly to the probability measure P on X if, for all continuous bounded

functions f : X → R, we have limN→∞

∑N
n=1 wnf(xn)∑N

n=1 wn
=
∫
X
f(x) dP (x).

Let P : Top→ Top be the functor defined by PX = probability measures

on the Borel sets of X equipped with the topology of weak convergence and

P(f : X → Y ) = f∗ : PX → PY , the pushforward operation P 7→ f∗P

(we do not know if PX is compactly generated when X is, so we define P on

Top rather than CG). Next, define P⊥ = P + 1, the coproduct of P with

the singleton space {⊥} which will represent divergence. Finally, we define the

empirical transformation as the collection of maps εX : (X×R≥0)N → P⊥X

each of which takes a weighted sequence of points to its limit in the weak

topology if it exists, and to ⊥ if it doesn’t. As shown by Example 3.3.2, this

transformation is not natural.

We now recall the definition of the targeting relation between samplers and

probability measures from the previous chapter; we will then adapt it to our

dependently-typed setting. In section 3.1.3, the denotational semantics of a

sampler-in-context Γ ` s : Σ S was given by a CG-morphism JsK : JΓK→ (JSK×

R≥0)ω and the sampler s targets a JΓK-labelled measure P : JΓK→ P(JSK)

when εJSK ◦ JsK = P . Since we now have dependent types, our denotational

semantics takes place in slice categories CG↓ JφK instead of CG, and we must

therefore adapt the definition of targeting to the indexed setting.

For a topological space X, we extend the functor P from Top to Top↓X

by working fibre-wise. Given p : Y → X, define

PX(p) ,
∐
x∈X

(P(p−1(x))
!−→ 1

x−→ X);
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the coproduct is taken in Top ↓X, and p−1(x) ⊆ X is the fibre at x with the

induced topology (in particular, it is closed whenever X is Hausdorff). The

functor is defined on morphisms in the obvious way via fibre-wise pushforwards,

and PX⊥ is defined analogously. With the notation we used to define the termi-

nal coalgebra interpreting sampler types, we can define for each Top↓X-object

p : Y → X the X-indexed-empirical transformation εXp : νF Y → PX⊥ Y

as the map

εXp ((y1, w1), (y2, w2), . . .) =


inx

(
lim
n→∞

∑n
i=1

wnδyn∑n
i=1 wn

)
if it exists

inx(⊥) else

where x = p((yn, wn)n) is the common index of all samples (by construction of

νF Y ), thus defining a Top ↓X-morphism.

With this is place we can formalise our indexed version of targeting.

Given a sampler φ; Γ ` s : Σ T and a Jφ; ΓK-labelled measure P : Jφ; ΓK →

PJφK Jφ ` T : TypeK, we say that s targets P , notation φ; Γ ` s  P , if

ε
JφK
JTK ◦ JsK = P (as Top ↓ JφK-morphisms this time).

Example 4.3.1. Let s be a closed sampler ` s : Σ S, JsK ∈ (JSK× R≥0)ω, and

consider the dependently typed sampler

n : N; ∅ ` sn : Σ Vecn(S)

whose interpretation is given by the commutative CG-triangle

N
∐
n∈N

(JSKn × R≥0)ω

N

idN

JsnK

inn(x)7→n

with JsnK(n) = ((JsK(1), . . . , JsK(n)), (JsK(n+ 1), . . . , JsK(2n)), . . .). An

Jn :N; ∅K-labelled measure P : 1 → PN Jn :N`Vecn(S) :TypeK is given by a

commutative CG-triangle
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N
∐
n∈N
P JSKn

N

P

idN

inn(P) 7→n

It now follows that the dependently-typed sampler targets P , i.e. n : N ` sn :

Vecn(S) P , iff, for all n ∈ N,

εNJSKn ◦ JsK (n) = P (n) = P (1)⊗ . . .⊗ P (1);

that is, iff the sampler s is n-equidistributed with respect to the probability

measure P (1) for all n ∈ N. (Recall from section 3.3.2 that this condition

holds in the event that the sampler is weak-mixing.)

By working fibre-wise like in Example 4.3.1, the targeting calculus of the

previous chapter (given in fig. 3.6) and its underlying proofs carry over to

our current setting with no changes, other than the fact that the types (e.g.

Vecn(S)) can now be dependent on an indexing context.

4.3.3 Constructing stochastic processes

Consider a stochastic process sampler ` s : Marginal(T, S). (We assume a

closed term for simplicity’s sake; everything that follows extends easily to

a sampler-in-context, but the notation becomes unnecessarily burdensome.)

This is the type which all samplers for JTK-indexed, JSK-valued stochastic pro-

cesses inhabit – and yet most programs of this type do not sample from any

stochastic process. To argue that a particular sampler s does, we must show

that taking samples obeys

n : N; t : Vecn(T) ` s(n)(t) : Σ (Vecn(S)) Pt (4.2)

for a Jn : N; t : Vecn(T)K-labelled measure

P : Jn : N; t : Vecn(T)K→ PN Jn : N ` Vecn(S) : TypeK (4.3)
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which corresponds to the marginals of the desired process.

When conditions eq. (4.2) and eq. (4.3) are satisfied, and eq. (4.3) are

the finite-dimensional marginals of a stochastic process with law ν, we write

` s : Marginal(T, S)
SP
 ν, and we say that s targets the stochastic process

with law ν.

As we discussed in section 2.8, s SP
 ν iff the targeted marginals satisfy

either the consistency conditions of Kolmogorov’s extension theorem, or the

projective limit conditions of Bochner’s theorem. Note that there is nothing in

the definition of the type Marginal(T, S) which guarantees these consistency

conditions: in order to capture these type-theoretically, our system would

need to contain something like “projective limit types”. We choose instead to

isolate the programs of type Marginal(T, S) which sample from a stochastic

process using a meta-theoretical verification (targeting) calculus, like that in

the previous chapter.

