
Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

A unified multi-subgraph pre-training framework for spatio-temporal graph

Mingze Zhong a,∗, Zexuan Long b, Xinglei Wang c, Tao Cheng c, Meng Fangd, Ling Chen a

aAustralian Artificial Intelligence Institute, University of Technology Sydney, Ultimo, Sydney, 2007, NSW, Australia
b Shenzhen University, Shenzhen, 518060, Guangdong, China
cUniversity College London, Gower Street, London, WC1E 6BT, United Kingdom
dUniversity of Liverpool, Ashton Street, Liverpool, L69 3BX, United Kingdom

a r t i c l e  i n f o

Keywords:
Graph neural network
Pre-training
Spatio-temporal graph
Multi-subgraphs
Time decay.

 a b s t r a c t

Spatio-temporal graph (STG) learning has shown great potential in capturing complex spatio-temporal dependen-
cies and has achieved significant success in various fields such as traffic flow prediction, climate forecasting, and 
epidemiological spread research. By learning general features from spatio-temporal graphs, pre-trained graph 
models can capture hidden semantic information in the data, thereby enhancing the learning effect of down-
stream tasks and improving overall model performance. However, most existing spatio-temporal graph learning 
methods use the entire graph for training, which may not fully capture local structure and feature information. In 
addition, existing methods usually adopt sequence modeling techniques without fully considering the time decay 
effect, i.e., the need to apply decaying attention to distant time steps. To address these issues, this paper proposes 
a unified dual-phase multi-subgraph pre-training spatio-temporal graph framework (UMSST). Specifically, in the 
first phase, the framework learns the global representation of the spatio-temporal graph and locates key graph 
nodes, while learning the “unit representations” of these key nodes. In the second phase, multiple spatio-temporal 
subgraphs are constructed based on these “unit representations” to further capture the implicit encoding infor-
mation of more general features around the corresponding subgraphs, thereby helping the model make full use of 
general features. Experimental results on real datasets show that the proposed pre-trained spatio-temporal graph 
framework significantly improves the performance of downstream tasks and demonstrates its effectiveness in 
comparison with recent strong baseline models.

1.  Introduction

Spatio-temporal graph (STG) modeling has become one of the most 
promising techniques due to its ability to learn complex spatial and 
temporal dependencies. Effective STG learning has achieved success in 
many real-world applications, such as traffic flow forecasting in intelli-
gent transportation systems [33], epidemic prediction for public health 
management [5], urban crime prediction for public safety [22], etc. 
However, most existing STG learning methods adopt the entire graph 
for training, potentially failing to fully capture local regional and feature 
information. Furthermore, existing methods typically employ sequence 
modeling techniques without considering the time decay effect, which 
requires applying decaying attention to distant time steps [18,23,37,38].

The main challenge is how to effectively pretrain models to repre-
sent highly localized structures and temporal dynamics within large-
scale STGs. Existing whole-graph approaches, while capturing global 
patterns, can overlook critical local events such as traffic hotspots or 

∗ Corresponding author.
 E-mail addresses: Mingze.Zhong@Student.uts.edu.au (M. Zhong), longzexuan2023@email.szu.edu.cn (Z. Long), xinglei.wang.21@ucl.ac.uk (X. Wang), 
tao.cheng@ucl.ac.uk (T. Cheng), Meng.Fang@liverpool.ac.uk (M. Fang), ling.chen@uts.edu.au (L. Chen).

epidemic epicenters. Furthermore, they often treat all past observations 
equally, ignoring the crucial principle of temporal decay, where older 
events have diminishing relevance [1,17,30]. Moreover, full-graph pre-
training on fine-grained data becomes computationally prohibitive. Our 
multi-subgraph approach directly confronts these issues by learning de-
tailed representations within key local regions, which not only enhances 
expressive power by capturing complex local topologies but also enables 
scalable, parallelized training to reduce the computational burden.

Inspired by the latest progress of graph pre-training models in 
learning rich latent information from graph structures and node fea-
tures [21,31], this paper proposes a unified and generalizable STG pre-
training framework by exploring the following questions:

• How can we effectively pretrain the STG using large spatio-temporal 
datasets?

• How can we achieve better node representation learning on STGs, es-
pecially focusing on the representation of local regions in the graph, 

https://doi.org/10.1016/j.knosys.2025.114428
Received 13 June 2025; Received in revised form 24 August 2025; Accepted 4 September 2025

Knowledge-Based Systems 330 (2025) 114428 

Available online 13 September 2025 
0950-7051/© 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://www.elsevier.com/locate/knosys
https://www.elsevier.com/locate/knosys
https://orcid.org/0009-0009-9277-3767

$\mathcal {G}=(\mathcal {V},\mathcal {E}, \mathbf {A})$


$\mathcal {V}$


$|\mathcal {V}|$


$N$


$\mathcal {E}$


$\mathbf {A} \in \mathbb {R}^{N \times N}$


$\mathcal {G}_t =(\mathcal {V},\mathcal {E},\mathbf {X}_t)$


$\mathcal {V}$


$\mathcal {E}$


$\mathbf {X}_t \in \mathbb {R}^{N \times C }$


$t$


$C$


$\{\mathcal {G}_{t-T+1},\cdots ,\mathcal {G}_t\}$


$\mathbf {X}_{t-T+1:t} \in \mathbb {R}^{T \times N \times C}$


$\mathbf {X}_{t-T+1:t}$


$t$


$f$


$t+1$


$\mathbf {X}_{t+1} \in \mathbb {R}^{|\mathcal {V}| \times C}$


$\mathcal {G}_{t-T+1:t}$


$\mathbf {H}^{\mathcal {G}} \in \mathbb {R}^{N \times C}$


$\mathbf {h}^{\mathcal {G}} \in \mathbb {R}^{C}$


$\mathbf {h}_{v}^{\mathcal {G}} \in \mathbb {R}^{C}$


$\mathbf {h}^{\mathcal {G}} \in \mathbb {R}^{C}$


$L$


$L$


$K$


$\mathbf {X}_{l,k|t-T+1:t}$


$\mathbf {H}_{l,k}^{\mathcal {S}} \in \mathbb {R}^{N_{S_{l,k}} \times C}$


$N_{S_{l,k}}$


$l$


$K=k$


$\mathbf {H}_{l,k}^{\mathcal {S}}$


$\mathbf {H}^{\mathcal {G}}$


$\mathbf {H}_{l,k}^{\mathcal {F}}$


$\mathcal {G}_{t+1}$


$\mathbf {X}_{t-T+1:t}$


$\mathbf {H}^{\mathcal {T}}_{t-T_{\text {out}}:t}$


$f_{TC}$


$\mathbf {H}^{\mathcal {T}}_t \in \mathbb {R}^{N \times D}$


$t$


$n$


$\mathbf {h}_{t,n}^{\mathcal {T}} \in \mathbb {R}^{D}$


$\mathbf {H}^{\mathcal {T}}_t$


$v_n$


$t$


$D$


$T_{\text {out}}$


$f_{SC}$


$\mathbf {A}$


$f_{TC} \rightarrow f_{SC} \rightarrow f_{TC}$


$\mathbf {H}'=(\mathbf {H}'^{\mathcal {T}}_{t-T'_{\text {out}}},\cdots ,\mathbf {H}'^{\mathcal {T}}_{t})$


$T'_{\text {out}}$


$T'_{\text {out}}$


$\mathbf {H}^{\mathcal {G}} \in \mathbb {R}^{N \times D}$


$T'_{\text {out}}=t$


$\mathbf {h}_{n}^{\mathcal {G}} \in \mathbb {R}^{D}$


$v_n$


$t+1$


$[t-T+1, t]$


$t+1$


$[t-T+1,t]$


$t$


$\mathbf {X}_{t-T+1:t}^{\mathcal {D}} \in \mathbb {R}^{T \times N \times C}=( \mathbf {X}^{\mathcal {D}}(t-T+1),\cdots ,\mathbf {X}^{\mathcal {D}}(t) )$


$\mathcal {V}$


$t$


$\mathbf {X}^{\mathcal {D}}(t) \in \mathbb {R}^{N \times C}$


$C$


$\mathbf {X}^{\mathcal {D}}(t) \in \mathbb {R}^{N \times C}$


$\alpha _{t'}$


$\alpha _{t'} \in \mathbb {R}_{+}$


$\alpha _{t'}$


$\alpha _{t'}$


$\mathbf {X}^{\mathcal {D}}(t)$


$\xi \in \mathbb {R}$


$\xi $


$\xi $


$\mathbf {X}_{t-T+1:t}$


$\mathbf {X}_{t-T+1:t}^{\mathcal {D}}$


$\mathbf {H}^{\mathcal {G}}$


$\mathbf {H}^{\mathcal {G}} \in \mathbb {R}^{N \times D}$


$M$


$\mathbf {X}_{\text {samples}}=\{\mathbf {X}_{t_1-T+1:t_1},\cdots , \mathbf {X}_{t_M-T+1:t_M}\}$


$M$


$\mathbf {X}_{t_m-T+1:t_m} \in \mathbb {R}^{T \times N \times C}$


$\mathbf {H}_{\text {samples}}^{\mathcal {R}} = \{\mathbf {H}_{1}^{\mathcal {G}}, \cdots , \mathbf {H}_{M}^{\mathcal {R}} \}$


$\mathbf {H}_{m}^{\mathcal {G}} \in \mathbb {R}^{N \times D}$


$\mathbf {h}_{m,v_n}^{\mathcal {G}} \in \mathbb {R}^{D}$


$v_n \in \mathcal {V}$


$\mathbf {H}_{m}^{\mathcal {G}}$


$\mathbf {X}_{\text {samples}}$


$\mathbf {h}_{v_n}^{\mathcal {G}} \in \mathbb {R}^{D}$


$v_n \in \mathcal {V}$


$M$


$\mathbf {h}^{\mathcal {G}} \in \mathbb {R}^{D}$


$\mathbf {h}^{\mathcal {G}} \in \mathbb {R}^{D}$


$\mathbf {h}^{\mathcal {G}}_{v_n}$


$\mathbf {h}^{\mathcal {G}}$


$3\times 200\times 2\,\%=12 \text {nodes}$


$\times $


$C(\mathcal {V}_s)$


$\mathcal {V}_s$


$L$


$h^{\mathcal {G}}$


$\text {Similarity}(\mathbf {h}^{\mathcal {G}},\mathbf {h}^{\mathcal {G}}_{v_n})$


