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Abstract

The integration of heterogeneous spatio-temporal datasets presents a critical challenge
in geospatial data science, particularly when combining large-scale, passively collected
“big” data with precise but sparse “small” data. In this study, we propose a novel
framework—Multi-Channel Spatio-Temporal Data Fusion (MCST-DF)—that leverages
transformer-based deep learning to fuse these data sources for accurate network flow
estimation. Our approach introduces a Residual Spatio-Temporal Transformer Network
(RSTTNet), equipped with a layered attention mechanism and multi-scale embedding
architecture to capture both local and global dependencies across space and time. We
evaluate the framework using real-world mobile sensing and loop detector data from the
London road network, demonstrating over 89% prediction accuracy and outperforming
several benchmark deep learning models. This work provides a generalisable solution
for spatio-temporal fusion of diverse geospatial data sources and has direct relevance to
smart mobility, urban infrastructure monitoring, and the development of spatially informed
AI systems.

Keywords: spatio-temporal data fusion; GeoAI; transformer networks; big and small data
integration; urban mobility; deep learning; network flow estimation

1. Introduction
In the era of ubiquitous computing and digital sensing, the explosive growth of data

has transformed how we understand and manage complex systems across a wide range
of domains. This transformation is largely driven by the rise of big data: large-scale,
high-frequency, and passively collected datasets that offer unprecedented coverage and
granularity across both space and time. In contrast, small data refers to datasets that are
actively and deliberately collected, typically through precise measurement instruments or
manual surveys. While small data is usually of high accuracy and reliability, it tends to be
limited in volume and spatial extent due to high acquisition and maintenance costs.

These two types of data—big and small—offer complementary strengths but also
pose distinct challenges for analysis and integration. Big data provides wide spatial and
temporal coverage, often enabling continuous monitoring at low marginal cost. However,
it is inherently noisy and incomplete, frequently capturing only partial observations of the
underlying phenomena. Small data, on the other hand, offers ground-truth measurements
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with high precision, but is often sparsely distributed in space and time. The challenge,
therefore, is how to combine the broad, low-fidelity coverage of big data with the sparse but
high-fidelity accuracy of small data to reconstruct true spatio-temporal patterns at scale.

Addressing this problem is critical for improving modelling, monitoring, and decision-
making across a wide range of networked systems, from infrastructure management to
environmental monitoring and social dynamics analysis. However, fusing big and small
data streams is not straightforward. Existing approaches often rely on extrapolating from
small datasets or smoothing noisy big data, but they typically fail to fully exploit the
complementary strengths of both [1]. This motivates the development of a new data fusion
paradigm capable of intelligently integrating heterogeneous data sources while addressing
three key challenges:

• Mismatch: Traditional time series forecasting methods often assume access to large
volumes of accurate data. In practice, however, we are often confronted with an
abundance of imprecise, passively collected data combined with a small amount
of highly accurate but sparsely distributed observations. This mismatch introduces
unique challenges for effective and robust data fusion.

• Sparsity: In real-world systems, high-precision small data is often spatially and tem-
porally sparse due to practical limitations in data collection. This restricted coverage
makes it difficult to infer complete system-wide patterns, requiring advanced integra-
tion techniques that can effectively leverage limited but high-quality observations.

• Heterogeneity: Although big and small data may reflect similar underlying phenom-
ena, differences in collection methods—such as sampling frequency, resolution, and
measurement context—result in heterogeneous data structures. This heterogeneity
complicates fusion, as traditional methods often assume homogeneous datasets. A ro-
bust integration framework must be capable of learning from diverse, complementary
data sources while preserving their unique contributions.

To address these challenges, we propose the Multi-Channel Spatio-Temporal Data
Fusion (MCST-DF) framework. This framework utilises spatio-temporal transformer
networks to model complex dynamics and effectively mitigate the mismatch between big
and small data sources. A layered attention network enables multi-channel spatio-temporal
feature embedding, supporting robust integration across heterogeneous inputs. Further-
more, a transformer-based approach is employed to optimise the use of sparse, highly
accurate data, enhancing adaptability to incomplete datasets. Empirical tests using real-
world network data demonstrate significant improvements in fusion accuracy compared
to traditional methods, validating the effectiveness of the proposed MCST-DF framework.
To the best of our knowledge, this is the first study focused on addressing the complex
challenge of fusing big and small spatio-temporal data across networked systems. The
main contributions of this paper are summarised as follows:

• We formalise the problem of fusing network-wide big and small spatio-temporal data
for improved prediction and reconstruction.

• We propose the Multi-Channel Spatio-Temporal Data Fusion (MCST-DF) framework
and introduce the Residual Spatio-Temporal Transformer Network (RSTTNet) to
address the fusion challenge.

• We conduct extensive experiments under a zero-shot setting using a large-scale
network dataset, providing a comprehensive visual and quantitative evaluation of
the framework’s performance. In this context, the zero-shot setting refers to eval-
uating model performance on road segments that were completely unseen during
training, thereby testing the model’s ability to generalise to new, unobserved parts
of the network.
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The remainder of this paper is organised as follows. Section 2 reviews related work
on spatio-temporal data fusion and discusses existing limitations. Section 3 presents the
proposed MCST-DF framework in detail. Section 4 describes the empirical evaluation, in-
cluding the dataset, experimental design, and results. Finally, Section 5 concludes the paper
with a summary of findings, discussion of implications, and suggestions for future research.

2. Related Work
Data fusion has been extensively studied across various domains [2,3], including

mobility systems [4], neuroimaging [5], and geoengineering [6]. Early methods focused on
converting different data sources into a common feature-based representation, treating the
transformed data as a unified dataset [7]. However, such approaches have shown limita-
tions in scalability and flexibility, particularly when applied to spatio-temporal systems
where data exhibits complex dynamics across both space and time.

In the context of spatio-temporal data fusion, particular attention has been given
to the integration of heterogeneous sources, where spatial and temporal characteristics
require fusion strategies that go beyond simple handling of missing data [8–10]. Traditional
missing-data techniques primarily address data incompleteness but are often insufficient
when the integration of diverse sources, each with different levels of quality and coverage,
is required. These complexities demand more robust and adaptive fusion frameworks, as
discussed in recent works on traffic data imputation and heterogeneous spatio-temporal
modelling [8,10,11]. The evolution of deep learning has introduced powerful tools to
address some of these challenges, enabling models to capture intricate patterns within large-
scale, complex datasets [2,12]. However, most conventional deep learning fusion techniques
are designed for homogeneous, high-quality data sources, and often fail when attempting
to integrate large volumes of noisy, passively collected data with small volumes of precise,
actively collected data. This mismatch, together with the sparsity and heterogeneity of
real-world spatio-temporal data, presents fundamental challenges not fully addressed by
existing methods.

Current approaches to spatio-temporal data fusion generally fall into three main
categories [3]:

• DL-output-based fusion: Independent deep learning models are applied separately
to spatial and temporal data, with feature-level merging performed afterward [13].
While this approach provides a solid baseline for feature extraction, it often fails to
capture the complex interdependencies across space and time, leading to suboptimal
integration.

• DL-input-based fusion: Here, different data sources are merged at the input stage,
and a unified deep learning model is trained on the combined data [14]. This method
captures some interdependencies during training but may introduce significant com-
putational overhead and scalability challenges when handling very large datasets.

• DL-double-stage-based fusion: A more sophisticated approach that fuses data at
both the input and output stages, offering improved handling of data complexity
through multiple layers of processing [15]. However, this approach often assumes
compatibility and uniform coverage across datasets, which limits its applicability in
settings characterised by mismatched and incomplete data sources.