To enforce the consistency conditions between marginal samplers, we use

the construction of processes via Bochner’s theorem, and in particular its en-

coding of Kolmogorov’s extension theorem. Recall that Bochner’s theorem

constructs JTK-indexed, JSK-valued processes via

lim←−t∈I P
0St ∼= P0(lim←−t St) = P0(ST ). (4.4)

where the directed set (I,≤) is defined by I =
⋃
n JTKn and for every t =

(t1, . . . , tm) and t′ = (t′1, . . . , t
′
n), t ≤ t′ whenever {t1, . . . , tm} ⊆ {t′1, . . . , t′n}.

Every pair t ≤ t′ defines an injection it,t′ : m → n mapping the position of

each ti in the tuple t to its position in the tuple t′. The projective system

(St)t∈I is now defined as JSKt = JSKn and for πt′,t : JSKn → JSKm , (s1, . . . , sn) 7→

(sit,t′ (1), . . . , sit,t′ (m)).

Note that the indexing set I of the projective system is precisely the carrier

of Jn : N ` Vecn(T) : TypeK. This means that we can extract from eq. (4.3) a
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sequence

(Pt)t∈I where Pt = εNJSKn ◦ JsK(n)(t) by eq. (4.2)

This sequence defines a process ν ∈ P0(JSKJTK) = lim←−tP
0 JSKt if for all t′ ≤ t

the following consistency condition holds:

Pt′ = Pπt,t′ (Pt) . (4.5)

Writing πt : lim←−tP
0 JSKt → P0 JSKt for the obvious projections, this gives

us our first introduction rule for the stochastic process targeting calculus.

` s : Marginal(T, S)
SP
 ν

eq. (4.2), eq. (4.5) hold, Pt = Pπtν
(4.6)

That this rule is sound follows from Bochner’s theorem.

Remark 4.3.2. It is the use of dependent types in our language which makes

this construction rule semantically natural and easy to present. The projective

system of measures (Pt)t∈T , exactly what is required to construct a stochastic

process, is obtained easily thanks to the presence of the type Marginal(T, S) in

our language. This pleads strongly in favour of dependently-typed probabilistic

languages when dealing with stochastic processes.

Remark 4.3.3. The way in which a family of marginal samplers s ‘targets’ the

law µ of a stochastic process is formally unlike the notion of targeting discussed

in chapter 3, in that µ is a measure on a product algebra JSKJTK for some types

S, T, but s is not a sampler on the function type Σ (S → T). Nevertheless,

there is a sense in which the two notions of targeting are related. If an S-

valued sampler s targets the probability distribution µ, then s can compute the

expectations under µ of all continuous bounded functions f : JSK → R; if the

marginal samplers s target the law µ, then s can compute the expectations

under µ of all continuous bounded functionals f : JSKJTK → R which factor

through a finitary evaluation functional evt : JSKJTK → JSKn for some t ∈ JTKn.
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Example 4.3.4 (White noise). Let WhiteNoise : Σ S → Marginal(T, S) rep-

resent the function

s : Σ S ` λn : N . λt : Vecn(T) . sn : Marginal(T, S).

and fix a closed sampler ` s : Σ S. Recall first from Example 4.3.1 that, in

order for eq. (4.2) to hold for WhiteNoise(s)(n)(t), it must be the case that

Pt = P ⊗ . . .⊗P , the n-fold product of a fixed probability measure P , and that

the sampler s is n-equidistributed.

Since each Pt is the product of a fixed univariate distribution P , the consis-

tency condition eq. (4.5) follows almost immediately (from the commutativity

of multiplication on the reals). Assuming that s is n-equidistributed for each

n ∈ N, we can apply the introduction rule eq. (4.6) to show ` WhiteNoise(s) :

Marginal(T, S)
SP
 ν, where ν is the white noise process defined by the univari-

ate probability measure P = εNJSK ◦ WhiteNoise(s)(1)(t).

Example 4.3.5 (Gaussian process). For an arbitrary Gaussian process (see

section 2.8) on R with mean function µ : T → R and covariance kernel κ :

T × T → R+, which together make up the context Γ, the desired marginals P

are explicitly given by

P (µ, κ)(n)(t1, . . . , tn) = N



µ(t1)
...

µ(tn)

 ,

κ(t1, t1) · · · κ(t1, tn)

... . . . ...

κ(tn, t1) · · · κ(tn, tn)


 .

That is, each marginal is a Gaussian distribution whose mean is given by ap-

plying µ to (t1, . . . , tn), and whose covariance is the Gram matrix obtained

by applying the kernel κ to (t1, . . . , tn). In order for the above marginals

to be well-defined, we must assume that κ is a positive-definite kernel, i.e.

that these Gram matrices are positive-definite for all t1, . . . , tn ∈ JTK. That

these marginals obey the consistency conditions of eq. (4.5) follows immedi-

ately from a well-known property of the Gaussian distribution: for any linear
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A : Rm → Rn, if x ∼ N(µ,Σ), then Ax ∼ N(Aµ,AΣAT ). Therefore, writing a

program which samples from the finite-dimensional marginals of an arbitrary

Gaussian process is immediate, provided that one can sample from a multi-

variate Gaussian distribution with arbitrary mean and covariance.

Such samplers are easily implemented using standard techniques. It follows

from the aforementioned property of Gaussians that, if z = (z1, . . . , zn) where

zi ∼ N(0, 1) are i.i.d., the variable µ+Lz is distributed as N(µ, LLT ). Given a

positive-definite Σ, the unique lower-triangular L such that LLT = Σ is known

as its Cholesky decomposition. Assume that functions cholesky, matvec, and

vadd have been implemented, which, respectively, compute the Cholesky decom-

position, multiply a matrix by a vector, and add two vectors1; listing 4.11 uses

these to define MVN, a family of samplers for arbitrary multivariate Gaussian

distributions, given a Gaussian sampler s : Σ R.