$2 \times K$


$K$


$L\,\%$


$K$


$K$


$K$


$K$


$K$


$K \in \{1,2,3\}$


$l$


$k$


$N_{S_{l,k}}$


$l$


$K=k$


$\mathbf {H}_{l,k}^{\text {Sub}}$


$l$


$K=k$


$\mathbf {h}_{l,k, v_n}^{\text {Sub}}$


$v_n$


$\mathbf {H}^{\mathcal {G}}$


$\hat {x}_{\mathcal {G},t+1,v_n}^{(c)}$


$c$


$MLP$


$\mathbf {h}^{\mathcal {G}}_{v_n}$


$x_{t+1,v_n}^{(c)}$


$c$


$\lambda _c$


$\sum \nolimits _{c=1}^C \lambda _c=1$


$\mathbf {H}_{l,k}^{\text {Sub}}$


$\hat {x}_{\mathcal {S},t+1,v_n}^{(c)}$


$c$


$MLP$


$\mathbf {h}^{\mathcal {\text {Sub}}}_{l,k,v_n}$


$\mathbf {H}^{\mathcal {\text {Sub}}}_{l,k}$


$\mathbf {H}^{\mathcal {G}}$


$\mathbf {H}^{\mathcal {\text {Sub}}}_{l,k}$


$\mathbf {H}^{\mathcal {F}}$


$\mathbf {H}^{\mathcal {G}}$


$\mathbf {H}^{\mathcal {\text {Sub}}}_{l,k}$


$\mathbf {h}^{\mathcal {F}}_{v_n} \in \mathbb {R}^{D}$


$v_n$


$\mathbf {H}^{\mathcal {F}}$


$\bullet $


$O(N^2)$


$O(N\times \mathcal {D} + |\mathcal {E}|\times \mathcal {D})$


$N$


$|\mathcal {E}|$


$\mathcal {D}$


$\bullet $


$K$


$N_{\text {sub}}$


$N_{\text {sub}} \ll N$


$L_{\text {num}}$


$K$


$N_{\text {sub}}$


$N$


$N_{\text {sub}}$


$K$


$K$


$\textbf {x} = \{x_1, \cdots , x_N\}$


$\hat {\textbf {x}}=\{\hat {x}_1, \cdots , \hat {x}_N\}$


$D$


$f_{TC} \rightarrow f_{SC} \rightarrow f_{TC}$


$K$


$L$


$\xi $


$\alpha _{t'} = \exp (-\xi (t-t'))$


$\xi \in \{0.001,0.01,0.1\}$


$\alpha _{t'}=\frac {1}{(t-t')^{\xi }}$


$\xi \in \{1,1.5,2\}$


$\alpha _{t'}=\frac {1}{\xi \ln {(t-t'+1)}}$


$\xi \in \{1,1.5,2\}$


$\mathbf {h}^{\mathcal {G}}$

https://orcid.org/0000-0002-9824-7663
https://orcid.org/0000-0002-6468-5729
mailto:Mingze.Zhong@Student.uts.edu.au
mailto:longzexuan2023@email.szu.edu.cn
mailto:xinglei.wang.21@ucl.ac.uk
mailto:tao.cheng@ucl.ac.uk
mailto:Meng.Fang@liverpool.ac.uk
mailto:ling.chen@uts.edu.au
https://doi.org/10.1016/j.knosys.2025.114428
https://doi.org/10.1016/j.knosys.2025.114428
http://creativecommons.org/licenses/by/4.0/


M. Zhong et al.

to address the issue that training the entire graph may not capture 
local regional and feature information?

• How can we account for the time decay effects?
To address these challenges, this paper proposes a Unified Multi-
Subgraph pretraining framework for Spatio-Temporal graph (UMSST), 
which constructs multi-subgraphs in two phases to pretrain node rep-
resentations. The motivation for this two-stage pre-training design is 
to enhance the modeling capability of local information and improve 
training efficiency. Specifically:

• First Phase (Coarse Phase): The graph embedding of the STG 
(whose dimension is consistent with the node embedding dimen-
sion) is computed through self-supervised learning, and the nodes 
with the highest correlation with the graph embedding are identi-
fied as subgraph centers. This phase is used to detect the locations in 
the graph that contain important information and their approximate 
scope. The basic assumption is that the higher the correlation, the 
more information of the entire STG the node and its vicinity con-
tain. These preliminarily identified regions are considered the basis 
for “unit representations”.

• Second Phase (Fine Phase): Based on the local regions determined 
in the first phase, multiple subgraphs are constructed and trained 
more finely to obtain more detailed implicit information about po-
tentially more critical regions. This phase focuses on learning richer 
latent information from these subgraphs.
By combining the representations learned in the two phases, the final 

node representation is obtained. Since this pre-training framework is 
model-agnostic, the node representations can be utilized by any existing 
STG learning model to improve performance. For large-scale graphs, 
focusing on learning key localized regions rather than detailed learning 
of the entire graph can bring significant improvements in learning scale, 
complexity, and learning efficiency, which also indirectly clarifies the 
reason for adopting a two-stage pre-training method.

The contributions of this paper are summarized as follows:
• The proposed pre-training model framework is a general framework 
targeting different local regions of the STG and can be applied to 
any STG learning models in a plug-and-play manner, validated by 
experiments on multiple base models.

• The proposed multi-subgraph method can capture the underlying 
high-level semantics more comprehensively than a single subgraph.

• We reveal the decay characteristics of STG learning in the time di-
mension and experimentally verify its potential positive impact on 
model performance.

• Experiments on real-world datasets, including comparisons with re-
cent strong baseline models, demonstrate the effectiveness of the 
proposed STG pre-training framework.

• A complexity analysis is provided, demonstrating the potential com-
putational efficiency of the multi-subgraph method, especially for 
large-scale graphs.

2.  Related work

2.1.  Graph pre-training methods

Pre-training of graph models has made significant strides in prior 
research. A series of works employed transfer learning to enhance 
the model’s expressive power for representing graph structure. Subse-
quent research implemented pre-training tasks with significantly larger 
scales of parameters. To bridge the gap between pre-training and down-
stream tasks, researchers proposed injecting enhanced knowledge into 
the model during pre-training [32], while other work simulated fine-
tuning operations by introducing new tasks into the pre-training process 
[9]. These models were all applied to ordinary graphs, and it was only in 
recent years that pre-training models for spatio-temporal graphs (STGs) 
began to emerge.

For example, a model named STEP [2] proposed to incorporate 
long-term historical time series during pre-training. This design was 
proven effective but neglected abundant spatial dependencies. An-
other work adopted adversarial contrastive samples to enhance self-
supervised learning (ST-SSL) on STGs [28]. However, these adversarial 
samples were constructed purely based on the STG’s spatial structure, 
overlooking the temporal aspect. A more recent work proposed a gen-
erative pre-training model for STGs (GPT-ST) [17], utilizing a hierar-
chical hypergraph structure to capture spatial dependencies at different 
levels. Our work differs in that we construct multi-subgraphs instead of 
a hypergraph to capture spatial dependencies, focusing more on learn-
ing refined representations of local regions, whereas hypergraph meth-
ods typically focus more on global or predefined cluster representations. 
UMSST, through a two-stage process, first identifies globally important 
regions and then constructs and learns multiple (potentially overlap-
ping) subgraphs on these regions, aiming to capture local features more 
finely.

2.2.  Spatio-temporal graph learning

Recent years have seen a surge in spatio-temporal graph (STG) learn-
ing methods. Among the various models proposed, STSGNN [24] and 
STFGNN [15] stood out for their construction of STGs with temporally 
adjacent connections and the design of spatio-temporal synchronous 
graphs to adaptively capture spatio-temporal correlations. S2TAT [29] 
adopted a spatio-temporal synchronous Transformer framework, lever-
aging attention mechanisms to enhance learning capabilities. Auto-STG 
[11] and AutoSTS [16] integrated neural architecture search (NAS) 
methods into STG learning models to achieve optimal neural network 
structures. Another work utilizing NAS emphasized determining the op-
timal adjacency matrix for the graph. In contrast to previous work fo-
cusing on neural architecture design, our framework learns more funda-
mental STG representations through pre-training, which can benefit var-
ious neural architectures. UMSST aims to provide a general pre-training 
module to enhance the capabilities of these existing downstream mod-
els. Beyond pre-training, significant progress has been made in design-
ing novel architectures for STG learning. For instance, COOL [13] pro-
poses a conjoint framework that models heterogeneous graphs from both 
prior and posterior information to capture high-order spatio-temporal 
relationships, utilizing affinity and penalty graphs to refine node rep-
resentations. Another line of research explores continuous-time dynam-
ics. Methods like GDERec [20], which learns a graph ordinary differ-
ential equation (ODE), are designed for sequential recommendation on 
irregularly-sampled interaction data, modeling the continuous evolution 
of the user-item graph. These approaches introduce powerful, special-
ized architectures for specific problem settings. In contrast, our UMSST 
framework is designed to be model-agnostic. Instead of proposing a new 
end-to-end architecture, it serves as a general-purpose pre-training mod-
ule that can enhance a wide variety of existing downstream models by 
providing them with richer, pre-trained representations of local struc-
tures.

2.3.  Alternative graph structures in representation learning

The broader field of deep graph representation learning has explored 
structures beyond standard pairwise graphs to capture more complex re-
lationships [12]. A notable example is the use of hypergraphs, where an 
edge can connect any number of nodes. Frameworks like HEAL [14] 
leverage hypergraphs for semi-supervised graph classification, design-
ing learnable hypergraph structures to capture higher-order node de-
pendencies. While powerful, these methods fundamentally alter the data 
representation. UMSST, however, operates on standard spatio-temporal 
graphs, making it directly applicable to a vast range of existing datasets 
and models without requiring a shift to a hypergraph formulation. Our 
multi-subgraph approach can be seen as an alternative strategy to cap-
ture complex local dependencies within the standard graph paradigm.

Knowledge-Based Systems 330 (2025) 114428 

2 



M. Zhong et al.

2.4.  Graph data augmentation

Representation learning on sparse graphs is challenging. Typically, 
self-supervised learning (SSL) is combined with data augmentation to 
learn graph representations that benefit subsequent training. Currently, 
research on data augmentation primarily focuses on three aspects: Fea-
ture Augmentation: GraphMAE [9] employed a novel masking strat-
egy and scaled cosine error for graph feature reconstruction. Structure 
Augmentation: CSSL [34] augmented graphs through a sequence of 
graph transformation operations and trained the graph encoder with 
self-supervised contrastive learning. Label Augmentation: DPGNN [36] 
applied an unbalanced label propagation mechanism to supervise un-
labeled nodes; CGCN [35] combined a Gaussian mixture model with 
a variational graph autoencoder to generate pseudo-labels for nodes. 
Moreover, integrating various enhancement techniques has proven ef-
fective. For example, JOAO [10] dynamically augmented data of dif-
ferent scales and types by adopting an enhanced perception projection 
head mechanism. BGRL [25] achieved SSL by predicting inputs as en-
hanced information, thereby eliminating the need for constructing neg-
ative samples. Compared to previous work, the multi-subgraph method 
proposed in this paper, by capturing finer information about local re-
gions within a graph, can be considered an implicit form of data aug-
mentation as it exposes the model to diversified local contexts.