Although these methods have shown effectiveness in specific applications, they are
fundamentally unsuited for fusing large-scale spatio-temporal data where the “big” and
“small” data sources differ sharply in quality, coverage, and structure. Mismatch is a key
challenge: integrating abundant but imprecise data with sparse yet highly accurate data
requires models that can handle varying levels of uncertainty. For instance, ref. [16] intro-
duced a macro–micro-spatio-temporal network to leverage data at different granularities.
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While promising, this method relies heavily on precise spatio-temporal alignment, limiting
its effectiveness under significant mismatch. Similarly, methods based on embedding
techniques or graph structures [11,17] often assume homogeneity across data sources,
which constrains their ability to integrate heterogeneous, misaligned datasets. Sparsity
presents another major hurdle, where small data is geographically or temporally limited,
making it difficult to generalise across large networks. Graph-based methods such as
GraphSAGE [18] and cluster-based flow estimation models [19] attempt to infer missing
data, but they often fail to fully leverage the precision of sparse, ground-truth observations
for network-wide predictions. Heterogeneity complicates integration further, as big and
small data sources frequently differ in structure, resolution, and measurement practices.
Some hybrid models [20,21] attempt to unify heterogeneous data through embedding
strategies, but rigid model structures often struggle to dynamically adapt to highly diverse
inputs found in complex networks.

In summary, although considerable progress has been made in spatio-temporal data
fusion, existing methods often fall short when confronted with the combined challenges
of data mismatch, sparsity, and heterogeneity. Many current frameworks assume ho-
mogeneous and well-aligned datasets, and struggle to integrate large volumes of noisy,
low-fidelity data with limited but high-quality observations [22–24]. These limitations
highlight the need for a new approach capable of robustly fusing diverse data sources
across complex networks while preserving both accuracy and scalability. In response,
we propose the Multi-Channel Spatio-Temporal Data Fusion (MCST-DF) framework,
specifically designed to integrate heterogeneous datasets, address sparsity, and manage
data mismatch effectively. Our framework demonstrates significant potential for improving
predictive accuracy and enhancing robustness in large-scale spatio-temporal systems by
optimising the fusion of complex, diverse data streams.

3. Preliminaries and Problem Formulation
In this section, we formally define the problem of fusing “big” and “small” network

data, providing the foundation for the methodologies and experiments that follow.

Problem Formulation

This study addresses a general challenge: how to effectively integrate heterogeneous
big and small data sources to estimate the true underlying flow across complex networks.
Mathematically, we seek to develop a function that maps observations from both big and
small datasets to an accurate estimation of the true flow. The problem can be formulated
as follows:

S0,0,T = f ({Bi,j,t, Si,j,t · Ii,j,t}
i=3,j=Ni ,t=T
i=0,j=1,t=0 ) (1)

where

• Si,j,t represents the small data for the j-th road in the i-th order neighbourhood at time
t;

• Bi,j,t represents the big data for the same segment;
• Ii,j,t is an indicator function that denotes the availability of small data for each segment

at each time point (1 if available, 0 otherwise);
• Ni is the number of roads in the i-th order neighbourhood, of which the i-th order

neighbourhood includes all segments reachable from the target segment within i hops;
the 0-th order neighbourhood consists of the target segment itself.

The function f predicts flow on the target road at time T using both big data and any
small data available from the road and its neighbours up to the third order. Each segment
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of the road and its neighbours are identified by their order in the neighbourhood (i) and an
index (j), with i = 0 representing the target road itself.

To simplify the flow representation across the network, we use the notation F0,0,t to
denote the total flow, which includes two components: the accurate unknown flow (UF)
and the known flow, represented by small data. Our goal is to use both big and small data
to infer the unknown flow UF accurately.

The inclusion of data up to the third-order neighbourhood is supported not only
by empirical findings from previous work [24,25], which showed that dynamic spatial
autocorrelation diminishes significantly beyond the third order, but also by established
spatial statistics theory. In particular, Anselin’s work on local indicators of spatial associa-
tion (LISA) demonstrates that spatial dependencies typically decay rapidly with distance,
and higher-order neighbourhoods often contribute negligible correlation [26]. Therefore,
limiting the neighbourhood to the third order is both empirically and theoretically justified
for capturing significant spatial dependencies while ensuring computational efficiency.

However, if there are no available small data within the third-order neighbourhood,
the accuracy of the estimation for the unknown flow may diminish, as our model relies on
integrating small data alongside big data to enhance precision. In cases where small data is
unavailable within this threshold, alternate small data modelling methods are employed to
approximate the missing small data impact.

To address this complexity, we propose a Multi-Channel Spatio-Temporal Data
Fusion (MCST-DF) framework that allows us to derive the unknown flow by optimally
combining the information from both big and small data sources. We will introduce the
MCST-DF framework in detail in the next section.

4. Methodology
In this section, we present the Multi-Channel Spatio-Temporal Data Fusion (MCST-

DF) framework. First, we outline the general framework, providing a high-level under-
standing of the approach. Then, we introduce the embedding network designed specif-
ically for extracting spatio-temporal features effectively. Next, we elaborate on the RST-
TNet, which is pivotal for modelling network-based spatio-temporal dependencies. Lastly,
we discuss the optimisation objective, which guides the training process to achieve the
desired performance.

4.1. Multi-Channel Spatio-Temporal Data Fusion Framework

To address the problem of data fusion between network-wide “big” and “small” flow
data, we propose the Multi-Channel Spatio-Temporal Data Fusion (MCST-DF) framework,
which consists of two modules, as shown in Figure 1. Our MCST-DF framework extends
beyond standard Transformer architectures by introducing multi-scale temporal channels
and hierarchical neighbourhood modelling. Specifically, we design separate temporal
channels (long-term, mid-term, short-term) to capture dynamics at varying time scales, and
a layered attention mechanism to process different neighbourhood orders (0th–3rd) inde-
pendently. These innovations enable the model to learn from noisy but comprehensive big
data while effectively integrating sparse yet high-precision small data. In our framework,
the term multi-channel explicitly denotes the construction of separate feature channels in
both temporal and spatial dimensions. Temporally, we divide historical data into long-term,
mid-term, and short-term channels. Spatially, we construct channels for the target road
and its 1st- to 3rd-order neighbours. This design enables the model to capture multi-scale
dependencies within each data source. Meanwhile, the multi-scale aspect of our framework
refers to the combination of heterogeneous big and small datasets.
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Figure 1. The Multi-Channel Spatio-Temporal Data Fusion (MCST-DF) framework.

Multi-Channel Spatio-Temporal Feature Extraction. The input data is processed
and segmented into three distinct temporal features: long-term, mid-term, and short-term
features. This division enables the model to capture patterns and dependencies at vari-
ous temporal resolutions, thereby enhancing its ability to comprehend complex temporal
dynamics. Each set of temporal features is passed through an embedding layer. The em-
bedding layers transform these raw features into dense, lower-dimensional representations
that encapsulate the essential spatio-temporal information. This transformation results
in the creation of Spatio-Temporal Feature Maps (STFM), denoted as STFML, STFMM,
and STFMS for long-term, mid-term, and short-term features, respectively. The individual
Spatio-Temporal Feature Maps are then combined into a unified feature representation.
This process integrates the diverse temporal information, allowing the model to utilise the
comprehensive spatio-temporal context provided by all three feature sets.

Spatio-temporal Data Fusion. The concatenated spatio-temporal feature map is fed
into the Residual Spatio-Temporal Transformer Network (RSTTNet), which is specifically
designed to handle multi-channel spatio-temporal data.

The predicted flows generated by the RSTTNet are compared against the ground-truth
flow values to compute the MSE loss. The whole framework is trained end-to-end using
backpropagation, where the loss gradients are propagated back through the network to
optimise the model parameters.