λs : Σ R . λn : N . λ(µ,Σ) : Vecn(R)× Matn×n(R) .
map(λz : Vecn(R) .

vadd(n)(µ,matvec(n, n)(cholesky(n)(Σ), z)), sn)
: Σ R→ (Πn : N . Vecn(R)× Matn×n(R)→ Σ Vecn(R))

Listing 4.11: Definition of MVN

To show the validity of this family of samplers in a context Γ is to demon-

strate the truth of the implication:

n : N ; Γ ` sn : Σ (Rn) N(0, 1)n n : N ; Γ ` µ : Vecn(R) n : N ; Γ ` Σ : Matn×n(R)

n : N ; Γ ` MVN(s)(µ,Σ) : Σ (Vecn(R)) N(µ,Σ)

(4.7)

That is, on the assumption that the sampler s is n-equidistributed with respect

to a standard Gaussian distribution, it follows that MVN generates a sample

from the desired Gaussian distribution.

As verifying eq. (4.7) falls more under the purview of verifying linear

1Simple implementations of matvec and vadd are given in section 4.3.1. We eschew
an implementation of cholesky here, as its implementation is fairly wordy, and is most
naturally given recursively, which would require additional language features. Our primary
aim here is the verification of stochastic process samplers, not of linear algebra.
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algebra (in particular, the validity of the Cholesky decomposition and of matrix-

vector multiplication) than verifying sampling, we do not focus on it here.

By applying the function MVN to a suitable Gaussian sampler s : Σ R, list-

ing 4.12 quickly constructs a Gaussian process sampler for arbitrary mean func-

tion µ and covariance kernel κ.

λs : Σ R . λ(µ, κ) : (T→ R)× (T× T→ R+) .
λn : N . λt : Vecn(T) .

let mean = vec(n)(λi : N . µ(get(n)(i, t))) in
let cov = mat(n, n)(λ(i, j) : N× N .

κ(get(n)(i, t), get(n)(j, t)) in
MVN(s)(n)(mean , cov)

: Σ R→ ((T→ R)× (T× T→ R+))→ Marginal(T, R)

Listing 4.12: Definition of GaussianProcess

Applying eq. (4.7) in this case, assuming that its premises hold, gives

n : N ; Γ ` MVN(s)(mean, cov) : Σ (Vecn(R))  N(JmeanK , JcovK). Therefore,

provided only that (in context)

JmeanK =


µ(t1)
...

µ(tn)

 , JcovK =


κ(t1, t1) · · · κ(t1, tn)

... . . . ...

κ(tn, t1) · · · κ(tn, tn)

 ,

it follows that, writing GaussianProcess for listing 4.12,

n : N; Γ ` GaussianProcess(s)(µ, κ)(n)(t) P (µ, κ, n)(t)

with P (µ, κ)(n)(t) as defined above. Finally, as eq. (4.5) holds for this system

of probability measures, the introduction rule eq. (4.6) gives us

Γ ` GaussianProcess(s)(µ, κ)
SP
 GP(µ, κ).
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` s : Marginal(T, S)
SP
 ν

eq. (4.2), eq. (4.5) hold, Pt = Pπtν

φ ; Γ ` s ≈ t : Marginal(T, S) φ ; Γ ` s : Marginal(T, S)
SP
 µ

φ ; Γ ` t : Marginal(T, S)
SP
 µ

φ ; Γ ` s : Marginal(T, S)
SP
 ν φ ; Γ ` f : S→ S′

φ ; Γ ` spmap(f, s) : Marginal(T, S′)
SP
 γ 7→ (u 7→ JfK (γ) ◦ u)∗ν(γ)

φ ; Γ ` s : Marginal(T, S)
SP
 ν φ ; Γ ` f : S→ R+ φ; Γ ` t : T

φ ; Γ ` spreweight(f, t, s) : Marginal(T, S)
SP
 γ 7→ (λu. JfK (γ)(u(JtK (γ)))) · ν(γ)

†

† Note the side condition
∫

JfK (γ)(u(JtK (γ)))dν(γ) ∈ (0,∞).

Figure 4.6: Rules for stochastic process targeting.

4.3.4 Transforming stochastic processes

We consider two important transformations Marginal(T, S)→ Marginal(T, S′)

between stochastic process samplers. They are the infinite-dimensional coun-

terparts of the map and reweight operations on samplers.

We start by defining spmap, the stochastic process version of map, in list-

ing 4.13. Given f : S → S′, it applies f separately and element-wise to each

dimension of the marginals produced by s. For example, in the event that

S = R× R, S′ = R, and f : R× R→ R is addition, spmap(f, s) essentially inputs

a R2-valued stochastic process (sampler) and outputs a R-valued stochastic

process (sampler) by adding the two dimensions.

λ(f, s) : (S→ S′)× Marginal(T, S) . λn : N . λt : Vecn(T) .
map(λv : Vecn(S) . vec(n)(λi : N . f(get(n)(i, v))), s(n)(t))

: (S→ S′)× Marginal(T, S)→ Marginal(T, S′)

Listing 4.13: Definition of spmap

The rule for spmap found in fig. 4.6 shows that stochastic process targeting

can be pushed through spmap.

Theorem 4.3.6. The rule for spmap is sound.

Proof of soundness for spmap rule. Let π = πt,t′ be any projection-permutation
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composition as described in section 4.3.3. The proof hinges on proving the

commutativity of the following diagram.

Vecn(T) Vecm(T)

Σ Vecn(S) Σ Vecm(S)

P JSKn P JSKm

Σ Vecn(S′) Σ Vecm(S′)

P JS′Kn P JS′Km

π

s(n) s(m)

εJSKn

map(fn)

εJSKm

map(fm)
Pπ

Pfn Pfm
εJS′Kn

εJS′Km
Pπ

The left- and right-most vertical paths select the marginal distributions

targeted by the sampler spmap(f, s). Therefore, if it can be shown that this

diagram commutes, then it follows that eq. (4.5) holds, and so that spmap(f, s)

targets a valid stochastic process.