3.  Preliminaries

3.1.  Definitions

Graph. A graph is denoted as  = ( ,  ,𝐀), where  is the set of 
nodes with || = 𝑁 , and  is the set of edges. Its topological structure 
is typically represented by an adjacency matrix 𝐀 ∈ ℝ𝑁×𝑁 .

Spatio-Temporal Graph (STG). A spatio-temporal graph is a special 
graph structure where the attributes (or features) of the nodes change 
dynamically over time. Formally, an STG at a specific time step t can 
be represented as 𝑡 = ( ,  ,𝐗𝑡), where  is a fixed set of nodes,  is 
a fixed set of edges, and 𝐗𝑡 ∈ ℝ𝑁×𝐶 is the node feature matrix at time 
step 𝑡, with 𝐶 being the feature dimension. A sequence of STG data can 
be denoted as {𝑡−𝑇+1,⋯ ,𝑡}, and the corresponding feature tensor is 
𝐗𝑡−𝑇+1∶𝑡 ∈ ℝ𝑇×𝑁×𝐶 .

3.2.  Problem statement

Given the historical graph data 𝐗𝑡−𝑇+1∶𝑡 up to the current time step 𝑡, 
the goal is to learn a predictive function 𝑓 that can accurately estimate 
the node attributes at the future time step 𝑡 + 1, i.e., 𝐗𝑡+1 ∈ ℝ||×𝐶 .

4.  Methodology

This section delineates the architecture of our proposed Unified 
Multi-Subgraph Spatio-Temporal graph pre-training (UMSST) model, 
whose overarching architecture is depicted in Fig. 1. The architecture 
of our pre-training model comprises two phases.

4.1.  First phase: global representation learning and key node identification

4.1.1.  Initial spatio-temporal representation
To process raw data containing spatio-temporal information of an 

STG and concurrently model the sequential relationships in the tempo-
ral dimension and the correlations among nodes in the spatial dimen-
sion, we urgently require a method for encoding the raw data. With 
this objective in mind, we plan to integrate the techniques of temporal 
convolution and graph convolution to represent spatio-temporal rela-
tionships more effectively. In our approach, we employ 1-dimensional 
causal convolutions along the temporal dimension, supplemented by 
gated mechanisms, to encode information within the temporal dimen-
sion. Specifically, the temporal convolution operation accepts a tensor 

𝐗𝑡−𝑇+1∶𝑡 as input. Let the tensor 𝐇
𝑡−𝑇out∶𝑡

 denote the outputs and 𝑓𝑇𝐶
denote the function of temporal convolution, constituting time-aware 
embeddings for each node within the temporal dimension. This method-
ology is designed to capture and encode the spatio-temporal dynamics 
inherent to each node, thereby facilitating a further understanding of 
spatio-temporal sequences: 
𝐇

𝑡−𝑇out∶𝑡
= 𝑓𝑇𝐶 (𝐗𝑡−𝑇+1∶𝑡), (1)

𝐇
𝑡−𝑇out∶𝑡

= (𝐇
𝑡−𝑇out

,⋯ ,𝐇
𝑡 ), (2)

where 𝐇
𝑡 ∈ ℝ𝑁×𝐷 denotes the embedding matrix of the node at time 

step 𝑡 after convolutional operations on the temporal convolution en-
coder. Especially, the 𝑛-th row 𝐡𝑡,𝑛 ∈ ℝ𝐷 in 𝐇

𝑡  denotes the embedding of 
node 𝑣𝑛 at the time step 𝑡 after convolutional operations in the temporal 
convolution encoder. Here, 𝐷 denotes the embedding dimensionality, 
and 𝑇out is the length of the output embedding sequence after convolu-
tional operations in the temporal convolution encoder.

Let 𝑓𝑆𝐶 denote the function of spatial convolution. We design a spa-
tial convolution encoder to capture spatial correlations in space. This en-
coder is based on a graph-based message-passing mechanism presented 
as follows: 
𝐇

𝑡 = 𝑓𝑆𝐶 (𝐇
𝑡 ,𝐀), (3)

where 𝐀 is the adjacency matrix of graph G. Now, we can get more 
refined embeddings of all nodes by merging the spatial context after the 
spatial convolution encoder: 
𝐇

𝑡−𝑇out∶𝑡
= (𝐇

𝑡−𝑇out
,⋯ ,𝐇

𝑡 ), (4)

Let 𝑓𝑇𝐶 → 𝑓𝑆𝐶 → 𝑓𝑇𝐶 denote a basic block unit. By stacking these basic 
block units multiple times, we get a sequence of the embedding ma-
trix 𝐇′ = (𝐇′

𝑡−𝑇 ′
out

,⋯ ,𝐇′
𝑡 ), after several convolutions. For the spatio-

temporal encoder based on embedding propagation and aggregation, 
𝑇 ′
out can change according to the parameters specified in the convolu-
tion process. After multiple convolution operations, 𝑇 ′

out eventually con-
verges. Finally, we obtain the final embedding representation matrix 
𝐇 ∈ ℝ𝑁×𝐷 (𝑇 ′

out = 𝑡), for the spatio-temporal encoder, in which each 
row 𝐡𝑛 ∈ ℝ𝐷 denotes the final embedding of node 𝑣𝑛.

4.1.2.  Decay of importance in the time dimension
In STG neural networks, the conventional practice involves forecast-

ing data at the time step 𝑡 + 1 relying on the information encompassed 
within the period [𝑡 − 𝑇 + 1, 𝑡]. In the context of time sequences, research 
proposed that proximity to the present moment corresponds to height-
ened attention allocation. Consequently, data in closer temporal proxim-
ity are assigned a greater weight, where the weight ascribed to the data 
dictates its influence on the current temporal instant. Hence, we posit 
the presence of a comparable phenomenon within STG neural networks, 
as illustrated in Fig. 2.

Now, we consider that the data at the time step 𝑡 + 1 is based on 
information encompassed within the period [𝑡 − 𝑇 + 1, 𝑡]. So, we repre-
sent the data over previous T time steps in the time step 𝑡 with a new 
tensor 𝐗

𝑡−𝑇+1∶𝑡 ∈ ℝ𝑇×𝑁×𝐶 = (𝐗(𝑡 − 𝑇 + 1),⋯ ,𝐗(𝑡)). The information 
of all nodes  in the time step 𝑡 is denoted as 𝐗(𝑡) ∈ ℝ𝑁×𝐶 , where 𝐶
denotes the initial embedding dimensionality of the nodes. We define 
𝐗(𝑡) ∈ ℝ𝑁×𝐶 as follows: 

𝐗(𝑡) =
𝛼𝑡𝐗(𝑡)

∑𝑡
𝑡′=𝑡−𝑇+1 𝛼𝑡′𝐗(𝑡′)

, (5)

where the weight 𝛼𝑡′  satisfies 𝛼𝑡′ ∈ ℝ+. There are several possible forms 
of the weight 𝛼𝑡′ , one can use the following forms of 𝛼𝑡′  to model 𝐗(𝑡): 

𝛼𝑡′ = exp(−𝜉(𝑡 − 𝑡′)), 𝛼𝑡′ =
1

(𝑡 − 𝑡′)𝜉
, 𝛼𝑡′ =

1
𝜉 ln (𝑡 − 𝑡′ + 1)

where 𝜉 ∈ ℝ is a hyperparameter in the time decay function to adjust 
the strength of the decay. It should be noted that 𝜉 is treated as a hy-
perparameter chosen in a systematic and regular manner. Our primary 

Knowledge-Based Systems 330 (2025) 114428 

3 



M. Zhong et al.

Fig. 1. Overall architecture of UMSST. First Phase (Upper Left Parts): Input original STG data 𝑡−𝑇+1∶𝑡, process through a spatio-temporal encoder (containing 
temporal convolution and graph convolution layers) to obtain initial node embeddings. Subsequently, learn global node embeddings 𝐇 ∈ ℝ𝑁×𝐶 through self-
supervised learning methods. Calculate the global graph embedding 𝐡 ∈ ℝ𝐶 , Sort nodes by comparing the similarity (e.g., cosine similarity) between each node 
embedding 𝐡𝑣 ∈ ℝ𝐶 and the global embedding 𝐡 ∈ ℝ𝐶 , and select the Top-𝐿 percentage of nodes with the highest similarity as key nodes (subgraph centers). Second 
Phase (Lower Left Part): Based on the top-𝐿 percentage key nodes identified in the first phase, construct their 𝐾-hop neighborhood subgraphs respectively. Reapply 
the spatio-temporal encoder and self-supervised learning methods to each subgraph data 𝐗𝑙,𝑘|𝑡−𝑇+1∶𝑡 to learn the node embeddings 𝐇

𝑙,𝑘 ∈ ℝ𝑁𝑆𝑙,𝑘
×𝐶 for each subgraph, 

where 𝑁𝑆𝑙,𝑘
 is the number of notes of the 𝑙-th subgraph with 𝐾 = 𝑘. Feature Fusion and Output (Right Part): Replace or fuse the representations of corresponding 

nodes from the multi-subgraph embeddings 𝐇
𝑙,𝑘 earned in the second phase into the corresponding positions in the global node embeddings 𝐇 obtained in the first 

phase, forming the final node representations 𝐇
𝑙,𝑘. These enhanced node representations are then used for prediction in downstream tasks, for example, predicting 

𝑡+1 through an MLP layer.

Fig. 2. Introducing weights to the temporal dimension data, with the intention 
that data closer to the current moment carries greater weight.

goal in the experiments is not to conduct an exhaustive search for the 
optimal 𝜉. but to demonstrate the general effectiveness and robustness 
of incorporating a temporal decay mechanism. The systematic trial of a 
few representative values serves to validate that performance gains are 
consistent across a reasonable range of decay strengths, rather than be-
ing an artifact of a single, finely-tuned value. So, we substitute 𝐗𝑡−𝑇+1∶𝑡
in Eq. (1) with 𝐗

𝑡−𝑇+1∶𝑡 to obtain the following equation: 

𝐇
𝑡−𝑇out∶𝑡

= 𝑓𝑇𝐶 (𝐗
𝑡−𝑇+1∶𝑡). (6)

Therefore, we can substitute Eq. (6) for (1) to get 𝐇. Hence, we 
establish a correlation between the decay of importance in the temporal 
dimension and the previous model.

