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ABSTRACT This paper investigates a novel approach to improve the temperature profile prediction of furnaces
in foundation industries, crucial for sustainable manufacturing. While existing methods like the Hottel Zone
model are accurate, they lack real-time inference capabilities. Deep learning methods excel in speed and
prediction but require careful generalization for real-world applications. We propose a regularization technique
that leverages the Hottel Zone method to make deep neural networks physics-aware, improving prediction
accuracy for furnace temperature profiles. Our approach demonstrates effectiveness on various neural network
architectures, including Multi-Layer Perceptrons (MLP), Long Short-Term Memory (LSTM), Extended
LSTM (xLSTM) and Kolmogorov-Arnold Networks (KANs).We also discussion the data generation involved.

INDEX TERMS Extended LSTM (xLSTM), furnace, Hottel zone method, Kolmogorov-arnold networks
(KANs), long short-term memory (LSTM), multi-layer perceptrons (MLP), physics-informed neural networks
(PINNs), sustainable manufacturing, temperature profile.

I. INTRODUCTION
Majority of economically relevant industries (automobiles,
machinery, construction, household appliances, chemicals,
etc) are dependent on the Foundation Industries (FIs) that
provide crucial and foundational materials like glass, metals,
cement, ceramics, bulk chemicals, paper, steel, etc. FIs are
heavy revenue and employment drivers, for instance, FIs in the
United Kingdom (UK) economy are worth £52B [1], employ
0.25 million people, and comprise over 7000 businesses [2].
However, despite their economic significance, the FIs leverage
energy-intensive methods within their furnaces. This makes
FIs major industrial polluters and the largest consumers of
natural resources across the globe. For example, in the UK,
they produce 28 million tonnes of materials per year, and
generate 10% of the entire UK’s CO2 emissions [1], [2].
Similarly, in China, the steel industry accounted for 15%
of the total energy consumption, and 15.4% of the total
CO2 emissions [3], [4]. These numbers put a challenge for the
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FIs in meeting our commitment to reduce net Green-House
Gas (GHG) emissions, globally.
With a closer look at any process industry (e.g., steel

industry), one can observe that at the core, lies the process
of conversion of materials (e.g., iron) into final products.
This is done using a series of unit processes [5] involving
steps such as dressing, sintering, smelting, casting, rolling,
etc (see [6] for an illustration). The equipment in such
process industries operates in high-intensity environments
(e.g., high temperature), and has bottleneck components
such as reheating furnaces, which require complex restart
processes post-failure. This causes additional labor costs and
energy consumption. Thus, for sustainable manufacturing, it is
important to monitor the temperature profile, and thus, the
operating status of the furnaces. Reference [7] have shown
promise in achieving notable fuel consumption reduction by
reducing the overall heating time.
Reference [8] in their study, have proved the elegance and

superiority of the Hottel Zone method over counterparts to
model the physical phenomenon of Radiative Heat Transfer
(RHT) in high-temperature processes. Reference [9] proposed
a computational model workflow based on the Hottel Zone
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method, and showed superiority over surrogate computational
alternatives in terms of predictive performance. However,
none of these approaches are suitable for real-time inference
in modeling a furnace temperature profile. Deep Learning
(DL) based neural network methods excel in achieving
superior predictive performance and speed. Nonetheless,
their generalization capabilities require special attention,
particularly in critical real-world applications.

In our work, we propose to revisit the Hottel Zone method
and devise a novel regularization technique that could be
used as a plug-and-play module to make a neural network
physics-constrained (or physics-aware) with regard to the
underlying phenomena of high-temperature processes in
furnaces. We show that for a time-step in a furnace, given a
certain set of input entities, we could predict the desired output
temperature entities more accurately (in terms of regression
metrics) using our regularization technique, as opposed to
using a vanilla neural network. We demonstrate the prowess of
our proposal on different types of neural network architectures:
Multi-Layer Perceptron (MLP) or feed-forward networks,
sequential models such as Long Short-Term Memory (LSTM)
based Recurrent Neural Networks (RNNs), as well as recently
proposed Kolmogorov-Arnold Networks (KANs) [10] and
Extended LSTM (xLSTM) [11].
This work makes three key contributions: Tensor-based

Reformulation and Physics-Aware Neural Networks: We
reformulate the Hottel Zone Method’s Directed Flux Areas
(DFAs) and Energy Balance (EB) equations in tensor format,
enabling neural network training. We further introduce a
novel regularization technique that imbues the network with
physics-awareness. Extensive Experimental Validation: We
comprehensively validate the proposed approach using various
neural network architectures. Dataset and Benchmarking
Proposal: To this end, we propose a dataset and benchmarking
protocol (details provided in SectionA-H). A github repository
is maintained at https://github.com/ukdsvl/HZPCNet to
facilitate real-time updates to the same as and when made.