The top hexagon commutes by assumption: we assume that s tar-

gets a valid stochastic process. The right- and left-bottom faces commute

by the pushforward, i.e. map, rule of fig. 3.6. Finally, the middle bottom

square commutes because π is a projection-permutation composition, and thus

π ◦ fn = fm ◦ π, which is preserved by functoriality of P . Therefore, spmap is

sound.

This rule allows use to modify a valid stochastic sampler (and products

thereof), in any arbitrary pointwise way, and recover another valid stochastic

sampler.

The next transformation rule is crucial for implementing Bayesian condi-

tioning on sampled values from stochastic processes; it is the stochastic process

counterpart of the reweight rule for standard samplers. The transformation

listing 4.14 reweights a stochastic process sampler s : Marginal(T, S) depend-

ing on the value of its marginals at a given point t0, using a given reweighting

function f . For example, in the event that f is a Gaussian density with lo-
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cation y and scale σ2, and s targets the stochastic process X(t), listing 4.14

constructs, using importance sampling, a sampler which targets the posterior

process conditioned on the noisy observation y | X(t0) ∼ N(X(t0), σ2). The

simple vector operations take and cons are defined in section 4.3.1.

λ(t0, f, s) : T× (S→ R+)× Marginal(T, S) . λn : N . λt : Vecn(T).
map(λt′ : Vecn+1(S) . take(n+ 1)(n, t′),

reweight(λt′ : Vecn+1(S) . f(get(n+ 1)(n+ 1, t′)),
s(n+ 1)(cons(n)(t, t0))))

: T×(S→ R+)× Marginal(T, S)→ Marginal(T, S)

Listing 4.14: Definition of spreweight

The rule associated with spreweight is given in fig. 4.6.

Theorem 4.3.7. The rule for spreweight is sound.

Proof of soundness for spreweight rule. Let π = πt′,t be any projection-

permutation composition as described in section 4.3.3. The proof hinges on

proving the commutativity of the following diagram.

Vecn(T) Vecm(T)

Vecn+1(T) Vecm+1(T)

Σ Vecn+1(S) Σ Vecm+1(S)

P JSKn+1 P JSKm+1

Σ Vecn+1(S) Σ Vecm+1(S)

P JSKn+1 P JSKm+1

Σ Vecn(S) Σ Vecm(S)

P JSKn P JSKm

π

(t1,...,tn)7→(t1,...,tn,t0) (t1,...,tm)7→(t1,...,tm,t0)

π×id

s(n+1) s(m+1)

εJSKn+1

reweight(f)

εJSKm+1

reweight(f)
P(π×id)

f.− f.−

map(πn+1,n)

εJSKn+1

map(πm+1,m)

εJSKm+1

Pπn+1,n

P(π×id)

Pπm+1,m

Σπ

εJSKn

εJSKn

Pπ
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As in the proof of validity of spmap, the left- and right-most vertical paths

select the marginal distributions of the sampler targeted by spreweight(f, s).

To show the commutativity of this diagram is to show eq. (4.5), and thus to

show that spreweight(f, s) targets a valid stochastic process.

The bottom trapezium commutes by the map, i.e. pushforward, rule, as do

the bottom face involving the projection πn+1,n(t1, . . . , tn, tn+1) = (t1, . . . , tn)

and the bottom face involving the projection πm+1,m. The bottom middle face

commutes trivially by definition of the maps involved and the functoriality

of P . The middle square involving the operation f.− commutes trivially by

definition of the reweighting function (which only involves f(t0)), and the two

faces on either side commute by the reweight rule. Finally, the top hexagon

commutes because s defines a valid sampler and because π× id is a projection-

permutation composition and the top diagram commutes trivially by definition.

Therefore, spreweight is sound.

By chaining several applications of this rule it is possible to prove that

conditioning, say a Gaussian process (constructed in Example 4.3.5) on any

finite number of observations produces a valid stochastic process implementing

a posterior distribution. This kind of construction is central to non-parametric

Bayesian techniques in probabilistic programming languages.

Example 4.3.8 (Wiener process conditioning). For a simple example of con-

ditioning a stochastic process, consider the Wiener process W (t), which is the

R-valued, R+-indexed Gaussian process with mean function µ(t) = 0 and co-

variance function κ(t, t′) = min(t, t′). Listing 4.15 first constructs this Gaus-

sian process, building on Example 4.3.5, and then conditions on noisy obser-

vations y1 ∼ N(W (1), σ2) and y2 ∼ N(W (2), σ2), for some noise level σ. This

returns another stochastic process on R, conditioned on having approximately

W (1) ≈ y1,W (2) ≈ y2 (for sufficiently small observation noise σ2, that is).

Example 4.3.9 (Products of stochastic processes). In the previous chapter,

we defined a natural product ⊗ of samplers, and noted that product samplers

s⊗s′ jointly targeting a product measure P ×P ′ is a strictly stronger condition
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λs : Σ R .
let µ = λt : R . 0 in
let κ = λ(t, t′) : R× R . min(t, t′) in
let W = GaussianProcess(s)(µ, κ) in
let f = λx, y : R . 1/(2*π*σ**2) * exp ( -0.5*(y-x)**2) in

spreweight(λx : R . f(x, y2), 2,
spreweight(λx : R . f(x, y1), 1, W ))

: Σ R→ Marginal(R+, R)

Listing 4.15: Wiener process: noisy observation

than s targeting P and s′ targeting P ′ separately. A similar result applies in the

case of stochastic process samplers. Given two S-valued, T-indexed stochastic

process samplers s : Marginal(T, S), s′ : Marginal(T, S′), define their product

spprod(s, s′) : Marginal(T, S× S′) as given in listing 4.16.