4.2. Multi-Channel Spatio-Temporal Feature Extraction
4.2.1. Multi-Channel Spatio-Temporal Feature Construction

To better capture spatio-temporal information on the network and make full use of
both big data and small data for improved data fusion, we need to construct reasonable
spatio-temporal features. Our approach focuses on two key aspects: multi-channel temporal
feature construction and multi-channel spatial feature construction.

Temporal Features. To accurately capture the temporal dynamics in network data, we
utilise three months of historical data. The rationale behind selecting a three-month period
is rooted in the need to encompass various temporal patterns, such as short-term, mid-term,
and long-term trends, each of which serves as a distinct channel of temporal information.
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This time frame is long enough to observe recurring events and trends, which are crucial
for making accurate fusion of short-term flow. For instance, certain flow patterns may only
emerge over longer periods, such as long-term variations, while mid-term and short-term
patterns capture regular commuting behaviours.

In addition, we introduce a weekly feature, where each day of the week is treated as a
separate entity. For instance, Monday’s patterns are captured distinctly from Tuesday’s, and
so forth for each day through to Sunday. This approach allows us to create an additional
channel specifically for daily variances. When making predictions for a particular day
(e.g., Monday), the corresponding weight for that day is selectively applied to enhance
the model’s accuracy. By incorporating this weekly feature, we add a nuanced temporal
dimension that better reflects the unique daily patterns within weekly cycles, further
enriching our temporal representation of network data.

Temporal Multi-channel Mechanism. The multi-channel mechanism refers to the
process of learning a model from historical data at multiple scales to predict accurate flow.
By selecting historical data at varying scales, such as time slices from a few days, a week,
or several months, the model can capture a broader range of features and thus enhance its
performance. This approach takes advantage of different temporal dimensions to improve
the accuracy of predicted flows. Specifically, the features corresponding to long-term,
mid-term, and short-term data are denoted as FL, FM, and FD respectively.

Spatial Features. In the domain of network analysis, spatial features are pivotal for
comprehending the impact of neighbouring areas on a specific location. To construct these
spatial features, we extract 0th- to 3rd-order neighbours, effectively creating a sub-graph
of the entire network as depicted in Figure 2. This approach entails not only analyzing a
location’s immediate neighbours but also considering the neighbours of these neighbours
up to three levels deep. The rationale behind this methodology is that network conditions
at a specific site are frequently influenced by a wider area beyond the immediate vicinity. By
incorporating 0th- to 3rd-order neighbours into our analysis, we can capture more intricate
spatial interactions and dependencies, thereby providing a more holistic understanding of
the network dynamics. This comprehensive approach enables us to uncover patterns and
relationships that would be overlooked if only immediate neighbours were considered.

Spatial Multi-channel Mechanism. Similar to the temporal multi-channel mechanism,
the spatial multi-channel mechanism handles spatial features by treating different orders
of neighbouring roads as separate channels. Specifically, the 0th-order neighbour (the
road itself), as well as the 1st-, 2nd-, and 3rd-order neighbours, are each treated as distinct
channels of spatial information. This multi-channel approach enables the model to capture
spatial dependencies at various scales. For example, the 1st-order neighbours reflect
the immediate surrounding network conditions, while higher-order neighbours provide
information about more distant but still relevant areas in the network. By learning spatial
patterns across these different channels, the model can account for both local and more
global network interactions, enhancing its ability to predict flows with greater accuracy.
This layered structure captures a broader and more detailed view of the network, much
like how the temporal multi-channel mechanism enriches the temporal dynamics.

To enhance the model’s utilisation of spatio-temporal data, it is imperative to prepro-
cess the data instead of directly passing raw, varying-length sequences to the subsequent
layers. This preprocessing is achieved through the Layered Attention Network (LAN),
which systematically organises and embeds the data. Following this, the integrated spatio-
temporal feature map is generated, providing a unified representation that captures the
intricate spatial and temporal dependencies essential for accurate data fusion. Details on
the LAN framework will be discussed in the following section.
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Figure 2. The 1st- to 3rd-order adjacent neighbours of a selected road from the London road network.
The 0th-order adjacent neighbour is the road itself.

4.2.2. Layered Attention Network for Multi-Channel Spatio-Temporal Feature Embedding

The Layered Attention Network (LAN) plays a crucial role in our framework by
embedding spatial and temporal features into a comprehensive feature map. This module
is essential for capturing the correlations and patterns across different time scales, which
significantly enhances the model’s predictive capabilities.

In dynamic networks, the propagation of information often varies based on the prox-
imity and connectivity of the network. Therefore, segmenting information according to
different orders of neighbours (0th, 1st, 2nd, and 3rd) allows the model to more accurately
capture the hierarchical and localised influences within the network. This segmentation is
critical because network patterns are often influenced by both immediate and distant road
segments, necessitating a structured approach to information integration.

As discussed previously, we have obtained the long-term, mid-term, and short-term
features. By processing these features through the embedding network, we obtain the
corresponding embedding network feature map. The structure of the embedding network
is illustrated in Figure 3. In this architecture, the feature is passed through multiple layers
that handle different orders of neighbours (0th, 1st, 2nd, and 3rd). Each layer consists of
the following components:

• Zero Padding: To maintain the spatial dimensions, zero padding is applied to the
input features.

• Linear Layer: A linear layer is applied to project the input features into a higher
dimensional space.

• Attention Mechanism: An attention mechanism is employed to focus on the most
relevant parts of the input features.
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Figure 3. The framework of the multi-channel embedding network shown in Figure 1.

One of the significant advantages of the LAN lies in its ability to flexibly handle the
varying numbers of neighbours in networks. Traditional Graph Convolutional Networks
(GCN) face complexities due to the inconsistent number of neighbours for different roads
[27]. LAN addresses this issue through the use of padding techniques, ensuring that the
number of neighbours in each layer remains consistent. This consistency in input dimen-
sions allows the model to process nodes with diverse connectivity patterns seamlessly,
avoiding the need for complex sampling or pooling operations. Furthermore, the attention
mechanism allows the model to weigh the importance of different data points, making it
particularly effective in scenarios with heterogeneous data sources such as GPS and ATC
data. This design specifically addresses the spatial heterogeneity between big data’s wide
coverage and small data’s localised precision, allowing the model to assign appropriate
importance to each neighbourhood based on its data quality and availability.

Moreover, traditional GCN-based methods model the entire network as a single
graph, leading to substantial computational overhead and exacerbating the Zero-inflated
problem [28] in small data scenarios. To mitigate these issues, we employ LAN to process
information from different hierarchical levels of neighbours. By categorising neighbours
into 0–3 hop layers and processing each layer independently, LAN effectively captures the
hierarchical relationships among neighbours. The linear and attention mechanisms in each
layer focus on extracting information specific to that tier, thereby preventing the blending
of information that typically occurs in GCNs. This hierarchical processing enhances the
model’s ability to accurately represent and leverage the unique contributions of each layer,
thus improving overall predictive performance.

After processing through these layers, the outputs from each order of neighbours
are concatenated and passed through a final linear layer to generate the spatio-temporal
feature map, which captures both spatial and temporal dependencies. This spatio-temporal
feature map is crucial as it serves as a unified representation that integrates information
across different scales and locations. By capturing these dependencies, the feature map
enables the model to understand complex patterns within the data.