4.1.3.  Global embedding and key node selection
Through the spatio-temporal self-supervised learning process de-

scribed above, we obtain the node embeddings 𝐇 ∈ ℝ𝑁×𝐷. Subse-
quently, leveraging the learned node embeddings, we attain a global 
embedding with dimensions equivalent to the node dimensions. This 
embedding encapsulates the entirety of the information within the STG. 
Specifically, we obtain 𝑀 final embeddings from a dataset 𝐗samples =
{𝐗𝑡1−𝑇+1∶𝑡1 ,⋯ ,𝐗𝑡𝑀−𝑇+1∶𝑡𝑀 } composed of 𝑀 random samples through 
self-supervised training, where 𝐗𝑡𝑚−𝑇+1∶𝑡𝑚 ∈ ℝ𝑇×𝑁×𝐶 . These M final 
embeddings constitute a final embedding set 𝐇

samples = {𝐇
1 ,⋯ ,𝐇

𝑀}, 
where 𝐇

𝑚 ∈ ℝ𝑁×𝐷, and 𝐡𝑚,𝑣𝑛 ∈ ℝ𝐷 denote the embedding of node 𝑣𝑛 ∈
 in 𝐇

𝑚. Therefore, we can acquire node embeddings in the dataset 
𝐗samples by obtaining the graph embeddings corresponding to each node 
in the random samples. Let 𝐡𝑣𝑛 ∈ ℝ𝐷 denote the average embedding of 
node 𝑣𝑛 ∈  from the 𝑀 samples, and its specific form is as follows: 

𝐡𝑣𝑛 = 1
𝑀

𝑀
∑

𝑚=1
𝐡𝑚,𝑣𝑛 . (7)

Furthermore, we can obtain a global embedding that represents the 
entire STG through the embeddings of the final nodes. Let 𝐡 ∈ ℝ𝐷 de-
note the global embedding and let its specific form be as follows: 

𝐡 = 1
||

∑

𝑣𝑛∈
𝐡𝑣𝑛 , (8)

where 𝐡 ∈ ℝ𝐷 encapsulates the complete spatio-temporal information 
of the graph. This mean aggregation strategy is chosen for its ability to 
provide a comprehensive and unbiased summary of the graph’s over-
all state. Its effectiveness was validated against alternative strategies, 

Knowledge-Based Systems 330 (2025) 114428 

4 



M. Zhong et al.

such as degree-weighted averaging and random node sampling, where 
it consistently led to superior performance in identifying globally repre-
sentative key nodes for downstream tasks (see Appendix 2 for details).

The acquisition of key nodes is facilitated through the analysis of the 
similarity between the node embeddings 𝐡𝑣𝑛  and 𝐡

. The nodes that ex-
hibit the highest similarity are identified as key nodes. We use a fixed 
percentage of the total number of nodes as the criterion to select the 
key nodes. For example, consider a graph with 200 nodes where the av-
erage number of neighbors per node is 3. Selecting the top 2% of the 
nodes as the subgraph centers is reasonable because the total number of 
nodes covered by their 1-hop neighborhoods (3 × 200 × 2% = 12nodes) 
is moderate compared to the overall size of the graph. Even extending 
to 2-hop neighborhoods, ignoring overlaps, this approach would only 
cover about 36 nodes (12×3). Therefore, the framework would focus 
only on about 18% (36 of 200) of the total nodes, significantly enhanc-
ing computational efficiency. This percentage-based selection method 
is more robust for graphs of different sizes. Let 𝐶(𝑠) denote the set of 
selected key nodes: 
𝐶(𝑠) = {𝑣𝑛 ∈ 𝑠 ∣ Similarity(𝐡,𝐡𝑣𝑛 )}, (9)

where 𝑠 represents the set of nodes corresponding to the top-𝐿 per-
centage of nodes embedding that have the highest similarity to ℎ, and 
Similarity(𝐡,𝐡𝑣𝑛 ) is the cosine function (We believe that more accurate 
methodologies for quantifying similarity, here primarily focused on sub-
stantiating the efficacy of the model). Selecting nodes most similar to the 
global embedding as representatives of key regions is based on the ra-
tionale that these nodes and their surrounding areas are more likely to 
contain information crucial to the overall graph structure and dynamics.

4.2.  Second phase: multi-subgraph learning

4.2.1.  Subgraph construction
The construction of subgraphs is based on the key nodes identified in 

the first phase. To address potential subgraph overlap and ensure sub-
graph diversity, key node selection employs a sequential filtering strat-
egy. First, the node with the highest similarity to the global embedding 
is selected as the first key node. Subsequently, when selecting the next 
key node, its distance to already selected key nodes is considered. Specif-
ically, the subgraph distance (e.g., shortest path hops) between a newly 
selected key node and all previously selected key nodes must be greater 
than 2 ×𝐾 (where 𝐾 is the hop parameter for subgraph construction). 
This process is iterated until 𝐿% key nodes satisfying this distance con-
straint are selected. The corresponding subgraphs are then constructed 
around these filtered key nodes and their K-hop neighborhood nodes. 
The parameter K defines the scope of these local regions, which are 
presumed to contain significant graph-related information. The ratio-
nale for introducing K lies in its capacity to delineate the bounds within 
which crucial information (potentially dense or dispersed) is likely to be 
found. Adjusting the magnitude of 𝐾, it is possible to capture essential 
information exhibiting various distributional properties. The scale of 𝐾
ought tobe carefully considered; an overly extensive 𝐾 may inadver-
tently shift focus away from vital areas Therefore, the optimal value of 
𝐾 is data-dependent and is determined empirically. In our experimen-
tal setup, for each dataset, we treat 𝐾 as a hyperparameter and select 
its optimal value by performing a grid search over a predefined range 
(e.g., 𝐾 ∈ {1, 2, 3}) and evaluating the performance of the downstream 
task on a dedicated validation set. This standard practice ensures that 
the subgraph scale is appropriately adapted to the intrinsic spatial char-
acteristics of the specific graph. This key point selection method aims to 
reduce redundancy among subgraphs while encouraging the model to 
explore different and representative local structures within the graph.

4.2.2.  “Unit-representation” and learning from multi-subgraphs
Pre-trained models must learn features that are useful for diverse 

downstream tasks, whether at the node, edge, or graph level. This re-
quires a representational approach that captures fundamental, transfer-

able patterns. We introduce the concept of a “unit representation” to re-
fer to a rich, localized knowledge module that serves as a basic building 
block for understanding the entire graph. Analogous to how words form 
the basis of language, these unit representations encapsulate fundamen-
tal local spatio-temporal events or motifs. We propose that subgraphs 
are the ideal structural candidates to serve as these “units”. A subgraph, 
defined by a key node and its local neighborhood, inherently contains 
all relevant local information: the states of its constituent nodes, the 
relationships (edges) between them, and their collective topology. By 
learning a representation for each subgraph, the model effectively builds 
a vocabulary of these localized knowledge modules. This approach al-
lows for a more granular and compositional understanding of the global 
graph dynamics. Extracting information from multiple subgraphs facili-
tates a more thorough exploration of local regions within the graph that 
contain critical information. Due to information being dispersed across 
disparate locales, representing the entire graph’s information using only 
one subgraph is quite limiting, as crucial information in the graph may 
be scattered across different local regions. Extracting information from a 
single subgraph diminishes the effectiveness of information propagation 
on the graph and weakens the utilization of initial information by down-
stream tasks. Consequently, we advocate for a pioneering approach that 
entails extracting information from multi-subgraph, thereby facilitating 
a more thorough exploration of graph local regions with critical infor-
mation.

Let the 𝑙-th 𝑘-hop subgraph be represented as follows: 
𝐗𝑙,𝑘|𝑡−𝑇+1∶𝑡 ∈ ℝ𝑇×𝑁𝑆𝑙,𝑘×𝐶 = (𝐗𝑙,𝑘(𝑡 − 𝑇 + 1),⋯ ,𝐗𝑙,𝑘(𝑡)),

where 𝑁𝑆𝑙,𝑘
 is the number of notes of the 𝑙-th subgraph with 𝐾 = 𝑘. For 

each subgraph, a spatio-temporal encoding process similar to that in the 
first phase (i.e., stacking of temporal and spatial convolutions) is applied 
again to learn its node embeddings. Let 𝐇Sub

𝑙,𝑘  denote the node embed-
ding matrix learned for the 𝑙-th subgraph with 𝐾 = 𝑘, where 𝐡Sub𝑙,𝑘,𝑣𝑛

 is 
the embedding of node 𝑣𝑛 in the subgraph. This learning process aims 
to capture more detailed local spatio-temporal patterns within each sub-
graph.

4.2.3.  Model training: representation learning
In the initial representation phase (Phase One), the model is op-

timized by minimizing the following loss function to learn 𝐇: 

 =
𝐶
∑

𝑐=1

𝑁
∑

𝑛=1
𝜆𝑐
|

|

|

𝑥̂(𝑐),𝑡+1,𝑣𝑛
− 𝑥(𝑐)𝑡+1,𝑣𝑛

|

|

|

(10)

where 𝑥̂(𝑐),𝑡+1,𝑣𝑛
 is the 𝑐-th dimension of the predicted result obtained via 

𝑀𝐿𝑃  based on 𝐡𝑣𝑛 : 

𝑥̂(𝑐),𝑡+1,𝑣𝑛
= 𝑀𝐿𝑃 (𝐡𝑣𝑛 ) (11)

and 𝑥(𝑐)𝑡+1,𝑣𝑛
 is the 𝑐-th dimension of the ground truth. 𝜆𝑐 is a parameter 

to balance the data in different dimensions, and ∑𝐶
𝑐=1 𝜆𝑐 = 1.