λ(s, s′) : Marginal(T, S)× Marginal(T, S′) .
λt : Vecn(T) .

map(λ(x, y) : Vecn(S)× Vecn(S′) .
vec(n)(λi : N . (get(n)(i, x), get(n)(i, y)),
s(n)(t)⊗ s′(n)(t)))

: Marginal(T, S)× Marginal(T, S′)→ Marginal(T, S× S′)

Listing 4.16: Definition of spprod

By a straightforward application of the equivalence rules of fig. 3.5 and

fig. 4.5, it can be verified that

φ; Γ ` spmap(fst, spprod(s, s′)) ≈ s : Marginal(T, S)

and likewise

φ; Γ ` spmap(snd, spprod(s, s′)) ≈ s′ : Marginal(T, S′).

As a result, applying the equivalence and spmap rules from fig. 4.6, it follows

that
φ; Γ ` spprod(s, s′)

SP
 ν

φ; Γ ` s SP
 γ 7→ (u 7→ π1 ◦ u)∗ν(γ)
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and
φ; Γ ` spprod(s, s′)

SP
 ν

φ; Γ ` s′ SP
 γ 7→ (u 7→ π2 ◦ u)∗ν(γ)

though the converse clearly does not hold.

One might also define the sum of two real-valued stochastic processes,

spsum, as in listing 4.17.

λ(s, s′) : Marginal(T, R)× Marginal(T, R) .
spmap(λ(x, y) : R× R . x+ y,

spprod(s, s′))
: Marginal(T, R)× Marginal(T, R)→ Marginal(T, R)

Listing 4.17: Definition of spsum

The above rules for transforming stochastic process samplers are far

from complete2, and might be extended with a number of transformations on

stochastic processes seen in the literature. More interestingly, though, rules of

this sort can only contain at most a subset of the transformations on stochastic

processes often considered: those which can be expressed in terms of transfor-

mations on the process’ marginals. The literature does contain a number of

transformations which cannot: for example, given an almost surely continuous

stochastic processX(t) ∈ R, consider the stochastic process Y (t) =
∫ t

0
X(s) ds;

while the finite-dimensional marginals of Y (t) can be approximately expressed

in terms of those of X(t), a precise expression is impossible.

2Completeness is not reasonable to expect in this setting for the same reasons discussed
in the previous chapter; see Remark 3.3.11.



Chapter 5

Discussion

Contributions. In this thesis, we introduced a probabilistic programming

language for reasoning about sampling tasks, featuring deterministic seman-

tics. We presented an operational and denotational semantics in this setting,

and showed an adequacy result relating them. We gave an effective system for

simplifying samplers using equivalence rules. We introduced a targeting cal-

culus that relates these samplers to the measures that they target, and which

includes rules corresponding to the most common techniques for construct-

ing samplers. We then broadened this language to include dependent types,

completely reworking its denotational semantics, in order to discuss families of

samplers which target the marginals of a stochastic process. Finally, we devel-

oped an analogous targeting calculus for reasoning about systems of samplers

which target (the marginal distributions of) a stochastic process.

This thesis aimed to, by weaving together advancements which have been

made in a number of fields since von Neumann’s oft-quoted remark about

pseudorandom number generation, present a formal theory of sampling, sam-

plers, and their verification. We draw inspiration and techniques from fields

that were either nascent or nonexistent at the dawn of computing, including in

particular the modern fields of formal semantics and verification, to progress

towards this goal.

In the few pages that remain, we situate our approach within a few ad-

jacent and overlapping fields of study, compare and contrast with a few other
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approaches to formal sampler verification, and discuss natural extensions of

this work.

5.1 Related work

Trace semantics. Trace semantics, introduced in [10] and further developed

in [54, 55, 56], give probabilistic programs an essentially deterministic opera-

tional semantics. Each built-in distribution is paired with an infinite sequence

of samples. When a sample for each distribution is requested, the head of this

sequence is popped and used in the computation, and the tail of the sequence

retained for further sampling.

Trace semantics is philosophically in line with our approach to semantics,

but we do not assume that samples are ‘pre-generated’ in this fashion. In-

stead, we introduce samplers as first-class objects, and include the process of

(pseudo-)random number generation within our language. We do this in order

to address what we see as two problems with the standard trace semantics

approach.

First, the assumption that all random quantities are generated ahead-

of-time, while mathematically convenient, is not realistic and is incompatible

with pseudorandom generation of random variables. This issue exposes a gap

between an operational semantics based on trace semantics and a denota-

tional semantics based on probability measures (or similar algebraic objects).

For a simple example, consider a sequence of samples (x0, x1, . . .) produced

by iterating a computable function xn+1 = T (xn), and consider the program

T (sample()) − sample(). Under a reasonable denotational semantics, this

program would map to a nontrivial probability measure, and yet under our

operational semantics, it always evaluates to zero. In order to rule out the

possibility of such adversarial programs, one must assume that the sequence

(x0, x1, . . .) is Martin-Löf random [57] – though unfortunately, all Martin-Löf

random sequences are uncomputable. We instead allow pseudorandom number

generation under far weaker conditions that Martin-Löf randomness, and so
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obtain adequacy between our operational and denotational semantics.

Second, we find the fact that trace semantics models the operation of sam-

pling as inherently effectful to be problematic for verification. Our primary

interest in verification is enabling techniques which construct samplers in a

compositional manner, building more complex samplers from simpler ones. If

two samplers cannot be soundly composed together in this manner to yield a

valid sampler, we would prefer to model this as a fact about those samplers

rather than a fact about the state of the machine. To that end, we introduce a

type representing samplers, and we model the operation of our samplers with-

out side effects, so that their verification can be undertaken with no reference

to state.

Denotational semantics. As alluded to earlier, [10] presented a semantics

for an imperative probabilistic programming language, though this approach

does not immediately extend to a higher-order setting due to Remark 2.1.7.

Subsequent approaches on denotational semantics for probabilistic program-

ming languages have incorporated continuous distributions and higher-order

functions in particular, by, essentially, replacing the probability measure with

a more general algebraic object. More concretely, a denotational universe of

types is chosen (ideally one with nice structure, e.g. a Cartesian closed cate-

gory), and an equivalent to the Giry monad constructed within that category

– thereby generalising the notion of ‘measure’ and ‘measurable space’.

