Sampling languages:
Semantics and verification of sampling-based inference

algorithms for probabilistic programming

William Smath

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
of

University College London.

Department of Computer Science

University College London

3

I, William Smith, confirm that the work presented in this thesis is my
own. Where information has been derived from other sources, I confirm that

this has been indicated in the work.

Abstract

Practical probabilistic programs, especially those with approximate condition-
ing, by necessity combine a number of sampling techniques in sequence in
order to produce samples - as well as certain complex language features in
order to implement those techniques. Sufficiently complex probabilistic pro-
grams therefore require a compositional approach to verification, beginning
with the fundamentals of language design, syntax, and semantics, and build-
ing to the higher-level questions about samplers and their statistical properties.
In this thesis, we design a typed probabilistic programming language which is
equipped with the features necessary to serve as a setting for the verification
of sampling techniques. These features include: continuous random variables;
higher-order functions; dependent types; compatibility with deterministic, that
is to say pseudorandom, generation of samples; and samplers for (the marginal
distributions of) stochastic processes. We give a semantics for the language
in terms of concrete concepts, and show equivalence of the denotational and
operational semantics. We present a set of rules for the effective verification of
sampler equivalence in a suitable subset of the language. Stating, in this set-
ting, the desired targeting relationship between samplers and the probability
measures that they are to produce samples from, we then lay out a calculus
centred on this targeting relationship, which enables the compositional ver-
ification of sampling techniques such as importance sampling and rejection
sampling. These verification procedures are then extended so as to enable the
verification of samplers which produce samples targeting (the marginal dis-

tributions of) stochastic processes. We conclude by arguing that a sampling

6 Abstract

language with these features is a natural compilation target for a probabilis-
tic programming language with approximate Bayesian conditioning, flexible
enough to frame many Bayesian inference methods in common use without

incorporating features that hinder effective verification.

Impact Statement

Outside academia. Programs which use random sampling have become ubiq-
uitous. Any field of research which uses statistics, which is to say any field
of research, makes use of them at some level. The more complex these uses
are, the more important the task of program verification becomes. In particu-
lar, applied machine learning and machine learning research inevitably include
large-scale and complex use of random sampling. This thesis deals with the
problem of verifying that the outputs of programs which use random sampling
have statistical properties which must hold in order for their use to be for-
mally valid. In principle, subtle bugs and mistaken assumptions in the use
of random samplers could yield invalid conclusions in research (whether in in-
dustry or academia) or improper behaviour of deployed programs — including
bugs which cannot reasonably be detected with unit tests. The development
of techniques to check statistical correctness, possibly in real time as programs
are written, therefore, has the potential to affect research in any field which
relies heavily on statistical modelling and machine learning, such as applica-
tions within — to name just a few — physics, advertising, climate modelling,

and public health.

Inside academia. We have already discussed the applications of the verifi-
cation of statistical properties for programs which use random sampling to
research in any field which uses statistical modelling — whether that research
takes place within or outside of academia. We will instead discuss contribu-
tions to the field of verification itself. In this thesis, we lay out an approach

to verifying statistical properties for programs which use random sampling,

8 Impact Statement

including pseudorandom number generation. We do this by providing the syn-
tax and semantics of a probabilistic programming language designed in order
to easily state the sampler operations we will consider; formally defining the
properties we are to verify; and then building a system for verification within
this language. We then extend this language, including its syntax, semantics,
and its verification system, to incorporate the verification of programs which
in some sense sample from a stochastic process (i.e. infinite families of sam-
plers with certain consistency properties). Aside from the first-order goal of
potentially preventing errors in research, our secondary aim includes popular-
ising and spurring interest in verifying statistical properties of probabilistic

programs within the academic community.

Acknowledgements

First and foremost I must thank my supervisors, Alexandra Silva and Fredrik
Dahlqvist, for listening to me, giving excellent feedback, and more broadly
taking a chance on me.

I’d also like to thank the entire PPLV group at UCL, past and present,
for their conversation, ideas, and good cheer. I'm glad to have been able to
share a Gower Street basement with you, whether just for an afternoon or for
years.

Finally, I am deeply grateful to my parents, Robert and Gaetana Smith,
for their support and patience, especially during the height of the pandemic.

(CRR

This thesis was partially supported by ERC grant Autoprobe (no.
101002697).

Contents

1 Introduction 15
2 Preliminaries 21
2.1 oc-algebraso 21

2.2 Measures 24
2.3 Lebesgue integration 0oL 28
2.4 Densities 31
2.5 Spaces of probability measures 33
2.6 Laws of large numbers 35
2.7 FErgodic theory 38
2.8 Stochastic processes 44

3 Deterministic stream-semantics 49
3.1 Language 54
3.1.1 Syntax 54

3.1.2 Operational semantics 60

3.1.3 Denotational semantics 66

3.2 Sampler equivalence 81
3.3 Verificationo 98
3.3.1 The empirical transformation 98

3.3.2 Calculus for asymptotic targeting 102

4 Stochastic process samplers 117

4.1 Language 121

12 Contents

4.1.1 Syntax 121
4.1.2 Operational semantics. 125
4.1.3 Denotational semantics. 125

4.2 Sampler equivalence 138
4.3 Verification 139
4.3.1 Vector and matrix operations 139
4.3.2 Targeting for dependent samplers 141
4.3.3 Constructing stochastic processes 143
4.3.4 Transforming stochastic processes 149

5 Discussion 155
5.1 Related work 156
5.2 Furtherworko 160

Bibliography 169

List of Figures

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

4.1
4.2
4.3
4.4
4.5
4.6

Grammars 56
Typing and subtyping rules 59
Big-step operational semantics 61
Denotational semantics of sampler operations 73
Rules for sampler equivalence 83
Rules for asymptotic targeting oL 102
Validity of the von Neumann extractor 105
Type-derivation of accept 112
Type-derivation of the rejection sampling algorithm 113
Validity of rejection sampling 113
Grammars 122

Well-formed indexing terms, type-formation, and subtype rules . 123

Typingrules 126
Operational semantics of vector and matrix operations 127
Equivalence rules for vector and matrix operations 138

Rules for stochastic process targeting. 149

Chapter 1

Introduction

John von Neumann’s famous remark, ‘Anyone who considers arithmetical
methods of producing random digits is, of course, in a state of sin’ [1], is
endlessly quoted in papers on pseudorandom number generation and proba-
bility theory. We won’t break from this tradition; it’s pithy, entertaining, and
quoting von Neumann has the tendency to make one feel intelligent by associ-
ation. We will differ from this established practice, though, by discussing the

context.

Monte Carlo methods were first applied in 1947 by Stanistaw Ulam and
John von Neumann, as part of their research at Los Alamos, to estimate neu-
tron multiplication rates [2|. That these first simulations were carried out
on the ENIAC, the first true digital computer, illustrates that Monte Carlo
methods were among the very first successful applications of digital computing;
that these first simulations were applied to the task of designing nuclear fission

weapons illustrates a much broader truth that is less relevant to computing.

Von Neumann wrote the above-quoted lines several years later, in 1951,
in a short article which discusses some of the techniques that he and Ulam
had successfully applied in their research. This article discussed the tech-
niques which are today called inverse-transform sampling, rejection sampling
(implemented in our language in listing 3.2), and the von Neumann extractor
(implemented in listing 3.1), and also included a few remarks on arithmetic

methods for generating random numbers. On that last subject, von Neumann

16 Chapter 1. Introduction

writes,

Any one who considers arithmetical methods of producing random
digits is, of course, in a state of sin. For, as has been pointed out
several times, there is no such thing as a random number — there are
only methods to produce random numbers, and a strict arithmetic
procedure is not such a method. (It is true that a problem that we
suspect of being solvable by random methods may be solvable by
some rigorously defined sequence, but this is a deeper mathematical
question than we can now go into.) We are here dealing with
mere “cooking recipes” for making digits; probably they can not
be justified, but should merely be judged by their results. Some
statistical study of the digits generated by a given recipe should be
made, but exhaustive tests are impractical. If the digits work well
on one problem, they seem usually to be successful with others of

the same type. [ibid]

Von Neumann’s remark that many problems solvable by randomised methods
are also often solvable by non-randomised methods is profound, and we will
soon discuss many instances in which this is possible. For now it suffices to note
that while formal methods for program semantics and verification were still
several decades in the future, von Neumann was concerned from the beginning
with the question of verifying these arithmetic procedures — though the primary
method he had access to was black-box experimentation.

Since von Neumann’s time, Monte Carlo methods and probabilistic pro-
gramming have seen wide adoption in near every quantitative field, and have
taken advantage of massive improvements in the available hardware. With the
introduction of Markov chain Monte Carlo methods to the field of machine
learning in the 1990s, this trend has only accelerated. The size and the com-
plexity of these programs have grown significantly, and their societal impor-
tance continues to grow as well. As new techniques are invented and combined

with existing techniques, formally articulating the preconditions necessary for

17

these composite programs to be sound quickly passes beyond the reach of ex-
isting methods. With the advent of true probabilistic programming languages
in the 1990s and 2000s [3, 4, 5, 6, 7, 8, 9], including such features as condi-
tioning, higher-order functions, continuous variables, and recursion, the task
of verifying these programs has begun to necessitate the use of more complex
formal methods. This process of verification will be the primary focus of this

thesis.

A system for demonstrating that probabilistic programs are statistically
sound statistically naturally begins with a semantics — a fully-specified map-
ping from a program to a mathematical function implemented by this program.
These semantics, beginning with [10], necessarily became more complex as the
features available to these probabilistic programs grew, reaching into fields such
as order theory, topology, and category theory for useful models [11, 12, 13, 14].

We will draw on this literature as necessary for the remainder of this thesis.

Having chosen a semantics, our verification task is then to show that this
mathematical object representing the program has certain required features.
In our case, we aim to verify samplers: our desired verification task is to show
that these samplers generate samples that, at least in a certain sense, behave
as if they were taken from a desired probability distribution. The particular
techniques von Neumann discusses in his monograph — in particular, rejection
sampling and pseudorandom number generation — will serve as our motivating

examples, and are discussed in more detail in the introduction to chapter 3.

Contributions. Our aim with this thesis is to pull together the progress which
has been made in these disparate fields since von Neumann’s remark, and
summarise procedures by which computer programs which rely upon random
sampling can be proven to be correct, even if that random sampling is in
fact pseudorandom — that is to say, deterministic. This thesis focuses on the
verification of samplers and sampling languages, a useful subset of probabilistic
programming languages that encompasses many of their practical applications

in the quantitative sciences.

18 Chapter 1. Introduction

We present a sampling language which is complex enough to include such
procedures as rejection sampling, importance sampling, pseudorandom num-
ber generation, higher-order samplers, and stochastic processes, and yet simple
enough that samplers within it can be effectively verified. This language is
specified by an operational semantics (given in section 3.1.2) and denotational
semantics (given in section 3.1.3), which are shown to be compatible in theo-
rem 3.1.10. Our operational and denotational semantics are then extended to

include dependent types in section 4.1.

Definition 3.3.7 states the natural notion of sampler correctness in this
setting, a relationship that we refer to as ‘targeting’. Intuitively, a sampler
‘targets’ a probability distribution if samples produced by this sampler be-
have, at least asymptotically, as if they were samples from the desired distri-
bution. We introduce in fig. 3.5 a system for verifying samplers by applying
equivalence rules to reduce them to simpler forms, and prove soundness in
theorem 3.2.2. We then present a set of inference rules which preserve this
targeting relationship, enabling the verification of samplers, and show their
validity in theorem 3.3.10. This approach to verification is extended to include

stochastic processes in section 4.3.

The majority of the material included is based on two papers which were
joint work with Frederick Dahlqvist and Alexandra Silva; the first of these
papers [15] forms the basis for chapter 3, while the second (unpublished) forms
the basis for chapter 4.

Applications. This thesis is concerned with the semantics and verification
of programs which incorporate random (or pseudorandom) sampling. That
is, our focus is not on developing new techniques for sampling ourselves, but

instead on aiding the formal verification of existing sampling schemes.

Problems involving random, pseudorandom, and approximate sampling
are ubiquitous in statistics and applied science. To provide context for what is
to come, we mention briefly here two broad (admittedly overlapping) categories

of applications: Monte Carlo simulation and Bayesian inference.

19

In Monte Carlo simulation, our aim is to evaluate the expectation E [f]
of a function f with respect to a certain probability distribution P, but we
cannot do this closed-form. As a result, we write a program which, we claim,
will produce samples x,, distributed according to our target distribution P,
perhaps only approximately in some sense, and we then approximate this ex-
pectation as E [f] ~ L 3" | f(z,) (an approximation which, we should be able
to prove, converges almost surely to the correct expectation as n — oo). For
example, consider a case in which the function f is a complex but determin-
istic program, such as a physics simulator, and = includes a set of unknown
initial conditions distributed according to P. Then, in order to prove that
Monte Carlo simulation does in fact converge, we must show that our chosen
sampler, perhaps a pseudorandom number generator, does in fact generate

samples from the desired distribution P.

In a typical Bayesian setting, a practitioner aims to generate approximate
samples from a posterior distribution, a distribution over some set of param-
eters z which are to be estimated, conditioned on observed data x. Like the
previous class of problems, we might aim to compute some expectation E [f]
with respect to this posterior distribution. However, in a general Bayesian
inference problem, generating useful approximate samples from the posterior
distribution is not immediate. Rather than one single, universal technique for
generating representative samples, there are a number of approximate sam-
pling techniques (we will discuss several over the course of this thesis) that
one might choose from and, especially, combine with one another, to obtain
an approximate sampler. It is the verification of this compositional process of
combining sampling techniques that we aim to simplify. Example applications

to Bayesian-type problems are given in Example 3.3.17 and Example 4.3.8.

Outline. A short outline of the contents of each chapter follows.

Chapter 2 reviews some necessary concepts from probability theory, in-
cluding the basics of measure-theoretic probability, laws of large numbers,

convergence of empirical measures, and stochastic processes. These prelimi-

20 Chapter 1. Introduction

naries will be necessary in order to formally state the semantics of and define
the task of verification for the programming languages that will be discussed
in the following two chapters, and also as the motivation for the probabilistic
programs that we will verify. The reader is advised to read these preliminaries
alongside the main chapters as necessary, as they are referred back to in the
main body of the text.

Chapter 3 will introduce a probabilistic programming language which is
particularly well-suited to the verification of samplers. This probabilistic pro-
gramming language will be deterministic in construction, will feature samplers
as first-class objects, and crucially, will be able to cleanly express many of the
sampling techniques discussed in chapter 2, making their verification straight-
forward. We will introduce (denotational and operational) semantics for this
language, formally state the problem of sampler verification, and introduce
a sound calculus for the verification of samplers. As stated previously, this
chapter primarily presents the approach taken in [15]|, though with significant
simplifications in presentation, corrections, and further development.

Chapter 4 extends the language introduced in the previous chapter to
a more general setting, one which features dependent types. This extension,
based on unpublished work, is necessary in order to incorporate stochastic pro-
cesses, more specifically samplers that can generate samples from the marginal
distributions of stochastic processes, within our framework. The semantics of
the language is extended to incorporate this change, and the task of verifying
a sampler is suitably generalised — though the results of the previous chapter
will still apply in a restricted subset of this language.

Finally, chapter 5 reviews our approach and contrasts it with other ap-
proaches to similar problems discussed in the literature. We also discuss pos-

sible extensions of this approach to semantics.

Chapter 2

Preliminaries

This chapter reviews the fundamentals of measure-theoretic probability, the
axiomatic development of which occurred largely concurrently with the emer-
gence of probabilistic programming. The following outline of the fundamentals
of measure-theoretic probability can be found in any textbook on the subject,
such as [16].

We recall here definitions and properties that will be required in the tech-
nical developments of chapters 3 and 4. None of the results in this section are
new, but the notations, definitions, and terminology used will be essential in
the following chapters.

We begin with a modern review of measure theory as the axiomatic foun-
dation for probability theory, the first compelling presentation of which was
made by Kolmogorov in 1933 [17], building on the Lebesgue integral intro-
duced in [18]. We continue by outlining a few relevant developments of the
theory that have been made since, in particular introducing the essentials of

ergodic theory and stochastic processes.

2.1 o-algebras

Definition 2.1.1 (o-algebra). A o-algebra, or o-field, Xx on a set X is a
collection of subsets of X satisfying the following three properties:

1. 0, X € Xy

2. Closure under complement: A€ ¥x = X \ A€ Xx

22 Chapter 2. Preliminaries
3. Closure under countable union: Yn € N, A, € ¥x = |J~ | A, € Ex

Note that properties (1), (3) together imply closure under finite union
(choosing all but finitely many sets A, to be the empty set); properties (2),
(3) together imply closure under countable intersection (noting (2, A,
X\ U2 (X \ A4,)); and so properties (1), (2), (3) also imply closure under
finite intersection.

In settings in which the container set X and o-algebra ¥x on X are
understood, sets A € Yx are often called measurable, and sets A ¢ X
non-measurable; the tuple (X, Xy) is often referred to as a measurable

space.

Definition 2.1.2 (Measurable function). A function f: X — Y, when X and
Y are each equipped with o-algebras Xx, 3y, is called (Xx, Xy)-measurable
if the preimage of each measurable set in Y is measurable in X: that 1s, if
VB € Xy, fY(B) € ¥x. When the choice of o-algebra on each set is clear
from context, we will simply say that the function f is measurable or non-
measurable. If there exists an invertible mapping f : X — Y such that f
and f~1 are both measurable, we say that the measurable spaces X andY are

1somorphic.

Each nonempty set X has two trivial o-algebras: the indiscrete algebra
Yx = {0, X}, in which the only measurable sets are () and X, and the discrete
algebra ¥ x = 2%, in which all subsets of X are measurable. If X is equipped
with a topology, a natural choice of g-algebra is the Borel algebra, defined
as the smallest o-algebra containing all of the open sets of X (which is also
the smallest o-algebra containing all of the closed sets of X). It follows that
continuous functions on R are a subset of measurable functions; that they are
a strict subset is easily seen by considering simple examples such as 1g, the
indicator function on the rational numbers. Of special interest in the case of
Euclidean space RY are also the Lebesgue o-algebras, which are refinements of
the Borel algebra generated by the standard Euclidean topology on RY: these

will be discussed shortly, when introducing Lebesgue measure.

2.1. o-algebras 23

A Polish (i.e. separable and completely metrisable) space X equipped
with its Borel algebra is often referred to as a standard Borel space. This
terminology is motivated by the following theorem due to Kuratowski: two
standard Borel spaces X and Y are isomorphic if and only if the cardinalities
of X and Y are the same [19]. As the largest Polish spaces have the cardinality
of the continuum, it follows that every standard Borel space is isomorphic to
either a finite set (equipped with its discrete o-algebra), Z (likewise), or R. We
will not be concerned exclusively with standard Borel spaces here, but many of
the spaces we consider will fall under this umbrella, and many of the standard
theorems of the field are framed in this setting.

Measurable spaces support many (but not all; see Remark 2.1.7) of the
natural constructions one would expect. It will be useful, for the reader less
familiar with category theory, to explicitly define the product of measurable
spaces, Definition 2.1.3, the coproduct of measurable spaces Definition 2.1.4,

pullbacks Definition 2.1.5, and the initial sigma algebra, Definition 2.1.6.

Definition 2.1.3 (Product o-algebra). The product of two measurable spaces
X, Y is the Cartesian product X XY equipped with the smallest o-algebra such
that the sets AxY, X x B are all measurable, where A C X, B CY range over
measurable sets. FEquivalently, the product can be defined as X XY equipped
with the smallest o-algebra such that the canonical projections 7x : X XY —
X,y : X XY — Y are measurable. It is natural to write the product of
the o-algebras Xx and Xy as X x ® Xy, in order to avoid confusion with the
Cartesian product of sets.

More generally, for an indezed collection (X;)icr of measurable spaces, the
product o-algebra can be defined either as the coarsest o-algebra such that all
of the projections m; : Hjel X; — X, are measurable, or alternatively as the
o-algebra generated by the cylinder sets [[..; Us, in which only finitely many
U; are different from X.

i€l

Definition 2.1.4 (Coproduct o-algebra). Dual to the product, the coproduct
of two measurable spaces X,Y is the disjoint union X +Y equipped with the

24 Chapter 2. Preliminaries

largest o-algebra such that the natural injections tx : X — X +Y, 1y 1 Y —
X+Y are measurable maps. The corresponding generalisation to an arbitrarily

large indexed collection is obvious.

Definition 2.1.5 (Pullback o-algebra). Let f : X — Z,g:Y — Z be mea-
surable maps into the measurable space Z. The pullback, or fibred product,
of these maps consists of the set P = {(x,y) : f(z) = g(y)} of points at which
these functions coincide, often written P = X Xz Y in contexts in which the
maps f and g are implicit, equipped with the weakest o-algebra making the

natural projections px : P — X, py : P — Y measurable.

Definition 2.1.6 (Initial o-algebra). Let (X, YXx) be a measurable space, and
f Y — X a function from the set' Y to the set X. The induced initial
o-algebra Xy on'Y consists of the preimages of all the measurable sets in X

under f; that this collection of preimages is a o-algebra is easily seen.

Remark 2.1.7. Other familiar limits and colimits of measurable spaces, such
as coproducts, can be easily defined, though we will not need them here. It
1s important to note, though, that exponentials of measurable spaces do not
exist for many nontrivial spaces of interest. For example, there is no o-algebra
on the set of measurable functions R® such that the evaluation function evy :
RE xR — R is measurable, where R is equipped with its Borel algebra [20, 21];
the same holds for the spaces [0,1] and 2*.

2.2 Measures

Definition 2.2.1 (Measure). Given a measurable space (X,3), a measure is

a map j Y — R, taking values in the extended real numbers, satisfying
1. u®) =0
2. Nonnegativity: for all measurable A, u(A) >0

3. Countable additivity: for a countably-infinite collection of pairwise-

disjoint measurable sets A,, i.e. such that YVm,n € N, A, N A, = 0

iff m#n, u (Uiil A,) = Zzo:l 1(A)

2.2. Measures 25

Note that as trivial consequences of (3), measures satisfy finite additivity
and monotonicity A C B = u(A) < u(B); for any measurable A, B, we have
(AU B) = u(A\ B) + u(B\ A) + u(A N B); and for any measurable A,
H(X\ A) = p(X) — p(A),

A measurable space (X,¥) equipped with a measure p is often referred
to as a measure space. Measurable sets A such that ;(A) = 0 are often said
to be p-null, or simply null if the measure is clear from context.

A measure is called finite when p(X) is finite, and o-finite when there
exists a countable cover X = J 7, A, such that each A, has finite y-measure.
A probability measure is a measure P such that P(X) = 1.

Simple examples of measures include the zero measure p(A) = 0; the
infinite measure, for which p(A) = oo for all non-empty A; and the counting
measure, which assigns each finite set to its cardinality, and each infinite set
to oo. Sums of measures are easily seen to be measures; scalar multiples of

measures (by nonnegative real numbers) are as well.

Definition 2.2.2 (Empirical measure). Given a point © € X, the Dirac

measure on any o-algebra on X assigns unit measure to a set A iff it contains

the point x:
1 z€A
0. (A) = .
0 z¢ A
Given a finite sequence of points xq,...,x, € X, the resulting empirical

measure is defined as the normalised sum of the resulting Dirac measures.
Let P, be the function taking such a sequence of points to the corresponding

empirical measure; that is,

The choice of notation P, is motivated by the convergence of empirical mea-
sures under i.i.d. sampling x,, € P; see theorem 2.6.5. Given a sequence of

corresponding nonnegative weights w, > 0, the corresponding definition for a

26 Chapter 2. Preliminaries

weighted empirical measure is obvious (provided at least one of the weights is

nonzero).

Definition 2.2.3 (Product measure). Given two measure spaces (X, ¥x, px)
and (Y, Xy, py), a product measure px @ py is any measure on the product
o-algebra such that (ux @ py)(A X B) = pux(A)py (B) for all measurable sets
AeYy,BeYy.

In general, there is not always one unique product measure on the product
o-algebra, though this does hold when both px and uy are o-finite [16, Section
35, Theorem B].

Definition 2.2.4 (Subspace). Given a measure space (X, X x, pux) and a mea-
surable subset A C X, define the corresponding subspace' (A, X4, ua) as the
measure space which equips A with the o-algebra X4 = {SN A : Xx} and the
measure pa(E) = ux(ENA).

Another very important technique for constructing new measures is the

pushforward:

Definition 2.2.5 (Pushforward). Given a measure space (X,YXx,pux) and a
measurable function f : X — Y, whereY s equipped with o-algebra ¥y, define
the pushforward of j1x through f, written f.ux, to be the measure on (Y, Xy)
given by

ferx(B) = px(f1(B))

which assigns to each measurable set in'Y the measure of its preimage in X.

This concept of the pushforward is commonly used in probability theory

to specify a particular joint distribution, via the concept of random variable.

Definition 2.2.6 (Random variable). In probability theory, it is typical to
begin by fizing a base space (2, X, P). The particular structure of the base

space typically need not be specified; its primary function is to induce probability

I'Measure spaces can, with a little more effort, be restricted to non-measurable subsets
as well, though we will not need this construction here.

2.2. Measures 27

measures on other spaces via pushforwards, implicitly functioning as a ‘source
of all randomness’.

Having chosen a base space, measurable functions x : Q — X, where X
is a measurable space, are commonly called (X -valued) random variables,
naturally associated with the pushforward measure Px = z.(P). Given two
random variables x : Q — X,y : Q — Y, their joint distribution Pxyy is
naturally the pushforward measure of the product (x,y) : Q@ — X x Y. In
this way, it is common to define a measure on a product space by specifying a
collection of functions out of 2, the ‘base space’, i.e. a collection of random

variables.

Doubtless the central example of a measure on R is the Lebesgue measure,

which reifies the intuitive concept of the length of a set.

Definition 2.2.7 (Lebesgue measure). The Lebesgue measure is defined as

the unique* measure X on the Borel sets of R satisfying
1. For all closed intervals [a,b] where a < b, A([a,b]) =b—a

2. Translation invariance: for all measurable A and v € R, N(A+ z) =

AA), where A+x={a+z:a€ A}

The Lebesque measure of a (Lebesque-measurable) set can be more explicitly
obtained as the infimum of the lengths of all possible coverings of that set by a

countable collection of open sets:

A(A) = inf {Z(bn —ay) :ap,b, eR N AC U(an7bn>}
n=1 n=1

In the same way that the Lebesque measure on R reifies the intuitive concept of
length, there is a unique Lebesque measure on R? reifying the intuitive concept
of area, and so on in arbitrary RY, which can be defined analogously — though

see the following Remark.

2Uniqueness is typically obtained by application of extension theorems such as [16, Sec-
tion 13, Theorem A].

28 Chapter 2. Preliminaries

Remark 2.2.8 (Lebesgue algebra). For technical reasons, the Lebesgue mea-
sures on RN are often considered as measures on My, the Lebesgue o-
algebra, which is a refinement of the Borel algebra that also includes all subsets
of null sets.

A measure space (X, %, p) is called complete if, for any null sets p(A) =
0, all subsets of A are measurable A € 3 (and hence, by monotonicity, null
as well). Define the completion (X, %, i) of a measure space as consisting of
X, equipped with 3, the smallest o-field including ¥ such that all p-null sets
are measurable, and with [i, the unique measure on ¥ that coincides with yu on
Y1 while assigning zero measure to all subsets of p-null sets.

As the completion of a measure space is unique, the distinctions between
the Borel and Lebesque algebras are often not so important. But one crucial
difference that motivates the use of the Lebesgue algebras is the fact that the
Lebesgue measure on the Borel sets of R, multiplied by the Lebesque measure
on the Borel sets of R, does not in fact yield the Lebesque measure on the Borel
sets of R? (due precisely to the absence of these null sets), while if we consider
the Lebesgue measure as a measure on the Lebesque algebras, the corresponding

statement does hold.

Definition 2.2.9 (Equality a.e.). It is natural in a measure-theoretic context
to identify functions f : X — Y which differ only on (subsets of) null sets.
Explicitly, if f,g : X — Y satisfy f(x) = g(z) Vo € X \ N where N is
null, we say that f and g are equal almost everywhere (a.e.). Thus in
a measure-theoretic context, when we consider spaces of measurable functions,
the elements of these spaces will typically not be individual functions, but rather

classes of measurable functions partitioned up to a.e.-equivalence.

2.3 Lebesgue integration

Each measure space (X, X, 1) naturally corresponds to a particular integration
operator on real-valued measurable functions f : X — R, where R is assigned

the Borel algebra, known as the Lebesgue integral.

2.3. Lebesgue integration 29

Definition 2.3.1 (Lebesgue integral). Defining the Lebesque integral of indi-

cator functions 14(x) to be the measure of the corresponding set:

l[;lA(I)du(x)—-ux(A)-

Then, as this integral is to be a linear operator, define the Lebesque integral
of ‘simple functions’ , i.e. weighted sums p(z) = ij:l wpla, (x) of indicator

functions, to be

[e@au@) = 3w, [a @) dnte) = S wan(a,).

Based on that, define the Lebesque integral of any nonnegative measurable func-

tion f: X = Rsg as

[1@ dnte) =swwd [o@rduto): o simpieo < < 1

where this supremum exists. The Lebesque integral of a measurable function
f X — R which is not necessarily nonnegative is straightforwardly defined by

partitioning its domain into negative and nonnegative regions.

It is easily shown that the class of Lebesgue-integrable functions is closed
under linear combination, and that it includes all continuous functions. With
more effort, it can be shown that this class includes all piecewise-continuous
functions as well, and that the Lebesgue integral (with respect to the Lebesgue

measure) and (proper) Riemann integral coincide whenever the latter is de-

fined:

Theorem 2.3.2 ([22, Theorem 4.33]). When f : [a,b] — R is (proper)

Riemann-integrable, we have

x)dMNx) = x)dx.
@ Lf()

Once partitioned up to a.e.-equivalence, spaces of Lebesgue-integrable

30 Chapter 2. Preliminaries
functions are Banach in a natural way.

Definition 2.3.3 (Lebesgue space). Given a measure space (X,3,u), de-
fine the LP spaces LP(X,u), for p € [1,00), as the spaces of measur-
able functions f : X — R such that the Lebesque integral [, |f(x)[" du(x)
1s defined, partitioned up to a.e.-equivalence, and equipped with the p-norm
£, = (L@ du(@))s for p = oo, take | fll., = ess sup,ex |£(2)],
where the essential supremum 1is defined as the smallest C > 0 such that

f(z) < C for almost all x (i.e. outside of a p-null set).

Theorem 2.3.4 (Riesz-Fischer, |23, Theorem 4.26]). The Lebesque spaces are

Banach; for separable X and p < oo, the spaces LP (X, 1) are also separable.

In the context of probability theory, Lebesgue integrals with respect to
probability measures P, referred to as expectations, are often written using

the notation

E[f] = Eplf] = /X f(x) dP(x)

with the probability measure P often left implicit. For probability measures
on R, the expectation of the identity f(x) = x (if defined) is called the mean
p of P, the expectation of f(z) = (z — pu)? the variance ¢? of P (and its
root the standard deviation), and the expectations of the centralised and
standardised polynomials f(z) = (££)", for n > 3, the (standardised)
moments of P.

Lebesgue integration has a natural relationship with the pushforward mea-

sure construction, referred to as the change-of-variables formula.

Theorem 2.3.5 (Change of variables). Given a measure space (X, %, 1) and
measurable functions f : X — R, g : R — R such that both f and go f are
Lebesgue-integrable, the change-of-variables formula relates the integral of
g under the pushforward measure f.u to the integral of the composition g o f

under the original measure [i:

/R o) d(fup)(y) = / o/ (2)) d(z).

X

2.4. Densities 31

Its validity is immediate from the definitions of the pushforward measure and

Lebesgue integration.

Fubini’s theorem analogously clarifies the relationship between Lebesgue
integration and the product measure construction.
Theorem 2.3.6 (Fubini, [16, Section 36, Theorem C]). In the event that
(X, Xx,pux), (Y, Xy, nuy) are o-finite measure spaces, Fubini’s theorem states

that for Lebesque-integrable f : X XY — R, integrals over the product space

can be evaluated in either order:

[s demen - | (/ f<x,y>duy<y>> o) = | (/. f(x,mdux(x)) duy (1),

2.4 Densities

Fix a measure space (X, %, j1).

Definition 2.4.1 (Density). Any nonnegative f : X — Rsq which is Lebesgue-
integrable with respect to p defines, via Lebesgue integration, a new measure
f - on X given by

(f - 1)(A) = / £(z) d(z).

We say that f is the density of the measure f - u, relative to the measure .
When the ambient measure p is clear from context, in particular when it is

Lebesgue measure, it is common to neglect to mention it.

Definition 2.4.2 (Absolute continuity). If, for some measure v, a density f
exists such that v = f-u, we say that the measure v is absolutely continuous
with respect to . It is immediate that any such density f is unique up to a.e.-
equivalence. Note also that if 1(A) = 0, then it follows that (f - p)(A) =0 for
all f.

The Radon-Nikodym theorem provides a converse to the previous state-

ment.