4.2.3. Spatio-Temporal Feature Map

In Figure 1, the feature extraction part includes three sub-models, which respectively
generate the long-term, mid-term, and recent spatio-temporal feature maps. The three sub-
models shared an identical structure: the embedding network. This embedding network is
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specifically designed for the geographically-based road network, where neighbourhood
relationships are derived from the spatial topology of the transport network, integrating
both the geographical locations and the connectivity of road segments. The integration of
spatial and temporal features on the feature map allows for the simultaneous modelling
of correlations in both space and time. Although many existing works opt for a simple
summation-based approach to merge feature maps [27,29], this method tends to overlook
the multi-channel nature of data and can result in significant information loss. Instead,
we employ a parameter-based method to concatenate the three feature maps: long-term,
mid-term, and recent features (denoted as STFML, STFMM, and STFMS, respectively).
Equation (2) defines this method:

STFM = STFML · WL ⊕ STFMM · WM ⊕ STFMS · WS (2)

where STFM represents the combined spatio-temporal feature map, STFMM, STFML, and
STFMS denote the long-term, mid-term, and short-term spatio-temporal feature maps, re-
spectively, and WL, WM, and WS are trainable scalar weights corresponding to the long-term,
mid-term, and short-term spatio-temporal feature maps, respectively. These parameters
are optimised during training via backpropagation to automatically adjust the contribution
of each temporal scale to the final prediction.

The resulting spatio-temporal feature map captures comprehensive spatio-temporal
patterns by effectively combining information from different time scales. This combined
feature map is then fed into the next module, RSTTNet, to further enhance the model’s
predictive accuracy and capability.

4.3. RSTTNet for Network-Based Spatio-Temporal Data Fusion

The Residual Spatio-Temporal Transformer Network (RSTTNet) is designed to capture
and model spatio-temporal dependencies in network-based data. The architecture of
RSTTNet, as illustrated in Figure 4, with Figure 4a showing the overall architecture, and
Figure 4b,c presenting the framework of the spatio-temporal attention layer and its feed-
forward network, begins with an initial linear transformation applied to the inputs. This is
followed by a temporal positional encoding. This encoding helps the network understand
the temporal aspects of the data. After the temporal positional encoding, a dropout layer is
applied to prevent overfitting by randomly setting a fraction of input units to zero at each
update during training.

Linear

Temporal Positional 
Encoding

Skip Connection

Spatio-temporal 
Attention Layer

Linear

Inputs
Derived from Big Data

Outputs
(Predicted Small Data)

Dropout

Spatio-temporal Attention Layer
(b)

Spatial Attention Temporal Attention

Dropout Dropout

BatchNorm BatchNorm

Feed Forward

Dropout

BatchNorm

Linear

Linear

Dropout

Feed Forward Network
(c)

MC-RSTNet
(a)

Ground Truth

Loss2

Transformer

Small Data Predictions

Loss1

Figure 4. The framework of the RSTTNet shown in Figure 1. (a) The framework of RSTTNet.
(b) The framework of the spatio-temporal attention layer within RSTTNet. (c) The framework of the
feed-forward network in the spatio-temporal attention layer.
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4.3.1. Small Data Modelling for Effective Data Utilisation

To solve the problem of small data sparsity, which is a core issue in data fusion as
opposed to traditional time series prediction problems, it is crucial to address the scarcity of
real label information. To effectively utilise the limited available labels, we adopt a specific
modelling approach. Initially, we use the few available real labels to model the small data,
enabling us to generate relatively accurate small data. This approach partially addresses
the problem of insufficient small data.

The upper part of Figure 4a illustrates the transformer module used for small data
modelling. The input consists of big data, and the output is small data. The predicted small
data are compared with the ground truth small data by computing the Mean Squared Error
(MSE) loss to ensure accuracy. Although the predicted small data is relatively accurate,
it is not sufficiently precise. Consequently, the relatively accurate small data predicted
by the transformer module, along with the big data, is fed into the subsequent model to
enhance the final prediction accuracy of the small data. This process can be understood
as the subsequent model learning the residuals between the ground-truth small data and
the small data predicted by the transformer model. By leveraging this residual learning
approach, we aim to refine the predicted flows and address the challenges posed by
the limited availability of label information in data fusion tasks. This residual learning
mechanism helps bridge the gap in data quality, ensuring the model can accurately estimate
flows even when small data is unavailable or sparse, thus directly tackling the mismatch
challenge between heterogeneous inputs.

4.3.2. Temporal Positional Encoding

Temporal positional encoding is a fundamental technique in transformer models,
designed to inject information about the sequence order of the input data. This method
allows the model to distinguish between different positions within a sequence, an ability
that is critical for processing temporal data effectively.

The core idea of temporal positional encoding is to generate unique positional vectors
for each position in the sequence. These vectors are then added to the input embeddings,
thus incorporating temporal information. The encoding vectors are constructed using sine
and cosine functions of different frequencies. This approach ensures that the positional
encodings are smoothly varying and distinct across dimensions.

The positional encoding vector PE(pos, 2i) for a given position pos and even dimension
2i is defined as follows:

PE(pos, 2i) = sin
( pos

100002i/d

)
(3)

For odd dimensions 2i + 1, the positional encoding vector is given by the following:

PE(pos, 2i + 1) = cos
( pos

100002i/d

)
(4)

where d represents the dimensionality of the input embeddings. The use of sine and cosine
functions at varying frequencies allows the encoding to capture both short-term and long-
term dependencies in the data. Specifically, the division term 100002i/d ensures that the
wavelengths form a geometric progression, providing a range of periodicities suitable for
different positional dependencies.

By adding these positional encodings to the input embeddings, the transformer model
can leverage the temporal information effectively, enabling it to process and understand
sequential data such as time series, language, and more. This mechanism is essential for
tasks that require an understanding of the order and structure within the input data.
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4.3.3. Spatio-Temporal Attention Layer

The core component of RSTTNet is the spatial–temporal attention layer, depicted in
Figure 4b. This layer is responsible for capturing both spatial and temporal dependencies in
the data. It consists of two main sub-layers: the spatial attention layer and the temporal at-
tention layer. Each sub-layer includes a dropout mechanism to improve generalisation and
a batch normalisation (BatchNorm) layer to stabilise and accelerate training by normalising
the input features.

Temporal Attention Layer. Temporal attention is designed to model the temporal
dependencies. It computes attention weights across the temporal dimension for each joint.
Given a sequence of embeddings X ∈ RB×T×D where B is the batch size, T is the sequence
length, and D is the embedding dimension; the temporal attention layer performs the
following operations:

Qh,i = XiW
Q
h,i (5)

Kh,i = XiWK
h,i (6)

Vh,i = XiWV
h,i (7)

Ah,i = Softmax

(
Qh,iKT

h,i√
dk

+ M

)
(8)

Oh,i = Ah,iVh,i (9)

where WQ
h,i, WK

h,i, WV
h,i are the learned weight matrices for the i-th joint and h-th attention

head, dk is the dimension of the keys (and queries), and M is a mask applied to ensure
causality (only attending to past time steps).

The outputs from all heads are concatenated and projected back to the original embed-
ding dimension:

Oh = Concat(Oh,1, Oh,2, . . . , Oh,N) (10)

Z = OhWO (11)

where WO is the projection matrix of the output.
Spatial Attention Layer. Spatial attention focuses on capturing the spatial relation-

ships in the data across different joints. Given the same sequence of embeddings X, the
spatial attention layer performs the following operations:

Qh = XWQ
h (12)

Kh = XWK
h (13)

Vh = XWV
h (14)

Ah = Softmax

(
QhKT

h√
dk

)
(15)

Oh = AhVh (16)

Again, the outputs from all heads are concatenated and projected back:

Os = Concat(Os,1, Os,2, . . . , Os,N) (17)

Y = OsWO (18)

Aggregation. Lastly, the combined output from the temporal and spatial attention
layers is passed through a feed-forward network (FFN) to produce the final output, as
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shown in Figure 4c. The feed-forward network consists of a series of linear transfor-
mations interspersed with dropout layers to further refine the features extracted by the
attention mechanisms:

F = ReLU(ZW1 + b1) (19)

G = FW2 + b2 (20)

where W1, W2 are the weights of the FFN, and b1, b2 are the biases. Dropout and batch
normalisation are applied as needed to improve generalisation and training stability. The
spatial–temporal attention mechanism thus allows the model to effectively capture both
temporal and spatial dependencies in the data, enabling more accurate data fusion. The
outputs from the feed-forward network are combined and normalised using BatchNorm,
as shown in Figure 4b.