In particular, [12] chooses as its types countable-product-preserving

presheaves using a Yoneda embedding, and lifts the Giry monad to its left

Kan extension, a monad on these presheaves; relatedly, Quasi-Borel space

semantics [21] replace measurable spaces with quasi-Borel spaces, and [13] ex-

tends this approach to include recursion. [14] instead constructs a Giry monad

over regular ordered Banach spaces, while [58] instead considers the category

of complete cones.

Our approach differs substantially from these approaches in that our se-

mantics is deterministic: the semantics of a probabilistic program is an infinite
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stream of samples. These streams are related to measures in a natural way,

by what we call the ‘empirical transformation’ (see section 3.3.1), but they are

sufficiently algebraically different from measures that a concern analogous to

Remark 2.1.7 does not arise. (Instead it is continuity that we must be careful

about; see section 3.1.3.)

Markov chain semantics. Markov chain semantics [59, 60, 61, 62, 63, 64, 65]

are primarily applied to probabilistic λ-calculi to model the probability (or

probability density) of a probabilistic program evaluating to a particular value.

These are, from our perspective, closer to a denotational semantics than an

operational semantics – unless a trace of generated samples is included within

the semantics, in which case they are similar to trace semantics.

Pseudorandom number generation, quasi-Monte Carlo, and deran-

domisation. While we do not meaningfully contribute to the field of pseu-

dorandom number generation, we draw motivation and terminology from it.

The concept of k-equidistribution [40, 41, 42] is particularly important in the

development of our targeting calculus.

We will also briefly acknowledge that our work is not intended to mean-

ingfully contribute to the array of derandomised approaches for producing ‘op-

timal’ samples targeting a certain distribution by deterministic means, such as

quasi-Monte Carlo [43, 44] and kernel herding [66]. While such methods can

certainly be used to create samplers in our language to the extent that they

possess the relevant convergence criteria (though see the remarks in section 5.2

about goodness-of-fit for a discussion of using convergence criteria other than

weak convergence), devising new methods for generating ‘optimal’ samples is

not the direction of our research.

Algorithmic randomness. Similarly, we are inspired by the study of al-

gorithmic randomness, but we make no meaningful contributions to it. The

concept of Martin-Löf randomness [57], as well as Schnorr’s reformulation [67]

and Hoyrup’s recent generalisation to arbitrary metric spaces [68], guided our

thinking and pushed us towards requiring weaker statistical guarantees for our
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samplers.

Quantum computation. Our discussion of sampling and samplers is purely

classical. Quantum methods can certainly be used to produce high-quality

‘true’ random numbers [69], and incorporated into our targeting calculus as

axioms, as shown in fig. 3.6. Naïvely, one would expect that random num-

bers produced by quantum measurement for classical usage would have good

statistical properties, such as k-equidistribution for all k.

Verifying statistical properties of probabilistic programs. A wide lit-

erature exists on an array of verification tasks involving probabilistic program-

ming languages. However, the primary type of verification task that we are

interested in is verifying that the outputs of probabilistic programs have certain

statistical properties, such as being distributed (asymptotically or otherwise)

according to a desired distribution – for the purpose of verifying implemen-

tations of sampling techniques such as importance and rejection sampling.

Particularly important comparisons include [56] and [70].

In [56], a sampling language is constructed in which the denotation of a

sampler consists of a sampling function, i.e. a mapping from a countable num-

ber of uniform random variables specifying a means by which countably many

uniform samples might be transformed into samples from the desired distri-

bution. This enables the compositional verification of samplers, assuming, as

in the case of trace semantics, an inexhaustible source of independent uniform

random numbers. As was extensively discussed in chapter 3, our approach dif-

fers from this approach in that we allow for pseudorandom number generation,

and explicitly keep track of the independence guarantees necessary in order to

obtain weak convergence.

[70] is perhaps the most directly focused on verifying the correctness of

statistical inference (in particular, Bayesian inference). This thesis models

the inference process as a program transformation which inputs an intractable

specification of a posterior distribution and outputs a tractable approxima-

tion to it (e.g. via one of many Monte Carlo sampling techniques, such as
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sequential Monte Carlo). The semantics is set in the category of quasi-Borel

spaces, and sampling is described as a monadic operation. While, like the

previous approaches, this differs significantly from our semantics of sampling,

and [70] focuses primarily on justifying Bayesian inference, our aims – to con-

struct languages in which certain sampling techniques are easily seen to be

compositionally valid – are very similar.

Finally, our approach to constructing and verifying stochastic process sam-

plers is informed by the design of probabilistic programming languages. These

languages have implemented stochastic process samplers since the develop-

ment of some of the earliest higher-order probabilistic programming languages

[48, 46], particularly to enable nonparametric Bayesian inference. (Indeed, it

is a clear demonstration of the utility of the higher-order probabilistic pro-

gramming language that it is natively capable of this.)

Most of the literature on stochastic process samplers focuses on their

implementation and on applications to Bayesian nonparametrics, rather than

focusing on stochastic processes as a datatype and on verification. A recent

exception is [11], which implements stochastic processes lazily and recursively;

our approach differs in that our language is higher-order but without recursion.

5.2 Further work

We conclude this thesis by listing a few potential avenues for extending the

work we have presented here, along with some preliminary ideas on how one

might proceed.

Recursion. In Remark 3.1.1, we discussed the reasons for our language’s lack

of explicit recursion. There, we hinted at the difficulty involved in formalising

a general notion of ‘recursive sampler’ that lends itself to verification, and we

asserted that these samplers can in fact be specified in our language without

adding any additional features. Here we will expand on those remarks.