Theorem 2.4.3 (Radon-Nikodym, [16, Section 31, Theorem B|). For o-finite

measures | and v, v is absolutely continuous with respect to u if and only if

32 Chapter 2. Preliminaries

pu(A) =0 — v(A) =0 for all measurable A. The density f such thatv = f-p,

unique up to a.e.-equivalence, is called the Radon-Nikodym derivative of v

dv
du”

with respect to u, and is often written using the differential notation
Definition 2.4.4 (Probability density function). In probability theory, the
density p : R" — Rso of a probability measure P on R"™ with respect to
Lebesgue measure A\ (if it exists) is referred to as its probability density
function (pdf); in order for P to be a probability measure, we must have
Jen p(x)dX(z) = 1. By the Radon-Nikodym theorem, probability measures

which are absolutely continuous with respect to Lebesgue measure are uniquely

specified by such a density.

Example 2.4.5 (Gaussian density). The Gaussian density, with mean p

and standard deviation o, is defined as the density on R given by

NG |0) = s exp (—%)

with respect to Lebesgue measure.
The multivariate Gaussian density on R", with parameters p € R"

and positive-definite X € R™™ is defined as

N (x| E) = \/ﬁem (~3te = w7)

with respect to Lebesgue measure on R™.

Definition 2.4.6 (Cumulative density function). Probability measures on R
can also be uniquely specified by a cumulative density function (cdf) —
whether the measure is absolutely continuous with respect to Lebesque measure
or not, in fact. The cumulative density function of a probability measure P on

R is defined as the function F': R — [0, 1] given by

F(z) = P((—o0, z]);

in particular, we have the limiting values F(—o0) =0, F(c0) = 1.

2.5. Spaces of probability measures 33

In the event that P is absolutely continuous with respect to Lebesgue

measure with Riemann-integrable density p, its cdf and pdf are related by

F(z) = /() - | vars

—0oQ
hence the name ‘cumulative density function’.

Definition 2.4.7 (Quantile). As the cdf F : R — [0,1] is always nondecreas-

ing, we can define the generalised inverse
Qu)=inf{r eR:u< F(z)};

this function is called the quantile function of P. In the event that the cdf

F' is monotonically increasing, the quantile function Q) is its inverse.

Let P be a probability measure on R, F' its cumulative density function,
and (@) its quantile function. Now consider the pushforward of the Lebesgue
measure A on [0, 1] through the quantile function (). The cumulative density

function of the resulting pushforward measure is
(MQ) (=00, 2]) = MQ™ (=00, 2]) = A((F(~00), F(2))) = A((0, F(2)) = F(x),

where the second equality follows from the fact that F'(z) is nondecreasing (the
others following from the definitions of the pushforward, cdf, and Lebesgue
measure). It follows that any probability distribution on R can be obtained
as a pushforward of the uniform distribution on the unit interval through its

quantile function Q).

2.5 Spaces of probability measures

Let X be a topological space and let PX be the set of probability measures on
the Borel sets of X. This section is concerned with the structure, topological
and measurable, of the space PX, and primarily follows |24, Appendix A].

The space PX is not closed under linear combination, as neither scalar

34 Chapter 2. Preliminaries

multiples nor sums of probability measures are themselves probability mea-
sures, but it can be equipped with several natural topologies. For our pur-
poses, the most important of these will be the weak topology, under which
PX is metrisable, separable when X is, completely metrisable when X is, and
compact when X is [25]. This weak topology of probability measures, often
called the weak-* topology for the sake of consistency with the terminology
used in operator theory, can be defined in a number of equivalent ways. To
motivate the operator-theoretic perspective, consider that each (probability)
measure P defines a natural map f + [« f dP on the space of continuous and

bounded maps C(X,R).?

Definition 2.5.1 (Weak convergence). A sequence of Borel probability mea-
sures P, on X 1is said to converge weakly to a limit P if, for all continuous

bounded f : X — R, lim,_, fodPn = fodP.

Definition 2.5.2 (Weak topology). The weak topology on measures is simply
the topology that yields the weak convergence. As weak convergence of measures
will be heavily used here, we will adopt the notation P, = P.

The weak topology on PX can be also be characterised as the weakest
topology under which the maps P > fX f dP are measurable for all continuous

bounded f : X — R.

Lemma 2.5.3 (Portmanteau, [24, Theorem A.2|, [26, Theorem 11.1.1]). The
well-known portmanteau lemma gives a number of equivalent conditions for

weak convergence, in the case that X is a metrisable Borel space:

1. lim, o0 fX fdpP, = fX fdP for all bounded continuous f

2. lim,, o0 fX fdP, = fX fdP for all bounded Lipschitz f

3Note that in general, this map is neither a surjection nor an injection; it is one-to-one only
in certain restricted settings. The most well-known result in this area is the Riesz-Markov-
Kakutani representation theorem, which states that Radon measures on locally o-compact
Hausdorff spaces X are isometrically isomorphic to positive bounded linear functionals on
the space of continuous real-valued functions on X that vanish at infinity. Regardless of
whether the relationship is one-to-one, though, given only that measures have a natural
interpretation as linear operators, concepts from operator theory can be applied to study
them.

2.6. Laws of large numbers 35

3. limsup,,_,.. P.(C) < P(C) for all closed C
4. liminf, . P,(U) < P(U) for all open U

5. lim, o P,(A) = P(A) for all Borel sets A with measure-zero boundary
P(9A) =0

2.6 Laws of large numbers

This overview will primarily follow [26, Chapters 8, 11|, [22, Chapter 8]. We
will begin by discussing several notions of convergence of random variables,
and then discuss a few important settings in which this convergence can be
shown, results that are typically called ‘laws of large numbers’.

Fix a Borel space X and equip its countable product X*“ with a probability
measure P; we will take X* equipped with P as our base space, in the sense
of Definition 2.2.6. Let X,, : X“ — X be each of the natural projections, and
let E[] = [,-dP represent integration under P. Let L : X¥ — X be an X-
valued random variable. We will need to differentiate between three types of

convergence of the random variables X,, to L, in increasing order of strength:

Definition 2.6.1 (Weak convergence). X,, converges weakly to L if, for all
continuous bounded f: X — R, lim, ..o E[f 0 X,] =E[f o L].

Note that the above definition is an application of our previous definition
of weak convergence for measures to the pushforward distributions of each X,,;

accordingly, it is natural to use the notation X,, = L.

Definition 2.6.2 (Convergence in probability). When the Borel space X
has metric d, X, converges in probability to L if, for all ¢ > 0,

lim, o0 P[d(X,,, L) > €] = 0.

Definition 2.6.3 (Almost sure convergence). X, converges almost
surely to L if X, converges to L pointwise on a set of measure 1, i.e.

P [limy o0 X, = L] = 1.

36 Chapter 2. Preliminaries

In the case that L(xi,z2,...) = z is a constant random variable and
X,, converges (in any of the above senses) to L, it is natural to say that X,
converges to the constant x. In the case of convergence to a constant, con-
vergence in probability and convergence in distribution are equivalent; almost
sure convergence remains stronger.

Consider now the case in which P = P“ is a product measure — in other
words, the case in which X, is a sequence of independent and identically-
distributed (i.i.d) random variables, each distributed according to P. Let also

X =R, with the standard Borel structure.

Theorem 2.6.4 (Strong law of large numbers, [22, Theorem 8.32]). The
strong law of large numbers (SLLN) states that, provided that the mean
= ffooo x dP is defined, the sequence of empirical means %Z?:l X, converges

to p almost surely:

=1.

1 >
P|lim -y X, = P
lnzﬂson; /.

Correspondingly, the weak law of large numbers (WLLN) most often refers to
the weaker statement that the empirical means converge weakly to the popula-

tion mean .

We finish this section with a statement of some basic results from empirical
process theory that we will need. Consider again an arbitrary base measure P
on the product space X“, with projections X,, : X“ — X, and consider the
resulting sequence of empirical measures as in Definition 2.2.2; i.e. the random

variables P, : X¥ — PX given by

1
Pn<l'1, To, ..)(A) = ﬁ Z 5Xn(x1,x2,..v)(A)'
k=1

As each of these empirical measures is a PX-valued random variable, it is

4There is a constellation of related statements referred to as the laws of large numbers,
which are focused on weakening the i.i.d. assumption we’ve adopted for this exposition. We
will not need these alternative versions here.

2.6. Laws of large numbers 37

natural to ask whether and how they they converge to the constant measure
P. It is an immediate consequence of the strong law of large numbers that,
when X, are i.i.d. (i.e. P = P¥), then for any bounded and continuous

f X — R, we have almost sure convergence

Ppggo/)(fdpnz/xfdp}ﬂ

of expectations under the empirical measures to the corresponding expectation
under P. More interestingly, the following theorem shows that the quantifi-
cation over the test function f made by the SLLN can be pulled inside P.
This theorem, and the perspective it represents, will be crucial in the coming

chapters.

Theorem 2.6.5. [26, Theorem 11.4.1] For standard Borel X, empirical mea-

sures almost surely converge weakly; that is,
P [Pn &R P] ~1

The actual sequences produced by i.i.d. sampling from a standard Borel
measure P, that is, have a certain special property: their empirical measures
converge to P. We will refer to this property in the coming chapters as P-

typicality.

Definition 2.6.6 (Typical sequences). Given a measure P on X, we will
refer to the countably-infinite sequences of samples (x1,23,...) € X such
that lim,, 0o £ "7 | f(2;) = [y f(z) dP(x) for all continuous bounded f as P-
typical sequences. Theorem 2.6.5 is then the statement that, with probability

one, i.1.d. sampling from P produces a P-typical sequence.

As we will discuss in the next section, and in the remainder of this thesis,
P-typical sequences can be produced for many P without assuming the ability
to generate i.i.d. samples from P directly.

It will be useful in chapter 3 to generalise this notion of typicality to

38 Chapter 2. Preliminaries

weighted sequences of samples; this extension is obvious. We will say that

the weighted sequence ((x1,w;), (22, ws),...), where x, € X and w, > 0, is

hmz”w’ %) /f)dP(x

n— 00 —1 W;

P-typical if

for all continuous bounded f; obviously Definition 2.6.6 is a special case when

all weights w; are unity.

2.7 FErgodic theory

Ergodic theory supplies a natural way to construct P-typical sequences using
purely deterministic means; we will recap the basic definitions and results of

the field, primarily following [25], beginning with the field’s historical origins.

Example 2.7.1 (Irrational rotation). The historical development of modern
ergodic theory began with the definition of uniformly-distributed sequences,
also called equidistributed sequences, and the proof that irrational rotation
gives such a sequence. This result was proved independently by Weyl, Sierpin-
ski, and Bohl in 1909-1910 [27, 28, 29]. As defined by Weyl and his contem-
poraries, a uniformly distributed sequence was a sequence x, € [0, 1] of points

on the unit interval such that, for all open intervals (a,b) C [0,1], we have

where 14 is the indicator function on the set A. Noting that open intervals (a,b)
are a generating set for the Borel o-algebra on R, it follows immediately that
this definition is a special case of Definition 2.6.6, in the case that X = [0, 1]
and P is the uniform distribution.

To Weyl, Sierpinski, and Bohl, the archetypal example of (nontrivial)

uniformly-distributed sequences were the irrational rotations

T, =na mod 1,

2.7. Ergodic theory 39

where « s irrational; in fact, they showed that these sequences are uniformly

distributed if and only if o is irrational.

In its modern form, ergodic theory generalises Weyl’s, Sierpinski’s, and
Bohl’s original result, broadening its setting from only the uniform distribu-
tion on the unit interval to arbitrary probability measures on Borel spaces,
and providing a sufficient condition for constructing such sequences: ergodic

transformations.

Definition 2.7.2 (Measure-preserving dynamical system). A measure-

preserving dynamical system refers to a tuple (X, P,T) where:

e X s a standard Borel space;

o P is a probability measure on the Borel sets of X called the stationary

distribution of the dynamical system;

o T : X — X is a measurable function on X under which P is invariant:

that is, T,P = P.

Definition 2.7.3 (Ergodicity). A measure-preserving dynamical system
(X, P,T) is called ergodic if the only T-invariant Borel subsets of X are either
P-null or P-full; that is, if for all Borel A C X, T7'(A) = A — P(A) € {0,1}.

Remark 2.7.4. Ergodic measures are naturally interesting from a geometric
perspective, as they are extremal points of the set of invariant measures. That
is: let M(X,T) represent the set of probability measures which are invariant
under a transformation T : X — X, and note that this set is obviously closed
under convex combination. The extremal points of this set, i.e. those which
cannot be written as nontrivial convex combinations P = aP; + (1 — «a)Ps
(“trivial” here meaning that either o = 0,1 or Py = P,) are then precisely the
probability measures with respect to which T is an ergodic transformation [25,

Proposition 4.3.2].

Theorem 2.7.5 (Birkhoff, [30, Theorem 9.6]). The Birkhoff ergodic the-

orem states that, for any ergodic dynamical system (X, P,T), P-almost all

40 Chapter 2. Preliminaries

wmatial points generate P-typical sequences in the sense of Definition 2.6.6.

That is, where P, refer to the empirical measures of Definition 2.2.2,
P{x € X : Py, T(x),....T" }(z)) = P} — 1.

As a result of Birkhoff’s theorem, if our aim is to produce samples from a
given probability distribution P, it suffices to find a transformation 7" which,
with P, forms an ergodic dynamical system, and choose any initial point z € X
which belongs to this privileged measure-1 subset.

This final condition of the Birkhoff ergodic theorem, that of avoiding a
measure-zero subset of initial points that are not P-typical, is difficult to relax.

However, the following result shows one approach:

Proposition 2.7.6 (|25, Proposition 6.1.1|). For compact X and continuous
T:X — X, the following are equivalent:

1. All initial points x € X yield P-typical sequences;

2. T s uniquely ergodic — that is, P is the only measure with respect to

which T is invariant’.

Having introduced measure-preserving dynamical systems, it is natural,
and will be useful, to define a notion of homomorphism and isomorphism
between them. In ergodic theory, the natural notion of isomorphism is referred

to as conjugacy.

Definition 2.7.7 (Conjugacy). Let (X, Px,Tx) and (Y, Py, Ty) be two (Borel)
measure-preserving dynamical systems. A (Borel) homomorphism consists of
a continuous map f : X — Y such that Py = f.Px and such that the following

diagram commutes:

x 1.y

lTX Ty

x .y

5Note that if P is the only measure with respect to which T is invariant, then it is trivially
an extremal point of the set of invariant measures, and thus the system is ergodic as well.

2.7. Ergodic theory 41

The systems (X, Px,Tx), (Y, Py,Ty) are (topologically) conjugate if there
exists a (bicontinuous) isomorphism f : X — Y such that f and f~' are each

homomorphisms of measure-preserving dynamical systems.

Example 2.7.8 (Logistic map). Consider the dynamical system on [0, 1] given
by T(xz) = rx(l — x), the logistic map, in particular in the case r = 4.
This case was analyzed by von Neumann in his earliest overview of sampling
techniques [1], though he attributes to Stanistaw Ulam the original sugges-
tion. In modern terms, this transformation T is well-known to be ergodic
with respect to the arcsine distribution; to understand why this is, simply
verify that the homeomorphism x = f(y) = sin®(2my) on the unit inter-
val shows the logistic map (for r = 4) to be conjugate to the dyadic map

2y 0<y<3
S(y) = = (2y) mod 1. That the uniform distribution on

2y — 1 % <y<l1
the unit interval is invariant and ergodic under this transformation is easily
verified. As a result, it follows that the logistic map with r = 4 is invari-
ant and ergodic under the pushforward of the uniform distribution through
[Hz) = % sin~! \/z, which yields a distribution known as the arcsine distri-
bution.

The dyadic map is also called the bit-shift map, as if we represent
points in [0, 1] using their binary expansions y = >~ b,27", a little thought
quickly shows that the dyadic map can be written as a bit-shift operation
S(y) = Y02 bpr127™. For rational initial points y, the sequence given by
iterating the bit-shift map is necessarily periodic with a finite period (this being
the definition of a rational number), and so cannot possibly be equidistributed
with respect to the uniform distribution on the unit interval. Despite this, the-
orem 2.7.5 tells us that for almost all points on the unit interval, iterating the
bit-shift map yields uniformly-distributed sequences — though as noted by von

Neumann in [1], this makes it impractical for use as a pseudorandom number

generator.

As one would expect, isomorphisms of dynamical systems preserve most

42 Chapter 2. Preliminaries

properties of dynamical systems studied in the field. We will only need one

result in this area.

Proposition 2.7.9 (Homorphisms preserve ergodicity). Let (X, Px,Tx) be an
ergodic system, let (Y, Py, Ty) be a dynamical system (not necessarily ergodic),
and let f: X — Y be a homomorphism of dynamical systems. It follows that
(Y, Py, Ty) is ergodic.

Proof of Proposition 2.7.9.

In order for Ty to be ergodic with respect to Py = f,Px, we must know
that for all measurable B C Y, Ty'(B) = B implies f,Px(B) = 0 or
f«Px(B) = 1. Consider the inverse image A = f~!(B). Then, as f is a
homomorphism, Tx'(A) = Tx'(f~'(B)) = f~YT,'(B)). Then, assuming
that T,,'(B) = B, we immediately obtain Ty'(A) = A; as Tx is ergodic,
we have Py(A) = 0 or Px(A) = 1. By the definition of the pushforward
f«Px(B) = Px(f~Y(B)) = Px(A), it follows that Ty is ergodic with respect
to Py. O

As the following chapter will involve some discussion of products and
iterates of dynamical systems, it will be necessary to introduce the definition of

a weak mixing dynamical system, which is a useful strengthening of ergodicity.

Definition 2.7.10 (Weak mixing). A measure-preserving dynamical system

(X, P,T) is called weak mixing if, for all measurable A, B C X, we have

o1
lim —
n—oo N,

" |P(Ti(4) N B) — P(A)P(B)] = 0.

Weak mizing 1is, naturally, weaker than strong mixing, which requires the
stronger but simpler condition lim,,_,, P(T~"(A) N B) = P(A)P(B); we will
not need the latter concept here.

It is immediate from the definition that if (X, P, T") is weak mixing, then all
iterates (X, P,T*),k > 1, of the system are weak mixing as well |25, Exercise

7.1.3]. It is also easy to show that

2.7. Ergodic theory 43

Proposition 2.7.11 (Weak mixing = ergodicity). If (X, P,T) is weak mix-

ing, then it is ergodic.

Proof of Proposition 2.7.11.

Assume that (X, P,T) is weak mixing, let A be a T-invariant set, and choose
B = A = X\ A the complement of A. We will show that the set A is necessarily
either of zero or full measure, which is the definition of ergodicity. Applying
the definition of weak mixing, as A is invariant under 7' (and hence T" for any

i > 1), we quickly obtain

. 1 n—1 ~ B B
lim ~ 2; |P(T7(A) N A) — P(A)P(A)| =0
1 n—1 B B
lim =~ 2% |P(ANA) — P(A)P(A)| =0
P(A)P(A) = 0;
therefore, the system (X, P,T) is ergodic.]

Less obvious from the definition of weak mixing is the connection between

weak mixing of a system and ergodicity of its product system, which follows.

Proposition 2.7.12 (|25, Proposition 7.1.11]). The following conditions are

equivalent:
1. (X, P, T) is weak mixing;
2. (X x X, P x P,T xT) is weak mizing;
3. (X xX,Px P,TxT) is ergodic.
The extension to all finite products is immediate.

Simply combining the above results regarding weak mixing of products
and iterates, as well as Birkhoft’s ergodic theorem, we can obtain the following

result:

44 Chapter 2. Preliminaries

Proposition 2.7.13. If (X, P,T) is weak mizing, then for any k > 1, Pk-
almost all initial points (z1,...,7x) € X* of the iterated product system

(X* PF Tk x ... x T*) generate P*-typical sequences.

2.8 Stochastic processes

An important application of our sampling language will be verifying samplers
for stochastic processes. Stochastic processes, essentially structured collec-
tions of random variables that can model time-changing random quantities,
have been objects of formal study since Kolmogorov’s axiomatisation of prob-
ability theory in the early 1930s, but the modern presentation of the theory of
stochastic processes dates to the early 1950s, drawing on the work of Joseph
L. Doob, Paul Lévy, Eugene Dynkin, and others [31].

In what follows, fix a probability space (2,%,P), a set T, and a Borel
space S.

Definition 2.8.1 (Stochastic process). A T-indexed, S-valued stochastic

process is a T-indexed collection of random variables X : T — (2 — S).

As the terminology ‘process’ suggests, the index sets 7" most often con-
sidered, N and R, are typically interpreted as indexing time. However, the
concept of a stochastic process is more general than time-varying processes,

extending to any indexed collection of random variables.

Definition 2.8.2 (Law). A stochastic process X naturally induces a measur-
able map X : Q — ST, where ST is assigned the product o-algebra. The
pushforward X,(P), which we will write as Px, is known as the law of the

process X .

Note that as the product o-algebra is very coarse, the law of a stochastic
process contains a limited amount of information about the process itself;

stochastic processes that differ in important ways can have the same law.

Definition 2.8.3 (Marginals). Let X be a T-indexed, S-valued stochastic

process. For any (ty,...,t,) € T, let ev,, 1) : ST — S™ represent the

2.8. Stochastic processes 45

functional ev,, 1) (f) = (f(t1),..., f(tn)), which evaluates its input f at a
specified collection of points in T. Pushing the law of X through the evalu-
ation functional gives the joint distribution Py, . .. of the random variables
(X(t1),...,X(tn)) : Q — S™. These random variables are called the (finite-
dimensional) marginals of the stochastic process X . If the marginals of two
T-indexed, S-valued stochastic processes X (t),Y (t) all have the same distribu-

tions, we will say that the two processes are identically distributed.

It can be shown that two stochastic processes induce the same law if and
only if they have the same marginal distributions [32].

Consider the finite-dimensional marginals Py, .. of a T-indexed, S-
valued process X. For any permutation 7 on {1,...,n} and any topologi-
cal space X, let mx : X — X" represent the corresponding automorphism
Tx(T1,...,2Zn) = (Trq),- -, Ta(n)). It is straightforward to show that for any

stochastic process, the collection of marginal distributions satisfies:
1. For every permutation 7, Py, b)) = (7$)s Pty t0)-
2. For every m < n and Borel A: Py, ;. 1(A) = Py, 4)(Ax S"™™).

The Kolmogorov extension theorem states that, under broad assumptions,
this correspondence goes both ways, and the finite-dimensional marginals are

sufficient to identify the process (up to equivalence in law).

Theorem 2.8.4 (Kolmogorov, [32]). If S is a standard Borel space and
Pyy,tn), m € N, &y € T is a collection of probability measures on S™ satis-
fying the above conditions, then there exists a unique probability measure Px
on ST (equipped with the product algebra®) whose finite-dimensional marginals

are Py, .. 1), that probability measure being the law of our stochastic process.

Bochner’s theorems |34, Ch.2| are alternatives to Kolmogorov’s theo-

rem in which assumptions are made about the structure of the space S and

6As mentioned earlier, the coarseness of the product algebra is often limiting. Many
applications, in particularly any requiring continuity, will require extending this law to a
finer o-algebra; see [33, Appendix A.2]).

46 Chapter 2. Preliminaries

where the system of products above is replaced by the more general notion of

a projective system. One version of the theorem states:

Theorem 2.8.5 (Bochner, [34, Ch.2, Thm 5.5||). If (I,<) is a directed set,
(Xi)ier is a system of locally compact spaces, and for eachi < j, m;; : X; = X;
are surjections such that for 1 < j < k, my; = mj; o m; — in other words
if (Xi,mji)ijer is a projective system — then 770(1'&11, X;) = 1&0z POX;, where

POX s the set of regular” Borel probability measures on X.

This theorem strengthens Kolmogorov’s for sufficiently nice spaces. Sup-
pose all measures on S are regular (e.g. if S is Polish) and consider the set
I =, T" of all T-tuples. For every t = (t,...,t,) and ¢’ = (¢,...,t,) in [
define the relation ¢ < t' whenever t = ¢’ 0 i,y for some injection i,y : m — n
mapping the position of each ¢; in the tuple t to its position in the tuple
t'. Then (I, <) is directed and we can define a projective system by putting
Sy = S"and mpy 0 S™ — S, (S1,. .., Sn) > (Sit,t/(l)v .. '7Sit,t’(m))' Bochner’s

theorem then gives
lim PS, = lim P"S, = P°(lim, S,) = P*(7).

Note that every 7y, in this system is the composition of a permutation and a
projection. From this observation, it is not hard to see that an element of the
left-hand-side of the equation is precisely a collection of marginals satisfying
the conditions 1. and 2. of Kolmogorov’s extension theorem. On the right-
hand-side we gain regularity®. We will return to this system in section 4.3.

Just as a (real-valued) probability distribution is frequently summarised

"A measure p on a Hausdorff space X is called regular if, for all measurable A, u(A) =
sup{p(K) : K C AN K compact} = inf{u(U) : U D AAU open}. Since all Borel measures
on a Polish space are regular, P°X; = PX;, the space of all Borel measures, when X; is
Polish. However, lim X; will in general not be Polish (though it is when I is countable),
and thus PO(@Z_ Xi) # 77(1&nZ Xi)ingeneral.

8To see that m S = ST note that T = @tl(t) where [(t) = n, the set with n ele-
ments, if ¢ is n-dimensional (every set is the injective limit of its finite subsets), and since
the hom functor hom(—,S) turns colimits into limits, we get ST = hom(ligntl(t),S) =
Jim, hom(I(¢),S) = lim, S; as sets. It is straightforward to check that the topologies on S7
and I'&Ht S; are the same.

2.8. Stochastic processes 47

by its mean and (co)variance, so a (real-valued) stochastic process can be

summarised by its mean function and covariance function.

Definition 2.8.6 (Mean and covariance function). Define the mean function

p:T — R of an R-valued, T-indezxed stochastic process X (t) as the map

u(t) = E[X ()] = / X(t)(w) dP(w)

and the covariance function (also often called the covariance kernel) k :

T xT — R as the map

Kty ta) = Cov [X (1), X (£2)] = E[(X(t1) — p(t2)) (X (t2) — p(l2))]

where each of these integrals exist. We will refer to o2(t) = k(t,t) as the

variance function.

Example 2.8.7. A Gaussian process is an R-valued stochastic process’ such
that all finite-dimensional marginals are Gaussian. Because a normal distri-
bution is fully specified by its mean and covariance, it immediately follows that
all the marginal definitions of a Gaussian process are fully specified by a choice
of mean and covariance function.

For example, the mean and covariance functions u(t) = 0,k(t1,ts) =

specify an i.i.d. collection of standard Gaussian random vari-
0 t1#ty
ables with variance o?; the functions p(t) = 0, k(t1,to) = min(ty, t5) specify the

Wiener process, or Brownian motion, a central object of study in finance
and physics, among other fields; and the square-exponential covariance func-
tion k(t1,t2) = exp (—555 |[t1 — t2H2) gives a smooth Gaussian process com-

monly used in Gaussian process regression.

9The generalisation to RY-valued processes, and further, is mostly straightforward, but
we will not use it here.

Chapter 3

Deterministic stream-semantics for
higher-order probabilistic

programming languages

In this chapter, we introduce a language, semantics, and calculus for verifying
a certain class of probabilistic programs: those intended to solve problems of
approximate sampling. We will begin by introducing the problem of approxi-
mate sampling and discussing its importance, and then we will motivate some
of the sampler operations our language will make use of before we give their
formal syntax and semantics. After formalising our language’s syntax and se-
mantics, we can then go on to discuss the verification of sampling techniques

within this language.

Approximate sampling. Our purpose for developing this language is to be
able to state and analyse algorithms for approzimate sampling. Given a desired
target probability distribution P, we want to verify that a proposed sampler,
i.e. program, is able to generate samples which, informally speaking, behave as
if they are taken from target distribution P, by making use of other samplers
and transforming their samples in various ways. This informal idea that our
samples must ‘behave as if they are taken from P’ will be formalised here as
P-typicality Definition 2.6.6, i.e. based on weak convergence. This formulation

of the problem of approximate sampling would have been well-understood by

50 Chapter 3. Deterministic stream-semantics

von Neumann and his contemporaries; what they may not have understood
quite as well, without our hindsight, is its centrality within a wide array of
fields — many of which (such as machine learning) did not exist at that time.

A particularly important class of approximate sampling problems are
those posed by Bayesian inference. Bayesian inference itself can be under-
stood as a method for transforming the problem of statistical inference — of
making probabilistic inferences based on data — into a problem of approxi-
mate sampling. Our aim in Bayesian inference is to generate samples from a
posterior distribution, a distribution over some set of parameters z which are
to be estimated, conditioned on observed data x. This posterior distribution
p(z | x) is specified by choosing a prior distribution p(z) over parameter values,
and by a likelihood p(z | 2), i.e. Markov kernel, which gives the probability of
observing a set of data given certain parameter values. Having chosen a prior
and a likelihood, and having observed some data, the posterior distribution

then follows from Bayes’ theorem®

plz|2)p(z) _ pla|2)p(z)
p(x) [p(x] 2)p(2)dz’

p(z|x) =

but cannot in general be obtained in closed form.

Instructive examples of Bayesian models include: filtering problems, in
which case z = (21, ..., zr) are latent states with a transition model p(z; | z:—1)
and observation model p(z; | z;), and our aim is to characterise the distribution
of these latent states conditional on the observations = = (x1,...,x7); i.i.d.
regression problems, in which case we observe covariates p(z; | #) and response
variables p(z; | z;,0), and we aim to estimate some regression parameters 0,
to which we assign a prior p(#); and joint filtering and parameter estimation
problems, such as parameter estimation for state-space models and hidden
Markov models, in which case we observe temporal data z = (z1,...,27) ac-

cording to a transition model p(z; | z;_1,6) and noisy observations p(x; | 2, 6)

'We assume for simplicity here that the necessary conditions hold such that Bayes’ theo-

rem can be stated in terms of probability densities dominated by common ambient measures
dz and dz.

51

with parameters 6, over which we take a prior p(f), and our aim is to obtain
either the posterior distribution p(6 | x) over parameters with respect to our
observations, or the joint posterior distribution p(z,0 | x) of latent states and

parameters with respect to our observations.

In any case, as the posterior distribution in the above problems cannot in
general be calculated analytically, it is natural to approximate properties of the
posterior distribution, such as the posterior mean or variance, by Monte Carlo
— that is to say, by using approximate samples from the posterior distribution.
This is the sense in which Bayesian inference recasts the problem of statistical
inference — of characterising the values of some unknown parameters using

observed data — as a problem of approximate sampling.

Our language is designed to be a setting for verifying approximate sam-
plers. In particular, it contains built-in operations corresponding to some of the
essential operations of approximate sampling. It will therefore be worthwhile
to introduce a few approximate sampling techniques in advance, to illustrate
the need for certain language constructs; in particular, we will quickly intro-
duce four. These operations will be discussed in much more detail, and verified,

n section 3.3.2.

1. Inverse-transform sampling we have already discussed in section 2.4.
Consider the problem of generating a random variable distributed accord-
ing to desired probability measure P on R. In section 2.4, we showed that
if F~! is the (generalised) inverse of the cumulative distribution function
F(z) = P((—o0,x]), then if a random variable U is distributed uniformly on
the unit interval, it follows that F'~*(U) is distributed according to P. There-
fore, given the ability to invert the desired cumulative function, exact samples
can be taken from any desired probability distribution on R. This technique
was well-known to von Neumann and his contemporaries, and was discussed
in their monograph [1]. Inverse-transform sampling is typically infeasible out-
side of the univariate case, but fortunately, multivariate sampling problems

can sometimes be reduced to a collection of univariate sampling problems;

52 Chapter 3. Deterministic stream-semantics

for example, Cholesky decomposition of the covariance matrix allows one to
transform n independent Gaussian samples into one sample from a Gaussian

distribution on R™ with arbitrary mean and covariance matrix.

2. Pseudorandom number generation we have also already touched on
in section 2.7. Approximate samples from a probability distribution P on a
Borel space X can be generated by specifying a measure-preserving dynamical
system (X, P,T), which consists of a map T : X — X with respect to which
the desired target distribution P is invariant and ergodic. It follows by the
Birkhoff ergodic theorem that P-almost all initial points xq € X yield P-typical

sequences by iterating 7" — see sections 2.6 and 2.7.

Von Neumann, in [1], discussed two such samplers in detail. First, he
discussed the logistic map, in which case T is the function T'(x) = 4z(1 —
xz) on X = [0,1], which was discussed in Example 2.7.8. That the logistic
map was ergodic with respect to the arcsine distribution, and that the logistic
map was conjugate to the bit-shift distribution, were both well-known to von
Neumann. Second, von Neumann mentions the middle-square method, an
early pseudorandom number generator which has since fallen out of favour.
The samples from this PRNG are formed by squaring a four-digit number,
and then dropping all but the middle four digits. For the reasons discussed in
section 2.7, it is natural to require that our samplers be formed from ergodic
systems — which the middle-square method clearly cannot be, as it was well-
known even by von Neumann’s time that it has multiple short cycles (e.g.

3600 — 9600 — 1600 — 5600 — 3600 — ...).

3. Rejection sampling we have not yet discussed. Let P be our target

measure, and assume the ability to sample from a proposal measure (), both

defined on a Borel space X; assume also the ability to generate independent

uniform samples U on the unit interval. In order for rejection sampling to

be possible, we must assume that the target P is absolutely continuous with

respect to the proposal @), and that we can evaluate (at least up to some
P

constant of proportionality) the resulting density f(z) o< g5(z). Let K be

53

any upper bound f(z) < K, i.e. any K such that f(z) < K for Q-almost all
x. To perform rejection sampling, we sample independently x ~ @ from our

proposal and u from the uniform distribution on the unit interval. If u < f@)

K
then z is distributed according to our target distribution P; if u > %, then
we discard the samples z,u and try again. This technique may in fact have

been introduced in [1].