4.3.4. Residual Connection

Residual learning [30] has proven to be a powerful technique for training deep neural
networks by facilitating gradient flow and allowing the model to learn meaningful features
more easily. In our approach, the output of the spatio-temporal attention layer and the
output of the transformer module are added to the original input through a residual
connection. This skip connection helps mitigate the vanishing gradient problem and
enables the construction of deeper networks.

Lastly, the processed features pass through another linear layer to produce the final
output. This architecture allows RSTTNet to effectively model complex spatio-temporal
dependencies, making it well-suited for tasks involving network-based data where both
spatial and temporal dynamics are critical.

4.4. Optimisation Objective

In the training process, the objective is to optimise the function f by minimising a
combined loss, which includes three components: the MSE loss between the output of the
transformer module and actual flows, the MSE loss between the model’s final predicted
output and actual flows, and an L2 regularisation loss.

Firstly, the MSE loss between the output of the transformer module and actual flows
(LOSS1) is defined as follows:

LOSS1 =
1
N

N

∑
t=1

(St − Ŝtrans,t)
2 (21)

where N is the number of observations in the training set, St represents the actual observed
small data at time t, and Ŝtrans,t represents the predicted output from the transformer
module at time t.

Secondly, the MSE loss between the model’s final predicted output and actual flows
(LOSS2) is defined as follows:

LOSS2 =
1
N

N

∑
t=1

(St − Ŝt)
2 (22)

where Ŝt represents the model’s final predicted output for the target road at time t.
Thirdly, the L2 regularisation loss (L2reg) is included to prevent overfitting by penalis-

ing large weights in the model. This regularisation term is defined as follows:

L2reg = ∥θ∥2
2 (23)
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where θ denotes the model parameters.
The final combined loss function is given by the following:

LOSS = LOSS1 + LOSS2 + λL2 · L2reg (24)

In this equation, λL2 is the weight for the L2 regularisation loss, set to 0.01. By minimising
this combined loss, the training process ensures that the model accurately predicts flows
while maintaining robustness and preventing overfitting through regularisation. This com-
prehensive approach optimises the model’s performance by integrating both the predicted
outputs and the regularisation term into the training objective.

Our algorithm uses backpropagation to update network parameters and train the
model. By calculating the gradient of the loss function with respect to the network’s
parameters, backpropagation allows us to make iterative adjustments to minimise the loss
and improve the model’s performance. This end-to-end optimisation approach ensures
that all components of the model are tuned simultaneously to achieve the best possible
predictive accuracy. The detailed pseudocode for our method is provided in Algorithm 1.

Algorithm 1 Multi-Channel Spatio-Temporal Data Fusion (MCST-DF) Framework

1: Input: Input data D
2: Output: Predicted results
3: for each training epoch do
4: for each data sample d in D do
5: Spatio-temporal Feature Extraction
6: for each road in d do
7: Extract 0th to 3rd order neighbours to construct spatial features
8: end for
9: Extract temporal features from three months of historical data

10: Segment spatio-temporal features into long-term features FL, mid-term features
FM, and recent features FS

11: Construct multi-channel features FL, FM, and FS for different temporal scales
12: Generate long-term, mid-term, and recent feature maps STFML, STFMM, and

STFMS using Layered Attention Network (LAN)
13: Combine feature maps using Equation (2) to obtain STFM
14: RSTTNet for Network-Based Spatio-temporal Data Fusion
15: Input STFM into RSTTNet
16: Apply temporal positional encoding
17: Pass through spatio-temporal attention layers
18: Input STFM into transformer module and generate predicted flows
19: Combine all the information and generate final predicted flows for d
20: Compute Loss and Update
21: Compute LOSS1 by comparing the transformer’s predicted output with the

actual flows
22: Compute LOSS2 by comparing the model’s final predicted output with the

actual flows
23: Compute L2reg as the L2 regularisation term
24: Compute the total loss: LOSS = LOSS1 + LOSS2 + λL2 · L2reg using Equation (24)
25: Minimise the accumulated loss using backpropagation
26: Update model parameters iteratively to improve predictive accuracy
27: end for
28: end for

5. Experiment and Analysis
In this section, we present comprehensive experiments and analyses to validate the

effectiveness of the proposed MCST-DF framework and RSTTNet. We systematically cover
the following aspects: datasets utilised in our study, the environment and training settings,
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the baselines for comparison, and the evaluation metrics employed. Additionally, we
explore the experimental results and their analysis, provide visualisations to illustrate key
findings, perform sensitivity analysis to assess the robustness of our model and conduct
ablation studies to understand the contribution of each component of RSTTNet. By con-
ducting these experiments, we aim to provide a comprehensive evaluation of the proposed
methods and demonstrate their superior performance, robustness to parameter variations,
and the significance of their individual components. This work focuses on the effective
integration of big data and small data. Although we use traffic flow data as an example,
our approach is generalisable to other domains.

5.1. Experiment Settings
5.1.1. Dataset Description

In this case study, two primary datasets were used to validate the effectiveness of the
proposed MSCT-DF framework and RSTTNet.

First, driving flow data derived from mobile phone applications serves as the proxy
for big data. This data, collected with GDPR consent, is compiled from more than 50 mobile
phone applications used by UK citizens and visitors, including travel-related and lifestyle
applications. The dataset provides a range of valuable indicators, such as device ID, location,
time, and speed. Although the device ID is initially linked to an individual and can be
tracked over prolonged periods, robust anonymisation techniques, such as ID hashing, are
applied to safeguard personal privacy. Furthermore, data handling is conducted in the
security computing environment, compiling with ethical standards and legal frameworks
to prevent re-identification and misuse. During preprocessing, GPS points are matched
to road segments using spatial map-matching algorithms and filtered using techniques
embedded within the travel mode detection framework. These include noise reduction
and outlier removal to exclude implausible trajectories, such as unrealistic speed jumps or
inconsistent travel paths.

A hierarchical segment-based travel mode detection algorithm is adopted to detect
comprehensive travel modes from mobile phone data, including car, bus, train, tube, cycle,
walk, and stationary [31]. This algorithm integrates a moving-window Support Vector
Machine (SVM) with Geographic Information System (GIS) techniques and rule-based
methods [32]. According to individuals’ routes and travel modes, driving flow can be
generated from mobile phone application datasets with travel mode information. This
dataset can provide short-term or hourly sampled flow information for the entire road
network, which has 45,572 links in total [33]. These are the “big” data for our case.

Additionally, hourly traffic data from Transport for London is used to represent small
data. This data is collected from a set of 296 automatic traffic counters (ATCs). ATCs are
magnetic loops embedded in the road that count all motorised vehicle movements passing
over the loop. These ATCs were originally deployed to provide a statistically representative
flow count at the levels of central, inner, and outer London, as well as at the specific
locations where the ATCs were installed. ATC data is temporally aligned with mobile
phone flow data by matching timestamps and spatially matched by road segment IDs.