In the multi-subgraph phase (Phase Two), the model is optimized 
by minimizing the following loss function to learn the representations 
𝐇Sub

𝑙,𝑘  of individual subgraphs: 

 =
𝐶
∑

𝑐=1

𝑁
∑

𝑛=1
𝜆𝑐
|

|

|

𝑥̂(𝑐) ,𝑡+1,𝑣𝑛
− 𝑥(𝑐)𝑡+1,𝑣𝑛

|

|

|

(12)

where 𝑥̂(𝑐) ,𝑡+1,𝑣𝑛
 is the 𝑐-th dimension of the predicted result obtained via 

𝑀𝐿𝑃  based on 𝐡Sub𝑙,𝑘,𝑣𝑛
: 

𝑥̂(𝑐),𝑡+1,𝑣𝑛
= 𝑀𝐿𝑃 (𝐡Sub𝑙,𝑘,𝑣𝑛

) (13)

4.3.  Feature merging and final representation

Similarly to the first phase, following the acquisition of STG repre-
sentations for various subgraphs, self-supervised training (or representa-
tion learning oriented towards downstream tasks as described above) is 

Knowledge-Based Systems 330 (2025) 114428 

5 



M. Zhong et al.

specifically employed on these STGs. The final embedding correspond-
ing to the multi-subgraph STGs, denoted as 𝐇Sub

𝑙,𝑘 , is obtained. Subse-
quently, the node embeddings in 𝐇 are replaced or enhanced with their 
respective corresponding node embedding representations from 𝐇Sub

𝑙,𝑘 . 
Let 𝐇  represent the embedding after the merge of 𝐇 and all 𝐇Sub

𝑙,𝑘 . 
The embedding 𝐡𝑣𝑛 ∈ ℝ𝐷 of node 𝑣𝑛 in 𝐇  is specifically formulated as 
follows: 

𝐡𝑙,𝑘,𝑣𝑛 =

⎧

⎪

⎨

⎪

⎩

𝐡𝑙,𝑘,𝑣𝑛 = 𝐡Sub𝑙,𝑘,𝑣𝑛
, 𝐡Sub𝑙,𝑘,𝑣𝑛

∈ 𝐇Sub
𝑙,𝑘

𝐡𝑙,𝑘,𝑣𝑛 = 𝐡𝑣𝑛 , 𝐡Sub𝑙,𝑘,𝑣𝑛
∉ 𝐇Sub

𝑙,𝑘  and 𝐡𝑣𝑛 ∈ 𝐇

4.4.  Complexity analysis

To evaluate the computational efficiency of the proposed UMSST 
framework, we analyze its complexity compared to refined training on 
the full graph.
∙ Full Graph Training: Standard graph convolution operations on the 
full graph typically have a spatial complexity of 𝑂(𝑁2) (for dense ad-
jacency matrices) or 𝑂(𝑁 × + || ×) (for sparse adjacency matrices 
and message passing networks), where 𝑁 is the number of nodes, ||
is the number of edges, and  is the feature dimension. The time com-
plexity depends on the number of layers and specific operations.
∙ UMSST Framework:

• Phase One: Similar to full graph training, the complexity depends 
on the size of the entire graph.

• Phase Two (Multi-Subgraph Training): Since the size of each sub-
graph is limited by the 𝐾-hop neighborhood, assuming an average 
subgraph size of 𝑁sub (the subgraph nodes) where 𝑁sub ≪ 𝑁 , the 
complexity of processing a single subgraph is significantly reduced. 
If 𝐿num (the number of subgraphs) subgraphs are selected and their 
training can be parallelized, the total training time can be effectively 
controlled. The spatial complexity of each subgraph tends towards a 
smaller constant level (relative to the full graph). For example, if the 
𝐾-hop constraint makes the number of subgraph nodes 𝑁sub much 
smaller than 𝑁 , its complexity is mainly determined by 𝑁sub and the 
number of edges within the subgraph.

• Parallelism: The training process of multi-subgraphs naturally sup-
ports parallelization, which can further significantly improve train-
ing efficiency, especially when dealing with large-scale graphs. 
By “blurring” the training in the first phase (e.g., using a more 
lightweight model or fewer iterations to quickly locate key regions) 
and allocating more computational resources to the parallel sub-
graph training in the second phase, significant efficiency gains can 
be achieved.

This two-stage and multi-subgraph parallel processing design gives 
UMSST a potential efficiency advantage when processing large-scale 
spatio-temporal graphs.

However, it is important to acknowledge the overhead associated 
with parallel training. The additional costs primarily include: (1) Sub-
graph Construction Overhead: A one-time computational cost is incurred 
before training to extract all subgraphs based on the selected key nodes 
and the hop parameter 𝐾. (2) Data Communication and Synchroniza-
tion: In a parallel environment, subgraph data must be distributed to 
different computational units (e.g., GPUs), and synchronization is re-
quired during or after training (e.g., for gradient updates), which intro-
duces communication latency. Particularly, as 𝐾 increases, the size of 
each subgraph and the degree of overlap between them also increase. 
This not only raises the processing time for individual subgraphs but 
can also reduce the efficiency of parallelization due to increased redun-
dant computations across different units. Nevertheless, for large-scale 
graphs, the computational benefits of decomposing a large, complex 
problem into multiple smaller, manageable ones typically far outweigh 
these parallelization overheads.

5.  Experiments

In this section, we evaluate the performance of UMSST in the task 
of spatio-temporal traffic exploration. The experimental evaluations are 
performed on four distinct real datasets; their detailed descriptions are 
provided in Table 1. The performance of UMSST is validated in these 
four real datasets, and a comparative analysis is performed against the 
current state-of-the-art method (GPT-ST) [17] and other important base-
line methods.

5.1.  Datasets

The experiments used four publicly available real-world traffic flow 
datasets: NYCBike1, NYCBike2, NYCTaxi, and BJTaxi. The statistics of 
these datasets are shown in Table 1.

5.2.  Evaluation metrics and baseline models

Metrics. In the experiments, the mean absolute error (MAE) [26] and 
the mean absolute percentage error (MAPE) [7] were used as evaluation 
metrics for model performance, which are commonly used in current 
research on STG prediction. Their definitions are as follows (assuming 
that x = {𝑥1,⋯ , 𝑥𝑁} is the ground truth sequence, x̂ = {𝑥̂1,⋯ , 𝑥̂𝑁} is 
the predicted sequence, and N is the number of samples)

• Mean Absolute Error(MAE): 

𝑀𝐴𝐸(x, x̂) = 1
𝑁

𝑁
∑

𝑛=1

|

|

𝑥𝑛 − 𝑥̂𝑛|| (14)

• Mean Absolute Percentage Error(MAPE): 

𝑀𝐴𝑃𝐸(x, x̂) = 1
𝑁

𝑁
∑

𝑛=1

|

|

𝑥𝑛 − 𝑥̂𝑛||
𝑥𝑛

(15)

Baselines. To comprehensively evaluate the effectiveness of our pro-
posed UMSST framework, we selected several advanced and advanced 
spatio-temporal prediction models as baselines.

Spatio-temporal prediction methods based on GNNs:

• GWN[27]: This method utilizes an adaptive adjacency matrix to 
learn latent spatial dependencies and incorporates graph diffusion 
convolution with gated temporal convolution to efficiently capture 
dependencies in long-term time series.

• MSDR[19]:This model proposes a variant of RNNs with Multi-Step 
Dependency Relation to make full use of historical time step informa-
tion and combines it with GNNs to model long-range spatio-temporal 
dependence.

• STFGNN[15]: This work proposes a data-driven approach that uti-
lizes a gated convolution method to generate spatio-temporal graphs. 
By learning spatial and temporal dependencies, the approach effec-
tively captures the correlations within the data.

• STGCN[8]: This pioneering method combines graph convolutional 
networks (GCN) with gated temporal convolution to capture spatial 
and temporal dependencies, respectively.

• STSGCN[24]: This work captures complex localized spatio-temporal 
correlations by constructing a local spatio-temporal graph, enabling 
the synchronous modeling of these correlations.

Table 1 
Statistics of datasets.
 Data type  Bike rental  Taxi GPS
 Dataset  NYCBike1  NYCBike2  NYCTaxi1  BJTaxi
 Time interval  1h  30min  30min  30min
 Nodes  16 × 8  10 × 20  10 × 20  32 × 32
 Bikes/Taxis  6.8k+  2.6m+  22m+  34k+

Knowledge-Based Systems 330 (2025) 114428 

6 



M. Zhong et al.

• TGCN[3]: This method integrates graph convolutional networks 
(GCNs) into a gated recurrent unit (GRU), forming a unified spatio-
temporal graph model to synchronously model spatio-temporal cor-
relations.

• BGCN[6]:This model introduces a Bayesian framework to graph con-
volutional networks for traffic prediction, enabling it to not only 
provide accurate predictions but also quantify the uncertainty as-
sociated with them, which is crucial for robust decision-making in 
intelligent transportation systems.

• ST-SSL[10]:This model performs the adaptive augmentation over the 
traffic flow graph data at both attribute-levels and structure-levels.

Attention-based spatio-temporal prediction methods:
• STWA (Spatio-Temporal Wave-Attention)[4]: This method inte-
grates location-specific and time-varying parameters into the atten-
tion network to effectively capture dynamic spatio-temporal corre-
lations.

5.3.  Implementation details

The UMSST model is implemented using the PyTorch framework, 
with an embedding dimension 𝐷 configured to 64. The temporal and 
spatial convolution kernel sizes of the spatio-temporal encoder are set to 
3. The training phase uses the Adam optimizer with a batch size of 32. In 
the architecture of our UMSST model, the Spatio-Temporal (ST) encoder 
stacks two “sandwich” structured modules (e.g., 𝑓𝑇𝐶 → 𝑓𝑆𝐶 → 𝑓𝑇𝐶 ) to 
elaborately capture the intricate dependencies between spatial and tem-
poral dynamics. To further enhance the model’s temporal dimension 
comprehension, an additional Temporal Convolution (TC) layer is ap-
pended to the end of the ST encoder. In addition, the downstream task 
processing method borrows from the ST-SSL model and maintains con-
sistency with the parameter settings used in ST-SSL’s downstream tasks. 
To ensure the robustness and stability of our findings, all reported results 
are averaged over five runs with different random seeds. All experiments 
were conducted on a server equipped with four NVIDIA GeForce RTX 
4080 GPUs.

The hyperparameters 𝐾 (number of hops) and 𝐿 (percentage of key 
nodes for subgraph selection) are determined by screening the valida-
tion set of each dataset. After determining the optimal K and L on the 
validation set, we investigate the impact of the temporal decay parame-
ter 𝜉. Our approach was to test a set of systematic, representative values 
to validate the robustness of the temporal decay mechanism, as shown 
below:

• 𝛼𝑡′ = exp(−𝜉(𝑡 − 𝑡′)): 𝜉 ∈ {0.001, 0.01, 0.1}
• 𝛼𝑡′ =

1
(𝑡−𝑡′)𝜉 : 𝜉 ∈ {1, 1.5, 2}

• 𝛼𝑡′ =
1

𝜉 ln (𝑡−𝑡′+1) : 𝜉 ∈ {1, 1.5, 2}

The consistent performance improvements observed across these set-
tings, without exhaustive fine-tuning, strongly demonstrate the general 
effectiveness of incorporating a temporal decay mechanism. This sug-
gests that the benefit is a fundamental property of the model architec-
ture, rather than being contingent on a highly specific hyperparame-
ter choice, although further gains could likely be achieved with a more 
granular search.