As discussed previously, incorporating unrestricted recursion certainly

does not serve our purposes. Our aim is to construct programming languages
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in which the construction of a sampler quickly provides its verification, by in-

corporating rules in our targeting calculus for each sampling technique used in

constructing a sampler. Verifying probabilistic properties of samples produced

by unrestricted recursive procedures is clearly intractable in general, so no such

rule is possible. Moreover, the vast majority of these recursive procedures are

meaningless from a probabilistic perspective. If recursion were to be allowed,

it would have to be a heavily restricted type of recursion that lends itself to

verification.

As far as we are aware, a general characterisation of the notion of ‘recursive

sampler’ that lends itself to verification does not exist. Consider, for example,

the particular case of the recursive geometric sampler, which generates samples

from the geometric distribution with parameter p as follows. Initialise n, the

number of trials, at zero; at each step, flip a biased coin with probability p

of landing heads; if that coin lands tails, then increment n and flip another

coin; if that coin lands heads, then return n. This sampler is a recursive

procedure that incorporates a changing state, the number of trials n, and yet

its treatment of this state is quite constrained. A notion of ‘recursive sampler’

should generalise this type of sampler with internal state in a way that makes

general-purpose verification feasible.

One might naturally define a ‘recursive sampler’, or at least a family of

them, as essentially a while-loop which includes an internal state zi, initialised

to z1, as follows. At each step, generate a sample xi ∼ Q from some fixed dis-

tribution Q on X; if the condition w(zi, xi) is false, halt and returns a function

of the internal state g(zi); if the condition is true, then update the internal

state zi+1 = f(zi, xi) and loop. This procedure clearly includes our previous

geometric sampler as a special case, and it is amenable to standard probabilis-

tic analysis: provided that f, w, g are measurable and that this procedure’s

stopping time is almost surely finite, inductive strategies for proving that the

return values y = g(zi) are distributed according to some target P are natural

(which is not to say they are easy).
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The deterministic verification of such samplers is more challenging, but al-

most obtainable: we must show that, subject to the assumption that a sampler

s which generates our samples xi and targets Q is infinitely equidistributed,

i.e. ∀n, sn  Qn, the samples y = g(zi) generated upon halting w(zi, xi) = 0

target a desired probability measure P . Some ideas of how this might be ac-

complished follow. Summing over halting times τ , this is the requirement that

for any bounded continuous f ,

∫
Y
f(y) dP (y) =

∞∑
τ=1

∫
Xτ

f(g(zτ (x1:τ−1)))

[
τ∏
i=1

w(zi(x1:i−1), xi)

]
(1− w(zτ (x1:τ−1), xτ )) dQτ (x1:τ )

where we abbreviate z2(x1) = f(z1, x1), z3(x1:2) = f(z2(x1), x2) =

f(f(z1, x1), x2), and so on. Expanding these integrals over Xτ to common

integrals over Xω and pulling the sum inwards, provided this can be justified,

gives a more standard integral
∫
Y
f(y) dP (y) =

∫
Xω ϕ(x1:∞) dQω(x1:∞) where

the form of ϕ follows. Unfortunately, the while loop w(zi, xi) involved ensures

that this function ϕ is certainly not continuous, which means that we would

have to keep track of the discontinuities that it imposes during our verification

task – which seems challenging.

We didn’t pursue this direction because, as noted in Remark 3.1.1, sam-

plers can typically be implemented in a non-recursive manner – but verifying a

subset of recursive samplers by construction, and adding a corresponding rule

to our targeting calculus, would be a natural next step.

Finally, note that our language already contains the ability to implement

such recursive samplers by making somewhat unusual use of its existing lan-

guage features. For example, given an unweighted sampler s : Σ B targeting a

Bernoulli distribution with success probability p, and with sufficient equidis-

tribution properties, listing 5.1 implements the recursive geometric sampler

mentioned above.

This sampler increments a counter after every False sample from s, and

resets the counter after True is drawn. After each sample is taken, the first

element of the sampler s is popped. Intermediate samples in which False is
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map(λ(b, s, i) : B×Σ B× N . i,
reweight(λ(b, s, i) : B×Σ B× N . if b then 1 else 0,

prng(λ(b, s, i) : B×Σ B× N .
(hd(s), tl(s), if b then 1 else i + 1),

(False , s, 0)))) : Σ N

Listing 5.1: Recursive geometric sampler

drawn are assigned weight zero, and the internal variables b and s dropped,

yielding a geometric sampler on the natural numbers.

Of course, our targeting calculus cannot be directly used to prove the

convergence of this sampler, as it is not immediately clear to the author how to

show that this use of prng, which produces a sampler of type Σ (B×Σ B×N), gives

a well-defined ergodic system. Nevertheless, it demonstrates that recursive

samplers can be implemented with no additional language features.

Markov chain Monte Carlo. As in the case of recursion, basic Metropolis-

Hastings samplers can be implemented in our sampling language via highly

nonstandard use of the construct prng. For example, listing 5.2 implements a

sketch of a symmetric Metropolis sampler on the real numbers with proposal

q, targeting the (unnormalised) density p.

map(λz : T. fst(cast〈R× Σ R× Σ R+〉(z)),
prng(λ(x, q, u) : T .

let x′ = x + hd(q) in
let α = p(x′) / p(x) in
let accept = hd(u) ≤ α in

if accept then
(x′, tl(q), tl(u))

else
(x, tl(q), tl(u)),

(x1, q, u)))
: Σ R

Listing 5.2: Random-walk Metropolis sampling

Note first that the continuity conditions necessary to verify listing 5.2, i.e.

the form of the subtype T / R×Σ R×Σ R+, will be quite complex. Next, while this

procedure uses standard operations in our language, it is not immediately clear

to the author whether uses of prng like the above, which define a dynamical

system over samplers, can straightforwardly be shown to be ergodic, and so
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whether it is possible to argue naturally using our targeting calculus that they

give asymptotically valid samples. That studying these dynamical systems

over samplers would yield a tractable way in which to port the standard proof

of convergence of the Metropolis-Hastings algorithm to a deterministic setting

was not clear to the author.