We represent the urban road network as a directed spatial graph, where nodes corre-
spond to major intersections and edges represent individual road segments. The spatial
geometry of the network was derived from the Ordnance Survey Integrated Transport
Network (ITN), providing a consistent and topologically accurate base map for spatial
analysis. High-quality “small” data were obtained from Automatic Traffic Counters (ATC),
maintained by Transport for London (TfL). These detectors provide daily aggregated flow
counts and have been pre-processed and spatially aligned with the Ordnance Survey
road network by the data provider. As such, each ATC record is mapped directly to a
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specific road segment within the base network. Given their reliability and precision, we
treat the ATC flow counts as ground-truth calibration data. These small but authoritative
observations form the benchmark against which the fusion model is trained and evaluated.

The sparse and spatially biased distribution of ATC sensors presented a significant
challenge for generalising across the entire network. These sensors are predominantly
located along major arterial roads and in central areas, resulting in limited calibration
coverage for peripheral or lower-volume segments. To address this, our model incorporates
spatial attention mechanisms that learn dynamic spatial dependencies beyond local neigh-
bourhoods, enabling effective generalisation to unobserved areas. We further evaluated the
model’s generalisability through zero-shot prediction experiments on road segments with
no direct ATC observations, demonstrating its capacity to infer plausible flows based solely
on contextual information from big data and the learned spatial–temporal structure.

Figure 5 visualise the relationship between big data and small data, illustrating their
distribution and spatial correspondence over the London road network. The two datasets
used in this case study offer distinct perspectives on traffic flow, each with its advantages
and limitations. Mobile phone data, derived from numerous applications, provides a broad,
albeit sampled, view of traffic patterns across the entire road network, capturing a variety
of travel modes and behaviours over time. This extensive coverage, however, relies on
sampling methods that may not capture every nuance of traffic flow. On the other hand,
the hourly traffic data from TfL, gathered through ATCs, offers precise and reliable counts
of motorised traffic but is confined to fixed locations. While this method delivers high
accuracy and detailed data at these points, it lacks the mobile phone data’s comprehensive
network coverage, potentially missing broader traffic trends outside the areas monitored
by ATCs.

5.1.2. Data Preparation

In this section, we begin by selecting roads that contain both big data and small data.
For these selected roads, we divide the dataset into training, validation, and test sets in the
ratio of 7:1:2 to ensure a balanced evaluation across different stages of model development.

To address the issue of small data sparsity, we implement a sliding window approach
to maximise the use of available training data. Specifically, we use data from every consec-
utive 90-day period to fuse the traffic flow for the following day. This approach ensures
that the historical information for each road is fully leveraged, allowing the model to learn
from a comprehensive set of temporal patterns. Crucially, to prevent information leakage,
data from the same road is confined to sets: training, validation, or test. This ensures that
information from different time periods for the same road does not split across different
sets, thereby maintaining the integrity of our model’s training, validation, and testing
processes.

To address the issue of big data mismatch, we apply log normalisation to the initial big
data to mitigate the long-tail distribution problem. The log normalisation formula used is

y = log(1 + x) (25)

where y represents the log-normalised flow value, and x represents the original flow value.
This normalisation technique reduces the skewness in the data, bringing the distribution
closer to a normal distribution. This step is critical for improving the performance of the
model by ensuring that the data fed into it is more balanced and less prone to the distortions
that can arise from highly skewed distributions. Through these data preparation steps, we
aim to create a robust dataset that allows our model to effectively learn from both big and
small data, ultimately improving the accuracy and reliability of the traffic flow predictions.
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Figure 5. Illustration of big data (grey) and small data (red) distributed over London road network.

5.1.3. Implementation Details

The hyperparameter settings for our algorithm are provided in Table 1. These settings
ensure that our experiments are conducted under consistent conditions. To ensure fairness in
our comparisons, the hyperparameter settings for the baseline models are kept the same as
those used in our algorithm, and we record the most effective results. This approach ensures
consistency and reproducibility. For hyperparameters unique to our proposed model, such
as the number of attention heads and hidden dimensions, we conducted grid search on the
validation set to select optimal values. We also employed early stopping with a patience
of five epochs, stopping training when validation loss did not improve for five consecutive
epochs, to avoid overfitting. Our experiments are conducted on a Linux platform with an
AMD Ryzen 9 5950X 16-Core Processor and an NVIDIA TITAN RTX GPU with 24 GB of
GPU memory. We use Python 3.7.3 and PyTorch 1.13.1 for implementing our models.

Table 1. Hyperparameter settings.

Hyperparameter Value

Batch Size 1024
Learning Rate 0.01
Epochs 50
Optimiser Adam
Embedding Dimension for the Transformer Module 16
Embedding Dimension for Spatio-temporal Attention Layer 128
Attention Heads 2
Loss Function MSE
Activation Function ReLU
Batch Normalisation True
Dropout Rate 0.1
Layer Normalisation True
Residual Connections True
Temporal Attention Horizon 120
Weight for the L2 Regularisation Loss 0.01
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5.1.4. Baselines

While the primary focus of our research is on a novel data fusion task, the underlying
architectures of several well-established prediction models offer significant insights and
utility for our purposes. Even though these models are traditionally used for prediction,
their network structures can be effectively adapted for data fusion tasks, providing robust
frameworks for integrating diverse data streams. Notably, these methods do not employ a
LAN to construct an STFM, but instead use the raw data directly as input. Below is a brief
introduction of the benchmark models:

• RNN: A recurrent neural network model designed to capture temporal dependencies
in flow data.

• Transformer [34]: A transformer-based model that utilises self-attention mechanisms
to model temporal dependencies in data.

• ST-Transformer [35]: A novel spatio-temporal transformer architecture that generates
predictions autoregressively using decoupled temporal and spatial self-attention
mechanisms.

• STTNs [36]: Spatial–temporal transformer networks (STTNs) that improve long-term
flow forecasting accuracy by dynamically modelling time-varying spatial dependen-
cies and long-range temporal dependencies.

By evaluating our method against these benchmark models, we aim to provide a
comprehensive assessment of its effectiveness and highlight the advancements achieved
through our proposed framework.

5.1.5. Evaluation Metrics

When evaluating the performance of predictive models, common performance metrics
include Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Root Mean
Squared Error (RMSE), and Accuracy.

Mean Absolute Error (MAE). The Mean Absolute Error is the average of the absolute
differences between the predicted values and the actual values. It reflects the average
magnitude of errors in a set of predictions. The formula for MAE is as follows:

MAE =
1
n

n

∑
i=1

|yi − ŷi| (26)

where n is the number of samples, yi is the actual value of the i-th sample, and ŷi is the
predicted value of the i-th sample.

Mean Absolute Percentage Error (MAPE). The Mean Absolute Percentage Error is
the average of the absolute percentage errors between the predicted values and the actual
values. It is often used to assess the accuracy of a forecasting method. The formula for
MAPE is as follows:

MAPE =
1
n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100% (27)

It is important to note that MAPE can produce extremely large errors when actual values yi

are close to zero.
Root Mean Squared Error (RMSE). The Root Mean Square Error is the square root

of the average of the squared differences between the predicted values and the actual
values. RMSE gives a higher weight to larger errors, emphasising significant deviations.
The formula for RMSE is as follows:

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2 (28)
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where n is the number of samples, yi is the actual value of the i-th sample, and ŷi is the
predicted value of the i-th sample.

Accuracy (ACC). The Accuracy metric measures the proportion of predictions that are
within 10% of the true values [4]. It is calculated as follows:

Accuracy =
∑n

i=1 ⊮
(∣∣∣ yi−ŷi

yi

∣∣∣ ≤ 0.1
)

n
(29)

where ⊮ is the indicator function that returns 1 if the condition is true and 0 otherwise.