4. Importance sampling is in essence a continuous variant of rejection
sampling, in which rather than rejecting or accepting proposed samples, we
instead assign each sample a positive-valued weight. Again, let P be our
target measure and () our proposal, assume P is absolutely continuous with
respect to @, and let f(x) o %(x) be proportional to the resulting den-
sity. To perform (self-normalised) importance sampling [35], generate samples
x; ~ () from the proposal, and for each sample, first compute the unnormalised
weight w; = f(x;). Having taken n such samples, we can then compute the
normalised importance weights w; = w;/ Zivzl wWg. These unnormalised sam-
ples can be used to approximate integrals with respect to the target distri-
bution lim,, . > o1, wig(z;) <3 [« 9dP, which is another way of saying that
these weighted sequences of samples are almost surely P-typical (see Defini-

tion 2.6.6).

Sampler types. In this chapter, we will formalise each of the above construc-
tions as procedures that output samplers. To that end, our language introduces
a sampler type, in which samplers are understood as weighted sequences. Sam-
plers are defined as sequences in order to incorporate pseudorandom generation
of samples, and are weighted in order to incorporate importance sampling (and
rejection sampling, once one recognises that assigning a sample zero weight is
essentially the same as rejecting it). Traditional pseudorandom number gen-
erators are samplers, as are more complex samplers produced by applying any

of the sampling techniques or operations previously discussed.

Sampler operations. Section 3.1 introduces a set of sampler operations.

These sampling techniques are chosen primarily to implement sampling tech-

54 Chapter 3. Deterministic stream-semantics

niques like the ones discussed above, and are defined coinductively. For exam-
ple, the sampler operation prng, ‘pseudorandom number generator’, constructs
a sampler using a measure-preserving dynamical system. The sampler oper-
ation map applies the same operation to each sample, making it analogous
to the pushforward operation in measure theory (necessary to implement, for
instance, inverse-transform sampling). The operation reweight continuously
reweights our samples; this is used to implement both importance sampling

and rejection sampling.

We include also a product of samplers, as well as certain stream opera-
tions such as ‘thinning’ samplers (i.e. dropping certain samples). Particular
attention will be paid to the operation we call the ‘sampler self-product’, which
implements the operation of taking multiple adjacent samples from the same
sampler. We provide a denotational and operational semantics for our sam-

pling language, and prove an adequacy relationship between the two.

Verification. Rather than existing as objects within our language, probability
measures are relegated to a meta-theoretic status used in program verification;
the natural relationship between samplers and probability measures, targeting,
will be defined in section 3.3. We introduce a calculus governing this targeting
relation, the application of which can verify the above-mentioned sampling
techniques, among others. We also introduce an effective equivalence relation
between samplers, in order to aid sampler verification. With this said, we are

ready to introduce our formal syntax and semantics.

3.1 Language

3.1.1 Syntax

Formally, our language is implemented as a A-calculus with a notion of subtype

<, a call-by-name evaluation strategy, and a type constructor & for samplers.

The types of our language are generated by the mostly standard grammar

3.1. Language 5%)

in fig. 3.1a, choosing as the set of ground types
Ground = {B,N,R,RTYU{f'(i) | f € {<,<,>,>,=,#},i=0,1}.

Our ground types include the natural, real and nonnegative real numbers,
Boolean values, and, more interestingly, certain important sets of pairs of reals,
such as < (1), #(0), and the rest. To understand the meaning of these sets,
consider for a moment the operator < as a function < :R xR — {0,1}; the
inverse image <~!(1) then refers to set of pairs of reals whose first component
is strictly stronger than the second, and <~*(0) to its complement. These
special sets, we will see, are included as ground types in order to give sensible

semantics to the binary operations <, <, >, > = and #.

The only unusual type constructors that appear in fig. 3.1a are the pull-
back types T, and the sampler types ET. Pullback types ,T,, as will soon be
explained, will be interpreted as (categorical) pullbacks of the term s: A — T
along the term ¢ : B — T, though in chapter 4 we will better illustrate this
construction as a dependent type. Sampling types LT will be defined as the
coinductive (stream) types defined by the (syntactic) functors T x Rt x —,
allowing samplers to be weighted; this covers the special case of unweighted
samplers, in which every weight is set to 1. As these are the only coinductive
types we will need, and to highlight the central role played by samplers, we

choose not to add generic coinductive types to the language.

Terms

Figure 3.1b presents the grammar generating the set Expr of terms in our
language. We will refer to terms produced by the small sub-grammar fig. 3.1c
as values; this sub-grammar will be used in the construction of our operational
semantics in section 3.1.2.

We include a set Func of built-in functions which come equipped with
typing information f : T — G, where G is a ground type. Some built-in

functions will be continuous w.r.t. to the standard topologies, such as the

56 Chapter 3. Deterministic stream-semantics

T:= G¢& Ground |1
| TXT|T+T|,T,|T=T|ET st:T

(a) Type grammar

t:= x € Var|be {True,False} [n € N|reR Variables and constants
| f(t,...,t), f € Func | cast(T)t Built-in functions
| case t of {(i,2;) = t},c,
| Az: Tt | t(t) | let z =t int "
| (t,t) | £st(t) | snd(t) | in; (¢) Products and coproducts
| prog(t,t) | t @t | map(t,t) | reweight(t,t) Sampler operations
| hd(¢) | wt(t) | t1(¢) | thin(t,t) "

Programming constructs

(b) Term grammar

vu= x € Var | b€ {True,False} |neN|reR
| (v,v) | in; (v) | Az: T. v

(c) Value grammar

Figure 3.1: Grammars

addition operation + : R x R — R, but others will be discontinuous with
respect to the standard topologies, such as the comparison operators {<, <, >
,>,=,%#} : R X R — B. Dealing with such functions is the main reason for
adding coproducts to the grammar, as we will discuss in section 3.1.3.
We define if-statements as simple Boolean cases, employing the syntactic
sugar
if b then Srue €1S€ Spaise = case (b,) of {(i,)= Siticn -
Most of our language constructs are standard for a typed functional language

without recursion, but we crucially endow our language with certain nonstan-

dard sampler operations:

e The operation prng(f,t) is used to construct a sampler as a pseudo-

random number generator, using an initial value ¢ and a deterministic

3.1. Language 57

endomap f.
e s ®t represents the product of samplers s, t.

e The syntax map(f,¢) maps the function f over the elements produced by
the sampler t to produce a new sampler, in analogy to the pushforward

of a measure.

e The operation reweight(f,¢) applies the reweighting scheme f to the

sampler ¢ to form a new sampler.

e Given a sampler ¢, the operation hd(¢) returns the first sample produced
by ¢, wt(t) the weight of the first sample produced by ¢, and t1(¢) returns
the sampler ¢ but with its first sample-weight pair dropped.

e The operation thin(n,t), given a natural number n and a sampler ¢,
returns the sampler which includes only those elements of ¢ whose index

is a multiple of n.

The precise meaning of these language constructs will be made clearer when we
introduce their semantics in sections 3.1.2 and 3.1.3. The purpose of introduc-
ing them, if not already clear, will be further illustrated in section 3.3, when
we use them to represent and then verify certain common sampling techniques.

Note that our language does not have an operation sample(s) for a sampler
s, as our samplers do not have internal state. This operation can nevertheless
be mimicked by using the ‘sample’ hd(s), and then let-binding all subsequent

occurrences of s to t1(s).

Well-formed terms

Our typing system is mostly standard and presented in fig. 3.2a, and the sub-
typing relation < on types is the reflexive-transitive closure of the relation
generated by the rules of fig. 3.2b. The purpose of the subtyping relation, as
we will discuss, is to encode topological information which will allow the in-
terpretation of functions which are discontinuous with respect to the standard

topologies.

58 Chapter 3. Deterministic stream-semantics

The only non-standard typing rules are the context-restriction rule on
the third line of fig. 3.2a, and the typing rules for the sampler operations,
which should be straightforward given their descriptions above. The purpose
of the context-restriction rule is, in a nutshell, to be able to pass the result of a
computation of type T which is continuous w.r.t. a topology 7 on the denotation
of T, to a computation using a variable of type T but which is continuous w.r.t.
to a finer topology 7" O 7 on the denotation of T. After application of this
rule, it is no longer possible to A-abstract on the individual variables of the
context. There are good semantic reasons for this feature, which we discuss in
section 3.1.3. For readability and intuition’s sake, the rule is written using the

syntactic sugar
t_l(Ti) é cast(T)ini(x)Tt Where X . T“t . T7 (31)
for the subtyping rules fig. 3.2b, we use the syntactic sugar

/1A

) where x; : 8,2 : S..

cast(S)in; (xi)scast (S)in; (m;

Remark 3.1.1 (Recursion). Our typed lambda calculus, the reader will notice,
does not feature recursion. This is because our aim is to restrict attention to
samplers which are produced via techniques which are sensible from a proba-
bilistic perspective, so that verification of these probabilistic properties can be
accomplished straightforwardly by following the program structure. Allowing
unrestricted recursion undermines that goal: it expands massively the class of
programs that can be written, but where the vast majority of these programs do
not have an interpretation which is sensible from a probabilistic perspective.
Moreover, recursion is not strictly necessary for our purposes. While the
author is not aware of a general definition of the notion of ‘recursive sampler’,
which would be necessary to formalise this argument, many of the sampling

techniques which are typically given recursively can be recast in our language by

3.1. Language

59

I'HFXx:8.t:S—T

CHt:ET
DFhd(t): T

I's:£8 I'F¢:XZT
FFs®t:Z(SXT)

I'Fn:N TH¢:ZT
't thin(n,t) : LT

T'Ht:T
- G],G € Ground Func> f:T—G
TFg.c ¢ €66 & Groun Tz T.AFa:T TF f) g et
'Ht:T; .
! jeEn __AFt:S ggrran
Thing (¢) > e, Ti T'Fcast(T)t: T
:S81,... Syt T
x1 1, 755711 n ZiemTiQT
(@155 2n) D iemt (T F Y e Ta
FFt:ZienTi Tz, :T;Fs;: T
' casetof {(i,2:) = si};cp, T
I'Ht:SxT I's:S T'H¢:T I'Ht:SxT
'k fst(t):S 'k (s,t):SXT I'ksnd(t): T
Dz:SHt:T I'Fs:S T'Ht:S—T Fz:SHt:T I'ks:S

FHt(s): T Fkletz=sint: T
I'Fwt(t): RT CFtl(t): LT

'Es:T—T I'Ht:T
Tt prng(s,t) : LT

'Fs:S—T I'Ht:x8 I's:T—Rt T'Ft:XIT

I+ map(s,t) : ET I' - reweight(s,t) : LT

(a) Typing rules

S1 <82 T1 < To
S1 X T1 <82 X T2

S1 4S9 T1 < To
S1 +T1 482 + T2

Fe{<,$,>,2,=#}

U0 + /N <R xR

S4T ZiEnSiqs ZjEmsgqs ZiEnsiqs Z]'Emsgqs
LSKXLT ZiEn,jEmSimsquiensi ZiEn,jemsimSE‘QZ]’EmSj

(b) Subtyping rules

Figure 3.2: Typing and subtyping rules

section 5.2 for a sketch of how this can be done).

using its native operations in a non-recursive manner. For example, rejection
sampling, while it is most commonly thought of as a recursive procedure, can
alternatively be implemented using the operation reweight, as we will show
in section 3.3.2. More complex recursive samplers which feature loops with
state can be incorporated as well, but as these samplers are less amenable to

verification using our methods, we will not pursue this direction (though see

Finally, the categorical semantics of a true typed, probabilistic, higher-

order lambda calculus with recursion are a more recent area of investigation

[13]. As a result, we consider the inclusion of recursively-specified samplers,

60 Chapter 3. Deterministic stream-semantics

along with corresponding verification techniques for recursively-specified sam-

plers, to be further work; see section 5.2.

3.1.2 Operational semantics

In practice, in order to evaluate a program containing a sampler, one must
specify a finite number of samples N € N which are to be produced. Our
(big-step) operational semantics correspondingly takes the form of a reduction
relation (¢, N) — v, where the left side consists of a well-typed closed term
t € Expr and a number of samples N, and the right side is a value v € Value,
i.e. a term generated by the grammar fig. 3.1c.

For the more common language constructs like 1let and function evalu-
ation, the rules of this big-step operational semantics, given in fig. 3.3a, are
mostly standard with the additional input N, the number of samples which
will be taken. The big-step operational semantics of sampler operations, which
do make use of the inputted number of samples N, are given in fig. 3.3b.

For notational simplicity, these operations make use of lists (a,b,c,d),
which are in fact interpreted within our language as nested pairs (a, (b, (¢, d))).
In order to keep the rules readable, we also introduce the shorthand (¢, N) —

((v1,w1), ..., (vn,wy)) to denote the N reductions

(hd(t),wt(t)) — (v1,w1),

(hd(t1(t)), wt(tl(t))) — (ve,ws),

ey

(hd(t1¥ (1), w81V (1)) — (vw, wy).

Note that the product of two weighted samplers has as its weights the
product of its factors’ weights. The product and the operation reweight are
the only operations modifying the weights of samplers.

The following proposition shows that the operational semantics is well-
formed in that for any N € N, programs of sampler type can only reduce to

weighted lists of length V.

3.1. Language 61

———— v a value () = v (V) = v Func> f: T—G
(v, N) > v (cast(T)t, N) > v (f(®),N) = f(v)

(Az:Tt)(s),N) = v (tfx:=s],N) = v (t,N) = v
(letz=sint,N) v ((Az:Tt)(s),N) = v (in; (t), N) — (i,v)

(& N) = (Gyvj) (sjlaj = v, N) =
(case t of {(i,xi) = si};ep,)s N) =0

JEN

(t, N) = (v1,v2) (s, N) »v1 (t,N) — v2 (t, N) = (v1,v2)
(fst(t),N) = v ((s,t), N) = (v1,v2) (snd(t), N) — v2

(a) Big-step operational semantics of standard operations

((s(nd(t)),wt(t)), N) = (vi,w1) ... ((s(hd(t1N71(¢)),wt(£1V 7 1(8))), N) = (vn, wn)
(map(s,t), N) = ((vi,w1),...,(vN,wN))

((nd(t), s(hd(t))wt(t)), N) — (vi,w1) ... ((RA(t1IV7L(2)), s(hd(t1N 1)) wt(t1V~1(1))), N) — (vn,wn)
(reweight(s,t), N) — ((vi,w1),- .., (vN,wN))

(s,N) = ((v1,w1),...,(vn,wn)) (£, N) = (v, w]),..., (U, wh))

(®6N) = (1, 0)), w1 -w), - (on, V), oy - why))

(t’N) — ((Ulvwl)v'“:(vawN))
(hd(t),N) — v1

(t, N) — ((vl,wl), RN (’UN,U)N))
(wt(t), N) = w1

(t,N) = (vi,w1), ..., (vn, wN))
(tl(t),N — 1) — ((’U2,’u)2),. .. ,(’L)N,wN))

(s, N) =i (t,Ni) = ((vi,w1),- .., (vNi, WNe))

(thin(s,t), N) = ((v1,w1), (Vi1 wit1), (V2i+1, W2it1)5 - - -5 (VN —1)i41, WN-1)i+1))

(t,N) = v1 (s(t),N) = w2 ... (sVN71(t),N)—=on
(prng(s,t), N) = ((v1,1),...,(vn,1))

(b) Big-step operational semantics of sampler operations

Figure 3.3: Big-step operational semantics

Proposition 3.1.2. IfF s: IS is a closed sampler, then for any N € N, if
(s, N) — v, then v has the form ((vi,w1),...,(vn,wy)), where v, are values
and w, € Rsq are weights. If S is not a sampler type, then v, : S; more

generally, each v,, might be a weighted list itself.

In order to prove this result by induction on the derivation tree of (t, N) —

v, though, we will see that we must first generalise it to include higher samplers.

Proposition 3.1.3. If - s : £*S is a closed k-order sampler where S is not

a sampler type and k € {0,1,2,...}, then for any N € N, if (s,N) — v,

62 Chapter 3. Deterministic stream-semantics

then v has the form of a k-nested weighted list of values of type S. For
example, for k = 0, v : S is simply a value of type S; for k = 1, v =

((v1,wy), ..., (vn,wN)) is a weighted list of values v, : S and w, > 0; for
k=2 v=(((vi,wi),-.., (v, wi)),wr), s (), wl), s (v, W), w))

1s a weighted list of weighted lists of values of type v)'* : S, and so on.

Proof of Proposition 3.1.3.
Base case. As values v cannot have sampler type, the only possibility for a
derivation (v, N) — v where v : L*T for some type T is k = 0, which makes
our result immediate.

Inductive case. We illustrate the inductive argument for each case,
depending on the last rule of the derivation of (t, N) — v, where I ¢ : L*T
is a k-order sampler for some k € {0,1,2,...}, and T is by hypothesis not a

sampler type (i.e. contains no occurrences of).

1. Built-in functions. There are no built-in functions which either input
or output sampler types, so k = 0. Taking the induction hypothesis that
each input s; : G; reduces to a value v; : G;, where G,, are ground types,
we immediately obtain that (f(s1,...,s,), N) — v evaluates to a value

v of ground type G, giving our result.

2. Case. Assuming that ¢t = case (c¢,t') of {(4,2;) = S;}ien, We must have
F s; : L*T. Taking the induction hypothesis that (s;[z; :=], N) — v
evaluates to a k-nested weighted list, if (¢, N) — i € n, it immediately

follows that (¢, N) — v does as well.

3. Function application. Take t = (Az : Z¥'S.#')(s) to be an instance of
function application, where the function in question inputs a k’-sampler
and outputs a k-sampler, where S does not contain any sampler types
itself; we must have - s : £¥S in order for the expression to be well-
typed. In order to have (t, N) — v evaluate to a value, our operational

semantics requires (t'[x := s], N) — v; taking the induction hypothesis

10.

3.1. Language 63

that t'[x := s] evaluates to a k-nested list of values of type S, our desired

result follows.

let-binding. Trivially follows from function application, as (let x =

sint',N)—viff (Ax: St)(s),N)— v.

. Product. If t = (s,s'), the result is trivial as - ¢ : Z*T implies k = 0

and so T = S x 8 where - s : S,F &' : §' are each not sampler types;

therefore, (s, s") is clearly a value of type T (i.e., a O-nested weighted list).

Projections. Ift = fst((s, s')), then - s : L*T, and so the induction hy-
pothesis (s, N) — v immediately implies our result; the same argument

applies to t = snd((s, s')).

Head. If t = hd(s), then - s : Z*"'T. Taking the induction hypothesis
that (s, N) — v implies that v is a (k + 1)-nested weighted list of values
of type T, we need only note that the first element of this list is itself a
k-nested weighted list of values of type T.

Weight. If ¢ = wt(s), our result is trivially true, as the output of wt(s)

can only be a nonnegative real number -t : R*.

Tail. If t = t1(s), then by our induction hypothesis, (s, N + 1) —
((v1,wy), ..., (vNy1, wNy1)) where each v, is a (k — 1)-nested weighted
list of elements of type T. It immediately follows that (t1(s), V) evaluates
to a weighted list of N elements whose elements are each (k — 1)-nested

lists of type T.

Thin. Ift = thin(i,s), then - n : N and I s : £¥T, and by our induction
hypothesis, (s, Ni) = ((vi,w1),. .., (Unit1, Wnis1)) Where each v, is a
(k — 1)-nested weighted list of elements of type T. It immediately follows
that (thin(7,s), N) evaluates to a weighted list of N elements whose

elements are each (k — 1)-nested lists of type T.

64

11.

12.

13.

14.

Chapter 3. Deterministic stream-semantics

Map. If t = map(s,t') and (¢, N) — v, the operational semantics of map

requires that
((s(hd(tl”_l(t’))),wt(tl"‘l(t/))),N) — (U, wy)

for eachn € {1,..., N}. Ast'is a subterm of ¢, our induction hypothesis
implies that if F ¢’ : £¥'S for some k' € {1,2,...}, then for any N € N,
t' evaluates to a k’-nested weighted list of values of type S. Note that in
order for ¢t to be well-typed, we must have - s : ¥ 15 — £+-1T. We
have already shown that if this is the case, then t1" (#) evaluates to a
K'-nested weighted list of values of type S, and then that hd(t1"~*(¢'))
evaluates to a (k' —1)-nested weighted list of values of type S of length N,
and then that s(hd(t1"71(#'))) evaluates to a (k — 1)-nested weighted list
of values of type T of length N. Our result follows by observing that if
((s(hd(t1"1(t))),wt(t1" ('), N) — (vn,w,) for each n € {1,..., N}
where each v, is a k — 1-nested weighted list of values of type T, then the
expression ((vy,w),. .., (vy,wy)) is a k-nested weighted list of values of

type T, completing the proof.
Reweight. This proof works in exactly the same way as that of map.

Product of samplers. If t = s® s’ and - ¢t : L*T where T con-
tains no instances of L, then it must be that & > 1, that - s : £¥S,
and that F s : ©*S’. Our induction hypothesis states that (s, N) —
((v,wy), ..., (vN,wy)) where each vy is a (k — 1)-nested weighted list
of values of type S, and (', N) — ((v],w]),..., (v, wy)) where each v]
is a (k — 1)-nested weighted list of values of type S’. Our result then
follows by noting that the product (((vq,v}]),w;-w}),..., ((vy, V), wy))

is a k-nested weighted list of values of type S.

Pseudorandom number generators. Finally, assume ¢ = prng(s,t’);
in order for this expression to be well-typed, we must have k£ > 1, F

t':ZFIT and F s : TF7IT — £*IT. In order for (¢, N) to evaluate to

3.1. Language 65

anything, we must have (s"7'(¢), N) — v, for each n € {2,...,N}; as
we have already proven the case for function abstraction, we know that
each v, is a (k—1)-nested weighted list of values of type T. We need only
note then that ((vq,1),..., (v, 1)) is clearly a k-nested weighted list of

values of type T.

The self-product operation

Having clarified the meaning of the product and of the thin operation, we are
now in a position to formally define the ‘self-product’ of a sampler, which en-
ables us to use multiple adjacent samples from the same sampler. To motivate
it, consider a sampler ¢ : £ T which evaluates as (¢,2N) — (z1,...,zay), where
for notational clarity we have omitted the weights. Applying the above oper-
ational semantics, the lagged sampler thin(2,¢ ® t1(t)) : L (T x T) evaluates

to

(thin(?, t® tl(t)), N) — (([Eh 172), (l’g, ZL‘4), ey (JIQN_l, JZQN)).

We call this sampler the ‘self-product’ of ¢, and denote it t?. Note that, by
contrast, the sampler ¢t ® ¢t will produce pairs of perfectly correlated samples:
the operational semantics gives (t @ t, N) — ((x1,21), ... (xn,ZN)).

More generally, for any £k € N, we define the k-fold self-product of a

sampler as
t* £ thin(k,t @ t1(t) ® ... ® t1F71(t)). (3.2)

Sampling from ¢* is intended to allow the sampling of k-tuples of independent
deviates generated by the sampler k. Ultimately, it is primarily to define this

self-product operation that the sampler operation thin is included.

66 Chapter 3. Deterministic stream-semantics

3.1.3 Denotational semantics

Denotational universe. We will see in section 3.3 that continuous maps play
a special role in the verification of sampler properties. We therefore need a
denotational domain in which continuity is a meaningful concept. We also
need a Cartesian closed model in order to interpret the lambda-abstraction
operation of our language. A standard solution is to consider the category of

compactly generated topological spaces |36, 37, 38| (henceforth CG-spaces).

Definition 3.1.4 (CG-space, [36, §1|). A topological space X is compactly
generated if it s Hausdorff and has the property that C C X s closed iff

C N K is closed in K for every compact K in X.

We need not worry about the theory of these spaces, but the following

facts are essential in what follows.
Proposition 3.1.5 (|36, 38]).

1. The category CG of CG-spaces and continuous functions is Cartesian

closed.
2. The category CG is complete and cocomplete.
3. Every metrisable topological space is CG.

4. Locally closed subsets (i.e. intersections of an open and a closed subset)

of CG-spaces are compactly generated.

It is worth briefly describing the Cartesian closed structure of CG. The
product is in general different from the product in Top, the category of topolog-
ical spaces: if the usual product topology is not already compactly generated,
then it needs to be modified to enforce compact generation [36, §4]. However,
in most practical instances the usual product topology is already compactly
generated — for example, any countable product of metrisable spaces is metris-
able, and thus compactly generated by Proposition 3.1.5. The internal hom
[X, Y] between CG-spaces X, Y is given by the set of continuous maps X — Y

3.1. Language 67

together with the topology of uniform convergence on compact sets, also known

as the compact-open topology [36, §5].

Semantics of types. With this categorical model in place we define the se-
mantics of types. The semantics of ground types is as expected: [N] = N,
equipped with the discrete topology, and [R] = R,[RT] = [0,00) with the
usual topology. The spaces f~1(i), f € {<,<,>,>,=,#},i € 2 are inter-

preted precisely as the notation suggests, e.g.

[<70)] ={(z,y) |2,y e RAz >y},

[="'@)] ={(z,2) |z € R}

together with the subspace topology inherited from R x R. Since all these
spaces are metrisable, our ground types are interpreted in CG by Proposi-
tion 3.1.5.

Products (including the unit type) and function types are interpreted in
the obvious way using the Cartesian closed structure of CG. Coproduct types
are interpreted by coproducts in CG, and given two terms s, ¢ : T interpreted
as CG-morphisms [s] : A — [T],[t] : B — [T], the pullback type ,T, is
interpreted as the pullback A xq B of [s] along [t]. All these spaces live in
CG by Proposition 3.1.5.

Since sampler types are coinductive types, their semantics will hinge on

the existence of terminal coalgebras.

Theorem 3.1.6 (Adamek). Let € be a category with terminal object 1, and
F € — € be a functor. If € has and F preserves w?-indexed limits, then

the limit vF of 1 L P12 FR1EE s the terminal coalgebra of F.

Since CG is complete, it has w°P-indexed limits. Recall that we want
to interpret LT as the coinductive type defined by the ‘functor’ T x RT x —.

Formally, given a type T we want

[£T] 2 v([T] x R* x Id). (3.3)

68 Chapter 3. Deterministic stream-semantics

Since products are limits, and limits commute with limits, it is clear that
the functor [T] x Rt x Id preserves limits, and in particular w°P-indexed
ones. Adamek’s theorem thus guarantees the existence of an object satisfying
eq. (3.3). More concretely, since the termimal object 1 is trivially metrisable,
and since RT is metrisable, each object in the terminal sequence will be metris-
able provided [T] is, and thus [], ([T] x R*)" will be metrisable whenever [T]
is, and will therefore be equipped with the usual product topology. The limit
defining eq. (3.3) is a closed subspace of this product, which means that the
limit in CG defining [ET] is the same as in Top when [T] is metrisable (for
example, if T is a ground type or a product of ground types). However, by
defining [Z T]] coinductively rather than simply as ([T] x RT)“, we obtain a ter-
minal coalgebra structure on LT[, and therefore the ability to define sampler

operations coinductively.

Semantics of the subtyping relation. Our language contains the predi-
cates f € {<,<,>,>,=,#} (essential for, among other applications, rejection
sampling theorem 3.3.16) — and yet is meant to be interpreted in a universe
of topological spaces and continuous maps. These predicates are of course not
continuous maps R x R — 2 for the usual topology on R x R. However, for
each such predicate f, the sets [f~(0)] and [f~*(1)] are locally closed sets,
that is to say the intersection of an open set and a closed set (for the usual

topology on R x R), and therefore CG-spaces by Proposition 3.1.5.

Our central idea for dealing with discontinuities is that since CG is co-
complete, the space [f~1(0)]+[f~'(1)] is a CG-space. This space has the nice
property that f is continuous as a map f : [f~'(0) + f~*(1)] — 2. Since each
f71(4) is a type, we can enforce this semantics by simply typing these built-in
functions in Func as f: f~*(0) + f~'(1) — B.

The topology on [f~1(0) + f~*(1)] is finer than the usual topology on
R x R, which means that the identity map Id : [f~*(0) + f~*(1)] - R xR
is continuous. This is the semantic basis for the axiom in fig. 3.2b. From the

other rules it is easy to see by induction that the subtyping relation is only

3.1. Language 69

defined on spaces sharing the same carrier set and, semantically, coarsens the
space’s topology. In other words, if S< T, then [S] and [T] share the same

carrier, and the corresponding identity map Id : [S] — [T] is continuous.

Example 3.1.7. Let p £ if © = 0 then 1 else — 1; we will first show how
the context-restriction rule allows us to type-check this program. For read-
ability’s sake, let Eq = ="1(1) and Neq = ="1(0). We now derive, using
=:Neq +Eq —+ R,

r:RFEZ:R FO:R
x:RF (2,0) :RXR
z: (x,0) 'Neq+ (z,0)'Eq F (z,0) : Neq + Eq
z:(x,0) 'Neq+ (z,0) 'EqF2z=0:B F1:R F—-1:R
z:(x,0)"'Neq + (z,0)"'EqF if 2 =0 then 1 else —1:R

Neq +Eq<R X R

Anticipating the semantics on terms discussed shortly, it can easily be shown

that
[(x,0)""Neq + (2,0)Eq] = ((—00,0) U (0,00)) + {0}
and thus [[p] is the continuous map

1 ife=0
[p] : ((=00,0) U (0,00)) + {0} = R,z —

—1 else

Semantics of well-formed terms. Axioms, weakening, subtyping, product,
projections, let-binding, A-abstraction, function application, injections and
pattern matching are interpreted in the expected way (given that CG is a
Cartesian closed category with coproducts).

Continuous built-in functions, for example +: R X R — R or exp: R — R,
are interpreted in the obvious way. As explained above, discontinuous built-
in functions {<,<,>,> = #} are typed in such a way that their natural

interpretations are tautologically continuous.

70 Chapter 3. Deterministic stream-semantics

We can now describe the semantics of the context-restriction rule. From
the premise, our semantics for the subtyping relation, and the side-conditions,

we have morphisms

[t]: TI[s;] =[], and Id:J][T] — [T].
JjEN iem

By eq. (3.1) we interpret each ‘inverse image type’ t~'(T;) as the pullback
(inverse image) of [t] along the inclusion [T, < [[,.,, [T:] which is, as the
notation implies, simply given by [t] " ([T;]). Since [1;c,, [T:] and [T] share
the same carrier, it is clear that this defines a partition of [I'], and we can
thus retype ¢ as a continuous map [[,.,, [t7'(T:)] = [L;c,, [Ts], interpreting
the rule.

As mentioned earlier in this section, context-restriction prevents -

abstraction; the following example illustrates why this must be the case.

Example 3.1.8. Consider the simple program x < y, with derivation

z:Ry:RF (z,y):RX
(z,9): (2, y) " (<7H0) + (2, y)"H(<T' D) F (y):<"H0) + <71(1)
(z,y) : (2,9) 71 (<7H0)) + (z,y) (<7 (D)) Fa<y:B

The interpretation of x < y is given by the continuous function
[<]: [<" O] + [<" ()] =2

where [<7H0)] = {(z.y) | = > y} and [<7' (V)] = {(z,y) | = < y}, each
equipped with the subspace topology. While it has the same carrier R x R,
the domain of [<] is no longer a product of topological spaces — it is instead
a coproduct of topological spaces. This means that it is no longer possible to
A-abstract over x or y using the Cartesian closed structure of CG.

In order to be able to A-abstract the map < in this way, we would need
a topology on R x R with the property that for any given xo € R the function

rg < — : R — 2 s continuous. This would introduce all of the open sets

3.1. Language 71

[0, 00) to the topology of R, meaning that we must equip R with the notoriously
problematic lower limit topology (a.k.a. the Sorgenfrey line). Whether or not
this 1s a CG-space seems to be a thorny question, possibly independent of ZF

/39].

Finally, we define the denotational semantics of sampler operations using
the coinductive nature of sampler types. Recall that for a type T, [ET] £
v([T] xRt xId). In particular, [Z T comes equipped with a coalgebra structure
map

unfolds : [ET] — [T] x Rt x [E£T] .

Moreover, for any other (continuous) coalgebra structure map v : X — [T] x
R* x X, the terminal nature of [£ T] provides a unique [T] x R* x Id-coalgebra
morphism

beh(y): X = [ET].

Since [ET] is interpreted in CG, it follows automatically that both unfolds
and beh(v) are continuous. However, what is not immediately clear is that

beh is in fact continuous in ~.

Proposition 3.1.9. Let F': CG — CG satisfy the condition of theorem 3.1.6
as well as the condition that int(vF) # 0 in [], F'1, and let behy : [X, FX] —
[X,VF] be the (behaviour) map associating to any F-coalgebra structure on X
the unique coalgebra morphism into the terminal coalgebra. The map behy is

continuous, i.e. is a CG-morphism.

Proof of Proposition 3.1.9.