Sequential Monte Carlo. Sequential Monte Carlo is perhaps a less natu-

ral fit for our framework. While a sketch can easily be implemented using

our vector operations, the discontinuities usually present in resampling will

pose challenges. Resampling, in our setting, can be understood as an oper-

ation resample : Πn : N . Vecn(Σ X) × Σ R+ → Vecn(Σ X), inputting n

weighted samplers of type X and a (typically) unweighted uniform sampler,

and outputting (typically) unweighted samplers of type X. As this operation

transforms the samples and weights of its input samplers jointly in a unique

manner, it must be implemented as a built-in sampler operation. The chal-

lenge for us in integrating resampling is that standard multinomial resampling

as typically interested is a discontinuous operation, which will complicate its

definition, typing, and verification. Continuity aside, though, demonstrating

a corresponding inference rule for resampling in the style of fig. 3.6 does not

seem to be challenging.

Functional stochastic process samplers. In Remark 4.1.5, we introduced

the possibility of formalising samplers for stochastic processes as samplers of

function type, rather than as systems of marginal samplers. We dismissed that

possibility as not reasonable from a computational perspective, but despite its

impracticality, it is nevertheless a useful perspective to take on stochastic pro-

cess samplers. For example, our operations spmap and spreweight correspond

simply to map and reweight operations on these functional samplers – in the

sense of satisfying a commuting square, completed by the natural projection

map from a functional sampler to the corresponding marginal sampler shown

in listing 4.1. This correspondence hints at the possibility of characterising a

broader class of operations on marginal samplers, as precisely those operations
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which are obtainable as the finite-dimensional equivalents of probabilistically

sensible operations on functional samplers.

Convergence, black-box verification, and goodness of fit. Our target-

ing calculus centres around weak convergence – that is, showing that the sam-

ples produced by our samplers can asymptotically estimate expectations of

any continuous function. We made this choice because weak convergence has

convenient topological properties and, crucially, is guaranteed by most pseu-

dorandom number generators. However, studying convergence with respect to

other metrics, such as uniform convergence over a well-chosen class of functions

(e.g. a kernelised maximum mean discrepancy (MMD) that metrises weak con-

vergence; see [71]) can provide a natural way to link white-box and black-box

verification, using a well-designed one-sample goodness-of-fit test.

Consider the problem of generating samples which target a probability

measure P on the Polish space Z. Choose a space of measurable functions

F ⊆ [X,R] equipped with a measure µ. Then, choose a p ∈ [1,∞], and

consider the (in general extended) pseudometric

d(P,Q) =


(∫
F |P (f)−Q(f)|p dµ(f)

)1/p
p <∞

ess supf∈F |P (f)−Q(f)| p =∞

on the space of measures PX, where P (f) =
∫
X
f(x) dP (x). If this class of

functions F and the desired target distribution P jointly have certain prop-

erties studied in empirical process theory (in particular the Glivenko-Cantelli

and Donsker properties; see e.g. [72]), then it follows that d(P, P̂n), where

P̂n = 1
n

∑n
i=1 δxi is the empirical measure produced by i.i.d. sampling xi ∼ P

from the target distribution, converges in probability to zero, with a corre-

sponding central limit theorem. This enables us to compute p-values for the

goodness-of-fit test1 under the null hypothesis of ‘perfect sampling’ xi ∼ P

1The majority of goodness-of-fit tests used – from the chi-squared test on discrete proba-
bility measures, to the Kolmogorov-Smirnov and Cramer-von Mises tests on measures on R,
to kernelised Stein discrepancies [73] and other kernelised MMDs – arise as special cases of
this construction. The primary examples of tests that are not of this form are tests arising
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from the target distribution, which can serve as a proxy for a sampler’s black-

box correctness.

However, characterising the convergence of d(P, P̂n) under ‘perfect’ i.i.d.

sampling does not necessarily indicate that the outputs of any particular ap-

proximate sampler should be expected to pass the corresponding statistical

test. Justifying the application of goodness-of-fit tests to the outputs of ap-

proximate sampling techniques such as sequential Monte Carlo, Markov chain

Monte Carlo, or even simple importance sampling, appears challenging. (Re-

jection sampling, at least, is straightforward: in general, provided that its

proposal distribution passes goodness-of-fit tests, its returned samples must as

well.) Sensibly applying goodness-of-fit tests to such samplers would require

a proof that the samples produced satisfy a generalised Donsker theorem, i.e.

functional central limit theorem, with respect to a chosen class of test func-

tions – a difficult proposition. The question of when functional central limit

theorems hold for dependent samples is deep and complex; for an overview of

results in this area, see [74].

Regardless of whether goodness-of-fit tests for approximate sampling

techniques can be justified in this manner, though, compositionality is

still not guaranteed. For example, consider the case of an MMD-style

discrepancy, i.e. p = ∞: knowing that a sampler s produces sam-

ples xn which approximate the target distribution P in the sense that

limN→∞ supf∈F

∣∣∣ 1
N

∑N
n=1 f(xn)−

∫
X
f(x) dP (x)

∣∣∣ = 0, does not give a cor-

responding result relating g(xn) to the pushforward g∗(P ) unless it is known

that the class F is closed under precomposition by g (and the same applies

to the Donsker property). The natural choice of the 1-Wasserstein distance,

for example, in which case F is the collection of functions with Lipschitz

constant less than 1, makes g(x) = exp(x) and g(x) = x2 inadmissible. Thus,

verification using such a procedure would be far from automatic. A class of

test functions F must be chosen by proceeding backwards from how samples

from f -divergences, such as the Kullback-Leibler divergence.
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from a given sampler will be used, and the assumptions necessary for a gen-

eralised Donsker theorem proven, in order to enable black-box verification of

that sampler. A general-purpose approach like the one taken here, aimed at

producing samplers which are correct by construction under only weak as-

sumptions about their intended usage, may not be possible unless the built-in

functions expressible in the language are heavily restricted (e.g. to Lipschitz

functions only).
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