5.2. Experimental Results

We conducted comparative experiments with the aforementioned baselines on a real-
world dataset under a zero-shot setting. This means that the roads encountered during
testing were not seen during training. To ensure fairness, all experiments were conducted
using the same five seeds (42–46), and we recorded the average performance on the test set
when the validation set loss was at its minimum. Table 2 shows a performance comparison
between our method and the baseline models, where bold indicates the best results.

Table 2. Performance comparison with baseline algorithms on the real-world dataset.

Dataset Model Evaluation Metrics
MAE↓ MAPE↓ RMSE↓ ACC↑

London Car
Flow Dataset

RNN 0.579 ± 0.068 0.052 ± 0.006 0.660 ± 0.078 84.433 ± 5.184
Transformer 0.592 ± 0.065 0.053 ± 0.005 0.676 ± 0.075 82.959 ± 6.058

ST-Transformer 0.672 ± 0.131 0.060 ± 0.011 0.781 ± 0.130 76.723 ± 8.690
STTN 0.743 ± 0.193 0.066 ± 0.016 0.860 ± 0.241 74.009 ± 4.799

MCST-DF (Ours) 0.476 ± 0.029 0.042 ± 0.002 0.545 ± 0.032 89.879 ± 2.941

From the results in Table 2, we can draw several key observations. First, our proposed
RSTTNet method significantly outperforms all baseline models across all evaluation metrics,
including Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Root
Mean Square Error (RMSE). Specifically, RSTTNet achieves the lowest MAE of 0.483, the
lowest MAPE of 0.043, and the lowest RMSE of 0.551, providing more accurate predicted
flows compared to baseline models. It is important to note that the results shown in
Table 2 are based on the test dataset corresponding to the lowest validation loss, rather than
selecting the best-performing test data directly. This approach ensures that the evaluation
reflects a more generalisable performance rather than overfitting to the test dataset.

In addition, Figure 6 provides a visual comparison of the mean accuracy for each
method, represented by solid lines, with the interquartile range (25–75% percentile) shaded.
This figure further illustrates the robustness and reliability of RSTTNet, as it consistently
demonstrates higher win rates compared to other models.

In comparison, while the RNN model is the second-best performer, it still lags behind
RSTTNet by a notable margin, particularly in terms of MAE and RMSE. The transformer-
based models, though generally effective, do not achieve the same level of performance,
further emphasising the advantages of our approach. This discrepancy may be due to their
failure to fully exploit the spatio-temporal relationships between big data and small data,
as well as their lack of adequate handling of key challenges in data fusion tasks such as the
mismatch of big data and the sparsity of small data.

Although the RNN model outperforms the transformer in Table 2, the MCST-DF frame-
work is built around the transformer due to its ability to capture long-range dependencies,
efficiently integrate heterogeneous data, and leverage parallel processing for large-scale
networks. While RNNs perform well in standalone time series forecasting, they struggle
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with long-distance interactions and are less efficient for network-wide spatio-temporal
data fusion. The transformer-based RSTTNet in MCST-DF effectively models complex
relationships between “big” and “small” data, leading to superior overall performance in
network flow estimation.
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Figure 6. Performance comparison with baseline algorithms on the real-world dataset.

These results highlight the efficacy of our proposed method in capturing complex
spatio-temporal dynamics and effectively integrating big data and small data. The marked
improvement over traditional models and even advanced Transformer-based models sug-
gests that the innovations in our RSTTNet architecture, including the use of small data
modelling and residual connection, play a crucial role in enhancing predictive perfor-
mance. In conclusion, the experimental analysis clearly demonstrates the superiority of
RSTTNet in network flow data fusion tasks, validating its effectiveness and robustness in
real-world applications.

5.3. Validation

We predicted the real car flow on the TfL’s Common Operation Road Network (CORN)
using the aforementioned dataset and visualised the results. Figure 7 presents a visual-
isation of car flow trends in London on 17 June 2024. The spatial distribution of traffic
generally aligns with well-understood traffic patterns and the existing infrastructure layout
in London. The traffic flow is notably dense along major transport corridors and strategic
roads, such as the North Circular (A406), while local roads exhibit significantly lower traffic
volumes. Additionally, our results are consistent with the visualisation of the real small
data flow, as shown in Figure 8, thereby indicating the accuracy of our predictions.

Driving flow data derived from a mobile phone application has been validated by
Transport for London (TfL). TfL utilises hourly vehicle flow data from 615 road links,
incorporating sensors from TfL and 10 London boroughs. The collected data spans all road
hierarchies, including A Road Primary (40), A Road (231), B Road (62), Minor Road (92), and
Local Road (190). According to TfL’s validation, the driving flow derived from the mobile
phone application exhibits a strong correlation with officially collected flow data, with an
overall correlation of 0.78 (without outlier removal). However, due to TfL’s restrictions,
these validation results will not be included in the article.
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Figure 7. Visualisation of one-day car flow forecasting obtained by our method.

Figure 8. Visualisation of real small data flow.

While the validation confirms a high degree of accuracy, it is important to acknowledge
the limitations and potential biases inherent in the mobile phone dataset. For instance,
data coverage may be skewed due to uneven smartphone penetration across age groups,
socioeconomic status, or geographic regions. Individuals who do not use location-enabled
applications or who use less common devices (e.g., non-Android or privacy-focused phones)
may be underrepresented. These factors should be considered when interpreting the results,
and future work may benefit from complementary datasets or correction techniques to
address these disparities. The correlation between UCL mobile application-derived vehicle
flow and TfL sensor data is illustrated in Figure 9.
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Figure 9. Correlation between UCL mobile application-derived vehicle flow and TfL sensor data.

5.4. Analysis
5.4.1. Sensitivity Analysis

We further examine whether our proposed algorithm is sensitive to different parameter
settings. We conduct experiments to test how the model performance varies with different
numbers of attention layers, hidden dimensions and attention heads. In the following, we
present a detailed analysis of the results obtained for various configurations, followed by a
summary and conclusion on the sensitivity of our model.

As shown in Table 3, we first analyze the impact of varying the number of attention
layers. The results indicate that the model achieves the best performance with one attention
layer, resulting in the lowest MAE of 0.483, MAPE of 0.043, and RMSE of 0.551. As the
number of attention layers increases to 2 and 3, the performance slightly deteriorates, with
MAE increasing to 0.494 and 0.516, respectively. This suggests that while a single attention
layer is sufficient for capturing the necessary spatio-temporal dynamics, adding more
layers may introduce unnecessary complexity, leading to overfitting.

Table 3. Performance comparison with varying numbers of attention layers on the real-world dataset.

Dataset Model Evaluation Metrics
MAE↓ MAPE↓ RMSE↓ ACC↑

London Car
Flow Dataset

Attention Layers = 1 0.476 ± 0.029 0.042 ± 0.002 0.545 ± 0.032 89.879 ± 2.941
Attention Layers = 2 0.494 ± 0.020 0.044 ± 0.001 0.566 ± 0.021 89.146 ± 2.986
Attention Layers = 3 0.516 ± 0.076 0.046 ± 0.006 0.585 ± 0.081 87.805 ± 4.769

Next, in Table 4, we examine the effect of varying the hidden dimension size on model
performance. The results show that the hidden dimension of 16 yields the best results with
the lowest MAE of 0.483, MAPE of 0.043, and RMSE of 0.551. When the hidden dimension
is reduced to 2 or increased to 4, the model’s performance declines, indicating that a hidden
dimension of 16 strikes the optimal balance between model complexity and capacity.

Table 4. Performance comparison with varying hidden dimension sizes on the real-world dataset.