Let f, — f be a convergent sequence a coalgebra maps in [X, F X]; we need
to show that behx (f,,) — behx(f) in [X,vF]. The topology on [X, vF] is the
compact-open topology, which means that it is generated by the subbase of

open sets of the shape

(K,U)={h: X — vF | h[K] C U}

72 Chapter 3. Deterministic stream-semantics

for some fixed compact set K C X and open set U C vF. Moreover, by
construction of vF' (see theorem 3.1.6), we know that the topology is induced
by the product topology on [[; F*1. A base for this topology is given by
intersections of cylinder sets with vF. Because we are also assuming that
int(vF) # 0 in [], F'1, it contains such an open set, and we can thus simply
start with an open neighbourhood of behy f of the shape (K,][; Vi) where
for all but finitely many indices V; = F'1, and for the other indices V; is an
open subset of F1 (and we don’t have to worry about intersecting with v F).

Given such an open set, we need to find N € N such that for all n > N
behx (fa) € (K, I, V).

By the construction of theorem 3.1.6 we have that

behx ()(2) = (1x (@), Flx (f(2)), P (FF(F())),..)

where !y : X — 1 is the unique morphism to the terminal object. For each
of the finitely many non-trivial open subsets V;, C F*1,1 < k < M, because
fn — f and composition with continuous functions is a continuous operation
on internal hom sets in CG ([36, 5.9]), it follows that there exists Ny such that

for every n > N
F*ly o F* 1f o.. . of, € (K, V)
By taking N = maxj<x<y N, we get that for for all i € N and all n > N
Filx o F'" f 0. .0 f, € (K, V)

In other words, for any n > N, behx(f,) € (K,[], Vi), which concludes the
proof. O]

Using unfold and beh we define the denotational semantics of all the sam-

pler operations in fig. 3.4. These definitions are precisely the infinite (coin-

3.1. Language 73

ductive) versions of the finitary transformations defined in the operational
semantics of fig. 3.3. All the maps involved in these definitions are continuous;
this follows from Proposition 3.1.9 and the fact that evaluation and function
composition are continuous operations on the internal homsets of CG (|36,

5.2,5.9]).

[CHt:2T] = f [CFt:2T] = f [CHt:2T] = f
[T hd(¢) : T] = 71 o unfoldr o f HF F wt(t) :R+]] = 7o o unfoldr o f [T t1(¢t) : =T] = 73 o unfoldr o f

[CEs:NJ=f [CHt:ZT]=g
[Tk thin(s,t) : Z(T)] = ever,er o (idgt X behgt) 0 (idgT X (unfoldT o(mg o unfoldT)<' *1>)) o{f,g)

[TEs:z8]=f [CHt:ET]=g
[TFs®t:2(8XxT)] =behgszr(m1 X ma X (72 - 75) X w3 X 76 o unfolds X unfoldr) o (f, g)

MEs:8s—=Tl=f [CkFs:E28]=yg
IIF = map(s,t) : ZTH = €evVgs,zT O (idzs X bChzs) o (idzs X ((— X idR+ X idzs) [¢] unfolds)) o <f, g)

[T+s:T=R]=f [[Ft:ZT] =g
[[F [reweight(s,t)]] = evzT,zT O (id):T X beh):T) o (idz'r X ((idT X — X id):T) o unfold-r)) o <f7 g)

Crs:To>Tl=f [TFt:Tl=g
[T+ prog(s,t) : £T] = evr,zt o (idr X behr) o (idr x (idr x 1 x —)) o (f, g)

Figure 3.4: Denotational semantics of sampler operations

Adequacy

Our language prominently features an interesting asymmetry: its denotational
semantics is written in terms of the coinductive sampler type [ZT], while
its operational semantics is written in terms of finitary operations on finite
sequences of samples. More specifically, the operational semantics is given
in terms of reductions to the wvalues defined by fig. 3.1c, and values with no
free variables cannot be of sampler type. To establish a connection between
the two, we begin by defining a generic way to convert terms of arbitrary
type (including sampler type) into values, which are not samplers, mirroring

the rules of the operational semantics. Given a type T and an integer N we

74 Chapter 3. Deterministic stream-semantics

inductively define its associated value type val” (T) € Value by

val™(G) = G,
valV(ZT) = (ValNT)N :

valV (S x T) = val™(S) * val™(T), * € {x,+,—}

where G € Ground. Since we're only interested in closed samplers here, and
pullback types can only occur in a context, we need not define val™ on pullback
types.

We now define the generalised projection maps pY : [T] — [[V&lN (T)]]

recursively via

Py = idq, pir =y *p¥, x € {x,+}

Py = ids1g Pyt = TN O (p'Jl'\;R‘*')

The reader will have noticed that we have defined pY ., trivially. The reason
is that, as a quick examination of the rules of fig. 3.3 will reveal, there is
no conclusion and no premise of the type (¢, N) — v where ¢ is of function
type. The only occurrence of terms of function types are within a function

evaluation, or are values, i.e. terms trivially reducing to themselves.

Theorem 3.1.10. For any program =t : T, we have
(t,N) = v e pr ([1]) = [v].

Proof of Theorem 3.1.10.
<) By induction on the derivation tree of (¢, N) — v.

Base case. The base case is trivial: the only derivation of length 0
allowed by fig. 3.3 assumes that t = v is a value. It is easy to check that if
t:Tis a value, then py = idpy and thus pY ([t]) = [¢] = [v] tautologically.

Inductive case. Assume that the last rule of the derivation of (¢, N) — v

1s:

3.1. Language 75

(i) Built-in function. t = f(sy,...,s,) : G for some s; : G;, 1 < i < n. This
means that the prior rules of the derivation were (s;, N) — v; for each
i, and by our inductive hypothesis, py ([s;]) = [v;]. Since for a ground
type G we have pY = idf¢), we immediately get

pe ([f(s1,- s 52)]) = [f] (e ([sa]). - - e, ([sa])

= [f1 ([wi], - -, [wa]) induction hypothesis

(ii) Case. t = case (¢, t') of {(i,2;) = $;},.,- If ¢ chooses the branch j € n,

en’

then p¥ ([s;] ([¢'])) = [v] by our inductive hypothesis, and

pr ([case () of {(i,2:) = sitic,]) = pr' ([s5] ([¢]))

= [v] induction hypothesis

(iii) A-abstraction. t = (Az : S. t’)(s) : T for some s : S and some t' : T

pr ([T)(s)]) £ pN oevispr) ([Az : T] x [s])

Y o evg) ([[X [[s]]> Currying [¢']
= pr oevgyr ([H] x [s]) [t'] has only one variable
=pr ([£1([s])
= [v] induction hypothesis

(iv) let-binding. t =let x =sint : T for some s:Sand ¢ : T

pr ([tet @ =s int]) £ pr ([t'] ([s]))
=pr ([Ae.] ([s])

= [v] induction hypothesis

76 Chapter 3. Deterministic stream-semantics

(v) Product. t = (s,s') for some s: 8, : 8.

Psies ([(s,8)]) = psies ((Is], [T))
= o ([)],P5([s])) inductive definition of p2’

= ([v1], [v])) induction hypothesis

= [(v1,v2)]

(vi) Projections. t = fst(s,s’) for some s: 3,5 : &'

ps ([£st(s,s)]) = ps' (m({[s], []))
= ps ([s])

= [v1] induction hypothesis

and similarly for snd.

(vii) Pushforward. ¢t = map(s,t) for some s : S — T and ¢ : £S. To keep

the derivation readable we will write s instead of [s], ¢ instead of [¢],

and we also introduce the following notation. Let F' denote the functor

[T] x R* x1d, let v : vF — FvF denote the terminal coalgebra structure

map unfoldr, let § = [s] x idg+ x idgs o unfolds, the coalgebra structure

map defining the map operation, let b = beh(d), and let

h £ 7, o unfoldg, i.e. h(t) is the first sample of ¢
w = myounfoldg, i.e. w(t) is the weight of the first sample of ¢

f £ 73 o unfolds, i.e. f(t) is the tail of ¢.

3.1. Language 77

With this we can now derive

o F'miny—1070 (b(1))
o N7l o FN"2y0 ... 0 FOy(b(t))

)
)
)
Q)Y o FN Um0 FN"1ho FN"25 0 o FO5(t)
)" o F¥ 7l o PN ((s(h(t)), w(t), - (s(h(fY 1)), w(FY7H0)), A1)
)" o ((s(h(), w(t)), .., (s(R(FY 1)), w(FY (D))
s(h(t))), w(t)), -, Preas (s(R(FY 1)), w(¥ 7H(2))))

(
= ((pr' (s(h(t))), w(®)), ..., (p2 (s(h(FV 1)), w(F¥7 (1))
[

where (1) is the simple observation that 7.y o (pY)* = (p¥)Nom.n, (2) is
by definition of v, (3) is by iteration of (2), (4) follows from the fact that
b is a coalgebra morphism, (5) is by definition of 4, (6) is by definition of
F, b and pi, and (7) is by the induction hypothesis on the N premises of

the rule.

(viii) Reweight. The proof is very similar to the case of map. Again, writing

5 & idry x (—-—) x idgr o <id[[T]]? [s]) x idg+ x idgry 0y

78 Chapter 3. Deterministic stream-semantics

for the coalgebra structure defining reweight and b = beh(d), we get

per(reveight(s,t))

Lm0 (pfxﬁ)“ (reveight(s, t))

2 <p;VXR+)N o1 0 b(t)

D (0)™ 0 P 0 PN (((0), sCR()w(®), - (RGN0, s T Rl), Y)
@ (@ (@), sth@)yw(e), .-, e BN 1), s w1 0)))

D (1], [wn]), -, (low], [wnD)

where (1) follows the same derivation as in the case of map but with the
definition of ¢ as above, (2) is by definition of " and pY .., and (3) is by
the the induction hypothesis applied to the N premises of the reweight

rule.

(ix) Product of samplers. The proof works in exactly the same way as for

map and reweight.
(x) Thin. The proof works in exactly the same way as for map and reweight.

(xi) Pseudorandom number generators. Consider the term prng(s,t) :

LT. Using
6 £ (idpry, 1, [s])

and b = beh(d), the same steps as in the case of map and reweight yield

Pra+) ([prog(s, £)])

péVT([[prng(s,t)]]) £ TN o
N o) o FNlr o PNTW((#,1), (s(t), 1), ..., (sV (1), 1), sV (1))

(

= (prear)” ©

= ((pr' (1), 1), (o1 (s(1)), 1), .., (o7 (s" (1)), 1))
= [(v1,1), (v2,1),..., (v, 1))]

(xii) Head. Consider the term hd(¢) for some ¢ : LT. Using the same notation

3.1. Language 79

as above,

py o [hd(t)] £ p¥ om0 y([t])
—romo () o Ml

=m omy [(v1,w1), ..., (vy,wyn)] induction hypothesis

= [vi]

(xiii) Weight. Consider the term wt(t) for some ¢ : £T. The proof is the same

as the above:

py o [wt(t)] £ pt om0 y([t])
N
=T20Tm O (pévxw) o m.n([t])
=myom [(v1,w),...,(vy,wn)] induction hypothesis

= [wi]

(xiv) Tail. Consider the term t1(¢) f for some ¢ : LT. It is immediate that

phr o [£1(D)] 2 (P)" © mrn(my 0 ([t]))
= ()" 0 T ([t])

N+1
= T2:N+41© (PTXE+) o T ([t])

= mo.n+1 [(v1,w1), ..., (Uny+1, wN4+1)] induction hypothesis

= [[(UQv w2)7 R (UN-H? wN-H)]]

=) By induction on the typing-proof of ¢. Note that for any term ¢ : T, p¥ [¢]
is necessarily a value, by definition of p¥.

Base case. The only programs which are type-checkable in 0 steps are
the constants. Since all constants are values and values operationally evaluate
to themselves, the base case holds trivially.

Inductive case. The proof is routine and we only show a few cases.

80 Chapter 3. Deterministic stream-semantics

Suppose that the last step of the rule applied in the type-checking of ¢ was

(i) Product. Suppose & (s,t) : S x T and that pY .([(s,t)]) = [v] for some
value v. Since the last applied rule had premises - s : S and F ¢ : T we

have

[v] = psler([s @ 1])

= p& x p¥{([s], [t]) inductive definition of p&, .
= (ps [s].pr [t])

= ([oa], [va])

for some values vy,v5. By the induction hypothesis it is therefore the
case that (s, N) — vy and (¢, N) — vy for any N € N and it follows that

(s ®t, N) — (v1,v2) by definition of the reduction relation —.

(ii) A-abstraction. If - Az : 8. t:S — T, then the term Az : S. ¢ is a value,
and thus (Az : S. ¢, N) — Az : S. ¢ trivially.

(iii) Head. Suppose that - hd(¢) : T, and that p¥ ([hd(¢)]) = [v1] for some
value v;. Since the last applied rule has the premise - ¢ : LT, and given
the semantics of hd, it must be the case that for any N > 1, (p%VXW)N o
m.n(t) = [((v1,w1), ..., (vn,wy))] for some values v;, w;. By the induc-
tion hypothesis it must be the case that (¢, N) — ((vy, w1),. .., (vx,wy)),
and thus that (hd(t), N) — v;.

(iv) Weight. The proof is the same as that for hd. Suppose that - wt(¢) : T,
and that pY ([wt(¢)]) = [w:] for some weight w; > 0. Since the last
applied rule has the premise - ¢ : LT, and given the semantics of
wt, it must be the case that for any N > 1, (p{,vxw)N o m.n(t) =
[((v1,wy),...,(vN,wy))] for some values v;,w;. By the induction hy-
pothesis it must be the case that (¢, N) — ((v1,w1),..., (vy,wy)), and
thus that (wt(t), N) — w;.

3.2. Sampler equivalence 81

(v) Pushforward. Suppose that - map(¢,s) : T and that pX,([map(t, s)]) =
[((v1,w1), ..., (vn, w,)]. The premises of the last applied rule must have
been F s : £S and F t : S— T, and it follows from the semantics of
map that [v;] = pf [t(hd(t17(s)))]) and [w;] = [wt(t171(s))]. It fol-
lows from the induction hypothesis that (¢(hd(t1°*(s)), N) — v; and
(wt(t171(s)), N) — w;, and thus by the definition of — we have that

(map(t,s), N) — ((v1,w1), ..., (Vn, wy).

3.2 Sampler equivalence

In order to implement a system for reasoning about whether a deterministic
sampler targets a particular probability distribution, it is necessary to first
define a notion of equivalence between samplers, and methods for proving that
equivalence. Having such a system gives a natural path towards verifying a
sampler: first rewrite a given sampler s in an equivalent but simpler form,
and then prove that this simplified form targets the correct distribution. In
this section, we introduce a relation ~ on programs which justifies this type

of reasoning.

Definition 3.2.1. We say that two programs I' = s : T and I' =t : T are
equivalent, notation I' = s &~ t : T, if they are related by the smallest congruence

relation on well-typed terms containing the rules of fig. 3.5.2

The rules of fig. 3.5 employ a number of shorthand conventions for a
more concise presentation. We introduce identity functions idg £ Az : S. x :

S — S, constant functions 1 = Az : S. 1:8 — R*, function composition ¢ o

2By congruence relation, we mean that ~ is an equivalence relation which is also preserved
by all operations in our language. For example, if ' - s & ¢t : LT holds, then ' - t1(s) =
t1(t) : £T must hold as well, and the same for all operations in the language; we omit these
rules for brevity. We have also omitted as trivial the evaluation of built-in functions on
ground types, e.g. rules such as ' - 3+ 6 ~ 9 : R, as well as casts on ground types, e.g.
cast(R x R)(3,6) ~ (3,6) : R x R, where the first (3, 6) is of a ground-truth subtype of R X R,
e.g., <71 (0)+ <71 (D).

82 Chapter 3. Deterministic stream-semantics

s 2 M\x :S. t(s(x)) : S— U where s : S —T,t : T — U, compositions f* =
idg: S — 8, f* £ fo f*! for any n € N, pointwise products s -t = Az : S,y :
T. s(x) xt(y) : S X T — RT of real-valued functions s : S — R*,¢: T — RT, and
finally Cartesian products s x t 2 Az : S,y : T. (s(x),t(y)) : S x T — &' x T of

functions s : S — 8t : T — T

Theorem 3.2.2. The rules of fig. 3.5 are sound: if ' s =~ t : T, then
[TFs:T]=[CFt:T].

Proof of Theorem 3.2.2.

Standard rules:

1. 8- and n-equivalence.

[T (A\x:St)(s):T]=[TFtlx:=s|:T],

[ITFAx:8t(zx):S—=>T]=[Ft:3—=T]

The soundness of - and n-equivalence is well-known and immediate from

the properties of exponential objects.
2. let-reduction.
[[s:Skletx=sint: T =[I',s: Sk (Az:S.t)(s) : T]
True by definition of the denotational semantics of let.

3. Projections.

[T+ fst((s,t)) : 8] =[T'F s:8],
[Tt snd((s,t)) :T]=[CFt:T]

Immediate from the properties of Cartesian products.

3.2. Sampler equivalence

83

'F(A\z:St)(s)=tlx:=s]:T
PHXx:Sit(x)=t:8—T
F'Fletz=sint~ (Ax:8.t)(s): T
Ik fst((s,t))=s:8
'k snd((s,t)) ~t:T
I'F case inj (t) of {(i,z;) = s}
{T + op(case t of {(i,z;) = Si}ien) =

ien X Sjlrj =1 T

(a) Equivalence rules for general programming constructs

I+ hd(thin(n,t)) ~hd(t) : T I+ wt(thin(n,t)) ~ wt(t) : R+
I' Fhd(s ® t) =~ (hd(s),hd(t)) : S X FFwt(s®t) ~wt(s) «xwt(t) : R
I'F hd(reweight(f,t)) ~hd(t): T T wt(reweight(f,t)) ~ s(hd(t))*wt(¢): R
I+ bd(map(f,) ~ f(ha(t)) : T CF tlamp(.0))
'+ hd(prng(f,t)) ~t:T '+ wt(prong(f,t)) ~ 1:

{T' F t1(thin(n,t)) ~ thin(n,t1™(¢)) : LT | n € N}
THtl(s®t) ~ tl(s) @ t1(t) : (S x T)
'+ tl(reweight(f,t)) ~ reweight(f,t1(¢)): LT
It tl(map(f,t)) ~ map(f,t1(¢)): LT
't t1(prng(f,t)) ~ prng(f, f(t)) : LT

(b) Equivalence rules for hd, wt, t1

'k thin(n,s ®t) ~ thin(n, s) @ thin(n,t) : L (S x T)
I'F s ® reweight(g,t) = reweight(1ls-g,s®1t) : L(S X T)
'k reveight(f,s) ® t ~ reweight(f - 17,s®t): Z(S X T)

't s®@map(f,t) ~map(ids x f,s®t) :L(SxT)
'+ map(f,s) ®t ~map(f X idr,s®¢t) : Z(S X T)
I prog(f,a) ® prng(g,b) = prog(f % g,(a,b)) : L(S x T)
(c) Equivalence rules for ®
I' F thin(n,thin(m,t)) =~ thin(n x m,t) ~ LT
It thin(n, reweight(f,t)) ~ reweight(f, thin(n, t)) LT

4
) =
I'F thin(n,map(f,t)) ~ map(f, thin(n,t)) : £
{T' thin(n,prng(f,t)) ~ prog(f™,t) : LT |n € N}

(d) Equivalence rules for thin

I't reweight(g, reweight(f,t)) ~ reweight(f -g,t) : LT
I' - map(g,map(f,t)) ~map(go f,t) : LT
'k reweight(g,map(f,t)) ~ map(f,reweight(go f,t)) : LT

(e) Equivalence rules for map, reweight

case ¢ of {(i,x;) = op(si)}ien : T | op € {fst, snd, hd, wt, .

1

Figure 3.5: Rules for sampler equivalence

84 Chapter 3. Deterministic stream-semantics

4. Pattern matching.

T) = [T F sjlz; =1¢] : T]

en

[T+ case in; (t) of {(i,z;) = s;}

Immediate from the denotational semantics of case and injections.

Congruence rules: Trivial in the denotational setting: if [I'F s:8] =
[I't &' : 8] have identical semantics, then clearly, for any built-in operation
op: S —= T, [TFop(s):T] = [['F op(s): T]; the same extends to n-ary

operations.

Coinductive definitions: These rules all follow immediately from the coin-
ductive definitions of our sampler operations, and will be used heavily in the
proofs that follow.

1. Map.

[T+ hd(map(s,t)) : T] = [T F s(hd(t)) : T],
[[F F wt(map(s,t)) : Rﬂ] = [[F F s(wt(t)) : R*]] ,

[I'F tl(map(s,t)) : ZT] = [I' - map(tl(?)) : ZT]

Immediate from the coinductive definition of map.

2. Product.

[I'+ (hd(s),hd(t)) : Sx T =[I'Fhd(s®1t):S x T],
[T Fwt(s) «wt(t) :RT] = [T Fwt(s®t) :RT],

[THt1(s)®@t1l(t) :Z(8XxT)=[TFtl(s®t):Z(SxT)]

Immediate from the coinductive definition of ®.

3.2. Sampler equivalence 85

3. Thinning.

[T+ hd(thin(n,t)) : T] = [F hd(¢) : T],
[T b wt(thin(n,t)) : RY] = [T Fwt(t) : RT],
Vn € N, [I' F t1(thin(n,t)) : LT] = [[' F thin(n, t1"(t)) : ZT],
[I't thin(1,¢) :ET] = [['F¢:ZT]
Immediate from the coinductive definition of thin.
4. Pseudorandom number generators.
[T+ hd(prng(s,t)) : T = [F¢:T],
[T+ wt(prng(s,t)) : R*] = [T+ 1:R],
[T+ t1(prng(s,t)) : LT] = [I' F prog(s, s(t)) : £T]
Immediate from the coinductive definition of prng.
5. Reweighting.
[I' - hd(reweight(s,t)) : T] = [I' - hd(¢) : T],
[I F wt(reweight(s,t)) : R*] = [I'F s(hd(t)) * wt(t) : RY],
[T+ tl(reweight(s,t)) : LT] = [[' F reweight(s,t1(t)) : ZT]
Immediate from the coinductive definition of reweight.

Composition rules:

1. Thinning over thinning.
[T+ thin(n, thin(m,t)) : ZT] = [F thin(n xm,t) : LT]

For any possible value of the context v € [I'], we show equal-

ity between the elements [I'F thin(n,thin(m,t)):ZT](y) and

86

Chapter 3. Deterministic stream-semantics

[I'F thin(n *m,t) : ZT] (y) of [ET] coinductively. As all of the ar-
guments we will make have precisely the same structure, we will only
give that structure in full detail for this proof; for the rest, we will only

present the bisimulation which gives our result.

We show this result by constructing, for each context 7, a bisimulation

R(v) C[ET] X [ET]. This is a set of samplers satisfying three properties:

(a) V(s,t) € R(7),m (unfoldr(s)) = m(unfoldr(t)); that is, the head of

s and the head of ¢ are the same

(b) ¥(s,t) € R(y),me(unfoldr(s)) = my(unfoldr(?)); that is, the first
weight of s and the first weight of ¢ are the same

(c) Y(s,t) € R(7), (ms(unfoldz(s)), m3(unfoldr(t))) € R(y); that is, ap-
plying t1 to two samplers in the bisimulation yields two more sam-

plers in the bisimulation.

The structure of this bisimulation R(7) is typically found by applying t1
to both sides of the equivalence we wish to show, and then applying the
rules we have previously shown (typically, the coinductive definitions of
each operation, in this case thin) to simplify what results. For example,

in this case, we can simplify

[T+ t1(thin(n, thin(m,t))) : LT] = [I' F thin(n, thin(m,t1™"(t))) : LT]

and

[I'F t1l(thin(n*m,t)) : LT] = [[' F thin(n * m, t1™"™(¢)) : £T] .

3.2. Sampler equivalence 87

This suggests as a bisimulation the following relation:

[(C F thin(n, thin(m, t1%(t))) : £T] (v),
[T thin(n +m,t1%(t)) : £T)] (v)

) | k€ N}

In future, as this expression is quite crowded, we will drop the dependence

on .

We must now show that this is a valid bisimulation. First, we must
show that applying hd and wt to each of these programs yields the same
result, which is always immediate. In this case, applying the rule we had

previously referred to as the coinductive definition of thin gives

[T F hd(thin(n, thin(m, t1%(t)))) : T| = [[F hd(thin(m, t1%(?))) : T]

= [T Fhd(t1%(t)) : T]
and
[T hd(thin(n * m, t1%(¢))) : T| = [I' F hd(t1*(¢)) : T] ;
The same argument exactly applies for wt:

[T - wt(thin(n, thin(m, t1%(¢)))) : R"] = [[F wt(thin(m, t1%(¢))) : R]

= [Fwt(t1"(t)) : RY]
and
[T F wt(thin(n * m, £1%(t))) : RT] = [Fwt(t1%(¢)) : RT].

Finally, we must show that applying tl to each of these expressions

Chapter 3. Deterministic stream-semantics

yields another element of the bisimulation. This is essentially the same
argument as the one which led us to the bisimulation R, and follows from

the coinductive definition of thin as above:

[T+ t1(thin(n, thin(m,t1%(t)))) : ZT]
= [T F thin(n, t1"(thin(m, £1%(t)))) : £T]

= [T F thin(n, thin(m, t1™"**(¢))) : £T]
and
[T F t1l(thin(n * m, £1%(t))) : LT] = [I F thin(n*m, t1™7*(t)) 1 £T]

Therefore, for any ~, applying t1 will yield another element of our bisim-
ulation, and so our proof is complete. Using this proof as a reference, we
will abbreviate the remainder of the bisimulation proofs in the Appendix,

as the structure of each argument is identical.

. Map over map.
[+ map(g,map(f,)) : LT[= [[' - map(g o f,t) : L]
Applying the coinductive definition of map, we can easily see

[T+ tl(map(g,map(f,t))) : LT] = [[' F map(g, map(f,t1(¢))) : L T]

and
[T+ tl(map(go f,t)) : ZT] = [I' - map(go f,t1(t)) : TT];
which suggests the bisimulation

R = {([I" - map(g,map(f,t1"(¢))) : £T], [- map(g o f,t1"(t)) : LT]) | n € N},

3.2. Sampler equivalence 89

This bisimulation is easily verified: simply apply hd to both sides and
reduce by applying the coinductive definition of map and we will see that
we obtain two equal expressions; apply wt to both sides and reduce by
applying the coinductive definition of map, and two equal expressions
will result; and finally apply t1 to both sides and reduce by applying the
coinductive definition of map, and we will see that the resulting pair is

also included within this bisimulation.

3. Reweighting over reweighting.

[I' - reweight(g, reweight(f,t)) : LT] = [I" I reweight(f - g,t) : LT]

Applying t1 to both sides and using the previous rule relating t1 and

reweight, we easily obtain

[T+ tl(reweight(g,reweight(f,t))) : ZT] = [reweight(g, reweight(f,t1(¢))) : ZT],

[Tk tl(reweight(g- f,t)) : LT] = [I' F reweight(g - f,t1(¢)) : ZT].
Equivalence then follows from the bisimulation

R = {([T" - reweight(g, reweight(f,t1™(¢))) : £T], [T’ I reweight(g - f,t1™(¢)) : £T]) | m € N}

which is easily verified, giving our desired equality.

4. Reweighting over map.

[T reweight(g,map(f,t)) : LT] = [[' F map(f, reweight(go f,t)) : LT]

Identical to the previous proof, replacing the inner map with reweight

and making the analogous changes.

5. Thinning over pseudorandom number generators.

Vn € N, [I" F thin(n, prog(s,t)) : LT] = [I" F prog(s",t) : £T]

90

Chapter 3. Deterministic stream-semantics

Applying t1 to both sides of each expression and simplifying using the

coinductive definitions of thin and prng, we obtain

[l t1(thin(n,map(s,t))) : LT] = [[' F thin(n,map(s,t1"(¢))) : L T]

and

[l tl(map(s,thin(n,t))) : LT] = [[' F map(s, thin(n,t1"(t))) : LT].

This suggests the choice of bisimulation

{([T F thin(n,map(s,t1™(t))) : LT], [T - map(s, thin(n,t1™(t))) : £T)]) | m € N}

which is easily verified and gives our result.

. Thinning over map.

[T F thin(n,map(s,t)) : ZT] = [T F map(s, thin(n,t)) : LT]

Using the coinductive definitions of map and thin, we obtain

[T+ t1(thin(n,map(s,t)) : ZT] = [[" F thin(n,map(s,t1"(t))) : ZT]

and

[l + tl(map(s,thin(n,t))) : LT] = [[' F map(s, thin(n,t1"(t))) : LT].

The desired result follows from

{([T" F thin(n,map(s,t1™(t))) : LT], [- map(s, thin(n,t1™(t))) : LT]) | m € N}

which is easily seen to be a valid bisimulation.

Product rules:

3.2. Sampler equivalence 91

1. Thinning.

[Tk thin(n,s) ® thin(n,t) : (S x T)] = [[' F thin(n,s®1¢) : Z(S X T)]

Use the coinductive definition of thin to show

[I' - t1(thin(n,s) ® thin(n,t)) : £(S x T)] = [[' - thin(n, t1"(s)) ® thin(n,t1"(¢)) : |

and

[I'F tl(thin(n,s®1t)) : (S x T)] = [[' F thin(n,t1"(s) @ t1"(¢)) : £(S x T)],

which suggests

R = {([I" F thin(n,t1™(s)) ® thin(n, t1™(t)) : (S x T)],

[I'F thin(n,t1™(s®1t)) : (S x T)]) : m € N}

as a bisimulation.

2. Map.

[T Fs®@map(g,t'):Z(SxT)] =[IF map(idg x g,s @) : Z(S x T)]

Applying t1 to each expression yields

[T F+t1(s ®@map(g,t')): Z(Sx T)] = [T F t1(s) ® map(g,t1(t')) : Z(S x T)]

and

[T+ tl(map(ids X g,s @) : (S x T] = [F map(ids X ¢,t1(s) @ t1(¥)) : (S x T)],

92

Chapter 3. Deterministic stream-semantics

suggesting

R ={([I'Ft1™(s) ® map(g, t1™(s")) : L (S x T)],

[T+ map(ids x g,t1™(s),t1™(s))) : Z(S x T)]) | m € N}

as a bisimulation.

[T+ map(f,t) ®s :Z(SxT)] =[IFmap(f xidr,t ®s") : Z(S x T)]

Same proof as previous.

. Reweighting.

[Tk s®reweight(g,t') : Z(8 X T)] = [I' - reweight(ls-g,s®t):Z(S x T)]

Applying t1 to both sides and simplifying using the coinductive definition

of reweight gives

[T'Ft1(s ® reweight(g,t')) : Z(S X T)]

= ['F t1(s) ® reweight(g,t1(t')) : Z(S x T)]

and

[T'F tl(reweight(ls-g,s® 1)) : (S X T)]

= [Tt reweight(1ls- g, t1(s) ® t1(¢')) : Z(S x T)].

Choosing the bisimulation

R ={([T'Ft1™(s) ® reweight(g,t1™(t')) : (S x T)],

[T+ reweight(ls - g,t1™(s) ® t1™(t')) : Z(S x T)]) | m € N},

3.2. Sampler equivalence 93

our result follows.

[T+ reweight(f,t) ® s’ :Z(Sx T)] = [['F reweight(f - 1,8’ ®¢) : Z(S X T)]

Same proof as previous.

4. Pseudorandom number generators.

[T+ prog(f,a) ® prng(g,b) : £(S x T)] = [I' F prog(f x g, (a,b)) : Z(S x T)]

Using the coinductive definition of prng, we quickly obtain

[+ t1(prng(f, a) ® prng(g,b)) : L (S x T)] = [I' - prng(/f, f(a)) @ prng(g, g(b)) : (S x

and

[T F t1(prng(f x g, (a,0))) : £(S x T)] = [T+ prag(f x g, (f x g)(a,b)) : T(S x T)].

suggesting the bisimulation

R ={([I' F prog(f, f"(a)) ® prng(g,g™ (b)) : (S x T)],
[I'Fprog(f x g, (f x 9)™(a,b)) : Z(S x T)]) | m € N}

which gives our desired result.

The soundness of these rules with respect to operational equivalence then
follows from abstraction, though it is also straightforward to show directly.

Recall that an important application of our sampler operations is to pro-
vide a formal definition of the self-product of samplers, given in eq. (3.2). It

is crucial that our equivalence rules should show that this self-product is well-

94 Chapter 3. Deterministic stream-semantics

defined.

Proposition 3.2.3. Forany ' s: LS, m,n € N, the self-product satisfies
[E(s™)" &~ s™ :L(S™).

Proof of Proposition 3.2.3.
Expanding eq. (3.2), for any well-typed sampler I' - s : £S, the nested self-
product (s™)" is defined as

thin(n, thin(m, s®t1(s)®- - -@t1™ (s))®- - -®@t1" }(thin(m, s@t1(s)®- - -@t1™ 1(s)))).

Applying the rule I' - t1(thin(m,t)) ~ thin(m,t1™(t)) : LT from fig. 3.5
on the innermost expressions, it follows that this program is equivalent in the

context I' to

thin(n, thin(m,t1%(s)®- - -®@t1™ (s))®- - -@thin(m, t1™" " (s)®- - -@t1™ 1(s))).

Next, applying the rule I F thin(m, s®t) &~ thin(m, s)®thin(m,t) : L (SxT),

we see that the nested self-product is equivalent to
thin(n, thin(m,t1%(s) ® t1'(s) ® - - - @ 1™ 1(s))).