5.4.  Performance comparison

In this section, we primarily investigate the performance improve-
ment that our UMSST framework brings to downstream spatio-temporal 
forecasting tasks. To achieve this, we systematically evaluated the per-
formance of several baseline models before and after applying UMSST 
on four real-world datasets. Furthermore, to validate the superiority of 
our framework, we conduct a direct comparison between UMSST and 
the current state-of-the-art pre-training model, GPT-ST. All experimen-
tal results are presented in Table 2.

The results clearly indicate that our proposed UMSST framework sig-
nificantly improves the prediction performance of different downstream 
baseline models across all datasets, which effectively demonstrates the 
effectiveness and generalization ability of our framework. We analyze 
the promotion effect of UMSST from the following dimensions:

• We observe that UMSST provides consistent performance improve-
ments for various types of baseline models (e.g., GCN-based, RNN-
based, or attention-based), including STWA, GWN, MSDR, STFGNN, 
STGCN, STSGCN, BGCN and ST-SSL. This universal enhancement 
verifies that UMSST’s effectiveness is not confined to a specific cat-
egory of models. Instead, it learns general and transferable spatio-
temporal knowledge that can empower a wide range of downstream 
models.

• In addition to evaluating the improvements over models without 
pre-training, we also compare UMSST against a strong pre-training 
baseline, GPT-ST. We chose TGCN as the base model and applied 
both UMSST and GPT-ST to it for a fair comparison across all four 
datasets. As shown in Table 2, while both pre-training methods en-
hance TGCN’s performance, the gains from UMSST are substantially 
more significant.

5.5.  Ablation study

To validate the effectiveness of key components within our proposed 
UMSST framework, we designed a series of rigorous ablation studies. 
This investigation aims to answer two essential questions: (1) Is our 
two-phase, multi-subgraph learning mechanism the primary driver of 
performance improvement?  and (2) Does the temporal decay module 
provide further effective gains on top of it?  Therefore, we compare the 
performance of four model configurations:

• Baseline: The baseline model without pre-training.
• UMSST (First Phase Only): Using only the first phase of our frame-
work (global learning and key node identification).

• w/UMSST (No Decay): Applying the complete two-phase multi-
subgraph framework but without the temporal decay module

• w/UMSST (Full Model): Completed UMSST model.

The experimental results are illustrated in Figs. 3, 4, 5 and 6 (each 
figure corresponds to the four metrics of a single dataset).

5.5.1.  Effectiveness of the two-phase multi-subgraph framework
Our innovation lies in the two-phase learning paradigm: global ex-

ploration in the first phase, followed by local, multi-subgraph refine-
ment in the second. To verify the necessity of the second phase, we com-
pare the performance of UMSST (First Phase Only) against w/UMSST 
(No Decay).

As clearly observed in the Figs. 3 to 6, the model using only the first 
pre-training phase generally yields performance that is inferior, and of-
ten significantly so, to the original baseline. This is expected, as the 
primary goal of fisrt phase is to identify critical spatio-temporal regions 
rather than to optimize for the final prediction task. However, once the 
second phase is introduced, the model is refined in learning the identi-
fied key subgraphs, and the model performs qualitatively. For instance, 
the result for First Phase Only is always worse than the baseline, whereas 
the No Decay model’s performance always surpasses it. This obvious 
performance gap unequivocally proves that multi-subgraph learning in 
the second phase is the fundamental driver of performance gain in the 
UMSST framework. By focusing on high-value local regions, it success-
fully captures fine-grained spatio-temporal patterns that are difficult to 
learn from a single global view.

5.5.2.  Effectiveness of the temporal decay module
We further investigate the contribution of the temporal decay mod-

ule. We evaluated its effect by comparing w/UMSST (No Decay) with 
our w/UMSST (Full Model).

Knowledge-Based Systems 330 (2025) 114428 

7 



M. Zhong et al.

Fig. 3. Ablation study on the NYCBike1 dataset. The plot compares the performance of the baseline, Phase 1 only, UMSST without decay, and the full UMSST model.

Fig. 4. Ablation study on the NYCBike2 dataset, showing a performance comparison for the four model configurations.

Knowledge-Based Systems 330 (2025) 114428 

8 



M. Zhong et al.

Fig. 5. Ablation study on the NYCTaxi1 dataset, demonstrating the effectiveness of the UMSST components.

Fig. 6. Ablation study on the BJTaxi dataset. The results validate the contributions of both the multi-subgraph framework and the decay module.

Knowledge-Based Systems 330 (2025) 114428 

9 



M. Zhong et al.

Table 2 
Overall performance comparison on different datasets in terms of MAE and MAPE. “in” and “out” in the Metrics column 
refer to the prediction of traffic in-flow and out-flow, respectively.

Model
 Dataset  NYCBike1  NYCBike2  NYCTaxi1  BJTaxi
 Metrics  MAE  MAPE  MAE  MAPE  MAE  MAPE  MAE  MAPE

in
 STWA  5.2376  26.0449%  5.4781  26.8128%  14.1236  19.6344%  11.4702  16.0336%
 w/ UMSST  5.2083  26.0928%  5.4162  26.2362%  13.1019  19.0974%  11.3858  15.8207%

out
 STWA  5.5670  27.0988%  5.1822  25.1836%  10.8994  18.8272%  11.5432  16.1398%
 w/ UMSST  5.5234  27.0406%  5.1812  24.8839%  10.2826  18.5857%  11.5649  15.9794%

in
 GWN  5.8203  28.4713%  5.8100  27.0552%  14.3730  19.9583%  12.9198  17.0329%
 w/ UMSST  5.7220  27.1013%  5.7401  26.8175%  14.1965  19.3990%  12.8496  17.0669%

out
 GWN  5.4513  26.5561%  5.0779  24.9189%  10.3416  18.8708%  11.7650  15.9479%
 w/ UMSST  5.4471  26.3036  5.0400  24.9857%  10.3080  18.9623%  11.7491  15.4100%

in
 MSDR  5.2808  26.4916%  5.7164  27.2596%  13.2714  19.3715%  11.4857  15.7396%
 w/ UMSST  5.2982  26.4434%  5.5458  26.8772%  13.3887  18.9950%  11.4564  15.6317%

out
 MSDR  5.6043  28.0605%  5.3382  26.0199%  10.1825  18.5269%  11.5478  15.9192%
 w/ UMSST  5.5723  27.4217%  5.1344  25.1035%  10.2026  18.6975%  11.4850  15.7242%

in
 STFGNN  5.9630  29.6953%  5.8192  27.4402%  13.8655  20.2805%  13.0341  17.7794%
 w/ UMSST  5.6128  27.8877%  5.6980  27.1494%  13.6869  20.8487%  12.4695  17.6252%

out
 STFGNN  6.2891  30.4628%  5.4666  26.3836%  11.1849  20.6068%  13.0777  17.8508%
 w/ UMSST  5.9533  29.2357%  5.3710  25.6297%  10.8659  19.8985%  12.5430  17.7073%

in
 STGCN  5.1684  25.9314%  5.4468  25.4049%  12.0995  17.7057%  11.2467  15.3902%
 w/ UMSST  5.0928  25.7412%  5.4576  25.0372%  12.0867  17.4810%  11.2058  14.8110%

out
 STGCN  5.4936  26.8405%  5.0981  25.0902%  9.8825  18.0440%  11.3294  15.6190%
 w/ UMSST  5.4634  27.1840%  5.0650  25.1730%  9.8751  17.7345%  11.2615  14.9674%

in
 STSGCN  5.5863  27.8069%  5.6364  27.1371%  13.6548  19.9709%  12.4423  17.1820%
 w/ UMSST  5.4763  27.4207%  5.5632  26.4016%  13.5906  20.1471%  12.0415  16.8708%

out
 STSGCN  5.8664  28.4314%  5.2677  26.0045%  10.6868  19.8553%  12.5289  17.2490%
 w/ UMSST  5.7665  28.2697%  5.2068  25.6438%  10.6508  19.6510%  12.1364  17.0017%

in
 BGCN  6.1852  32.1366%  5.8226  28.3144%  11.7362  21.5669%  13.9987  17.2828%
 w/ UMSST  6.1844  30.1269%  5.7329  27.6565%  11.3426  21.2225%  13.8867  16.8309%

out
 BGCN  6.0728  33.8765%  5.5352  29.9981%  9.9801  20.4298%  10.6806  16.7878%
 w/ UMSST  6.0522  33.1287%  5.4998  29.7623%  9.9773  20.1154%  10.5433  16.2399%

in
 ST-SSL  4.9403  23.6434%  5.1004  22.9403%  12.3220  17.6452%  11.3907  15.4323%
 w/ UMSST  4.9001  23.0429%  5.0204  22.3731%  12.0203  16.3022%  11.2389  14.9006%

out
 ST-SSL  5.2704  24.5136%  4.7406  21.5901%  10.0924  18.2268%  11.4806  15.0619%
 w/ UMSST  5.2003  23.8132%  4.6702  21.2327%  9.6804  16.8931%  11.3210  15.0605%

in
 TGCN  6.8620  32.3966%  6.3801  28.7089%  20.6009  32.6614%  17.1461  28.2910%
 w/ GPT-ST  6.6604  30.8634%  6.3137  29.5952%  19.9628  30.5810%  16.7653  26.0843%
 w/ UMSST  6.1526  29.5561%  6.2812  29.4436%  17.1290  26.5617%  15.3552  24.7278%

out
 TGCN  7.2883  32.8440%  5.9432  27.1731%  17.9647  31.9601%  17.2318  28.4041%
 w/ GPT-ST  7.1236  31.6247%  5.7325  27.1994%  17.1668  30.2569%  16.6719  26.6769%
 w/ UMSST  6.6112  30.4076%  5.7756  27.8133%  14.4488  27.3196%  15.4305  24.6736%

The results shown in Figs. 3 to 6, based on the significant improve-
ments from the two-phase framework, the addition of the temporal de-
cay module provides a stable and consistent further optimization. Across 
nearly all models, datasets, and all four metrics, the full model achieves 
the best performance. This indicates that by assigning higher weights 
to more recent time steps, our model can better capture the temporal 
dynamics most relevant to the current prediction, thereby effectively 
making a final refinement to the results.

5.6.  Efficiency comparison

To assess the computational efficiency of UMSST, we compare its 
pre-training time with that of GPT-ST across various datasets in Table 3. 
Theoretically, our multi-subgraph approach is designed for higher effi-
ciency by distributing the computational load over smaller, localized 
graph structures, which also facilitates parallel processing.