Dataset Model Evaluation Metrics
MAE↓ MAPE↓ RMSE↓ ACC↑

London Car
Flow Dataset

Hidden Dim = 2 0.497 ± 0.080 0.045 ± 0.006 0.566 ± 0.080 89.151 ± 6.237
Hidden Dim = 4 0.558 ± 0.196 0.050 ± 0.017 0.627 ± 0.195 85.954 ± 9.108

Hidden Dim = 16 0.476 ± 0.029 0.042 ± 0.002 0.545 ± 0.032 89.879 ± 2.941
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Lastly, Table 5 presents the performance comparison when varying the number of
attention heads. The results show that while the model achieves slightly better performance
with four attention heads, resulting in the lowest MAE of 0.469, MAPE of 0.042, and RMSE
of 0.541, the differences between configurations with one and two attention heads are
minimal. This suggests that the network’s performance is relatively insensitive to the
number of attention heads, indicating that this parameter does not significantly impact the
model’s ability to capture the intricate relationships within the data.

Table 5. Performance comparison with varying numbers of attention heads on the real-world dataset.

Dataset Model Evaluation Metrics
MAE↓ MAPE↓ RMSE↓ ACC↑

London Car
Flow Dataset

Attention Heads = 1 0.479 ± 0.047 0.043 ± 0.004 0.549 ± 0.048 90.198 ± 4.657
Attention Heads = 2 0.483 ± 0.055 0.043 ± 0.005 0.551 ± 0.059 89.965 ± 3.321
Attention Heads = 4 0.476 ± 0.029 0.042 ± 0.002 0.545 ± 0.032 89.879 ± 2.941

In summary, the sensitivity analysis reveals that our proposed RSTTNet model is
robust across various configurations, yet certain parameters significantly impact its per-
formance. Specifically, the best results are obtained with one attention layer, a hidden
dimension size of 16, and four attention heads. These findings highlight the importance of
careful tuning of the model’s architecture to fully leverage its strengths in capturing com-
plex spatio-temporal dependencies. Overall, our RSTTNet method demonstrates superior
performance and robustness, confirming its effectiveness in network flow data fusion tasks.

5.4.2. Ablation Studies

We conduct ablation studies to assess the necessity and impact of each component in
our proposed RSTTNet model. Table 6 presents a performance comparison across different
variations of our model on the real-world dataset. Figure 10 provides a visual comparison
of the mean accuracy for each method, represented by solid lines, with the interquartile
range (25–75% percentile) shaded. Below, we describe each variation and its corresponding
results in detail.

• No Layered Attention Network: In this variation, the Layered Attention Network is
removed, but zero padding is retained for easier processing. This configuration results
in an MAE of 0.564, a MAPE of 0.051, and an RMSE of 0.651. The higher error metrics
indicate that the absence of the Layered Attention Network hampers the model’s
ability to capture complex spatio-temporal relationships.

• No small data modelling: This variant removes the specialised small data modelling
component. It yields an MAE of 0.566, a MAPE of 0.050, and an RMSE of 0.640.
The slightly worse performance compared to other variants suggests that small data
modelling is essential for effectively integrating sparse and accurate small data with
large-scale but noisy big data.

• Linear small data modelling: In this version, the transformer network in the small
data modelling module is replaced with a simpler linear model. This configuration
achieves an MAE of 0.517, a MAPE of 0.046, and an RMSE of 0.589. While this
approach performs better than the previous two variants, it still does not match the
full RSTTNet model, underscoring the importance of using more advanced small data
modelling techniques.

• RSTTNet: The complete RSTTNet model, which includes both the Layered Attention
Network and advanced small data modelling, achieves the best performance across all
metrics, with an MAE of 0.483, a MAPE of 0.043, and an RMSE of 0.551. These results
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highlight the effectiveness of the full model configuration in capturing spatio-temporal
dependencies and integrating heterogeneous data sources.

Table 6. Performance comparison with ablation algorithms on the real-world dataset.

Dataset Model Evaluation Metrics
MAE↓ MAPE↓ RMSE↓ ACC↑

London Car
Flow Dataset

No Layered
Attention Network 0.564 ± 0.169 0.051 ± 0.010 0.651 ± 0.168 84.816 ± 8.501

No Small
Data Modelling 0.566 ± 0.073 0.050 ± 0.006 0.640 ± 0.079 84.612 ± 4.480

Linear Small
Data Modelling 0.517 ± 0.131 0.046 ± 0.012 0.589 ± 0.176 87.085 ± 9.998

MCST-DF (Ours) 0.476 ± 0.029 0.042 ± 0.002 0.545 ± 0.032 89.879 ± 2.941

1 2 3 4 5 6 7 8 9
Epochs

0

20

40

60

80

Ac
cu
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MC-RSTNet (Ours)
Linear Small Data Modeling
No Layered Attention Network
No Small Data Modeling

Figure 10. Performance comparison with ablation algorithms on the real-world dataset.

In summary, the ablation studies clearly demonstrate that both the Layered Attention
Network and the advanced small data modelling components are essential to achieving
superior predictive performance. The full RSTTNet model significantly outperforms its
ablated variants, validating the design choices made in developing our method. Also, the
proposed Multi-Channel Spatio-Temporal Data Fusion (MCST-DF) framework along with
its components, multi-chanel spatio-temporal feature mapping, effectively addresses the
issues of mismatch, sparsity, and heterogeneity.

The MCST-DF framework specifically addresses the issue of mismatch by extracting
the spatio-temporal features from the big data then combined with the small data through
the RSTTNet. This underscores the framework’s capability in enhancing overall data accu-
racy. Regarding sparsity, the transformer-based small data modelling approach effectively
utilises sparse and geographically limited data, which is evident from the improvement
in model performance when compared to configurations without small data modelling.
Lastly, the heterogeneity challenge is tackled through the Layered Attention Network
which embeds multi-channel spatio-temporal features, allowing for a better understanding
of complex data structures. This is demonstrated by the advanced modelling capabilities of
RSTTNet, which outperforms the variant without the Layered Attention Network in all
key metrics, supporting its effectiveness in handling diverse data types and structures.
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6. Conclusions and Future Work
This study addresses a fundamental challenge in spatio-temporal data integration:

how to effectively fuse large-scale, passively collected “big” data with sparse, high-quality
“small” data to reconstruct underlying network dynamics. We proposed the Multi-Channel
Spatio-Temporal Data Fusion (MCST-DF) framework, underpinned by a novel Residual
Spatio-Temporal Transformer Network (RSTTNet). The framework leverages the comple-
mentary strengths of both data types to capture complex spatial and temporal dependencies
while mitigating issues of sampling bias and data sparsity.

Empirical evaluation on a real-world urban road network demonstrates significant
improvements in predictive accuracy compared to baseline deep learning models, confirm-
ing the effectiveness of our approach for intelligent mobility monitoring and geospatial
data enrichment. By addressing a pressing need in GeoAI—the fusion of heterogeneous
spatio-temporal data—this work contributes to advancing scalable solutions for smart
cities, infrastructure resilience, and network state estimation.

Future work will focus on extending this framework to incorporate multimodal data
sources, including real-time imagery, environmental sensors, and social media feeds. Such
integration will enable richer representations of urban dynamics and support advanced
tasks such as anomaly detection, flow forecasting, and policy-driven simulation. Ultimately,
our goal is to develop robust, transferable data fusion techniques that support decision-
making in increasingly complex and data-rich geospatial systems. Furthermore, although
this study focuses on traffic flow estimation, we believe the proposed framework can
be generalised to other spatio-temporal data fusion tasks, and we plan to explore its
application to domains such as environmental monitoring and urban sensing in future
research. In addition, evaluating the generalisability of the proposed framework in diverse
settings will be an important direction for future work, enabling further demonstration of
its robustness and broad applicability.
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