Applying the rule I' - thin(n, thin(m,t)) ~ thin(mn,t) : LT for composition

of thin yields

thin(mn,t1%(s) ® t1'(s) ® - - - @ t1™ " 1(s)),

and the above is precisely the definition of the self-product s™". O

The equivalence rules in fig. 3.5 are designed to yield an effective procedure
for simplifying samplers to a certain ‘normal form’ — for samplers which do
not feature the operation prng. To see this, consider the remaining sampler

operations, listed in order of priority from highest to lowest:

3.2. Sampler equivalence 95

1. hd,wt, tl
2. thin

3. ®

4. reweight

D. map

Verify that, for each valid combination, fig. 3.5 gives an operation for distribut-
ing a higher-priority sampler operation over a lower-priority one; for example,
fig. 3.5 shows us that we can distribute the higher-priority operation hd over the
lower-priority operation ® using the equivalence rule hd(s®t) = (hd(s), hd(¢)).
We consider hd, wt, t1 to be the same priority.

The only operations in our language which can output samplers are: the
operations given above, prng (which we have excluded from consideration),
function application, case statements, and casts (which are not relevant here,
as our casts only change the topology of each type, not its points). Note that
fig. 3.5 also features a rule for pulling case statements outwards through each
sampler operation. It follows, then, that by applying the rules in fig. 3.5, ev-
ery [-reduced closed sampler not including prng can be rewritten such that
its sampler operations are ordered according to priority (and non-sampler op-

erations, such as case statements, occur last).

Definition 3.2.4 (Sampler normal form). We will say that a sampler-in-
context I' =t : TT s in sampler normal form if it is B-reduced and its

sampler operations occur in priority order.

The reduction of samplers (that don’t include prng) to normal form is
straightforward: simply apply the rules of fig. 3.5 in any valid order until one
cannot be applied. We will see in section 3.3.2 that reduction to normal form
often makes the verification of a sampling technique immediate; as our primary
purpose is verification, we need make no claims regarding unique reduction to

normal form (to which trivial counterexamples are easy to formulate).

96 Chapter 3. Deterministic stream-semantics

We can also show that the self-product distributes over the operations map
and reweight; such operations are useful for representing the self-product of

a composite sampler in a simpler form whose correctness can then be verified.

Proposition 3.2.5. For any mapped sampler I' - map(f,s) : LT and any
n € N, it follows that T + map(f,s)” ~ map(f X ... x f,s") : Z(T");
for a reweighted sampler I' F reweight(f,s) : LS, it follows that T' F
reweight(f,s)” ~ reweight(f-...- f,s") : Z(S").

Proof of Proposition 3.2.5.

e Map: Applying the definition of the self-product eq. (3.2), the syntax
map(f, s)" is shorthand for the sampler

thin(n, map(f, s) ® t1(map(f,s)) @ -+ @ t1""'(map(f, s)))

In a context I' in which this sampler is well-typed, applying the rule
I' F tl(map(f,s)) ~ map(f,tl(s)) : LT shows that the above sampler is

equivalent to

thin(n, map(f,t1%(s)) @ - -- @ map(f, t1"*(s))).

For the purposes of this proof, abbreviate the n-fold Cartesian product
of a program f : S — T as f*" : 8" — T". Applying the rule I'
map(f, s) ®@map(g,t) ~map(f X g, (s,t)) : (S x T), this sampler can also

be written in the equivalent form
thin(n, map(f*™, t1%(s) ® --- @ t1"71(s))).

Finally, applying the rule I' F thin(n,map(f,s)) ~ map(f,thin(n,s)) :
LS yields
map(fxn7 thin(na th(S) Q- ® tln_1<8)>>)

3.2. Sampler equivalence 97

which is, by the definition of the self-product, our desired result

map(f*", s").

Reweight: This proof proceeds the same as the above, but with map
replaced with reweight and the Cartesian product x replaced with the
pointwise product -; nevertheless, we will go through it. Applying the def-
inition of the self-product eq. (3.2), the syntax reweight(f, s)” is short-
hand for

thin(n, reweight(f, s)®tl(reweight(f,s))®---®t1" *(reweight(f, s)))

In a context I' in which this sampler is well-typed, applying the rule
['F tl(reweight(f,s)) ~ reweight(f,t1(s)) : LT shows that the above

sampler is equivalent to
thin(n, reweight(f,t1%(s)) ® - - - ® reweight(f, t1" '(s))).

For the purposes of this proof, abbreviate the n-fold pointwise product
of a program f : S — Ras f” : S — R. Applying the rule I'
reweight(f,s) ® reweight(g,t) ~ reweight(f - g, (s,t)) : Z(S x T), this

sampler can also be written in the equivalent form
thin(n, reweight(f™, t1%(s) ® --- ® t1""1(s))).

Finally, applying the rule I" - thin(n, reweight(f, s)) ~ reweight(f, thin(n,s)) :
LS yields

reweight(f™, thin(n,t1%(s) ® --- ® t1"71(s))))

which is, by the definition of the self-product, our desired result

reweight(f™, s").

98 Chapter 3. Deterministic stream-semantics

3.3 Verification

The fundamental correctness criterion for a sampler is that it should produce
samples which, speaking informally for the moment, behave as if they are
distributed according to the desired target distribution. We refer to this rela-
tionship between a sampler and a probability distribution as targeting, and will
give its formal definition shortly. This section provides and justifies a simple

‘targeting calculus’ to compositionally verify this property.

3.3.1 The empirical transformation

First, we need to formalise what we mean when we say that a sampler s :
LT targets a probability distribution on [T]. We define this relationship in
terms of weak convergence and typicality, as defined in Definition 2.5.1 and
Definition 2.6.6.

Weak convergence is the natural choice for our setting, because under
stronger notions of convergence, such as strong convergence or convergence in
total variation, sequences of discrete measures on continuous spaces will typi-
cally fail to converge to a continuous measure. One might ask about intermedi-
ate notions of convergence, such as that metrised by the Kolmogorov-Smirnov
metric or uniform convergence over certain classes of functions; we view this
as an interesting extension to our work, but one perhaps less suited to the
compositional techniques of program verification.

Asin section 2.5, given a topological space X, let us write PX for the space
of probability measures on the Borel sets of X, equipped with the topology
of weak convergence, i.e. lim, ., pt, = p in PX if for any bounded continuous
map f: X — R, lim, o [f dun, = [f dp.

Note that P defines a functor Top — Top: if f: X — Y is a continuous
map, then P(f) £ f, : PX — PY is the pushforward map. The continuity of
the pushforward follows from the definition of the weak topology: if u, — p in

PX, and if g is any bounded continuous function on Y, then g o f is bounded

3.3. Verification 99

continuous on X and

JLIQO/gd(f*un)ZT}Lrgo/gOfdun=/90fdu=/gd(f*u)-

A note of caution: we do not know if PX is a CG-space when X is, and in
particular we do not know if P can be given a monad structure on CG. These
questions are, however, orthogonal to this work, since P plays no role in our
semantics — its role is purely in verification.

In this section, let 3 : Top — Top be the functor defined as in eq. (3.3),
i.e. the denotation of £. (Technically, for CG spaces X, the topology of XX
might depend on whether this limit is taken in Top or CG, but this will not
matter for our purposes here; we are only interested in the elements of this
set, which are X-valued weighted streams.)

For any such stream o : N — X x R*, we define 6, € PX as

the empirical measure based on the first n (weighted) samples of o. We also
define P, X & PX + 1, where 1 = {1} is the terminal object and + the

coproduct in Top.

Definition 3.3.1. The empirical measure transformation is the Top®™-

collection of maps

ex 12X =P X

defined as
lim &, if it exists
5X(U) — J n—oo
el else

The empirical measure transformation is not a natural transformation, as

the following counterexample shows.

Example 3.3.2. Let 0 € XX be a diwerging unweighted sampler on X, i.e.
ex(o) = L with unit weights, and let ! : X — 1 represent the map to the

100 Chapter 3. Deterministic stream-semantics

terminal object. Then (g1 o X!)(0) = e1((L,1),(L,1),...) = 0., but (P, !o
€X)(0') = PJ_‘(J_) =1.

While the empirical measure transformation is not natural, it is in a cer-
tain sense ‘locally natural’. If a sampler does correspond to a probability
measure via €, this property is preserved by continuous maps.

Proposition 3.3.3. Let 0 € XX be a weighted sampler and f : X — Y be

o —

continuous. If &, converges to a probability measure i, then X f (o), does as

well: (ey o Xf)(0) = (PLfoex)(o) = fup.

Proof of Proposition 3.3.3.
Let g : Y — R be a bounded continuous function. Then go f : X — R is also
bounded continuous, and it follows from the definition of weak convergence

and of € that

lim g dmn = lim go f do, by definition
:/ go fdu since ex (o) = p
X
= / g dfp change of variable
X
Thus ‘mn — fuop weakly, ie. (ey o Xf)(0) = fu(p). O

It is tempting to try to generalise this nice property of continuous maps
to more general maps — for example, measurable maps. The following example

shows that this is not possible.

Example 3.3.4. Let X = [0,1] and 0 = ((x1,wy), (x2,ws),...) € 3[0,1] de-
note any sampler such that ey q1(o) is the Lebesque measure on [0,1]. Now
consider the map f : [0,1] — {0,1} defined by f(z) = 1 if x = x; for some
t and 0 else. This function is the indicator function of a countable, there-
fore closed, set, and so is Borel-measurable. On the one hand we have that

e1013(Xf(0)) = 61 since Xf(0) is a constant stream of ones. On the other,

3.3. Verification 101

we have P (f)(ep1(0)) = ficp(0), the pushforward of the Lebesgue measure
through f. As f only takes a countable set of points to 1, the measure of the set
{1} under this pushforward is zero. Therefore, the property Proposition 3.3.3

does not hold for this sampler o and this function f.

Even for functions with finitely many discontinuities, it is impossible to
extend the class of functions for which Proposition 3.3.3 holds. However, the
semantic framework we adopt allows us to bypass this problem altogether. We

illustrate these two points by revisiting Example 3.1.7.

Example 3.3.5. Consider the sampler s = prog(Ar : R.2/2,1) and the term
p 2 if x = 0 then 1 else — 1 of Example 8.1.7. Assume first that R is
equipped with its standard topology, i.e. that [p] is not continuous at 0. Since
R s a metric space we can use the Portmanteau lemma, Lemma 2.5.3, and
rephrase weak convergence by limiting ourselves to bounded Lipschitz functions.

It is then easy to show that e([s]) = do: letting f : R — R be bounded Lipschitz,

we have
lim /fd[ﬁ] —/fd6 im |1 (L — £(0)
R | 2
< lim |— —| < lim — =0
n—o00 nz:l N n—oco N,

Proposition 3.3.3 now fails on [p], since e([p] o [s]) =e(—1,—1,...) =1 #
P([eD)(e(lsD)) = [pl. (%) = 1.

Let us now equip R with the topology given by type-checking p as described
in Example 3.1.7. This makes [p] bounded and continuous, and we therefore
no longer have €([s]) = do; indeed lim,, [[p] d[[/s\]]n =—1#[p](0) =1. In
fact we now have £([s]) = L, i.e. s is no longer a sampler targeting anything

for this topology, which prevents the failure of Proposition 3.3.3 on [p].

This example also shows that our semantics has provided us with many
more morphisms satisfying Proposition 3.3.3 than would have been the case

had we only considered programs which are continuous w.r.t. the usual topol-

102 Chapter 3. Deterministic stream-semantics

PFs~t:ZT I'Fs:ZT~pu FEs:ES~pu
THt:ZT~p F'Ftl(s):ZS~pu

Fq;l—randi:ZTiwui tel

'Fs:Z8~u I'Hf:8S—T
['map(f,s) : LT~y = ([f] (7))«1(7)
F'Fs:ZS~pu I'Hf:8—RT
'k reweight(f,s) : 28 ~ v — [f] (7)1

o Jys LT () du(y) € (0, 00)

T prog(F.7) 28 — 1 [/] : IS] — [8] ergodic w.r.t. u,x typical

'k prog(f,z) ~pu THR:S—T
't prog(g, h(x)) ~ (v = [A] (7)+p(7))

[9] (V) o [R] () = [A] () o [f] (7)

Figure 3.6: Rules for asymptotic targeting

ogy on the denotation of types. Our semantics allows us to push forward a
sampler s through any piecewise continuous function, except in the narrow
case where this function has a point of discontinuity which is asymptotically

assigned positive mass by s. We illustrate this further in the next example.

Example 3.3.6. Consider the sampler of Example 3.3.5, but now let p =
if x = 2 then 1 else — 1 instead. To make this function continuous, our
semantics adds the open set {2} to the usual topology of R. This does not
interfere with the derivation that £([s]) = do, since we can write [f d[[/s\]]n =
f{2}c f d[[/s\]]n - f{Q} f d[[/s\]]n = f{Q}c f d[[/s\]]n, and similarly for 8. Because the
discontinuity of [p] is not assigned any mass by dy, the topology on R making
[p] continuous no longer prevents e([s])) from converging, and we can therefore

safely push s forward through p using map.

3.3.2 Calculus for asymptotic targeting

Definition 3.3.7. We will say that the sampler ' = s : LS asymptotically
targets, or simply targets, the continuous map p : [I'] — P[S] if,

eggy © [s] = p.

3.3. Verification 103

—

In particular, for ally € [I'], [s] (v),, converges as n — oo; diverging samplers
do not target anything.
We will say that T'+ s : LS is k-equidistributed with respect to p : [I'] — P [S]
if

e o [*] =1
where the self-product s* is defined in eq. (3.2) and p*(y) = u(y)* is the k-fold

product of measures.

The concept of ‘equidistribution’ as discussed above is a generalisation of
a concept of ‘k-equidistribution’ common to the literature on pseudorandom
number generation [40, 41, 42|, which is typically only considered for samplers
without context targeting a discrete uniform distribution.

‘Equidistribution’ as defined above is also highly related to the concept of
weak mixing of dynamical systems, defined in Definition 2.7.10. Concretely,
if a dynamical system is weak mixing, then its sampled trajectories (starting
from typical points, of course) are k-equidistributed for all k; this is simply a
rewording of Proposition 2.7.13.

We introduce in fig. 3.6 a relation ~~» which is sound with respect to
asymptotic targeting: that is, if ' = s : £S ~~ pu, then s is a parametrised
sampler on S which asymptotically targets a parametrised distribution g on
[S].- Here, we use Greek lower case letters u,v to represent (parametrised)
distributions in order to emphasise their role as meta-variables, used only in
the context of the targeting calculus, and not within the language itself. In the

rule for reweight, we write the operation of reweighting a measure p on X by

_ Ja (@) du(x)
T [x f@)du(@)’

that the integral in the denominator is finite and nonzero.

f : X — Ry as the renormalised product (f - u)(A) assuming

The primary purpose of the rules of fig. 3.6 is to verify the sampling
techniques discussed in the introduction to this chapter. For example, our rule
for reweight is simply a statement that importance sampling is valid. Recall
that importance sampling inputs samples from a proposal distribution (), and

produces weighted samples which target a desired probability distribution P by

104 Chapter 3. Deterministic stream-semantics

ar
dQ’

which we assume exists. Our rule for reweight simply reverses this argument,

reweighting these proposal samples proportionally according to the density

observing that a nonnegative f is a valid density as long as it has positive,
finite integral under). Similarly, the validity of inverse-transform sampling,
also discussed in the introduction, follows trivially from our map rule. We will
shortly see examples of more complex sampling techniques that will require
the application of several of our rules.

Note that while our targeting calculus is sound (see theorem 3.3.10) but
not complete. See Remark 3.3.11 for a discussion of why the natural notion of

completeness does not hold in this setting.

Example 3.3.8 (Von Neumann extractor). Verifying the simple von Neumann
extractor, introduced in [1], will serve as a useful illustration of the techniques
we advocate. Let Ber(p) represent the Bernoulli distribution with parameter p,
i.e. the Boolean-valued distribution with probability p of a true outcome, and
probability 1 — p of a false one. Assume access to a closed sampler £lip of
Boolean type such that the self-product £1ip? targets Ber(p)? forp € (0,1); that
18, £1ip produces the sample True with asymptotic frequency p and False with
asymptotic frequency 1 — p, and £lip is 2-equidistributed. The von Neumann
extractor, which we will denote here v : LB, is then the sampler given in

listing 3.1.

let accept = A(x, y) : Z(BxB) . 1 if x#y else O
in let proj = A(x, y) : E(BxB) . x in
map (proj, reweight (accept, flip?))
: LB

Listing 3.1: Von Neumann extractor

As this sampler (after standard let-reduction) is written in the sampler
normal form of Definition 3.2.4, its verification is a straightforward mathemat-
ical exercise. Figure 3.7 shows this procedure, applying first the reweight and
then the map rules of fig. 3.6. All that remains to show after fig. 3.7 is that the

measure [proj], ([accept] - Ber(p)?) obtained as our conclusion is identical

3.3. Verification 105

F £1ip?: Z (B x B) ~ Ber(p)? F accept:B xB —R"
- reweight(accept,f1ip?) : L (B x B) ~~ [accept] - Ber(p)> F proj:BxB—B

- map(proj, reweight(accept, flip?)) : LB ~~ [proj], ([accept] - Ber(p)?)
Figure 3.7: Validity of the von Neumann extractor

to Ber(1/2), i.e. the standard demonstration of the validity of the von Neu-
mann extractor. This follows simply from the fact that accept assigns positive
probability only to adjacent samples (z,y) € B* which differ, and the samples
(False, True) and (True,False) occur with equal probability of p(1 — p).

Many of the rules of fig. 3.6 illustrate methods of transforming samplers
targeting one distribution into samplers targeting another distribution using
different built-in operations; we include only two rules for constructing new
samplers from scratch. First, we allow a set of ‘axioms’ for built-in samplers
rand;, each targeting distributions u; € P [T;]. In some settings, it may be de-
fensible to assume access to ‘truly random’ samplers — consider ‘true’ quantum
random numbers, for instance. Second, fig. 3.6 incorporates a rule for build-
ing samplers from scratch as pseudo-random number generators defined by a
deterministic endomap f : T — T and an initial value ¢ : T via prng(f,t) : ZT.
Applying this rule requires showing that the chosen initial point of the sam-
pler generates a p-typical sequence; see theorem 2.7.5. Note that the side
condition on typicality of x can be demonstrated by appealing to unique er-
godicity as in Proposition 2.7.6. Note also that, applying Proposition 2.7.13
and prng(f, z)* ~ prog(f* x ... x f* (z, f(z),..., fF¥"1(x))) (immediate from
the definition of the sampler self-product and fig. 3.5), we see that in the event
that the dynamical system denoted by prng(f,t) is weak mizing as opposed
to merely ergodic, we can further conclude that I' = prog(f,z)* : TS* ~~ uf
forall kK > 1.

The reader might wonder why fig. 3.6 does not have a rule for transforming
samplers using the thin operation: after all, if o is a sampler targeting a

distribution p, then only keeping only every n samples seems like it should

106 Chapter 3. Deterministic stream-semantics

produce a good sampler as well. Whilst this rule does hold for samplers which
are produced by weak mixing dynamical systems, it is in not in general sound,

as the following simple counterexample shows.

Example 3.3.9. Consider the sampler on {0,1} defined by the program
prog(Ax : R.1 — x,0). This sampler, which generates the unweighted samples
(0,1,0,1,...), targets the uniform Bernoulli distribution; however, applying

thin(2, —) to it yields a sampler which targets the Dirac measure dy.

This example highlights the fact that samplers can be manifestly non-
random, and yet from the perspective of inference — that is to say, from the
perspective of the topology of weak convergence — target bona fide probability

distributions.?

Theorem 3.3.10. Targeting ~ is sound: if 'k s : LS ~ p, then efgpo [s] =
I

Proof of Theorem 3.3.10.

By induction on the derivation.

(i) Built-in samplers. These axioms — the base case — are true by assump-

tion.

(ii) Equivalence. The fact that equivalent terms target the same measure is

a simple consequence of the definition of targeting and of theorem 3.2.2.

(iii) Tail. The fact that the tail of a sampler o targets the same measure as o

is a simple consequence of the definition of targeting in terms of a limit.

(iv) Pushforward. A direct consequence of Proposition 3.3.3. Note, again,
that [S],[7] may have finer topologies than the standard choices. As

a result, the premise of the pushforward rule, that €[s] () = wu(v), is

3This is well-known in the literature on Monte Carlo methods; in fact, certain deter-
ministic sequences can obtain faster, deterministic, convergence bounds than i.i.d. random
sampling. Many such sequences are studied under the name quasi-Monte Carlo methods
[43, 44] (about which we’ll say no more here).

3.3. Verification 107

stronger than it would otherwise be, as the class of continuous test func-
tions g : [S] — R has been expanded — also expanding the set of con-
tinuous functions [f] : [S] — [T]. For example, if {z} is open in our
topology on [S] = R, then our premise requires that our samplers obtain
the correct asymptotic frequencies p(y)({z}), and f : [S] — [T7] is al-
lowed to be ‘discontinuous’ (w.r.t. the standard topology) at this point.
Conversely, note that adding additional open sets to [717] shrinks the set
of continuous functions [f] : [S] — [T7], while strengthening the conclu-
sion of our rule. For example, if {y} is open in our topology on [T] = R
enabling the conclusion that our samplers asymptotically produce the
correct asymptotic frequencies for the set {y}, then [f]~" ({y}) must be
open in [S].

Reweight. This rule simply encodes the validity of importance sampling.
Dropping the dependency in ~y for clarity of notation, and letting v = f-pu
be the reweighted measure, the premise and side-condition of the rule
together say that there exists & € R such that f = a‘é—fj, and that f is

bounded on the support of pu. Since p is a probability distribution, we

/fdp:a/g—udyza/ dv =«
v

Moreover, since s targets g and f is bounded continuous, we get by

have

writing z; £ 7 (m;([s]) and w; = m(m;([s]) that

Letting ¢g be any bounded continuous function [S] — R and noting that

the pointwise product g.f is bounded continuous on the support of u and

108 Chapter 3. Deterministic stream-semantics

v, we have
1
/ dv = /g fdu
== lim — Zg ;) wi Since s targets
o N—oo N ! Z

- (m. 4 M) (gnw%zﬂzggf{ywi) By cq. (34

im —
N—oo N 21]\;1 flx)w;

lim [g dreweight(f,s),

N—o0

also making use of the fact that the limit of a product equals the product
of the limits (where both exist). Therefore, reweight(f, s) targets v.

(vi) Pseudorandom number generation. The unconditional prag rule is

just a restatement of theorem 2.7.5.

(vil) Homomorphism of dynamical systems. The conditional prng rule
essentially follows from the fact that Borel homomorphisms preserve er-
godicity; see Proposition 2.7.9. To see that typical points z yield images
which are also typical points, though, we will show this rule directly as
well. Our result is immediate if we note that, given a homomorphism
goh = ho f of the form hypothesised, it follows that g*(h(z)) = h(f*(z))
for any ¢ € N. Let u : [T] — R be any bounded continuous function;

again dropping the dependence on v for clarity of notation, we have

N-1

Jim —Zu [l ([7] ([2]))) = Jim lz u([P] (LT ([=])))

N—oo
=0

- / (wo [H]) du
[S]

- / wd([h], p)
7]

as prog(f, x) targets pu by hypothesis, and wo [f] is bounded continuous.

3.3. Verification 109

Remark 3.3.11 (Completeness). It is easily seen that the most obvious notion
of completeness, egpo [s] = p — I'F s : LS ~» p, does not hold and should

not be expected to; see the following example.

Example 3.3.12. Let s 2 prng(An:Rn+1,0); clearly, s does not tar-
get any (probability) measure. Transform s using map to yield the sampler
s’ Zmap(An:R . 2"(—1%n),s). While s does not target anything, and so our
targeting calculus cannot prove that the transformed sampler s’ targets any-

thing, it is clear that s’ does target the Dirac measure dg.

Remark 3.3.13. Note that joint targeting I' F s @ t ~» pu ® v is a strictly
stronger statement than independent targeting I' = s ~» u,I' =t ~» v. This
1s reminiscent of the fact that the marginals of two probability distributions do
not determine their joint distribution. A trivial counterexample is given by
choosing s = t, in which case the product s @t cannot possibly target a product

measure outside of a trivial setting.

We saw in section 3.3.1 how our (sub-)typing system can be used to safely
pushforward samplers through maps which are only piecewise continuous. Our
typing system also allows us to add additional constraints to samplers. Specif-

ically, we can ensure that a sampler visits certain subsets infinitely often.

Proposition 3.3.14. Assume 't s: LS ~ u, S<T and [T] second-countable;
then T' + map(Ax : S.cast(T)x,s) : LT targets the same measure pu on T.
Moreover, if [T] is metrisable, if U is in the topology of [S] but not [T] and
w(0cU) > 0 (where Or denotes the boundary in [T]) then s must visit O:U 1i.o.

(infinitely often).

Proof of Proposition 3.3.14.
The first part of the proof follows immediately if we can show that S< T

implies that [S] and [T] are the same measurable space; this will be shown by

110 Chapter 3. Deterministic stream-semantics

induction on the sub-typing derivation. We start by showing that the functor
Borel : Top — Meas commutes with coproducts. This will prove the base

case, the coproduct rule, and the last two rules of fig. 3.2b.

Let X,Y be two topological spaces (we will use the same name for topo-
logical (resp. measurable) spaces and their topologies (resp. o-algebras)). We
use the -\ lemma to prove Borel(X + Y') = Borel(X) + Borel(Y'). First note
that Borel(X +Y) = o(X +Y) by definition. Since X + Y is a topology, it
is trivially also a m-system, and since Borel(X) + Borel(Y') is a o-algebra it is
also trivially a A-system. By definition, every open set U in X + Y has the
property that U = X NU is open in X, and is thus an element of Borel(.X).
Similarly Y N U is open in Y and thus belongs to Borel(Y'). It follows that
U=UnNX)w(UNY) belongs to Borel(X) + Borel(Y') by definition of the
coproduct in Meas. The inclusion Borel(X + Y') C Borel(X) + Borel(Y') now

follows from the 7-\ lemma.

Conversely, every measurable A in Borel(X')+ Borel(Y') is, by definition, of
the shape (AN X)W (ANY) with (AN X) € Borel(X) and (ANY") € Borel(Y).
Using the m-A lemma it is easy to show that Borel(X) C Borel(X + Y') and
Borel(Y') C Borel(X + Y'), and it thus follows, since Borel(X + Y) is closed
under unions, that A = (AN X)W (ANY) € Borel(X + Y) which proves
Borel(X + Y') D Borel(X) + Borel(Y).

To show that the functor Borel : Top — Meas commutes with products
we need the extra assumption that the spaces are second-countable. A proof

can then be found in e.g. [45, p244].

For the second part of the proof, let U be in the topology of [S] but not
in the topology of [T]. This means that dr(U) = U Nintr(U) # is open in
[8] (since it’s the intersection of two open sets in [S]). In particular it is a
continuity set in [S] (since it is open, its interior is the empty set and it can
therefore not have any p-mass). By the Portmanteau lemma, Lemma 2.5.3,

which applies since the spaces are assumed to be metrisable, we must thus

3.3. Verification 111

have

lim [s], (8:(U) = u(@x(U)) > 0

n—oo
In particular, this is clearly impossible if [s] only visits Or(U) finitely many

times. O

Example 3.3.15. Suppose we want s : LR ~» Bern(1/2). A sampler alternating
between the sampler z = prng(Ar : R.x/2,1) of Evample 3.5.5 and its shifted
version map(Azx : R.1 4+ x,2) will satisfy the condition, but will never visit 0
or 1! We can use the previous result to enforce that a sampler s targeting
Bern(Y/2) should visit 0 i.0. by constructing s in such a way that it has type
L((x,0)"'Neq + (z,0)"'Eq) (see Example 3.1.7). We can, in the same manner,
enforce that a sampler s’ targeting Bern(1/2) wisits 1 i.0. Finally, using the
last two rules of fig. 3.2b which build the coarsest common refinement of two
topologies, we can combine s and s' to create a sampler targeting Bern(1/2) and

guaranteed to wvisit 0,1 i.o.

A more interesting application of our rules, which will make use of the
quirks of our typing system, is the verification of rejection sampling. Rejection
sampling makes use of two samplers: a proposal sampler s and a standard
uniform sampler rand. It also uses a real-valued function f : S — R and an
upper bound K > 0 on f, and produces samples from its target distribu-
tion, which is the proposal distribution reweighted by the function f.* Using
these ingredients, a general rejection sampling algorithm is implemented in

listing 3.2.

We will abbreviate the program given in listing 3.2 as reject(f, K, s).
Note that the type T has been left unspecified; we will find this type’s form as
we type-check below.

4Consider for the purposes of illustration a Bayesian setting in which s is a sampler from
our prior and f computes the likelihood of a set of data. In this case, rejection sampling
will give us samplers from the posterior distribution.

112 Chapter 3. Deterministic stream-semantics

let accept = Alz,u) : T . if w< f(zr) / K then 1 else 0
in let proj = Az : T. fst(cast(SxXR")(2)) in
map (proj, reweight (accept, s ® rand))
: LS

Listing 3.2: Rejection sampling

Theorem 3.3.16. Rejection sampling is valid:

I'F(s®rand) : TS XR" ~ (u®@U) T'Ff:S—Rt I'FK:R'
IF reject(f, K,5) 128 = 1 3 [/ (7) - ()

l

where the side conditions T necessary are
L [[T () du(v) € (0, 00);

2. Vo e [8], [K()] = [T (n)(@).

Proof of Theorem 3.3.16.

Before we discuss the verification of rejection sampling as an approximate
sampling procedure, we must first type-check this program in detail. The
type T was not specified in listing 3.2; we determine its form by type-checking
accept in fig. 3.8. To keep the derivation readable, we define t = (y, f(z)* K).

z:S,y:RTFx:S Ff:8—Rt FK:RT
z:S,y:RT Fy:RT x:8,y:RT - f(x)* K :RT
z:8,y:RT (y, f(z) » K) : RT x RT
(29) (<10 £ (< () - (0, f@) = K) - < 1(0) 1 <-1(1)
(zyy) : t (<O +t < Y A) Fy< f(z)* K:B FO:RT F1:RT
(@, y) : t71(<710)) + ¢t~ (<~ 1(1)) F if y < f(z) * K then 1 else 0:RT
FA(z,y) : t~ (< 1(0) + ¢t (<~ 1(1)) . if y < f(x) * K then 1 else 0:t~1(<~1(0)) +t~1(< (1)) = RT

—1(0) + <~1(1) «rT x RT

Figure 3.8: Type-derivation of accept

Next, we show that the entire rejection sampling algorithm type-checks
in fig. 3.9, defining T = t'(<70)) + t"}(<7'(1)) and proj = Xz
T.fst(cast(S x R")z) for brevity.

We can now verify rejection sampling as an approximate sampling method.

In fig. 3.10, we begin by assuming that our samplers s and rand each target

3.3. Verification 113

z:TH2z:T Fs:£S Frand:ZRt

TaS xRT
z: Tk cast(S x RT)z:S xRt Fs®rand: I(S xRT)
. IT<E(SxRH), =0
z: Tk fst(cast(S xRT)z): S F accept : T— R Fs®rand: T
Fproj: T—S F reweight(accept,s ® rand)) : LT

F map(reweight(accept, s ® rand), proj) : LS

Figure 3.9: Type-derivation of the rejection sampling algorithm

some proposal distribution p and the uniform distribution U on the unit in-
terval — and that more strongly, these two samplers jointly target these two
probability distributions (see Remark 3.3.13). As shown in fig. 3.10, appli-
cation of our targeting calculus quickly shows that the samples produced by

rejection sampling target the probability measure [proj], ([accept] - (u®U)).

Fs®rand: LT~ pu®U + accept:T —RT
F reweight(accept,s ® rand) : ET ~~ [accept] - (u®U) Fproj:T—S$S

F map(proj,reweight(accept,s ® rand)) : LS ~~ [proj], ([accept] - (1 ® U))

Figure 3.10: Validity of rejection sampling

All that remains is to show that in fact [proj], (Jaccept] - (n® U)) =

P. Given the denotational semantics [proj](z,u) = =z, [accept] (z,u) =

1 u< [f](=)
- K , and the fact that K is an upper bound on the nonnegative
0 else

function f, this is immediate. For measurable A C S, ignoring the normalisa-

114 Chapter 3. Deterministic stream-semantics

tion constant for readability,

[proj]. ([accept] - (1@ U)) (4) = ([accept] - (1 ® U)) ([pro] " (4))

x| [accept] (x, u) d(p & U)(z, u)
[proj] ' (A)

- /A /0 1 [accept] (2, w) dU (u) du(x)

B /A /Oﬂf]](z)/K () due)

:%Ammmm»

Therefore, rejection sampling, like importance sampling, produces a sampler
targeting the probability distribution which has density (proportional to) [f]
with respect to the proposal distribution Q). O

Example 3.3.17. For a simple application of listing 3.2, consider a small
Bayesian inference problem with prior q(z) and Gaussian likelihood p(x | z) =
N(z | 2z,1). We will apply rejection sampling to generate samples from the
posterior distribution p(z | x) given by Bayes’ theorem, proposing samples from
a sampler s which we assume targets the prior q. Bayes’ theorem tells us that
the density of the posterior distribution with respect to the prior is (proportional
to) f(z) = p(x | 2), neglecting the normalisation constant. To apply rejection
sampling, we then need to deduce a bound K = sup,., p(x | z) = sup,c, N(z |
z,1); by symmetry of the Gaussian density this is obviously mazimised by
choosing z = x, yielding K = \/Lz? Therefore, it follows by theorem 3.3.16
(and a trivial application of the let-reduction rule in fig. 3.5) that listing 3.3
samples from the intended posterior distribution (given the assumption that s

targets our prior, and the requisite independence assumptions).