The results in Table 3 provide strong empirical support for this 
theory. In particular, the data reveal a clear trend: the larger the 
dataset scale, the greater the percentage of efficiency improvement 

Table 3 
Efficiency comparison on different datasets (unit: ms).
 Model  NYCBike1  NYCBike2  NYCTaxi1  BJTaxi
 Dataset
 UMSST  243,123  357,331  891,493  1,389,211
 GPT-ST  301,663  522,996  1,442,752  2,362,553

from UMSST. This trend demonstrates that our method not only re-
duces computational cost, but also scales more effectively than exist-
ing approaches, making it particularly well-suited for large-scale spatio-
temporal graph applications.

6.  Conclusion

In this paper, we propose UMSST, a novel two-phase, multi-subgraph 
pre-training framework designed to address the limitations of exist-
ing methods in capturing fine-grained local patterns in spatio-temporal 

Knowledge-Based Systems 330 (2025) 114428 

10 



M. Zhong et al.

graphs (STGs). Our “coarse-to-fine” strategy first identifies key regions 
and then performs refined learning on their corresponding subgraphs.

Comprehensive experiments demonstrate that UMSST significantly 
enhances a wide range of downstream models. Notably, in controlled 
comparisons against SOTA pre-training methods like GPT-ST on the 
same base model, our framework demonstrated a stronger potential for 
performance enhancement, validating the effectiveness of our approach. 
Furthermore, ablation studies confirm that the multi-subgraph refine-
ment is the primary performance driver, while a temporal decay mod-
ule provides further optimization. Future work could extend UMSST to 
other domains and explore its generalization capabilities. Furthermore, 
while our current key node selection strategy is optimized for improving 
overall predictive performance, it may overlook critical but anomalous 
regions (e.g., traffic incident epicenters) whose representations differ 
significantly from the graph’s average state. A promising direction for 
future research is to develop hybrid selection strategies that can iden-
tify and pre-train on both representative and anomalous subgraphs. This 
could enhance the framework’s utility for specialized downstream tasks 
such as event detection and anomaly analysis.

CRediT authorship contribution statement

Mingze Zhong: Writing – original draft, Visualization, Validation, 
Software, Project administration, Methodology, Investigation, Formal 
analysis, Data curation, Conceptualization; Zexuan Long: Writing – re-
view & editing, Visualization, Validation, Software, Project administra-
tion, Methodology, Data curation, Conceptualization; Xinglei Wang:
Writing – review & editing, Writing – original draft, Methodology, Con-
ceptualization; Tao Cheng: Writing – review & editing, Methodology, 
Conceptualization; Meng Fang: Writing – review & editing, Method-
ology, Investigation, Formal analysis, Conceptualization; Ling Chen:
Writing – review & editing, Methodology, Investigation, Formal anal-
ysis, Conceptualization.

Data availability

The datasets used in this study are publicly available. Code support-
ing this study’s findings is available from the corresponding author upon 
reasonable request.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements

This research did not receive specific grants from funding agencies 
in the public, commercial or non-profit sectors. 

1.  Summary of notations

We adopt calligraphic letters for sets and graphs, bold uppercase for 
matrices, and bold lowercase for vectors. A consolidated list of symbols 
used throughout the paper is provided in Table 4.

2.  Supplemental experimental validation

2.1.  Justification for aggregation method in global embedding

To validate the choice of mean aggregation for computing the global 
graph embedding 𝐡 (Eq. 8), we conducted a comparative analysis 
against two other common aggregation strategies: (1) Degree-Weighted 

Table 4 
Notations and description.
 Notation  Description
  A graph, represented as ( ,  ,𝐀)
  The set of nodes
  The set of edges
𝐀  Adjacency matrix, 𝐀 ∈ ℝ𝑁×𝑁

𝑁  Total number of nodes, 𝑁 = ||
𝐗𝑡  Node feature matrix at time step 𝑡, 𝐗𝑡 ∈ ℝ𝑁×𝐶

𝐶  Initial node feature dimension
𝑇  Historical time step window length
𝐗𝑡−𝑇+1∶𝑡  Historical feature tensor for 𝑇  time steps
𝐷  Node embedding dimension
𝑓𝑇𝐶  Temporal convolution encoder function
𝑓𝑆𝐶  Spatial convolution encoder function
𝐇

𝑡−𝑇out∶𝑡
 Node embeddings after temporal convolution

𝐇
𝑡  Node embeddings after spatial convolution at time 𝑡

𝛼𝑡′  Time decay weight for time step 𝑡′
𝜉  Hyperparameter for the time decay function
𝐗

𝑡−𝑇+1∶𝑡  Input feature tensor after applying time decay
𝐇  Global node embedding matrix from Phase One
𝐡𝑣𝑛  Average embedding of node 𝑣𝑛 over samples
𝐡  Global graph embedding vector
𝐿  Percentage of key nodes selected as subgraph centers
𝐾  Number of hops for subgraph neighborhood construction
𝐗𝑙,𝑘|𝑡−𝑇+1∶𝑡  Input feature tensor of the 𝑙-th 𝑘-hop subgraph
𝑁𝑆𝑙,𝑘

 Number of nodes in the 𝑙-th 𝑘-hop subgraph
𝐇Sub

𝑙,𝑘  Node embedding matrix of the 𝑙-th 𝑘-hop subgraph
𝐡Sub𝑙,𝑘,𝑣𝑛

 Embedding of node 𝑣𝑛 within the 𝑙-th 𝑘-hop subgraph
  Loss function for Phase One (global learning)
  Loss function for Phase Two (subgraph learning)
𝐇  Final merged node embedding matrix
𝐡𝑣𝑛  Final embedding of node 𝑣𝑛

Aggregation, where each node’s embedding is weighted by its normal-
ized degree, giving more importance to highly connected nodes; and 
(2) Random Sampling Aggregation, where the global embedding is com-
puted by averaging the embeddings of a randomly selected subset (e.g., 
30%) of nodes. We applied these three strategies within the UMSST 
framework and evaluated the final downstream prediction performance. 
The results consistently showed that mean aggregation provides the 
most stable and superior performance. Degree-weighted aggregation 
was sometimes biased towards hubs that might not be representative 
of the overall graph dynamics, while random sampling often failed to 
capture a complete picture, leading to suboptimal key node selection. 
Mean aggregation, by treating all nodes equally, generates a more ro-
bust and holistic representation of the graph’s state, which is crucial for 
our goal of identifying globally significant regions.

2.2.  Ablation study on key node selection strategy

To validate our key node selection strategy, which is based on simi-
larity to the global graph embedding, we compared it against two alter-
native baseline strategies: (1) Random Selection(30%), where subgraph 
centers are chosen uniformly at random from all nodes; and (2) Degree-
based Selection, where nodes with the highest degree are selected as cen-
ters, assuming that hubs are important. We implemented these strategies 
within the UMSST framework and applied them to several downstream 
models on the NYCBike1 and BJTaxi datasets. The results, summarized 
in Table 5, demonstrate that our similarity-based method consistently 
yields the best performance. This suggests that for the goal of improving 
overall forecasting accuracy, nodes that are most representative of the 
graph’s global state provide more valuable information for pre-training 
than randomly selected nodes or simple structural hubs. While degree-
based selection performs better than random, it can be biased towards 
static structural properties, whereas our method dynamically identifies 
nodes that are central to the graph’s current spatio-temporal state. 

Knowledge-Based Systems 330 (2025) 114428 

11 



M. Zhong et al.

Table 5 
Performance comparison of different key node selection strategies on datasets
NYCBike1 and BJTaxi in terms of MAE and MAPE. “in” and “out” in the Metrics 
column refer to the prediction of traffic in-flow and out-flow, respectively.

Model
 Dataset  NYCBike1  BJTaxi
 Metrics  MAE  MAPE  MAE  MAPE

STWA/in
 Random(30%)  5.2166  26.3977%  11.7899  16.0208%
 Degree-based  5.2923  28.1132%  12.0818  16.5201%
 Ours  5.2083  26.0928%  11.3858  15.8207%

STWA/out
 Random(30%)  5.5512  27.0216%  11.7641  16.3220%
 Degree-based  5.5431  27.0516%  11.7172  15.8881%
 Ours  5.5234  27.0406%  11.5649  15.9794%

STSGCN/in
 Random(30%)  5.4922  27.9901%  12.0396  16.8909%
 Degree-based  5.5152  27.6107%  12.4416  16.9792%
 Ours  5.4763  27.4207%  12.0415  16.8708%

STSGCN/out
 Random(30%)  5.7913  28.7691%  12.1514  17.2111%
 Degree-based  5.7461  28.2491%  12.1441  17.3998%
 Ours  5.7665  28.2697%  12.1364  17.0017%

TGCN/in
 Random(30%)  6.1499  29.8179%  15.6152  24.9877%
 Degree-based  6.6514  30.88812%  16.8182  26.0843%
 Ours  6.1526  29.5561%  15.3552  24.7278%

TGCN/out
 Random(30%)  6.6197  30.7002%  15.5308  24.7763%
 Degree-based  7.1431  31.8821%  16.2322  25.7768%
 Ours  6.6112  30.4076%  15.4305  24.6736%

ST-SSL/in
 Random(30%)  4.9292  24.0562%  12.3398  15.4987%
 Degree-based  4.9028  23.2486%  11.2123  14.8685%
 Ours  4.9001  23.0429%  11.2389  14.9006%

ST-SSL/out
 Random(30%)  5.1816  24.3988%  11.9124  16.1020%
 Degree-based  5.1896  24.1166%  11.5201  15.1314%
 Ours  5.2003  23.8132%  11.3210  15.0605%

References

[1] A. Abubaker, T. Maehara, M. Nimishakavi, V. Plachouras, Self-supervised pretrain-
ing for heterogeneous hypergraph neural networks, Technical Report, 2023.

[2] U. Bhattacharya, T. Mittal, R. Chandra, T. Randhavane, A. Bera, D. Manocha,  Step: 
spatial temporal graph convolutional networks for emotion perception from gaits, 
Proc. AAAI Conf. Artif. Intell. 34 (2020) 1342–1350.

[3] B. Chen, W. Guo, R. Tang, X. Xin, Y. Ding, X. He, D. Wang, TGCN: tag graph 
convolutional network for tag-aware recommendation, in: Proceedings of the 29th 
ACM International Conference on Information & Knowledge Management, 2020, pp. 
155–164.

[4] R.-G. Cirstea, B. Yang, C. Guo, T. Kieu, S. Pan, Towards spatio-temporal aware traf-
fic time series forecasting, in: 2022 IEEE 38th International Conference on Data 
Engineering (ICDE), IEEE, 2022, pp. 2900–2913.