3.3. Verification 115

let K =1 / (2%x7w)~2 in
let f =X : R . K *x (2 - 2)"2 / 2 in
let accept = A(z,u) : T . if u<f(z) / K then 1 else O
in let proj = Az : T. fst(cast(SxR")(2)) in
map (proj, reweight (accept, s ® rand))
rS

Listing 3.3: Rejection sampling: example

Chapter 4

Construction and verification of

stochastic process samplers

This chapter extends the sampling language discussed in the previous chapter
to include samplers which meaningfully target stochastic processes, which can
be understood as infinite collections of random variables, or as function-valued

random variables; see section 2.8.

This extension to stochastic processes is necessary in order to formalise
a number of useful probabilistic programs. In the early days of computing,
the modern theory of stochastic processes had not yet been formalised, and it
would be decades until the theory and applications of continuous-time stochas-
tic processes and Gaussian processes were well-understood and commonplace.
These days, though, many of the most interesting and complex applications
of probabilistic programming languages feature stochastic processes. For ex-
ample, higher-order probabilistic programming languages can implement non-
parametric Bayesian techniques such as Gaussian process regression [46], in-
finite mixture models based on Dirichlet processes, continuous-time filtering
and smoothing, and diffusion models [47] (which have experienced a surge
of interest in recent years). The verification of these complex probabilistic
programs requires a language with a sound, succinct treatment of stochastic
processes. Fortunately, while these programs are complex, they can typically

be understood compositionally as being constructed from a small set of simpler

118 Chapter 4. Stochastic process samplers
procedures, which is key for scalable verification.

The contributions of this chapter are organised as follows. Section 4.1
first extends the language of the previous chapter, adding the features neces-
sary to construct samplers for stochastic processes — more concretely, families
of samplers which target the corresponding marginals of stochastic processes.
Framing this concept within the language will, as we’ll see, require the ad-
dition of dependent types, which will broaden but also significantly compli-
cate the presentation of the denotational semantics. Next, in analogy to how
the previous chapter verified samplers by relating the infinite sequences they
produce to probability measures, section 4.3.2 shows that we should verify
stochastic process samplers by relating the infinite family of finite-dimensional
marginal samplers they produce to the stochastic process in question by apply-
ing Bochner’s theorem (see the preliminaries, section 2.8). Having established
this link, section 4.3.3 and section 4.3.4 finish by demonstrate the soundness
of a number of techniques commonly used for constructing and transforming
stochastic processes, enabling the compositional verification of programs which
use stochastic processes. In particular, we identify sets of programs which prov-
ably construct stochastic process samplers, and which provably transform one

stochastic processes sampler into another.

Stochastic process samplers. Incorporating stochastic processes into a
probabilistic programming language, perhaps surprisingly, raises a number of
interesting type-theoretic questions. To see why, it is necessary to start by
considering the question, what does “sampling from a stochastic process” con-
cretely mean? As stochastic processes are probability measures over function
spaces, one answer could be that a program sampling from a stochastic process
with index set T taking values in a measurable space S is a program which,
given a seed, returns an object of function type 7" — S, i.e. a concrete sample
path. However, this understanding of “sampling from a stochastic process” is
not computationally achievable. Let T' = Ry, S = R, and assume that we

wish to sample from a normally distributed white noise process. Computing

119

a sample path from this process means preparing an uncountable sequence of
independent normal samples (7;);cr.,, Which is clearly not computationally
possible. More realistically, if we assume that reals are concretely represented
by the finite set F of floating-point numbers, and that 7' is a compact inter-
val, say [0,1], then returning a concrete sample path means returning a finite
but enormous (2% elements in single-precision) sequence of normal deviates
(@¢)ternpo,1) every time the sampler is invoked. This is clearly not practical
from a memory perspective, but it is also doubtful that any practical pseudo-
random number generator could produce so many deviates independently. The
same problem will present itself for any choice of stochastic process indexed
by a sufficiently large set T'. By virtue of the algorithmic “incompressibility”

of randomness, no sample path can have a shorter description than such an

enumeration.

Dependent types. Thus, sampling from a stochastic process cannot mean
producing sample paths. Instead, one usually understands sampling from a
stochastic process as the ability to sample from any finite-dimensional marginal
of the process [46, 5|. This perspective has profound type-theoretic implica-
tions. Given any tuple (t1,...,t,) of elements of T, a stochastic process sam-
pler must be able to return samples in S™ which are distributed according to
the joint distribution of the process observed at “times” (ti,...,%,). In partic-
ular, the output type of the sampler depends on the size of the input tuple.
This suggests that a stochastic process sampler should be described using the
language of dependent types. Specifically, if we write LS for the type of (stan-
dard) samplers returning samples of type S, then a sampler for a T-indexed

S-valued stochastic process will have the Il-type
In:N.Vec,(T) = L (Vec,(S)) (4.1)

where Vec,(T) is the (dependent) type of n-dimensional vectors of type T. We
denote the type given in eq. (4.1), which will play a central role in the chapter
to come, by Marginal(T,S). Most programs of this type do not sample from

120 Chapter 4. Stochastic process samplers

a stochastic process—we will identify those that do in section 4.3.3—but in
order to sample from a stochastic process in the manner described above, a

program must have this type.

Since stochastic processes are implemented in terms of their finite-
dimensional marginals, their denotational semantics typically pays little at-
tention to the existence of the laws of stochastic processes, i.e. their defining
measures on (typically infinite-dimensional) function spaces. Instead, much
research on the semantics of these implementations has focused on laziness,
recursion, and on side-effects which are often hidden within their invocation
[48, 46, 11]. However, in order to verify correctness of a stochastic process
implemented as a program of type Marginal(T,S), we will need to check that
it targets the desired stochastic process, i.e. the correct law. Thus, whilst
stochastic processes are, as programs of type Marginal(T, S), described opera-
tionally in terms of their finite-dimensional marginals, to verify the correctness
of these programs is to link this perspective with the probability-measure-on-
sample-paths perspective described above. This verification task is this chap-

ter’s primary concern.

The sampling language we lay out in this chapter includes and extends the
sampling language of the previous chapter. All of the results of the previous
chapter will extend to this setting, if only to the subset of our now-extended
language which is identical to the language defined in the previous chapter.
As a result, we will avoid presenting details of the syntax, semantics, and
verification which were discussed in the previous chapter, focusing on the new
features necessary to enable constructing and verifying samplers for stochastic
processes. We will begin by introducing the syntax and semantics of these
new elements, so as to formalise the stochastic process sampler type defined

in eq. (4.1).

4.1. Language 121
4.1 Language

In this section, we extend the language of chapter 3 by adding certain de-
pendent types, giving the language the ability to package different finite-
dimensional samplers into a single object. The presence of these dependent
types complicates the language of chapter 3 somewhat, but as we shall see it is
semantically very natural; [I-types provide exactly the right structure in which
to construct stochastic processes via Bochner’s theorem (section 4.3.3). Just
as in chapter 3, the language is interpreted in a category of topological spaces
and continuous maps, in order to keep the targeting relation (which is defined

in terms of weak convergence) well-defined.

4.1.1 Syntax

The grammars of the various types and terms of our language are given in
fig. 4.1, which extends the the corresponding fig. 3.1 in the previous chapter
with a number of new language features. The rules for well-formed types are
given in fig. 4.2, and the rules for well-formed terms are given in fig. 4.3. Note
in particular that, following [49], our contexts ¢; " now have two pieces: an
indexing context ¢, which will keep track of all the indices on which types
depend in a program, and a standard context I', which can include variables

indexed in ¢. We will now go through each of these new features in detail.

Indexing types and indexing terms.

We will only need a limited collection of dependent types, and so we follow a
restricted syntax in the spirit of dependent ML [49]. We begin by defining the
grammar of indexing types and indexing terms in figs. 4.1a and 4.1b, where
G € Ground ranges over a set of ground types which includes B,N,R and R™; z
ranges over a set Var of variables; g ranges over constants taking values in one
of the ground types G € Ground; and f ranges over a set of built-in functions
taking their values in one of the ground types.
An indexing context ¢ will be a context of indexing types x;

Iy,...,2, : I, (we broadly follow the notation of [49]). The rules for well-

122 Chapter 4. Stochastic process samplers

I:=G|IxI
(a) Indexing type grammar
iu=a|g| f@E,...,0) | (4,4) | £st(i) | snd(i) | cast(I)i
(b) Indexing term grammar

T:= G & Ground | 1
|TXT|T+T|T—T|LT
|Ti:I.T|;I; | Veci(T) | Matini(T) i i:1I

(c) Type grammar

t:= x € Var|be {True,False} [neN|reR Variables and constants
| f(t,...,t), f € Func | cast(T)t Built-in functions
| case t of {(i,2:) = t},c,
| Az: Tt | t(t) | let 2 =t in t "

Programming constructs

| (t,t) | £st(t) | snd(t) | in; (¢) Products and coproducts
| prog(t,t) | t ® t | map(t, t) | reweight(t,t) Sampler operations
| hd(¢) | wt(t) | £1(¢) | thin(t,¢) "

| vec(t)(t) | get(t)(t,t) | reduce(t)(t,t, 1) Vector operations
| mat(t,t)(t) | get(t,t)(t, t,t) Matriz operations

(d) Term grammar

vu= x € Var | b€ {True,False} | neN|reR
| (v,v) | in; (v) | Az: T. v

(e) Value grammar

Figure 4.1: Grammars

formed indexing terms are given in fig. 4.2a.

(Sub-)Types.

The types of our language are given by the grammar fig. 4.1c. The types we

consider here are the types of chapter 3 plus II-, vector and matrix types.
Unlike chapter 3, we have further rules for well-formed types; these are

given in fig. 4.2b. Types depending on open indexing terms will be called

4.1. Language 123

orgadc [6] ,G € Ground

oFx1:G ... ol ux,:G,
o f(xy,...,x,): G

QﬁFtZIlXIQ QSI_tZIlXIQ QZS}_SZIl ¢|_t]:2

¢|—fst(t) I ¢|_Sl'ld(t)) ¢|_ (S,t) I X I

(a) Well-formed indexing terms

7¢|_lexedom(¢)

Func> f:G; x ... xG, =G

¢+ T:Type |
F G: Type G € Ground ¢,i:IFT: Type i ¢ dom ¢
¢+ T: Type ¢,1: I FT: Type
¢ LT: Type ¢FMi:I.T: Type

¢ S:Type ¢k T:Type pFs:I ¢Ft:I ¢k I:Type

t
¢ S%T: Type x € Dot =) ¢+ I : Type s bopen
pFt:N ¢FT:Type pFs:N ¢Ft:N ¢k T:Type
¢ b Vec(T) : Type ¢ F Matgy¢(T) : Type

(b) Type formation rules

fe{<.<,>>=#}

F7H0)+ f7Y(1) <R xR

S«T
m F € {Z (—),Vecn(—),Mathn(—),Hn :N. (—)}
S1459 Ty <aTy S1 <459 Ty < Ty
S+TasxT, bt g oTas o
S1<T So«T S1<T So«T
S1M Sy <5y S1M Sy <S8y

(c) Subtyping rules

Figure 4.2: Well-formed indexing terms, type-formation, and subtype rules

124 Chapter 4. Stochastic process samplers

dependent types. All other types will be called closed types.

Since we have a limited supply of Il-types, we need to explicitly include
function types S — T, as opposed to considering these as II-types themselves.
The sampler types ZT should not be confused with the >-types of dependent
type theory, which do not feature in our language. As in chapter 3, LT is
interpreted as the set of weighted streams of type T. The pullback types ,T;
of chapter 3, while they retain a particular syntax, will now be interpreted as
the dependent types they are. The only other dependent types we introduce
are vector types and matrix types.

The language also includes a subtyping relation < described in fig. 4.2c.
The purpose of this relation, as it was in chapter 3, is to encode topological
information which will allow the interpretation of functions which are dis-
continuous for the standard topologies. The first rule introduces the ground
types f710) + f~1(1) which will be interpreted as R? equipped with the
coarsest refinement of the usual topology making the comparison operator
fe{<, <>, >,=,+#} continuous. The types S; NS, will be interpreted as the
coarsest common refinement of the topologies on Sy, S,; they are as previously

syntactic sugar for the pullback types cast(r)a;:s; Tcast(T)zo:s,-

Terms

The terms of our language are given by the grammar fig. 4.1d. The first
seven lines, containing standard programming constructs and sampler oper-
ations, are unaltered from chapter 3. The last two lines contain our new
vector and matrix operations, which will be essential for building samplers for
the marginal distributions of stochastic processes. More specifically, vec(n)(t)
(resp. mat(m,n)(t)) constructs a vector of type Vec,(T) (resp. a matrix of type
Mat,,xn(T)) given a map ¢t : N — T (resp. t : N X N — T). The operation
get(n)(i,v) (resp. get(m,n)(i,j, M)) gets the i*" (resp. (i,7)"") element of an
n-dimensional vector v of type T (resp. m x n-dimensional matrix M of type
T). The operation reduce(s)(f,t,v) repeatedly performs the binary operation

f to the elements of an s-dimensional vector v starting with an element .

4.1. Language 125

The rules for well-formed terms are given in fig. 3.2a. Again, following
[49], we have split our contexts in two: a context ¢;I" consists of an indexing
context ¢ and a standard context I.

The rules on the first three lines of fig. 4.3a are standard, introducing
constants, built-in functions, variables, weakening and casting. Note that the
variable introduction and weakening rules ensure that a type must be con-
structed from the indexing context ¢ using the rules of fig. 4.2b before they
can be introduced into the (standard) context. The rule on the third line is the
“context-restriction” rule of chapter 3 adapted to our dependently-typed lan-
guage, the notation ¢~1(S) being as previously syntactic sugar for the pullback
type cast(na:sIi- Next, the rules for pairing, pattern matching, let binding,
lambda-abstractions and evaluations are the same as chapter 3 with the addi-
tion of the indexing context ¢, as are the typing rules for sampler operations.

Only the rules for introduction and evaluation of II-types, and for cre-
ating and manipulating vectors and matrices, contained within fig. 4.3c, are
substantial alterations from the previous chapter. These are implemented as

expected given the intended meaning sketched above.

4.1.2 Operational semantics.

The operational semantics of terms of dependent type is mostly straightfor-
ward, as they are naturally interpreted in the same way as A-terms. For each of
our built-in dependent operations, such as get, and each possible size n € N,
we add a corresponding rule to the operational semantics — in this case, one
which inputs a natural number i € {1,...,n} and a vector of size n, and out-
puts the ith element of the vector. The operational semantics for these vector
and matrix operations is given in fig. 4.4, the operational semantics for all

other operations being unchanged from chapter 3.

4.1.3 Denotational semantics.

As explained in chapter 3, the key correctness criterion for a sampler is given

by the concept of targeting a probability measure. Since targeting is defined in

126

Chapter 4. Stochastic process samplers

W g € [G],G € Ground

¢o;T'Ht1:Gy ... ¢;0FHt,:G,
F S5f:G ... X G, =G
& TF f(tr, ... tn) : G une 3 f: G x

¢ T: Type

cb;x:TFx:Tmevar

O;DAFE:T ¢k S:Type
o; T x:S,AFt:T

oFt:I
S<1I,¢:£L'15I1,...,.Tn2:[n
&5 (1,) i t7H(S)FE:S
o;THE:SxT o;'Fs:S ;¢ T o;TFt:SxT
¢; T Fsnd(t): T

¢; T - fst(t) : S ;T (s,8):8%xT
Tt T D a Tk st T
¢; Tk case t of {(i,2;) = si};cp: T
s THE: Ty
S4aT, <A ¢. J
d),l—"_ 1nj (t) N ZiGnTi

cAFRt:S
0; jEnN

¢; 0 Fcast(T)t: T

¢o; T, x:SkHE:T ¢ I'Fs:s ¢ I'Ht:S—T ¢ T,x:SHt:T ¢ I'Fs:S

o;PFXx:8.t:8S—>T o; T Hit(s): T ¢o;PHletx=sint: T

(a) Typing rules for general programming constructs

¢:THt:ET

¢;T'Ht:XT
o;THtl(t): LT

;T Hhd(t): T

o't 2T o;I'Fs:Z8 ¢ I'HE:XET
¢; T Fwt(t) :RT o PFs®t:T(SXT)

¢o;T'Fn:N ¢ T'Ht:ZT

¢;T'Fs:T—>T ¢ I'HE:T
¢; T F thin(n,t) : LT

¢; T+ prog(s,t) : LT

¢;TFs:T—RtY T FHt:ET

¢;T'Fs:S—>T ¢;T'Ht: LS
¢; T reweight(s,t) : LT

¢;T - map(s,t) : LT

(b) Typing rules for sampler-functions

¢, i: ;¢ T . o;PFt:Mi:I.T ¢oks:1I
sTrov T -t PO ST F t(s) : T[i/3]

;T Fv:Vec(T) ¢;I'Fi:N

¢ I'Ff:N—>T ¢FE:N
¢; T get(t)(i,v) : T

¢; T vec(t)(f) : Vecy(T)
O TEf:TXT—>T ¢THt:T ¢;TFwv:Vecs(T)
¢; T+ reduce(s)(f,t,v) : T

G THFfNXN—=T ¢pbFs:N ¢Ft:N ¢;TFM:Matgui(T) T Fd,j:N
¢;I' Fmat(s, t)(f) : Matsx(T) ¢; T - get(s,t)(i,5, M) : T

(c) Typing rules for operations involving dependent types

Figure 4.3: Typing rules

4.1. Language 127

(s, N)=>m (#(1),N)—=v; ... (t(m),N)— v,
(vec(s)(t),N) = (v1,...,0m)

(s,N)=-m (t,N)—=i (v,N)—= (v1,...,0p)
(get(s)(t,v), N) = v;

1<i:<m

(5,N) = m (tN) = wp (V) = (01, vm)
(s"(wo,v1),N) = w1 (s'(w1,v2),N) = wg --- (8" (Wr—1,Vm), N) = wp,
(reduce(s)(s',t,t'), N) = wp,

(s, N)=m (s,N)—=n (t1,1),N)—=v11 ... (t(m,n),N)—= vmn
(mat(s,s")(t),N) = (vi1,--v1m)s- > (Um1s-- s Umn))

(S;,N) Sn (t/ N) — (M7N) — ((Ul,la---7vl,n)7~--a(UwL,lv---7vm,'n))

AT f

1 Note the side condition 1 <7< m,1<j <n.

Figure 4.4: Operational semantics of vector and matrix operations

terms of weak convergence, we must provide our language with a semantics in
a category of topological spaces and continuous maps, as in chapter 3. As we
have A-abstractions, this semantics also needs a Cartesian closed structure; as
in chapter 3, we choose the category CG of compactly-generated spaces (CG-
spaces) [36]. This category is Cartesian closed, complete, and co-complete,

and can in particular be used to interpret the coinductive types L T.

However, CG is not locally Cartesian closed [50], and as a result, it cannot
interpret a full dependently typed language [51]. Despite this, CG is rich
enough to interpret a language with only a restricted class of dependent types.
The addition of even a small collection of dependent types, though, will change
the semantics of our sampling language quite considerably. Following [51], we

now interpret judgements ¢;I' = ¢ : T as morphisms in the comma category
CG | [4].
Indexing types, contexts and terms.

Indexing types. Indexing types are interpreted as objects in CG. The
ground types B and N are interpreted as the sets 2 and N equipped with the

128 Chapter 4. Stochastic process samplers

discrete topology, and the types R,RT are interpreted as R and Rs(equipped
with their usual topology. Product types are interpreted by the product in
CG (which is not always the usual product of topological spaces, although it
is for all the indexing types we allow [36]).

Indexing contexts. Indexing contexts are inductively interpreted in the
usual way: [)] = 1 = {*}, the terminal object in CG, and [¢,7 : I] £ [¢] x[1],

where the product is again taken in CG.

Well-formed indexing terms. Judgements ¢ -t : I derivable from fig. 4.2a
are inductively interpreted as CG-morphisms [[t] : [¢] — [I] in the usual way.

Well-formed types.

A judgment ¢ - T : Type will be interpreted as an object in CG | [¢]. The
underlying CG-morphism [T] — [¢] defining such an object will be referred
to as the indexing map. Define U : CG | [¢] — CG as the forgetful functor

Ut — [= [T]-

Ground types. Since [0] = 1, [0 F G : Type] is interpreted as an object in
CG | 1, which is equivalent to CG. Therefore, we can simply use the inter-

pretation of ground types defined above.

Index weakening. To interpret the index weakening rule of fig. 4.2b, we need
to define the notion of change of base functor. Given two CG-objects A, B
and a CG-morphism f : A — B, there exists a functor f*: CG|B —- CG| A
called the change of base functor which is defined by taking pullbacks along
f. In particular, the projection 7, : [¢]] x [I] = [¢] defines a change of base
functor 7 : CGl¢] — CGL[¢,i: I]. We can now interpret index weakening
by associating with [¢ F T : Type] the CG | [, : I]-object

[¢,i:IFT:Type] =) ([¢+ T: Type]).

Remark 4.1.1. This rule shows that the interpretation of a type T changes

4.1. Language 129

with the indexing context. In particular, we have:
Ulg,i: I+ T:Type]| ~U[¢F T: Type] x [I] when i ¢ FV(T).

Products. Given two CG | [¢]-objects [¢ F S: Type] and [¢ F T : Type],
[¢ F S x T: Type] is their product in CG | [¢], viz. the CG-pullback

UlpFSxT:Type] —— U[oF T: Type]
|- |
Ulo s :Type] ————— [4]
For example, [n : Nt Vec,(R) X Vecs,(R)] is the space of pairs of vectors
of lengths (n,2n),n € N, sent to the same n by the indexing map by commu-

tativity of the pullback square.

Coproducts. Colimits in CG | A are inherited from colimits in CG: given
a diagram 2 : J — CG | A, colim Z is constructed by first constructing
colim(U o Z). Since A is, by definition, a cocone for this colimit, there exists a
unique morphism colim(U o) — A which defines colim 2. For coproducts, if
[¢F S: Type] and [¢ F T : Type] are CG[¢]-objects, then [¢ =S+ T : Type]
is given by the copairing U [¢ - S : Type] + U [¢ I T : Type] — [¢] in CG.

Function types. As mentioned above, CG is not locally Cartesian closed
[50], i.e. CG | A is in general not Cartesian closed. However, CG | A is
Cartesian closed for sufficiently nice objects A, and these objects include the

denotation of all indexing contexts that can arise in our language.

Theorem 4.1.2 ([52, 53|). If A is (weak) Hausdor{f then the category CG | A

1s Cartesian closed.

Since 2, N, R and R>(are Hausdorff, and since the product of Haus-
dorff spaces is Hausdorff, theorem 4.1.2 allows us to define for every pair of
CG | [¢]-objects [¢ F S : Type], [¢ - T : Type] the object [¢ S — T : Type]
as their internal hom in CG | [¢]. This object is quite subtle [52, 1.3.11], and
can informally be described as the space of partial maps from U [¢ - S : Type]
to U[éF T: Type] mapping a fibre indexed by =z € [¢] in the domain

130 Chapter 4. Stochastic process samplers

to the fibre in the codomain indexed by the same z. The indexing map
UlpFS— T:Type] — [¢] naturally sends such a map to z € [¢]. See
op. cit. for information about how this space is defined and topologised. As an
example, [m : N,n : N F Mat,,»,(R) — Vecs,(R)] contains the continuous maps
from the space of all real m x n-matrices to that of all real 2m-dimensional
vectors — for a fixed choice m,n € N2. Such a map is not defined on m’ x n'-
matrices if m # m/ or n # n’ and is sent to (m,n) by the indexing map.

Sampler types. Let [¢F T:Type] be a CG | [¢]-object. We define
[¢ F LT : Type] as the terminal coalgebra for an endofunctor on CG | [¢],

in analogy to how we had defined it in chapter 3. Define the functor

F'(A) £ [¢F T: Type] x [¢FRT : Type] x A

where the product above is taken in CG | [¢] (and is thus a pullback in CG).

Note that CG | [¢] has as terminal object idpy : [¢] — [¢], and is
complete because CG is. Moreover, since the functor FT is defined by a
product, and limits commute with limits, FT preserves all limits. We can
therefore define [¢ - LT : Type] £ vF?, the terminal coalgebra for FT, by using
the terminal sequence construction of theorem 3.1.6, just as in the previous
chapter. The carrier of [£T] is then given by the limit (in CG) of the following
diagram, which guarantees that all the components of streams are indexed

consistently.

[¢] +— UF™ +— UFY(F"1) +—— ...

N7

[4]

For example, £ Vec,(R) contains the streams of weighted vectors of iden-
tical lengths; a sampler in £ Vec,(R) cannot return vectors of different lengths

because they are not in the limit.

Example 4.1.3. As discussed in the introduction to this chapter, choosing

to consider stochastic process samplers as programs returning sample paths of

4.1. Language 131

type T — S leads to programs which cannot be computationally realised. Nev-
ertheless the type of such programs is available to us as ¢ = T (T — S) : Type.
FElements in the carrier of [¢p F Z(T — S) : Type] are weighted sequences of
continuous functions (sample paths) that share the same domain and codomain

fibres indezxed by some x € [].

Pullback types. As their name suggests, the semantics of pullback types is
straightforwardly given by the pullbacks

[[s It]] — [[¢H

L

[¢] —25 U+ 1 : Type]
\> 4]

Vector and matrix types. Consider [¢ - T : Type] in CG|[¢]. We interpret
the vector type Vecs(T); the case of matrices is treated in a similar way. An
indexing judgement ¢ F ¢ : N is interpreted as a CG-morphism [t] : [¢] — N.
To define [¢ F Vec(T) : Type], we note that any element x € [¢] defines a
morphism z : 1 — [¢] and therefore a change of base functor z* : CG | [¢] —
CG | 1. With this definition, and using the cocompleteness of CG, we define

[¢oF Vec,(T): Type] : H (x*[oFT: Type]])[[tﬂ(gc)—> [#] ,in.(y) = x
z€[¢]

The products and coproduct are taken in CG | 1, i.e. in CG, so the above
defines an object in CG | [¢]. Intuitively, z* substitutes the variables in ¢

with the concrete values provided by x in the dependent type T, i.e. constructs
‘Tlp/z] .

As an example of this complex-seeming definition, consider the type

[z :N,y:NF Vecy,(Mat,xy(R))] .

132 Chapter 4. Stochastic process samplers

For each (m,n) € N?, we have (m, n)*([Mat,«,(R)]) = R™*", and therefore

[z :N,y:NF Vecy,(Mat,y(R))] = H (Ran)ZrL

(m,n)EN?
with the indexing map sending 2n-tuples of m X n matrices to (m,n).
[I-types. Consider a type ¢,2 : I F T : Type interpreted as an object
in CG | [¢,7:I]. The projection map 7wy : [¢] x [I] — [¢] defines a
change of base functor 7} : CG | [¢] — CG | [¢,i:I]. Under the same
assumptions as theorem 4.1.2, namely that the object defining the comma

category is Hausdorff, it can be shown that this functor has a right adjoint

I, : CGl[¢,i:I] = CG|[¢]. We then define
[obFTi:I.T] =10, [¢,i: I+ T: Type].

Example 4.1.4. A particularly important Il-type for our purpose is the type

of samplers on [T]-indexed [S]-valued stochastic processes
Marginal(T,S) 2 IIn : N.Vec,(T) — L (Vec,(8)).

whose development was motivated in the introduction to this chapter. Assum-
ing for simplicity’s sake that S and T are closed types, this type is interpreted

as

[F Marginal(T,S):Type]] = .yt ([0 : N Vec;(T) = Z (Vec;(S))])

— H{f [T = ([8"] % Rs0)” continuous}
neN
An element of U [Marginal(T,S) : Type] is thus a sequence of functions
(fn)nen, each of which associates to any tuple (t1, ..., t,) a sampler onn copies

of S.

Remark 4.1.5. The reader may be wondering at this point: why not instead

introduce stochastic process samplers to the language as functional samplers of

4.1. Language 133

type s : L(T — 8), each sample of which is a full trajectory, i.e. a function
f T — 8% In short, this is conceptually possible, subject to concerns about
continuity, but less practical. Regarding continuity, recall that our language
limits us to considering continuous functions f : T — S, which means that the
only stochastic processes that will type are those whose sample paths are all
continuous.

Note that these functional samplers have a natural relationship to our
marginal samplers: clearly, given a functional sampler s : L (T — S), we can

construct its corresponding finite-dimensional variant:

An : N . At i Vecy(T)
map(Af : T — S
vec(n) (A : N . f(get(n) (i, t))),
s)
: Marginal(T,S)

Listing 4.1: Projection from functional to marginal samplers

Howewver, there is no clear procedure by which we can do the reverse on
uncountably large index sets T, i.e. use a system of marginal samplers to con-
struct a functional sampler. While functional samplers for those processes are
perfectly well-defined, nontrivial samplers targeting such processes cannot be
produced by any practical means. Consider the Wiener process: preparing a
full, single trajectory f : R — R would require specifying its value at uncount-

ably many inputs.

Subtyping. Just as in chapter 3, the subtyping relation < defined by the rules
of fig. 4.2¢ is meant to carry topological information, and will always be in-
terpreted as an identity map. Its formal development proceeds the same as
in the previous chapter as well. For every boolean-valued comparison opera-
tor f € {<,<,>,>,=,#} the ground type f~1(0) + f~1(1) is interpreted as
If17'0) + [f]'(1) where + is the coproduct in CG, which is a CG-space by
Proposition 3.1.5. Recall that S$;M8S, is syntactic sugar for case(r)a;:s; Teast(T)a2:52 5
i.e. [S; N Sy] has the same carrier as [S;] and [Ss]] and the coarsest common

refinement of their topologies, making both identity maps [S; NSy < S;] and

134 Chapter 4. Stochastic process samplers

[S1 NSy <Sy] continuous. And since the subtyping relation is interpreted via

identity maps, the interpretation of S< T in CG transfers trivially to CGJ [¢].

Well-formed terms-in-contexts

The semantics of a judgement ¢; I" F ¢ : T will be given by a CG{[¢]-morphism
[o;TEt:T] : [¢;T] — [¢F T: Type]. Apart from sampler operations, all
operations will be interpreted using completely standard categorical construc-
tions, albeit in the less-familiar comma categories CG | [¢].

Contexts. As can be seen from fig. 3.2a, contexts are constructed using either
the variable introduction rule or the weakening rule. In particular, the indexing
context ¢ is fixed. We can therefore interpret contexts recursively using the
product of CG | [¢] in the usual way, viz. [¢; 0] = 1, the terminal object in
CG | [¢] given by idpg : [¢] — [¢], and [¢; ', 2 : T] = [¢; '] x [¢ = T : Type].
Constants, variable introduction and built-in functions. The index
weakening rule allows us to interpret the judgement ¢ = G : Type as
1* [0 = G : Type] where !; : [¢] — 1. This interpretation is just the CG | [¢]-
object [G] x [¢] — [#] projecting away [G]. With this, we define [¢; 0 F ¢ : G]
by

[¢],, — 112 [6] x [¢]

o [4] -

We define [¢;z : TF x: T] as the CG | [¢]-identity id : [¢ - T : Type] —

[¢F T: Type]. Finally, each built-in function f is given a CG-interpretation
1f] : [Gi] x...x[Gn] — [G] which, in turn, defines a CG | [¢]-interpretation of
the same formal type. Since products in CG | [¢] are (wide) pullbacks in CG,
input elements in [G] X ... X [G,] are tuples ((g1,2), ..., (gn,2)), g; € [G;] for
a common x of [¢]. We can thus unambiguously send ((g1,), ..., (gn,z)) to
([f1 (g1s- - -, gn), x); this defines the CG | [¢]-interpretation [f]. With this we

can define the usual interpretation

[o;TF fth,... tn) Gl = [f] o ([ta], - - -, [tn])-

4.1. Language 135

Standard constructs. Casting, (co)products, (co)projections, let bindings,
lambda-abstraction and function application are interpreted in the usual way.
The last two operations rely on theorem 4.1.2 and the fact that indexing types
are interpreted as Hausdorff spaces.

II-type abstraction and evaluation. The map 7, : [¢] % [I] — [¢] defines
the change of base functor 7}, : CG | [¢] — CG] [¢;i : I] and its right adjoint
II;, : CG | [¢;i: I] = CG | [¢]. Using this functor we define

[¢; TN T.t): (Mi:I.T)] =1y, [¢,5: ;T =t T]

For the II-type evaluation rule, since the premise has a II-type, it must be
that [¢;'=¢:14: I.T] has the shape Il;, [¢,i: I;I" =" : T| for some term

t' : T. In other words,

[t] € homeaypep ([¢5 1], Hx, [¢,i: IH T : Type]).

By the adjunction, this corresponds to a unique CG | ¢, : I]-arrow

[t] € homcas,ix) (75 [¢;T], [¢,i: T+ T: Type]) .

The index term ¢ F s : I defines (id, [s]) : [¢] — [¢] x [I] which provides a
concrete value of type I and satisfies 74 o (id, [s]) = id. Using this map we

define

[65T & t(s) = Tli/s]] 2 (id, [s])*[¢] : [657] — (id\, [s])* [6,7 - T+ T : Type]

Intuitively, (id, [s])* substitutes the free variable ¢ in T with the concrete value
computed by s and leaves all other free variables unchanged, as suggested by
the notation T[i/s].

Vector and matrix operations. The semantics is intuitively simple: given
f N — A, vec(n)(f) builds the n-dimensional vector with entries in A

given by (f(1),...,f(n)). Matrices are defined analogously: given a map

136 Chapter 4. Stochastic process samplers

Il e

difficulty is in showing that these simple constructions are compatible with the
indexed structure of the semantics. We only consider the case of vectors, as

the case of matrices is treated in the same way. Assuming

[f]:[o;T] = [¢ F N — T: Type] and It] : [¢] = N

in CG | [¢], we define

[vec(t)(S)] : [¢: 1T — [& - Vec,(T) : Type]

via the CG-triangle

Ulvec(t)(/)]
Ule; T,

» Ul F Vecy(T) : Type]

where U [vec(t)(f)] (7) 2 (U T, UL ([E0))).
Lemma 4.1.6. The triangle above commutes, i.e. the semantics of vec(t)(f)

18 well-defined.

Proof. By the definition of the internal hom in CG | [¢], [f] (y) takes
a function from the g¢(7)-indexed copy of N in the domain to the fibre
in UloF T: Type] indexed by g(v). It follows that U [vec(t)(f)] () =

(U L (@A), ..., U L] () ([(g(v)))) belongs to the summand

(9('7)* [o,n:NFT: Type]])[[ﬂ](g(“/))

in the coproduct defining [¢ - Vec,(T) : Type], and thus gets indexed by g(7)
as desired. [

The operation get(t)(i,v) deconstructs a vector, choosing its ith element;

its output is not indexed. Given

[v] : [¢;T] = [¢ - N—=T:Type], [:[#:T] =N, [t]:[¢] =N,

4.1. Language 137

having suppressed the forgetful functor U, define

[get(t)(i,v)] : [¢;T] — [1 1+ T: Type]

as simply [get(1)(i.v)] = [v] (1)([] (1))gicr) L. choosing the ith clement of

the vector v, assuming the choice is valid.

The operation reduce is also straightforwardly defined. It applies a binary
operation f: T X T — T to a vector v : Vec,(T), starting from the initial value
s : T, until all that remains is one value reduce(t)(f, v, s) of type T. And so,

given

[v] : [¢: 1] = (o =N = T:Type], [f]:[&;T] = [¢FTxT—T:Type],

[s] : [®;T] — [¢F T: Type], [t] : [®;T] = N
define
[reduce(t)(f,v,s)] : [¢;T] — [1 F T : Type]

as

[reduce(t)(f,v,)] (v) = [ST (Nl (DAL (), - - LA ()([w] () (1), [sT (1))

For example, in the case that [f] (v)(z,y) = = +y, [t] (v) = 3, [s] (7) = vo,
and [v] () = (v1, ..., v3), [reduce(t)(f,v,s)] = vz + (v2 + (v1 + vg)).

Sampler operations. Remember that sampler operations were defined
purely coinductively in chapter 3. Since judgements [[¢ F £ T : Type] are analo-
gously defined as terminal coalgebras in CG | [¢], all the definitions of op. cit.
transfer immediately to our indexed semantics. For example, [¢; 1" F hd() : T]

is defined from the usual head operation (F'!), then projecting away the weight

[[gb;Fl—t:ZT]]F—T!>FT1L>[[¢I—T:Type]].

138 Chapter 4. Stochastic process samplers

4.2 Sampler equivalence

Figure 4.5 extends the equivalence calculus of section 3.2 with two additional
rules pertaining to our new built-in vector and matrix operations, whose proof
(whether in the operational or denotational semantics) is immediate. These
two simple rules are the only additional rules we will need in order to justify
the results in section 4.3.

Note that all of the proofs of our equivalence calculus given in section 3.2
extend immediately to this setting as well. These proofs, aside from those
that are trivially true in our denotational semantics, worked by leveraging
the coinductive definitions of our sampler operations. While the addition of
dependent types has added additional structure to our denotational semantics
of terms and types, our coinductive definitions of sampler operations are in
fact unchanged, and so the purely coinductive proofs of section 3.2 carry over

with no changes.

¢; THTEget(n)(i,vec(n)(f)) ~ f(i): T
¢; T'Fget(m,n)(i,j,mat(m,n)(f)) ~ f(i,j5) : T

Figure 4.5: Equivalence rules for vector and matrix operations

The get-reduction rules of fig. 4.5 follow immediately from the denota-
tional semantics of vec and get given in section 4.1; it can also be easily

demonstrated in the operational semantics.

Proof of soundness for fig. 4.5.

[get(n)(i, vec(n)(/))] (7) = [get(n) (i, (LT (M), ... ST ()([n] ()]
= (TG, T (D) e
=T ()

assuming that the selector [[i] () is valid. The same argument holds for get

over mat. O

4.3. Verification 139

AN o
A(v1,v2) : Vec, (R) X Vec,(R)
vec(n)(Mi:N . get(n)(v1,i) + get(n)(ve,i))
: IIn:N.Vec,(R) x Vec,(R) — Vec,(R)

Listing 4.2: Definition of vadd

An:N .
Av : Vec, (R)
reduce (n) (A(z,y) :RXR . z+y,0,v)
: In:N.Vec,(R) >R

Listing 4.3: Definition of vsum

4.3 Verification

In this section, we apply the language we developed in section 4.1 to demon-
strate the soundness of a number of techniques which are commonly used in
the literature for constructing and transforming stochastic processes. In par-
ticular, we will identify sets of programs which provably construct stochastic
process samplers, and which provably transform one stochastic processes sam-

pler into another.

4.3.1 Vector and matrix operations

In this section, we include implementations of several vector and matrix op-
erations used within the example programs we will consider in the coming
sections. As the purpose of this chapter is to discuss the verification of sam-
plers for stochastic processes, rather than to to discuss the verification of linear
algebra and list operations, we restrict attention to only a few simple, mostly

self-explanatory operations that are necessary for our chosen examples.

The purpose of each of these programs should be self-explanatory. vadd
(implemented in listing 4.2) adds two vectors of the same size elementwise;
vsum (implemented in listing 4.3) sums the elements of one vector; vprod
(implemented in listing 4.4) multiplies two vectors of the same size elementwise;

and so on.

140 Chapter 4. Stochastic process samplers

An:N .
A(v1,v2) : Vec, (R) X Vec, (R)
vec(n)(Mi:N . get(n)(vy,i)*get(n)(ve,i))
: IIn:N.Vec,(R) X Vec,(R) — Vec,(R)

Listing 4.4: Definition of vprod

An N o
A(v1,v2) : Vecy, (R) x Vec,(R)
vsum (n) (vprod (n) (vy,v2))
: IIn:N.Vec,(R) X Vec,(R) = R

Listing 4.5: Definition of dot

An:N .
Av,z) : Vec,(T) X T .
vec(n+1)(Ai:N .
if i=n+1 then
x
else
get (n)(i,))
: In:N.Vec,(T) xT — Vec,11(T)

Listing 4.6: Definition of cons

A(m,n) :NxXN .
v 2 Vec,, (T)
vec(n)(Ai:N . get(m)(i,v))
: M (m,n): N?.Vec,,(T) — Vec,(T)

Listing 4.7: Definition of take

Anc: NoA(i, M) 2 N X Mat,xn(T) .
vec(n)(Aj:N.get(m,n)(i,j, M))
2 M(m,n): N2 . Mat,,xn,(T) — Vec, (T)

Listing 4.8: Definition of row

An NG, M) i N X Mat,,xn(T)
vec(n) (Ni:N . get(m,n)(i,j, M))
: M(m,n) : N? . Mat,,xn(T) — Vec,,(T)

Listing 4.9: Definition of col

A(m,n) : N x N. A(M,v) : Mat,,xn(R) X Vec,(R)
vec(m)(Ai: N.dot(n)(row(m,n)(i, M),v))
: T (m,n) : N?.Mat,,x,(R) X Vec,(R) — Vec,,(R)

Listing 4.10: Definition of matvec

4.3. Verification 141

4.3.2 Targeting for dependent samplers

We first recall how standard (finite-dimensional) samplers can be shown to pro-
duce samples which asymptotically behaves as if they were drawn from a given
distribution. As in chapter 3, we formalise this idea using weak convergence.
Let X be a topological space; a sequence of weighted samples (z,,, Wy,)nen con-
verges weakly to the probability measure P on X if, for all continuous bounded

functions f: X — R, we have limy_, W = [f(x)dP(x).

Let P : Top — Top be the functor defined by PX = probability measures
on the Borel sets of X equipped with the topology of weak convergence and
P(f: X —=Y)=f.: PX — PY, the pushforward operation P — f,P
(we do not know if PX is compactly generated when X is, so we define P on
Top rather than CG). Next, define P, = P + 1, the coproduct of P with
the singleton space {_L} which will represent divergence. Finally, we define the
empirical transformation as the collection of maps ex : (X xRso)" — P, X
each of which takes a weighted sequence of points to its limit in the weak
topology if it exists, and to L if it doesn’t. As shown by Example 3.3.2; this

transformation is not natural.

We now recall the definition of the targeting relation between samplers and
probability measures from the previous chapter; we will then adapt it to our
dependently-typed setting. In section 3.1.3, the denotational semantics of a
sampler-in-context I' - s : £ 8 was given by a CG-morphism [s] : [T'] — ([S] x
R>0)¥ and the sampler s targets a [I']-labelled measure P : [I'] — P([S])
when e[gj o [s] = P. Since we now have dependent types, our denotational
semantics takes place in slice categories CG | [¢] instead of CG, and we must

therefore adapt the definition of targeting to the indexed setting.

For a topological space X, we extend the functor P from Top to Top | X
by working fibre-wise. Given p: Y — X, define

PX(p) 2 [TPe (@) — 1 - X);

zeX

142 Chapter 4. Stochastic process samplers

the coproduct is taken in Top | X, and p~!(z) C X is the fibre at z with the
induced topology (in particular, it is closed whenever X is Hausdorff). The
functor is defined on morphisms in the obvious way via fibre-wise pushforwards,
and P is defined analogously. With the notation we used to define the termi-
nal coalgebra interpreting sampler types, we can define for each Top] X-object
p: Y — X the X-indexed-empirical transformation 8;(cvFY — PYY
as the map
. . no weby, o .
6;(((3/1, wy), (Y2, wa),...) = " (7}1_{1010 2 Elewn) e
in, (L) else

where x = p((yy, wy)n) is the common index of all samples (by construction of

vFY), thus defining a Top | X-morphism.

With this is place we can formalise our indexed version of targeting.
Given a sampler ¢;T' F s : LT and a [¢; ']-labelled measure P : [¢;T] —
Pl [¢ - T : Type], we say that s targets P, notation ¢;I' F s ~» P, if
&?%%]]] o[s] = P (as Top { [¢]-morphisms this time).

Example 4.3.1. Let s be a closed sampler - s : ES, [s] € ([S] x Rx¢)¥, and

consider the dependently typed sampler
n:N; 0 F s":ZVec,(S)
whose interpretation is given by the commutative CG-triangle

N s TI(I8]" x Rso)®

neN

N
with [s"](n) = (([s](1),...,[s](n)), ([s](n+1),...,[s](2n)),...). An

[n:N; 0]-labelled measure P : 1 — PN[n:NkVec,(S): Type] is given by a

idy

commutative CG-triangle

4.3. Verification 143

N F > 11T PIs]”

neN

A (P)—~n

It now follows that the dependently-typed sampler targets P, i.e. n : N F s" :
Vec,(S) ~ P, iff, for alln € N,

N

EI[ES]]” ofs](n)=Pn)=P1)®...® P(1);

that s, iff the sampler s is n-equidistributed with respect to the probability
measure P(1) for all n € N. (Recall from section 3.3.2 that this condition

holds in the event that the sampler is weak-mizing.)

By working fibre-wise like in Example 4.3.1, the targeting calculus of the
previous chapter (given in fig. 3.6) and its underlying proofs carry over to
our current setting with no changes, other than the fact that the types (e.g.

Vec,(S)) can now be dependent on an indexing context.

4.3.3 Constructing stochastic processes

Consider a stochastic process sampler - s : Marginal(T,S). (We assume a
closed term for simplicity’s sake; everything that follows extends easily to
a sampler-in-context, but the notation becomes unnecessarily burdensome.)
This is the type which all samplers for [T]-indexed, [S]-valued stochastic pro-
cesses inhabit — and yet most programs of this type do not sample from any
stochastic process. To argue that a particular sampler s does, we must show

that taking samples obeys
n:N;t:Vec,(T) F s(n)(t) : £ (Vec,(S)) ~ P (4.2)
for a [n : N;t : Vec,(T)]-labelled measure

P :n:N;t:Vec,(T)] = P"[n: N Vec,(S) : Type] (4.3)

144 Chapter 4. Stochastic process samplers

which corresponds to the marginals of the desired process.

When conditions eq. (4.2) and eq. (4.3) are satisfied, and eq. (4.3) are
the finite-dimensional marginals of a stochastic process with law v, we write
F s :Marginal(T,S) 5 v, and we say that s targets the stochastic process

with law v.

As we discussed in section 2.8, s *» v iff the targeted marginals satisfy
either the consistency conditions of Kolmogorov’s extension theorem, or the
projective limit conditions of Bochner’s theorem. Note that there is nothing in
the definition of the type Marginal(T,S) which guarantees these consistency
conditions: in order to capture these type-theoretically, our system would
need to contain something like “projective limit types”. We choose instead to
isolate the programs of type Marginal(T,S) which sample from a stochastic
process using a meta-theoretical verification (targeting) calculus, like that in

the previous chapter.

To enforce the consistency conditions between marginal samplers, we use
the construction of processes via Bochner’s theorem, and in particular its en-
coding of Kolmogorov’s extension theorem. Recall that Bochner’s theorem

constructs [T]-indexed, [S]-valued processes via
m, PUS, = Po(lgnt Sy) = POST). (4.4)

where the directed set (I, <) is defined by I = J, [T]" and for every ¢t =
(t1,... tm) and t' = (¢,,...,t"), t <t whenever {t1,... .t} C {t|,...,t\}.
Every pair ¢t < ¢’ defines an injection i,y : m — n mapping the position of
each t; in the tuple ¢ to its position in the tuple #’. The projective system
(St)ter is now defined as [S], = [S]" and for 74 : [S]" — [S]™, (s1,...,8n) —>

<Sit,t’(1)’ e Siy (m))-

Note that the indexing set I of the projective system is precisely the carrier

of [n:NF Vec,(T) : Type]. This means that we can extract from eq. (4.3) a

4.3. Verification 145

sequence
(P)eer where P, = 5?51]" o[s[(n)(t) by eq. (4.2)

This sequence defines a process v € PO([s]™) = Jim, PUIS], if for all ¢ <t

the following consistency condition holds:
Pt’ = Pﬂ't,tl (Pt) . (45)

Writing m, : lim, PU[s], — P°[S], for the obvious projections, this gives

us our first introduction rule for the stochastic process targeting calculus.

eq. (4.2),eq. (4.5) hold, P, = Pmw
- s : Marginal(T,8) = v t t (4.6)

That this rule is sound follows from Bochner’s theorem.

Remark 4.3.2. [t is the use of dependent types in our language which makes
this construction rule semantically natural and easy to present. The projective
system of measures (Py)ier, exactly what is required to construct a stochastic
process, is obtained easily thanks to the presence of the type Marginal(T,S) in
our language. This pleads strongly in favour of dependently-typed probabilistic

languages when dealing with stochastic processes.

Remark 4.3.3. The way in which a family of marginal samplers s ‘targets’ the
law 1 of a stochastic process is formally unlike the notion of targeting discussed
in chapter 3, in that p is a measure on a product algebra [S] [l for some types
S, T, but s is not a sampler on the function type T (S — T). Nevertheless,
there is a sense in which the two notions of targeting are related. If an S-
valued sampler s targets the probability distribution u, then s can compute the
expectations under p of all continuous bounded functions f : [S] — R; if the
marginal samplers s target the law p, then s can compute the expectations
under p of all continuous bounded functionals f : [[S]]m — R which factor

through a finitary evaluation functional ev, : [S]™ — [S]" for some t € [T]".

146 Chapter 4. Stochastic process samplers

Example 4.3.4 (White noise). Let WhiteNoise : LS — Marginal(T,S) rep-

resent the function
$:LZSF A :N.\:Vec,(T).s" : Marginal(T, S).

and fix a closed sampler = s : ©S. Recall first from Example 4.5.1 that, in
order for eq. (4.2) to hold for WhiteNoise(s)(n)(t), it must be the case that
P,=P®...® P, the n-fold product of a fized probability measure P, and that
the sampler s 1s n-equidistributed.

Since each Py is the product of a fixed univariate distribution P, the consis-
tency condition eq. (4.5) follows almost immediately (from the commutativity
of multiplication on the reals). Assuming that s is n-equidistributed for each
n € N, we can apply the introduction rule eq. (4.6) to show - WhiteNoise(s) :
Marginal(T,S) X5 v, where v is the white noise process defined by the univari-

ate probability measure P = SFS]] o WhiteNoise(s)(1)(t).

Example 4.3.5 (Gaussian process). For an arbitrary Gaussian process (see
section 2.8) on R with mean function p : T — R and covariance kernel k :
T x T — R", which together make up the context T', the desired marginals P

are explicitly given by

plt) | |6t t) - k()
P(p, k) (n)(t1,...,ty) =N : , : : :
M(tn) K(tm tl) o "i(tm tn)

That is, each marginal ws a Gaussian distribution whose mean is given by ap-
plying p to (t1,...,t,), and whose covariance is the Gram matriz obtained
by applying the kernel k to (ti,...,t,). In order for the above marginals
to be well-defined, we must assume that k s a positive-definite kernel, i.e.
that these Gram matrices are positive-definite for all ty,...,t, € [T]. That
these marginals obey the consistency conditions of eq. (4.5) follows immedi-

ately from a well-known property of the Gaussian distribution: for any linear

4.3. Verification 147

A:R™ - R", if v ~ N(u,X), then Az ~ N(Au, ALAT). Therefore, writing a
program which samples from the finite-dimensional marginals of an arbitrary
Gaussian process is immediate, provided that one can sample from a multi-
variate Gaussian distribution with arbitrary mean and covariance.

Such samplers are easily implemented using standard techniques. It follows
from the aforementioned property of Gaussians that, if z = (z1, ..., z,) where
z; ~ N(0,1) are i.i.d., the variable i+ Lz is distributed as N(u, LLT). Given a
positive-definite 3, the unique lower-triangular L such that LLT =¥ is known
as its Cholesky decomposition. Assume that functions cholesky, matvec, and
vadd have been implemented, which, respectively, compute the Cholesky decom-
position, multiply a matriz by a vector, and add two vectors'; listing 4.11 uses
these to define MVN, a family of samplers for arbitrary multivariate Gaussian

distributions, given a Gaussian sampler s : LR.

As:ZR . An:N . A(u,X):Vecn(R) X Mat,,xn(R) .
map (\z : Vec, (R)
vadd(n)(p,matvec(n,n)(cholesky(n)(X),z2)),s™)
: ZR— (In:N.Vec,(R) X Mat, «,(R) = ZVec,(R))

Listing 4.11: Definition of MVN

To show the validity of this family of samplers in a context I is to demon-

strate the truth of the implication:

n:N; 'Fs":Z(@R") ~N(0O,1)" n:N;T'Fpu:Vec,(R) n:N; I'X:Mat,x,(R)

n:N; I'FMUN(s)(p,) : Z(Vec,(R)) ~ N(u, X)
(4.7)
That is, on the assumption that the sampler s is n-equidistributed with respect
to a standard Gaussian distribution, it follows that MVN generates a sample
from the desired Gaussian distribution.

As wverifying eq. (4.7) falls more under the purview of verifying linear

1Simple implementations of matvec and vadd are given in section 4.3.1. We eschew
an implementation of cholesky here, as its implementation is fairly wordy, and is most
naturally given recursively, which would require additional language features. Our primary
aim here is the verification of stochastic process samplers, not of linear algebra.

148 Chapter 4. Stochastic process samplers

algebra (in particular, the validity of the Cholesky decomposition and of matriz-

vector multiplication) than verifying sampling, we do not focus on it here.

By applying the function MVN to a suitable Gaussian sampler s : LR, list-
g 4.12 quickly constructs a Gaussian process sampler for arbitrary mean func-

tion 1 and covariance kernel k.

As:ZR . A(p,k): (T—R)x (TXT—R") .
An:N . At:Vec,(T) .
let mean = vec(n)(Ai:N . p(get(n)(i,t))) in
let cov = mat(n,n)(A(4,j) :NXN .
wget(n)(it), get(m)(j,t) in
MVN(s)(n)(mean, cov)
: ZR— ((T—R) x (T x T —R")) = Marginal(T,R)

Listing 4.12: Definition of GaussianProcess

Applying eq. (4.7) in this case, assuming that its premises hold, gives
n:N; I' - MVN(s)(mean, cov) : L (Vec,(R)) ~» N([mean], [cov]). Therefore,

provided only that (in context)

(1) Kt t) o K(t)

[mean] = I [cov] = : : ;

(tn) K(tn,t1) -0 K(tn, tn)

it follows that, writing GaussianProcess for listing 4.12,
n: N;T' - GaussianProcess(s)(u, k) (n)(t) ~ P(u, k,n)(t)

with P(u, k)(n)(t) as defined above. Finally, as eq. (4.5) holds for this system

of probability measures, the introduction rule eq. (4.6) gives us

It GaussianProcess(s)(u, k) v GP(u, k).

4.3. Verification 149

: —— eq. (4.2),eq. (4.5) hold, P, = Pmv
F s:Marginal(T,S) ~~ v

¢; Tk s~t:Marginal(T,S) ¢; I'F s:Marginal(T,S) %= u
¢; Tt :Marginal(T,S) > p

¢; Tk s:Marginal(T,8) v ¢; T f:8—>¢
¢ ; T+ spmap(f, s) : Marginal(T,8') ~ v — (u = [f] () o w).v(7)

¢ ; Fl—s:Marginal(T,S)iiy ¢;TFHf:8S—=RT ¢ TFHt:T
¢ ; '+ spreweight(f,t,s) : Marginal(T,8) > v — (Au. [f] (7)(u([t] ()))) - »(7)

T Note the side condition [[f] (v)(w([t] (7)))dv(v) € (0, 00).

Figure 4.6: Rules for stochastic process targeting.

4.3.4 Transforming stochastic processes

We consider two important transformations Marginal(T, S) — Marginal(T,S’)
between stochastic process samplers. They are the infinite-dimensional coun-
terparts of the map and reweight operations on samplers.

We start by defining spmap, the stochastic process version of map, in list-
ing 4.13. Given f : 8 — &/, it applies f separately and element-wise to each
dimension of the marginals produced by s. For example, in the event that
S=RxR,8 =R, and f:R X R — R is addition, spmap(f, s) essentially inputs
a R%-valued stochastic process (sampler) and outputs a R-valued stochastic

process (sampler) by adding the two dimensions.

A(f,8): (8 = 8') x Marginal(T,S) . An:N . At :Vec,(T) .
map(Av : Vec,(S) . vec(n)(Ni:N . f(get(n)(i,v))),s(n)(t))
(8 — 8') x Marginal(T,S) — Marginal(T,S’)

Listing 4.13: Definition of spmap

The rule for spmap found in fig. 4.6 shows that stochastic process targeting
can be pushed through spmap.

Theorem 4.3.6. The rule for spmap is sound.

Proof of soundness for spmap rule. Let m = m;y be any projection-permutation

150 Chapter 4. Stochastic process samplers

composition as described in section 4.3.3. The proof hinges on proving the

commutativity of the following diagram.

Vec,(T) = > Vec,,(T)
s(n) s(m)
LVec,(S) LVec,,(S)
E[S]]"
\ ‘%n
map(/™) Ps]" —2= P[s]™ nap(/™)
LVec,(s) P P LVec,, ()

Eﬂslﬂn
\ %m

PIST 2= PIST"

The left- and right-most vertical paths select the marginal distributions
targeted by the sampler spmap(f,s). Therefore, if it can be shown that this
diagram commutes, then it follows that eq. (4.5) holds, and so that spmap(f, s)
targets a valid stochastic process.

The top hexagon commutes by assumption: we assume that s tar-
gets a valid stochastic process. The right- and left-bottom faces commute
by the pushforward, i.e. map, rule of fig. 3.6. Finally, the middle bottom
square commutes because 7 is a projection-permutation composition, and thus
mo f* = f™om, which is preserved by functoriality of P. Therefore, spmap is

sound. =

This rule allows use to modify a valid stochastic sampler (and products
thereof), in any arbitrary pointwise way, and recover another valid stochastic
sampler.

The next transformation rule is crucial for implementing Bayesian condi-
tioning on sampled values from stochastic processes; it is the stochastic process
counterpart of the reweight rule for standard samplers. The transformation
listing 4.14 reweights a stochastic process sampler s : Marginal(T,S) depend-
ing on the value of its marginals at a given point ¢y, using a given reweighting

function f. For example, in the event that f is a Gaussian density with lo-

4.3. Verification 151

cation y and scale o2

, and s targets the stochastic process X(t), listing 4.14
constructs, using importance sampling, a sampler which targets the posterior
process conditioned on the noisy observation y | X(ty) ~ N(X(to),0?). The

simple vector operations take and cons are defined in section 4.3.1.

Ato, f,8) : Tx (S— RT) x Marginal(T,S) . An:N . M :Vec,(T).
map (At : Vec,y1(S) . take(n+1)(n,t),
reweight (At : Vecp41(S) . f(get(n+1)(n+ 1,t)),
s(n+1)(cons (n)(t, o))
Tx(S— RT) x Marginal(T,S) — Marginal(T,S)

Listing 4.14: Definition of spreweight

The rule associated with spreweight is given in fig. 4.6.
Theorem 4.3.7. The rule for spreweight is sound.

Proof of soundness for spreweight rule. Let @ = mp, be any projection-
permutation composition as described in section 4.3.3. The proof hinges on

proving the commutativity of the following diagram.

Vec,(T) = > Vec,,(T)
(t15eeestn)= (t15eeestnyto) (t15eeestm)= (1,0 tm,t0)
Vec,+1(T) rxid > Vec,11(T)
s(n+1) s(m+1)
LVec,1(8S) LVec,,11(8S)
‘It
\ Aﬁ
rewveight(f) P [[S]]n+1 M) P [[S]]m+1 rewveight(f)
LVec,11(S) f= f= LVec,,11(S)
rs1mtt
\ < < m*l
map(mn41,n) P [[S]]n—H M) P [[S]]m+1 map (T +1,m)
Py
~ / \ ~
Z VeCn(S) 7)7Tn+l,n ,P7Tm+1,m Z Vecm(S)
8[3]]77,
\ ~ ~ A

Ps]” —2=— P[s]™

152 Chapter 4. Stochastic process samplers

As in the proof of validity of spmap, the left- and right-most vertical paths
select the marginal distributions of the sampler targeted by spreweight(f,s).
To show the commutativity of this diagram is to show eq. (4.5), and thus to
show that spreweight(f, s) targets a valid stochastic process.

The bottom trapezium commutes by the map, i.e. pushforward, rule, as do
the bottom face involving the projection 41, (t1, ..., tntns1) = (L1, .., 1)
and the bottom face involving the projection m,,11,,. The bottom middle face
commutes trivially by definition of the maps involved and the functoriality
of P. The middle square involving the operation f.— commutes trivially by
definition of the reweighting function (which only involves f(¢y)), and the two
faces on either side commute by the reweight rule. Finally, the top hexagon
commutes because s defines a valid sampler and because 7 X id is a projection-
permutation composition and the top diagram commutes trivially by definition.

Therefore, spreweight is sound. O

By chaining several applications of this rule it is possible to prove that
conditioning, say a Gaussian process (constructed in Example 4.3.5) on any
finite number of observations produces a valid stochastic process implementing
a posterior distribution. This kind of construction is central to non-parametric

Bayesian techniques in probabilistic programming languages.

Example 4.3.8 (Wiener process conditioning). For a simple example of con-
ditioning a stochastic process, consider the Wiener process W (t), which is the
R-valued, RY-indexed Gaussian process with mean function u(t) = 0 and co-
variance function k(t,t') = min(¢,t’). Listing 4.15 first constructs this Gaus-
stan process, building on Example 4.3.5, and then conditions on noisy obser-
vations y, ~ N(W(1),0?) and yo ~ N(W(2),0?), for some noise level o. This
returns another stochastic process on R, conditioned on having approximately

W(1) =y, W(2) = yo (for sufficiently small observation noise o2, that is).

Example 4.3.9 (Products of stochastic processes). In the previous chapter,
we defined a natural product @ of samplers, and noted that product samplers

s®s' jointly targeting a product measure P x P’ is a strictly stronger condition

4.3. Verification 153

As: LR .
let w4 = A:R . 0 in
let k At,t'):RXR . min(¢,¢') in
let W = GaussianProcess(s) (u, k) in
let f = Azx,y:R . 1/(2xm*o*x*2) *x exp(-0.5*%(y-z)*%*2) in
spreweight (\xz:R . f(x,y2), 2,
spreweight (\z:R . f(x,y1), 1, W))
: LR — Marginal(R*,R)

Listing 4.15: Wiener process: noisy observation

than s targeting P and s’ targeting P" separately. A similar result applies in the
case of stochastic process samplers. Given two S-valued, T-indexed stochastic
process samplers s : Marginal(T,S), s : Marginal(T,S’), define their product

spprod(s, s') : Marginal(T,S x §') as given in listing 4.16.

A(s,s") : Marginal(T, S) x Marginal(T,S’)
At : Vec, (T)
map (A(z,y) : Vec,(S) x Vec,(8)
vec(n) (Mi:N . (get(n)(i,z), get(n)(i,y)),
s(n)(t) @ s'(n)(t)))
: Marginal(T,S) x Marginal(T,S’) — Marginal(T,S x §’)

Listing 4.16: Definition of spprod

By a straightforward application of the equivalence rules of fig. 3.5 and
fig. 4.5, it can be verified that

¢; T+ spmap(£fst, spprod(s,s’)) ~ s : Marginal(T, S)
and likewise
¢; ' spmap(snd, spprod(s, s’)) ~ s’ : Marginal(T,s’).

As a result, applying the equivalence and spmap rules from fig. 4.6, it follows

that
¢; T+ spprod(s, s') > v

6T F 5%y o (w mou).u()

154 Chapter 4. Stochastic process samplers

and)
¢: T I spprod(s, s') ~» v

HiTF s Sy (um w0 u)u(y)

though the converse clearly does not hold.
One might also define the sum of two real-valued stochastic processes,

spsum, as in listing 4.17.

A(s,s’) : Marginal(T,R) x Marginal(T,R)
spmap (A(z,y) :RXR . x4y,
spprod (s,s'))
: Marginal(T,R) x Marginal(T,R) — Marginal(T,R)

Listing 4.17: Definition of spsum

The above rules for transforming stochastic process samplers are far
from complete?, and might be extended with a number of transformations on
stochastic processes seen in the literature. More interestingly, though, rules of
this sort can only contain at most a subset of the transformations on stochastic
processes often considered: those which can be expressed in terms of transfor-
mations on the process’ marginals. The literature does contain a number of
transformations which cannot: for example, given an almost surely continuous
stochastic process X (t) € R, consider the stochastic process Y'(t) = f(f X(s)ds;
while the finite-dimensional marginals of Y (t) can be approzimately expressed

in terms of those of X (t), a precise expression is impossible.

2Completeness is not reasonable to expect in this setting for the same reasons discussed
in the previous chapter; see Remark 3.3.11.

Chapter 5

Discussion

Contributions. In this thesis, we introduced a probabilistic programming
language for reasoning about sampling tasks, featuring deterministic seman-
tics. We presented an operational and denotational semantics in this setting,
and showed an adequacy result relating them. We gave an effective system for
simplifying samplers using equivalence rules. We introduced a targeting cal-
culus that relates these samplers to the measures that they target, and which
includes rules corresponding to the most common techniques for construct-
ing samplers. We then broadened this language to include dependent types,
completely reworking its denotational semantics, in order to discuss families of
samplers which target the marginals of a stochastic process. Finally, we devel-
oped an analogous targeting calculus for reasoning about systems of samplers

which target (the marginal distributions of) a stochastic process.

This thesis aimed to, by weaving together advancements which have been
made in a number of fields since von Neumann’s oft-quoted remark about
pseudorandom number generation, present a formal theory of sampling, sam-
plers, and their verification. We draw inspiration and techniques from fields
that were either nascent or nonexistent at the dawn of computing, including in
particular the modern fields of formal semantics and verification, to progress

towards this goal.

In the few pages that remain, we situate our approach within a few ad-

jacent and overlapping fields of study, compare and contrast with a few other

156 Chapter 5. Discussion

approaches to formal sampler verification, and discuss natural extensions of

this work.

5.1 Related work

Trace semantics. Trace semantics, introduced in [10] and further developed
in [54, 55, 56], give probabilistic programs an essentially deterministic opera-
tional semantics. Each built-in distribution is paired with an infinite sequence
of samples. When a sample for each distribution is requested, the head of this
sequence is popped and used in the computation, and the tail of the sequence

retained for further sampling.