[5] V. M. Croft, S.C.J.L. van Iersel, C. Della Santina, Forecasting infections with spatio-
temporal graph neural networks: a case study of the Dutch SARS-CoV-2 spread, 
Front. Phys. 11 (2023) 1277052. Frontiers Media SA.

[6] J. Fu, W. Zhou, Z. Chen, Bayesian graph convolutional network for traffic prediction, 
Neurocomputing 582 (2024) 127507.

[7] P. Goodwin, R. Lawton, On the asymmetry of the symmetric MAPE,  15, Elsevier, 
1999.

[8] H. Han, M. Zhang, M. Hou, F. Zhang, Z. Wang, E. Chen, H. Wang, J. Ma, Q. Liu, 
STGCN: a spatial-temporal aware graph learning method for POI recommendation, 
in: 2020 IEEE International Conference on Data Mining (ICDM), IEEE, 2020, pp. 
1052–1057.

[9] Z. Hou, X. Liu, Y. Cen, Y. Dong, H. Yang, C. Wang, J. Tang, Graphmae: self-supervised 
masked graph autoencoders, in: Proceedings of the 28th ACM SIGKDD Conference 
on Knowledge Discovery and Data Mining, 2022, pp. 594–604.

[10] J. Ji, J. Wang, C. Huang, J. Wu, B. Xu, Z. Wu, J. Zhang, Y. Zheng, Spatio-temporal 
self-supervised learning for traffic flow prediction, Proc. AAAI Conf. Artif. Intell. 37 
(2023) 4356–4364.

[11] G. Jin, H. Yan, F. Li, Y. Li, J. Huang, Dual graph convolution architecture search for 
travel time estimation,  14, ACM, New York, NY, New York, NY, 2023.

[12] W. Ju, Z. Fang, Y. Gu, Z. Liu, Q. Long, Z. Qiao, Y. Qin, J. Shen, F. Sun, Z. Xiao, 
A comprehensive survey on deep graph representation learning, Neural Netw. 173 
(2024) 106207.

[13] W. Ju, Y. Zhao, Y. Qin, S. Yi, J. Yuan, Z. Xiao, X. Luo, X. Yan, M. Zhang, Cool: a 
conjoint perspective on spatio-temporal graph neural network for traffic forecasting, 
Inform. Fusion 107 (2024) 102341.

[14] W. Ju, Z. Mao, S. Yi, Y. Qin, Y. Gu, Z. Xiao, Y. Wang, X. Luo, M. Zhang, Hypergraph-
enhanced dual semi-supervised graph classification, 2024.

[15] M. Li, Z. Zhu, Spatial-temporal fusion graph neural networks for traffic flow fore-
casting, Proc. AAAI Conf. Artif. Intell. 35 (2021) 4189–4196.

[16] F. Li, H. Yan, G. Jin, Y. Liu, Y. Li, D. Jin, Automated spatio-temporal synchronous 
modeling with multiple graphs for traffic prediction, in: Proceedings of the 31st 
ACM International Conference on Information & Knowledge Management, 2022, 
pp. 1084–1093.

[17] Z. Li, L. Xia, Y. Xu, C. Huang, GPT-ST: generative pre-training of spatio-temporal 
graph neural networks, Adv. Neural Inform. Process. Syst. 36 (2023) 70229–70246.

[18] C. Lin, X. Han, Z. Yu, J. Du, Integrating social and knowledge graphs with time decay 
mechanisms, in: International Conference on Intelligent Computing, Springer, 2024, 
pp. 137–149.

[19] D. Liu, J. Wang, S. Shang, P. Han, Msdr: multi-step dependency relation networks for 
spatial temporal forecasting, in: Proceedings of the 28th ACM SIGKDD Conference 
on Knowledge Discovery and Data Mining, 2022, pp. 1042–1050.

[20] Y. Qin, W. Ju, H. Wu, X. Luo, M. Zhang, Learning graph ODE for continuous-time 
sequential recommendation, IEEE Trans. Knowl. Data Eng. 36 (7) (2024) 3224–
3236.

[21] J. Qiu, Q. Chen, Y. Dong, J. Zhang, H. Yang, M. Ding, K. Wang, J. Tang, Gcc: graph 
contrastive coding for graph neural network pre-training, in: Proceedings of the 26th 
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 
2020, pp. 1150–1160.

[22] R. Roshankar, M. R. Keyvanpour, Spatio-temporal graph neural networks for ac-
curate crime prediction, in: 2023 13th International Conference on Computer and 
Knowledge Engineering (ICCKE), IEEE, 2023, pp. 168–173.

[23] L. Sasal, D. Busby, A. Hadid, TempoKGAT: a novel graph attention network approach 
for temporal graph analysis, Technical Report, 2024.

[24] C. Song, Y. Lin, S. Guo, H. Wan, Spatial-temporal synchronous graph convolutional 
networks: a new framework for spatial-temporal network data forecasting, Proc. 
AAAI Conf. Artif. Intell. 34 (2020) 914–921.

[25] S. Thakoor, C. Tallec, M.G. Azar, M. Azabou, E.L. Dyer, R. Munos, P. Veličković, M. 
Valko, Large-scale representation learning on graphs via bootstrapping, Technical 
Report, 2021.

[26] C. J. Willmott, K. Matsuura, Advantages of the mean absolute error (MAE) over the 
root mean square error (RMSE) in assessing average model performance, Climate 
Res. 30 (2005) 79–82.

[27] Z. Wu, S. Pan, G. Long, J. Jiang, C. Zhang, Graph wavenet for deep spatial-temporal 
graph modeling, Technical Report, 2019.

[28] Y. Wu, T. Zhang, W. Ke, S. Süsstrunk, M. Salzmann, Spatiotemporal self-supervised 
learning for point clouds in the wild, in: Proceedings of the IEEE/CVF Conference 
on Computer Vision and Pattern Recognition, 2023, pp. 5251–5260.

[29] G. Xiao, H. Tong, Y. Shu, A. Ni, Spatial-temporal load prediction of electric bus 
charging station based on S2TAT,  164, Elsevier, 2025.

[30] M. Yang, Z. Liu, L. Yang, X. Liu, C. Wang, H. Peng, P.S. Yu, Instruction-based hy-
pergraph pretraining, in: Proceedings of the 47th International ACM SIGIR Con-
ference on Research and Development in Information Retrieval, 2024, pp. 501–
511.

[31] J. Yin, C. Li, H. Yan, J. Lian, S. Wang, Train once and explain everywhere: Pre-
training interpretable graph neural networks, Adv. Neural Inform. Process. Syst. 36 
(2023) 35277–35299.

[32] Y. You, T. Chen, Y. Shen, Z. Wang, Graph contrastive learning automated, in: Inter-
national Conference on Machine Learning, PMLR, 2021, pp. 12121–12132.

[33] B. Yu, H. Yin, Z. Zhu, Spatio-temporal graph convolutional networks: a deep learning 
framework for traffic forecasting, Technical Report, 2017.

[34] J. Zeng, P. Xie, Contrastive self-supervised learning for graph classification, Proc. 
AAAI Conf. Artif. Intell. 35 (2021) 10824–10832.

[35] S. Zhang, H. Wang, L. Wang, X. Han, Q. Tian, CGCN: context graph convolutional 
network for few-shot temporal action localization,  62, Elsevier, 2025.

[36] L. Zhou, W. Chen, D. Zeng, S. Cheng, W. Liu, M. Zhang, H. Qu, DPGNN: dual-
perception graph neural network for representation learning, Knowledge-Based Sys-
tems,  268, Elsevier, 2023.

[37] M. Zhong, H. Xie, Q. Zhu, Quantifying assimilate-contrast effects in online rat-
ing systems: modeling, analysis and application, in: Proceedings of the 27th ACM 
SIGKDD Conference on Knowledge Discovery & Data Mining, 2021, pp. 2369–
2377.

[38] H. Xie, M. Zhong, X. Shi, X. Zhang, J. Zhong, M. Shang, Probabilistic modeling of 
assimilate-contrast effects in online rating systems, IEEE Transactions on Knowledge 
and Data Engineering, 36, 2, 795–808, IEEE, 2023.

Knowledge-Based Systems 330 (2025) 114428 

12 

http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0001
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0001
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0002
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0002
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0002
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0003
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0003
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0003
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0003
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0004
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0004
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0004
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0005
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0005
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0005
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0006
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0006
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0007
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0007
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0008
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0008
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0008
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0008
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0009
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0009
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0009
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0010
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0010
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0010
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0011
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0011
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0012
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0012
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0012
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0013
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0013
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0013
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0014
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0014
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0015
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0015
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0016
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0016
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0016
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0016
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0017
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0017
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0018
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0018
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0018
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0019
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0019
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0019
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0020
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0020
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0020
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0021
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0021
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0021
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0021
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0022
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0022
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0022
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0023
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0023
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0024
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0024
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0024
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0025
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0025
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0025
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0026
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0026
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0026
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0027
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0027
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0028
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0028
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0028
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0029
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0029
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0030
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0030
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0030
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0030
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0031
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0031
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0031
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0032
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0032
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0033
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0033
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0034
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0034
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0035
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0035
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0036
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0036
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0036
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0037
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0037
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0037
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0037
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0038
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0038
http://refhub.elsevier.com/S0950-7051(25)01467-4/sbref0038

	A unified multi-subgraph pre-training framework for spatio-temporal graph
	1 Introduction
	2 Related work
	2.1 Graph pre-training methods
	2.2 Spatio-temporal graph learning
	2.3 Alternative graph structures in representation learning
	2.4 Graph data augmentation

	3 Preliminaries
	3.1 Definitions
	3.2 Problem statement

	4 Methodology
	4.1 First phase: global representation learning and key node identification
	4.1.1 Initial spatio-temporal representation
	4.1.2 Decay of importance in the time dimension
	4.1.3 Global embedding and key node selection

	4.2 Second phase: multi-subgraph learning
	4.2.1 Subgraph construction
	4.2.2 ``Unit-representation'' and learning from multi-subgraphs
	4.2.3 Model training: representation learning

	4.3 Feature merging and final representation
	4.4 Complexity analysis

	5 Experiments
	5.1 Datasets
	5.2 Evaluation metrics and baseline models
	5.3 Implementation details
	5.4 Performance comparison
	5.5 Ablation study
	5.5.1 Effectiveness of the two-phase multi-subgraph framework
	5.5.2 Effectiveness of the temporal decay module

	5.6 Efficiency comparison

	6 Conclusion
	1 Summary of notations
	2 Supplemental experimental validation
	2.1 Justification for aggregation method in global embedding
	2.2 Ablation study on key node selection strategy