Trace semantics is philosophically in line with our approach to semantics,
but we do not assume that samples are ‘pre-generated’ in this fashion. In-
stead, we introduce samplers as first-class objects, and include the process of
(pseudo-)random number generation within our language. We do this in order
to address what we see as two problems with the standard trace semantics

approach.

First, the assumption that all random quantities are generated ahead-
of-time, while mathematically convenient, is not realistic and is incompatible
with pseudorandom generation of random variables. This issue exposes a gap
between an operational semantics based on trace semantics and a denota-
tional semantics based on probability measures (or similar algebraic objects).
For a simple example, consider a sequence of samples (zg,z1,...) produced
by iterating a computable function z, 11 = T(x,), and consider the program
T'(sample()) — sample(). Under a reasonable denotational semantics, this
program would map to a nontrivial probability measure, and yet under our
operational semantics, it always evaluates to zero. In order to rule out the
possibility of such adversarial programs, one must assume that the sequence
(0,1, ...) is Martin-Lof random |57] — though unfortunately, all Martin-Lof
random sequences are uncomputable. We instead allow pseudorandom number

generation under far weaker conditions that Martin-Lof randomness, and so

5.1. Related work 157

obtain adequacy between our operational and denotational semantics.

Second, we find the fact that trace semantics models the operation of sam-
pling as inherently effectful to be problematic for verification. Our primary
interest in verification is enabling techniques which construct samplers in a
compositional manner, building more complex samplers from simpler ones. If
two samplers cannot be soundly composed together in this manner to yield a
valid sampler, we would prefer to model this as a fact about those samplers
rather than a fact about the state of the machine. To that end, we introduce a
type representing samplers, and we model the operation of our samplers with-
out side effects, so that their verification can be undertaken with no reference

to state.

Denotational semantics. As alluded to earlier, [10] presented a semantics
for an imperative probabilistic programming language, though this approach
does not immediately extend to a higher-order setting due to Remark 2.1.7.
Subsequent approaches on denotational semantics for probabilistic program-
ming languages have incorporated continuous distributions and higher-order
functions in particular, by, essentially, replacing the probability measure with
a more general algebraic object. More concretely, a denotational universe of
types is chosen (ideally one with nice structure, e.g. a Cartesian closed cate-
gory), and an equivalent to the Giry monad constructed within that category

— thereby generalising the notion of ‘measure’ and ‘measurable space’.

In particular, [12] chooses as its types countable-product-preserving
presheaves using a Yoneda embedding, and lifts the Giry monad to its left
Kan extension, a monad on these presheaves; relatedly, Quasi-Borel space
semantics [21] replace measurable spaces with quasi-Borel spaces, and [13] ex-
tends this approach to include recursion. [14] instead constructs a Giry monad
over regular ordered Banach spaces, while [58| instead considers the category

of complete cones.

Our approach differs substantially from these approaches in that our se-

mantics is deterministic: the semantics of a probabilistic program is an infinite

158 Chapter 5. Discussion

stream of samples. These streams are related to measures in a natural way,
by what we call the ‘empirical transformation’ (see section 3.3.1), but they are
sufficiently algebraically different from measures that a concern analogous to
Remark 2.1.7 does not arise. (Instead it is continuity that we must be careful

about; see section 3.1.3.)

Markov chain semantics. Markov chain semantics [59, 60, 61, 62, 63, 64, 65|
are primarily applied to probabilistic A-calculi to model the probability (or
probability density) of a probabilistic program evaluating to a particular value.
These are, from our perspective, closer to a denotational semantics than an
operational semantics — unless a trace of generated samples is included within

the semantics, in which case they are similar to trace semantics.

Pseudorandom number generation, quasi-Monte Carlo, and deran-
domisation. While we do not meaningfully contribute to the field of pseu-
dorandom number generation, we draw motivation and terminology from it.
The concept of k-equidistribution [40, 41, 42| is particularly important in the
development of our targeting calculus.

We will also briefly acknowledge that our work is not intended to mean-
ingfully contribute to the array of derandomised approaches for producing ‘op-
timal’ samples targeting a certain distribution by deterministic means, such as
quasi-Monte Carlo [43, 44| and kernel herding [66]. While such methods can
certainly be used to create samplers in our language to the extent that they
possess the relevant convergence criteria (though see the remarks in section 5.2
about goodness-of-fit for a discussion of using convergence criteria other than
weak convergence), devising new methods for generating ‘optimal’ samples is

not the direction of our research.

Algorithmic randomness. Similarly, we are inspired by the study of al-
gorithmic randomness, but we make no meaningful contributions to it. The
concept of Martin-Lof randomness [57], as well as Schnorr’s reformulation [67]
and Hoyrup’s recent generalisation to arbitrary metric spaces [68], guided our

thinking and pushed us towards requiring weaker statistical guarantees for our

5.1. Related work 159
samplers.

Quantum computation. Our discussion of sampling and samplers is purely
classical. Quantum methods can certainly be used to produce high-quality
‘true’ random numbers [69], and incorporated into our targeting calculus as
axioms, as shown in fig. 3.6. Naively, one would expect that random num-
bers produced by quantum measurement for classical usage would have good

statistical properties, such as k-equidistribution for all k.

Verifying statistical properties of probabilistic programs. A wide lit-
erature exists on an array of verification tasks involving probabilistic program-
ming languages. However, the primary type of verification task that we are
interested in is verifying that the outputs of probabilistic programs have certain
statistical properties, such as being distributed (asymptotically or otherwise)
according to a desired distribution — for the purpose of verifying implemen-
tations of sampling techniques such as importance and rejection sampling.

Particularly important comparisons include [56] and [70].

In [56], a sampling language is constructed in which the denotation of a
sampler consists of a sampling function, i.e. a mapping from a countable num-
ber of uniform random variables specifying a means by which countably many
uniform samples might be transformed into samples from the desired distri-
bution. This enables the compositional verification of samplers, assuming, as
in the case of trace semantics, an inexhaustible source of independent uniform
random numbers. As was extensively discussed in chapter 3, our approach dif-
fers from this approach in that we allow for pseudorandom number generation,
and explicitly keep track of the independence guarantees necessary in order to

obtain weak convergence.

[70] is perhaps the most directly focused on verifying the correctness of
statistical inference (in particular, Bayesian inference). This thesis models
the inference process as a program transformation which inputs an intractable
specification of a posterior distribution and outputs a tractable approxima-

tion to it (e.g. via one of many Monte Carlo sampling techniques, such as

160 Chapter 5. Discussion

sequential Monte Carlo). The semantics is set in the category of quasi-Borel
spaces, and sampling is described as a monadic operation. While, like the
previous approaches, this differs significantly from our semantics of sampling,
and [70| focuses primarily on justifying Bayesian inference, our aims — to con-
struct languages in which certain sampling techniques are easily seen to be

compositionally valid — are very similar.

Finally, our approach to constructing and verifying stochastic process sam-
plers is informed by the design of probabilistic programming languages. These
languages have implemented stochastic process samplers since the develop-
ment of some of the earliest higher-order probabilistic programming languages
[48, 46], particularly to enable nonparametric Bayesian inference. (Indeed, it
is a clear demonstration of the utility of the higher-order probabilistic pro-

gramming language that it is natively capable of this.)

Most of the literature on stochastic process samplers focuses on their
implementation and on applications to Bayesian nonparametrics, rather than
focusing on stochastic processes as a datatype and on verification. A recent
exception is [11], which implements stochastic processes lazily and recursively;

our approach differs in that our language is higher-order but without recursion.

5.2 Further work

We conclude this thesis by listing a few potential avenues for extending the
work we have presented here, along with some preliminary ideas on how one

might proceed.

Recursion. In Remark 3.1.1, we discussed the reasons for our language’s lack
of explicit recursion. There, we hinted at the difficulty involved in formalising
a general notion of ‘recursive sampler’ that lends itself to verification, and we
asserted that these samplers can in fact be specified in our language without

adding any additional features. Here we will expand on those remarks.

As discussed previously, incorporating unrestricted recursion certainly

does not serve our purposes. Our aim is to construct programming languages

5.2. Further work 161

in which the construction of a sampler quickly provides its verification, by in-
corporating rules in our targeting calculus for each sampling technique used in
constructing a sampler. Verifying probabilistic properties of samples produced
by unrestricted recursive procedures is clearly intractable in general, so no such
rule is possible. Moreover, the vast majority of these recursive procedures are
meaningless from a probabilistic perspective. If recursion were to be allowed,
it would have to be a heavily restricted type of recursion that lends itself to

verification.

As far as we are aware, a general characterisation of the notion of ‘recursive
sampler’ that lends itself to verification does not exist. Consider, for example,
the particular case of the recursive geometric sampler, which generates samples
from the geometric distribution with parameter p as follows. Initialise n, the
number of trials, at zero; at each step, flip a biased coin with probability p
of landing heads; if that coin lands tails, then increment n and flip another
coin; if that coin lands heads, then return n. This sampler is a recursive
procedure that incorporates a changing state, the number of trials n, and yet
its treatment of this state is quite constrained. A notion of ‘recursive sampler’
should generalise this type of sampler with internal state in a way that makes

general-purpose verification feasible.

One might naturally define a ‘recursive sampler’, or at least a family of
them, as essentially a while-loop which includes an internal state z;, initialised
to z1, as follows. At each step, generate a sample x; ~ () from some fixed dis-
tribution @ on X; if the condition w(z;, x;) is false, halt and returns a function
of the internal state g(z;); if the condition is true, then update the internal
state z;41 = f(z;,2;) and loop. This procedure clearly includes our previous
geometric sampler as a special case, and it is amenable to standard probabilis-
tic analysis: provided that f,w,g are measurable and that this procedure’s
stopping time is almost surely finite, inductive strategies for proving that the
return values y = g(z;) are distributed according to some target P are natural

(which is not to say they are easy).

162 Chapter 5. Discussion

The deterministic verification of such samplers is more challenging, but al-
most obtainable: we must show that, subject to the assumption that a sampler
s which generates our samples x; and targets () is infinitely equidistributed,
ie. Vn,s" ~ Q", the samples y = g(z;) generated upon halting w(z;, z;) = 0
target a desired probability measure P. Some ideas of how this might be ac-
complished follow. Summing over halting times 7, this is the requirement that

for any bounded continuous f,

/ f(y)dP(y Z 9(zr(1:7-1) [Hw zi(21:-1 xz)] (1 —w(zr(z1:7-1), 27)) Q7 (21:7)

where we abbreviate zo(z1) = f(z1,21), z3(x12) = f(z(x1),22) =
f(f(z1,21),22), and so on. Expanding these integrals over X7 to common
integrals over X“ and pulling the sum inwards, provided this can be justified,
gives a more standard integral [, f(y) = [y ¢(T1.00) dQ¥(1.00) Where
the form of ¢ follows. Unfortunately, the while loop w(z;, x;) involved ensures
that this function ¢ is certainly not continuous, which means that we would
have to keep track of the discontinuities that it imposes during our verification

task — which seems challenging.

We didn’t pursue this direction because, as noted in Remark 3.1.1, sam-
plers can typically be implemented in a non-recursive manner — but verifying a
subset of recursive samplers by construction, and adding a corresponding rule

to our targeting calculus, would be a natural next step.

Finally, note that our language already contains the ability to implement
such recursive samplers by making somewhat unusual use of its existing lan-
guage features. For example, given an unweighted sampler s : LB targeting a
Bernoulli distribution with success probability p, and with sufficient equidis-
tribution properties, listing 5.1 implements the recursive geometric sampler

mentioned above.

This sampler increments a counter after every False sample from s, and
resets the counter after True is drawn. After each sample is taken, the first

element of the sampler s is popped. Intermediate samples in which False is

5.2. Further work 163

map (A(b,s,7) : BXIBXN . i,
reweight (A(b,s,4) : BXIBXN . if b then 1 else O,
prng (A(b,s,i) : BXIBXN .
(hd(s), tl(s), if b then 1 else i + 1),
(False, s, 0)))) : IN

Listing 5.1: Recursive geometric sampler

drawn are assigned weight zero, and the internal variables b and s dropped,
yielding a geometric sampler on the natural numbers.

Of course, our targeting calculus cannot be directly used to prove the
convergence of this sampler, as it is not immediately clear to the author how to
show that this use of prng, which produces a sampler of type I (BXZBxN), gives
a well-defined ergodic system. Nevertheless, it demonstrates that recursive

samplers can be implemented with no additional language features.

Markov chain Monte Carlo. As in the case of recursion, basic Metropolis-
Hastings samplers can be implemented in our sampling language via highly
nonstandard use of the construct prng. For example, listing 5.2 implements a
sketch of a symmetric Metropolis sampler on the real numbers with proposal

q, targeting the (unnormalised) density p.

map(Az : T. fst(cast{(RXIRxXZIRT)(z)),
prog (A(z,q,u) : T
let 2/ = x + hd(q) in
let a = p(z’') / p(x) in
let accept = hd(u) < a in
if accept then
(', t1(q), t1(u))
else
(z, t1(g), tl(w)),
(z1, g, w)))
: LR

Listing 5.2: Random-walk Metropolis sampling

Note first that the continuity conditions necessary to verify listing 5.2, i.e.
the form of the subtype T<RXZRXER™, will be quite complex. Next, while this
procedure uses standard operations in our language, it is not immediately clear
to the author whether uses of prng like the above, which define a dynamical

system over samplers, can straightforwardly be shown to be ergodic, and so

164 Chapter 5. Discussion

whether it is possible to argue naturally using our targeting calculus that they
give asymptotically valid samples. That studying these dynamical systems
over samplers would yield a tractable way in which to port the standard proof
of convergence of the Metropolis-Hastings algorithm to a deterministic setting

was not clear to the author.

Sequential Monte Carlo. Sequential Monte Carlo is perhaps a less natu-
ral fit for our framework. While a sketch can easily be implemented using
our vector operations, the discontinuities usually present in resampling will
pose challenges. Resampling, in our setting, can be understood as an oper-
ation resample : IIn : N . Vec,(£X) X IRT — Vec,(ZX), inputting n
weighted samplers of type X and a (typically) unweighted uniform sampler,
and outputting (typically) unweighted samplers of type X. As this operation
transforms the samples and weights of its input samplers jointly in a unique
manner, it must be implemented as a built-in sampler operation. The chal-
lenge for us in integrating resampling is that standard multinomial resampling
as typically interested is a discontinuous operation, which will complicate its
definition, typing, and verification. Continuity aside, though, demonstrating
a corresponding inference rule for resampling in the style of fig. 3.6 does not

seem to be challenging.

Functional stochastic process samplers. In Remark 4.1.5, we introduced
the possibility of formalising samplers for stochastic processes as samplers of
function type, rather than as systems of marginal samplers. We dismissed that
possibility as not reasonable from a computational perspective, but despite its
impracticality, it is nevertheless a useful perspective to take on stochastic pro-
cess samplers. For example, our operations spmap and spreweight correspond
simply to map and reweight operations on these functional samplers — in the
sense of satisfying a commuting square, completed by the natural projection
map from a functional sampler to the corresponding marginal sampler shown
in listing 4.1. This correspondence hints at the possibility of characterising a

broader class of operations on marginal samplers, as precisely those operations

5.2. Further work 165

which are obtainable as the finite-dimensional equivalents of probabilistically

sensible operations on functional samplers.

Convergence, black-box verification, and goodness of fit. Our target-
ing calculus centres around weak convergence — that is, showing that the sam-
ples produced by our samplers can asymptotically estimate expectations of
any continuous function. We made this choice because weak convergence has
convenient topological properties and, crucially, is guaranteed by most pseu-
dorandom number generators. However, studying convergence with respect to
other metrics, such as uniform convergence over a well-chosen class of functions
(e.g. a kernelised maximum mean discrepancy (MMD) that metrises weak con-
vergence; see [71]) can provide a natural way to link white-box and black-box
verification, using a well-designed one-sample goodness-of-fit test.

Consider the problem of generating samples which target a probability
measure P on the Polish space Z. Choose a space of measurable functions
F C [X,R] equipped with a measure p. Then, choose a p € [1,00], and

consider the (in general extended) pseudometric

(Jr1P(F) = QAP du(f)'" p< oo

ess suprer [P(f) = Q(f) p=00

d(P,Q) =

on the space of measures PX, where P(f) = [, f(x)dP(z). If this class of
functions F and the desired target distribution P jointly have certain prop-
erties studied in empirical process theory (in particular the Glivenko-Cantelli
and Donsker properties; see e.g. [72]), then it follows that d(P, Pn), where
P, = %Z?:l s, is the empirical measure produced by i.i.d. sampling z; ~ P
from the target distribution, converges in probability to zero, with a corre-
sponding central limit theorem. This enables us to compute p-values for the

goodness-of-fit test! under the null hypothesis of ‘perfect sampling’ z; ~ P

!The majority of goodness-of-fit tests used — from the chi-squared test on discrete proba-
bility measures, to the Kolmogorov-Smirnov and Cramer-von Mises tests on measures on R,
to kernelised Stein discrepancies [73] and other kernelised MMDs — arise as special cases of
this construction. The primary examples of tests that are not of this form are tests arising

166 Chapter 5. Discussion

from the target distribution, which can serve as a proxy for a sampler’s black-

box correctness.

However, characterising the convergence of d(P, Pn) under ‘perfect’ i.i.d.
sampling does not necessarily indicate that the outputs of any particular ap-
proximate sampler should be expected to pass the corresponding statistical
test. Justifying the application of goodness-of-fit tests to the outputs of ap-
proximate sampling techniques such as sequential Monte Carlo, Markov chain
Monte Carlo, or even simple importance sampling, appears challenging. (Re-
jection sampling, at least, is straightforward: in general, provided that its
proposal distribution passes goodness-of-fit tests, its returned samples must as
well.) Sensibly applying goodness-of-fit tests to such samplers would require
a proof that the samples produced satisfy a generalised Donsker theorem, i.e.
functional central limit theorem, with respect to a chosen class of test func-
tions — a difficult proposition. The question of when functional central limit
theorems hold for dependent samples is deep and complex; for an overview of

results in this area, see [74].

Regardless of whether goodness-of-fit tests for approximate sampling
techniques can be justified in this manner, though, compositionality is
still not guaranteed. For example, consider the case of an MMD-style
discrepancy, ie. p = oo: knowing that a sampler s produces sam-
ples z, which approximate the target distribution P in the sense that
By o0 SUPper |4 Somy f(20) — [y f(2) dP(x)‘ = 0, does not give a cor-
responding result relating g(x,) to the pushforward g,.(P) unless it is known
that the class F is closed under precomposition by ¢ (and the same applies
to the Donsker property). The natural choice of the 1-Wasserstein distance,
for example, in which case F is the collection of functions with Lipschitz
constant less than 1, makes g(x) = exp(z) and g(x) = 2 inadmissible. Thus,
verification using such a procedure would be far from automatic. A class of

test functions F must be chosen by proceeding backwards from how samples

from f-divergences, such as the Kullback-Leibler divergence.

5.2. Further work 167

from a given sampler will be used, and the assumptions necessary for a gen-
eralised Donsker theorem proven, in order to enable black-box verification of
that sampler. A general-purpose approach like the one taken here, aimed at
producing samplers which are correct by construction under only weak as-
sumptions about their intended usage, may not be possible unless the built-in
functions expressible in the language are heavily restricted (e.g. to Lipschitz

functions only).

Bibliography

1]

2l

4]

[5]

6]

John von Neumann. Various techniques for use in connection with ran-
dom numbers: Notes by G. E. Forsythe, volume 12 of National Bureau
of Standards: Applied Mathematics Series. U. S. Government Printing
Office, 1951.

Roger Eckhardt. Stan Ulam, John von Neumann, and the Monte Carlo
method. Los Alamos Science, 15:131-136, 1987.

Andrew Thomas. BUGS: a statistical modelling package. RTA /BCS Mod-
ular Languages Newsletter, 2:36-38, 1994.

Bob Carpenter, Andrew Gelman, Matthew D Hoffman, Daniel Lee, Ben
Goodrich, Michael Betancourt, Marcus Brubaker, Jigiang Guo, Peter Li,

and Allen Riddell. Stan: A probabilistic programming language. Journal
of statistical software, 76(1), 2017.

David Tolpin, Jan-Willem van de Meent, Hongseok Yang, and Frank
Wood. Design and implementation of probabilistic programming language
Anglican. In Proceedings of the 28th Symposium on the Implementation
and Application of Functional Programming Languages, IFL 2016, New
York, NY, USA, 2016. Association for Computing Machinery.

Vikash Mansinghka, Daniel Selsam, and Yura Perov. Venture: a higher-
order probabilistic programming platform with programmable inference.

arXiw e-prints, page arXiv:1404.0099, March 2014.

170

17l

8]

9]

[10]

[11]

12|

[13]

[14]

Bibliography

Noah Goodman, Vikash Mansinghka, Daniel M Roy, Keith Bonawitz, and
Joshua B Tenenbaum. Church: a language for generative models. arXiv

preprint arXiw:1206.3255, 2012.

David Lunn, Andrew Thomas, Nicky Best, and David Spiegelhalter. Win-
BUGS - a Bayesian modeling framework: Concepts, structure and exten-

sibility. Statistics and Computing, 10:325-337, 10 2000.

Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer,
Neeraj Pradhan, Theofanis Karaletsos, Rohit Singh, Paul A. Szerlip, Paul
Horsfall, and Noah D. Goodman. Pyro: Deep universal probabilistic pro-
gramming. J. Mach. Learn. Res., 20:28:1-28:6, 2019.

Dexter Kozen. Semantics of probabilistic programs. J. Comput. Syst.

Sci., 22(3):328-350, June 1981.

Swaraj Dash, Younesse Kaddar, Hugo Paquet, and Sam Staton. Affine
monads and lazy structures for Bayesian programming. Proc. ACM Pro-

gram. Lang., 7(POPL), jan 2023.

Sam Staton, Frank Wood, Hongseok Yang, Chris Heunen, and Ohad Kam-
mar. Semantics for probabilistic programming: higher-order functions,
continuous distributions, and soft constraints. In Proceedings of the 31st
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS),
pages 1-10. IEEE, 2016.

Matthijs Vakar, Ohad Kammar, and Sam Staton. A domain theory for
statistical probabilistic programming. Proceedings of the ACM on Pro-
gramming Languages, 3(POPL):1-29, 2019.

Fredrik Dahlqvist and Dexter Kozen. Semantics of higher-order probabilis-
tic programs with conditioning. Proceedings of the ACM on Programming

Languages, 4(POPL):1-29, 2019.

[15]

[16]

[17]

18]

[19]

[20]

[21]

22|

23]

[24]

[25]

Bibliography 171

Fredrik Dahlqvist, Alexandra Silva, and William Smith. Deterministic
stream-sampling for probabilistic programming: semantics and verifica-
tion. In 2023 38th Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS), pages 1-13. IEEE, 2023.

Paul R Halmos. Measure theory. Springer, 2013.

Andrey N. Kolmogorov. Foundations of the Theory of Probability. Chelsea
Pub Co, 2 edition, June 1960.

H. Lebesgue. Sur une généralisation de l'intégrale définie. Comptes rendus

de I’Académie des Sciences, 132:1025-1027, 1901.

Alexander S. Kechris. Classical descriptive set theory. Graduate Texts in

Mathematics, 156:1490-1491, 2012.

Robert J. Aumann. Borel structures for function spaces. [llinois Journal

of Mathematics, 5:614-630, 1961.

Chris Heunen, Ohad Kammar, Sam Staton, and Hongseok Yang. A con-
venient category for higher-order probability theory. In 2017 32nd Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1-
12. IEEE, 2017.

M. Capinski and P.E. Kopp. Measure, Integral and Probability. Springer
Undergraduate Mathematics Series. Springer London, 2013.

Walter Rudin. Real and complex analysis, 3rd ed. McGraw-Hill, Inc.,
USA, 1987.

Subhashis Ghosal and Aad van der Vaart. Fundamentals of Nonparamet-
ric Bayesian Inference. Cambridge Series in Statistical and Probabilistic

Mathematics. Cambridge University Press, 2017.

Marcelo Viana and Krerley Oliveira. Foundations of Ergodic Theory.
Cambridge Studies in Advanced Mathematics. Cambridge University
Press, 2016.

172 Bibliography

[26] Richard M Dudley. Real analysis and probability. CRC Press, 2018.

[27] H. Weyl. Uber die gibbs’sche erscheinung und verwandte konvergen-
zphédnomene. Rendiconti del Circolo Matematico di Palermo, 330:377-407,
1910.

[28] P. Bohl. Uber ein in der theorie der sikularen storungen vorkommendes

problem. J. reine angew. Math, 135:189-283, 1909.

[29] W. Sierpinski. Sur la valeur asymptotique d’une certaine somme. Bull

Intl. Acad. Polonaise des Sci. et des Lettres, Series A:9-11, 1910.
[30] Olav Kallenberg. Foundations of modern probability. Springer, 1997.

[31] Paul André Meyer. Les processus stochastiques de 1950 a nos jours. 2000.

[32] Bernt Oksendal. Stochastic Differential Equations (5th Ed.): An Intro-
duction with Applications. Springer-Verlag, Berlin, Heidelberg, 2010.

[33] Peter Orbanz. Conjugate projective limits. arXiv: Statistics Theory, 2010.

[34] Michel Métivier. Limites projectives de mesures. Martingales. Applica-

tions. Annali di Matematica Pura ed Applicata, 63(1):225-352, 1963.

[35] Steve Brooks, Andrew Gelman, Galin Jones, and Xiao-Li Meng. Handbook
of Markov chain Monte Carlo. CRC press, 2011.

[36] Norman E Steenrod. A convenient category of topological spaces. Michi-

gan Mathematical Journal, 14(2):133-152, 1967.

[37] Michael C McCord. Classifying spaces and infinite symmetric products.
Transactions of the American Mathematical Society, 146:273-298, 19609.

[38] Lemoine Gaunce Lewis. The stable category and generalized Thom spectra.
Appendiz A. PhD thesis, University of Chicago, Department of Mathe-
matics, 1978.

[39]

[40]

|41]

[42]

[43]

[44]

[45]

|46]

147]

48]

Bibliography 173

Kyriakos Keremedis, Cenap Ozel, Artur Piekosz, Mohammed Al Shum-
rani, and Eliza Wajch. Compact complement topologies and k-spaces.

arXw preprint arXw:1806.10177, 2018.

Sebastiano Vigna. Further scramblings of Marsaglia’s xorshift generators.

Journal of Computational and Applied Mathematics, 315:175-181, 2017.

Makoto Matsumoto and Takuji Nishimura. Mersenne twister: A 623-
dimensionally equidistributed uniform pseudo-random number generator.

ACM Trans. Model. Comput. Simul., 8(1):3-30, 1998.

M. Fushimi and Shu Tezuka. The k-distribution of generalized feed-
back shift register pseudorandom numbers. Communications of the ACM,

26:516-523, 07 1983.

Gunther Leobacher and Friedrich Pillichshammer. Introduction to quasi-

Monte Carlo integration and applications. Springer, 2014.

Lauwerens Kuipers and Harald Niederreiter. Uniform distribution of se-

quences. Courier Corporation, 2012.

Patrick Billingsley. Convergence of probability measures. John Wiley &
Sons, 2013.

Ulrich Schaechtle, Ben Zinberg, Alexey Radul, Kostas Stathis, and
Vikash K. Mansinghka. Probabilistic programming with Gaussian pro-
cess memoization. CoRR, abs/1512.05665, 2015.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar,
Stefano Ermon, and Ben Poole. Score-based generative modeling through

stochastic differential equations, 2021.

Daniel Roy, Vikash Mansinghka, and Noah Goodman. A stochastic pro-

gramming perspective on nonparametric Bayes. 09 2010.

174

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

Bibliography

Hongwei Xi. Dependent ML: an approach to practical programming with
dependent types. Journal of Functional Programming, 17(2):215-286,
2007.

Francesca Cagliari, Sandra Mantovani, and EM Vitale. Regularity of the
category of Kelley spaces. Applied Categorical Structures, 3:357-361, 1995.

Robert AG Seely. Locally cartesian closed categories and type theory.
In Mathematical proceedings of the Cambridge philosophical society, vol-
ume 95, pages 33-48. Cambridge University Press, 1984.

J Peter May and Johann Sigurdsson. Parametrized homotopy theory.
Number 132. American Mathematical Soc., 2006.

Peter I Booth and Ronald Brown. Spaces of partial maps, fibred map-
ping spaces and the compact-open topology. General Topology and its
Applications, 8(2):181-195, 1978.

Gilles Barthe, Joost-Pieter Katoen, and Alexandra Silva, editors. Foun-

dations of Probabilistic Programming. Cambridge University Press, 2020.

Fredrik Dahlqvist, Dexter Kozen, and Alexandra Silva. Semantics of Prob-
abilistic Programming: A Gentle Introduction, pages 1-42. Cambridge
University Press, 2020.

Sungwoo Park, Frank Pfenning, and Sebastian Thrun. A probabilis-
tic language based upon sampling functions. ACM SIGPLAN Notices,
40(1):171-182, 2005.

Per Martin-Lof. The definition of random sequences. Information and

control, 9(6):602-619, 1966.

Thomas Ehrhard, Michele Pagani, and Christine Tasson. Measurable
cones and stable, measurable functions: a model for probabilistic higher-

order programming. Proceedings of the ACM on Programming Languages,

2(POPL):1-28, 2017.

[59]

[60]

[61]

62]

[63]

|64]

[65]

[66]

Bibliography 175

Ugo Dal Lago and Margherita Zorzi. Probabilistic operational se-
mantics for the lambda calculus. RAIRO-Theoretical Informatics
and Applications-Informatique Théorique et Applications, 46(3):413-450,
2012.

Thomas Ehrhard, Christine Tasson, and Michele Pagani. Probabilistic
coherence spaces are fully abstract for probabilistic PCF. In Proceed-
ings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 309-320, 2014.

Thomas Ehrhard, Michele Pagani, and Christine Tasson. Full abstraction
for probabilistic PCF. Journal of the ACM (JACM), 65(4):1-44, 2018.

Claudia Faggian and Simona Ronchi Della Rocca. Lambda calculus and
probabilistic computation. In 2019 34th Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS), pages 1-13. IEEE, 2019.

Norman Ramsey and Avi Pfeffer. Stochastic lambda calculus and monads
of probability distributions. In Proceedings of the 29th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 154—
165, 2002.

Claire Jones and Gordon D Plotkin. A probabilistic powerdomain of
evaluations. In Proceedings of the Fourth Annual Symposium on Logic in

Computer Science, pages 186-187. IEEE Computer Society, 1989.

Johannes Borgstrom, Ugo Dal Lago, Andrew D Gordon, and Marcin
Szymczak. A lambda-calculus foundation for universal probabilistic pro-

gramming. ACM SIGPLAN Notices, 51(9):33-46, 2016.

Yutian Chen, Max Welling, and Alex Smola. Super-samples from kernel
herding. In Proceedings of the Twenty-Sizth Conference on Uncertainty in
Artificial Intelligence, UAT'10, page 109-116, Arlington, Virginia, USA,
2010. AUAT Press.

176 Bibliography

[67] Claus-Peter Schnorr. A unified approach to the definition of random
sequences. Mathematical systems theory, 5(3):246-258, 1971.

[68] Mathieu Hoyrup and Cristobal Rojas. Computability of probability mea-
sures and Martin-Lof randomness over metric spaces. Information and

Computation, 207(7):830-847, 2009.

[69] Cameron Foreman, Richie Yeung, and Florian J. Curchod. Statistical
testing of random number generators and their improvement using ran-

domness extraction. Entropy, 26(12), 2024.

[70] Adam Scibior. Formally justified and modular Bayesian inference for prob-

abilistic programs. PhD thesis, University of Cambridge, UK, 2019.

[71] Carl-Johann Simon-Gabriel, Alessandro Barp, Bernhard Scholkopf, and
Lester Mackey. Metrizing weak convergence with maximum mean discrep-

ancies. Journal of Machine Learning Research, 24(184):1-20, 2023.

[72] Monroe D Donsker. Justification and extension of Doob’s heuristic ap-
proach to the Kolmogorov-Smirnov theorems. The Annals of mathematical

statistics, pages 277-281, 1952.

[73] Qiang Liu, Jason Lee, and Michael Jordan. A kernelized stein discrepancy
for goodness-of-fit tests. In Maria Florina Balcan and Kilian Q. Wein-
berger, editors, Proceedings of The 33rd International Conference on Ma-

chine Learning, volume 48 of Proceedings of Machine Learning Research,

pages 276284, New York, New York, USA, 20-22 Jun 2016. PMLR.

[74] Jérome Dedecker and Clémentine Prieur. An empirical central limit theo-
rem for dependent sequences. Stochastic Processes and their Applications,

117(1):121-142, January 2007.

	Introduction
	Preliminaries
	-algebras
	Measures
	Lebesgue integration
	Densities
	Spaces of probability measures
	Laws of large numbers
	Ergodic theory
	Stochastic processes

	Deterministic stream-semantics
	Language
	Syntax
	Operational semantics
	Denotational semantics

	Sampler equivalence
	Verification
	The empirical transformation
	Calculus for asymptotic targeting

	Stochastic process samplers
	Language
	Syntax
	Operational semantics.
	Denotational semantics.

	Sampler equivalence
	Verification
	Vector and matrix operations
	Targeting for dependent samplers
	Constructing stochastic processes
	Transforming stochastic processes

	Discussion
	Related work
	Further work

	Bibliography