Numerous real-world applications, including chemical reac-
tors [12], solar energy [13], [14], and 3D printing [15], [16],
involve high-temperature processes exceeding 700◦C . These
processes rely heavily on Radiative Heat Transfer (RHT) as a
dominant mechanism alongside conduction and convection.
Notably, RHT remains crucial for thermal transport even in
vacuum conditions encountered in astronomical applications.
We envision that our learnings could perhaps be extended to
those applications with bespoke approaches.

To constrain the main content verbosity, we have limited the
length of the introduction section. Please refer to Section A-A
for a more detailed discussion, particularly regarding the
motivation behind our research.

II. RELATED WORK
In Section A-B, we provide a detailed discussion of related
works. To constrain the main content verbosity, we will focus
here on how our approach significantly differs from existing
methods.

1) View factor methods: Existing methods [17], [18],
[19], [20] simplify the modeling area and are geometry-
specific. We propose a generic, geometry-agnostic model
encompassing all exchange areas (radiation transfer
interfaces).

2) Neural network methods: Existing methods [21],
[22], [23], [24], [25], [26], [27], [28], [29], [30], [31]
often use simple MLPs, which lack generalization
due to limited physics understanding. We introduce a
Physics-constrained Neural Network (PCNN) frame-
work that outperforms MLP and can be applied to other
architectures like LSTM, KAN, xLSTM.

3) Furnace temperature profiling: Existing methods [32],
[33], [34], [35], [36], [37], [38], [39], [40], [41] focus
on specific regions, while our method targets complete
furnace temperature profiling, including gas zones,
furnace walls, and slab surfaces. Our utilized data is more
holistic. Existing neural methods in this category also
lack physics awareness.

4) PINNs: Compared to the existing body of Physics-
Informed Neural Network (PINN) literatures [42], [43],
[44], [45], [46], [47], [48], [49], [50], [51], [52],
[53], [54], [55], and [56], we propose a novel variant
specifically designed for zone method based modeling
in reheating furnaces. Our approach is the first to
utilize physics-constrained regularizers based on the
zone method for temperature prediction. It requires
minimal data (input-output pairs) and makes no geometry
assumptions. Our data creation method is holistic and
unique, encompassing all exchange areas. Our method,
as we will see later, is based on a set of simultaneous
equations to incorporate physics-awareness, and directly
does not involve a differential equation. Thus, we call
it a physics-constrained method, though PINN could be
also used philosophically.

III. PROPOSED METHOD
A. BACKGROUND
The Hottel Zone method subdivides a furnace into zones
(volumes and surfaces) to predict Radiative Heat Transfer
(RHT). Volume and Gas (G) zone is used interchangeably.
Surface (S) zones are of two types, SF: furnace and SO:
obstacle (e.g., slabs that are heated). Each zone has a uniform
temperature. Sets of Energy-Balance (EB) equations govern
radiation exchange between zones, considering incoming and
outgoing radiation fluxes. These equations are iteratively
updated to obtain the entire furnace’s temperature profile.
Following are the key concepts:
1) Total Exchange Areas (TEAs): Pre-computed values

representing the total area for radiation exchange between
zone pairs (SS: surface-surface, SG/GS: surface-gas, GG:
gas-gas).

2) Directed Flux Areas (DFAs): Derived from TEAs and
used to calculate radiant exchange between zone pairs at
each step of the zone method.
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3) Weighted Sum ofGreyGases (WSGG)model: Handles
non-grey gases by representing them as a mixture of grey
gases and a clear gas.

B. EXCHANGE AREA CALCULATION
The first step in the Zone method involves computation of
Exchange Factors [8]. The exchange factor among a pair of
volume zones Vi and Vj is expressed as:

gigj =
∫
Vi

∫
Vj

kikje−τdVidVj
πr2

(1)

Physically, it represents the energy radiated from Vi and
absorbed/ scattered by Vj. Here, k denotes the respective
extinction coefficient, τ is the optical thickness among
differential volume elements dVi and dVj, and r =√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2. Now, let ni and nj

respectively be unit normal vectors of dAi and dAj (corre-
sponding to two surface zones Ai and Aj). Then, the exchange
factors gisj (between volume zone Vi and surface zone Aj) and
sisj (between surface zone Ai and surface zone Aj), can be
expressed as:

gisj =
∫
Vi

∫
Aj

ki|nj .r|e−τdVidAj
πr3

sisj =
∫
Ai

∫
Aj

|ni.r||nj .r|e−τdAidAj
πr4

(2)

Numerical evaluation of the above equations being complex,
has led to analytical approximations, by considering an
enclosure as a cube-square system, i.e, by representing a
volume as a cube, and a surface as a square. This facilitates
the tabulation of a ‘‘generic’’ set of exchange factors,
which are applicable for most practical industrial geometries,
using an updated Monte-Carlo based Ray-Tracing (MCRT)
algorithm [57]. To this end, such pre-computed generic values
are refered to as Total Exchange Areas (TEA), and we denote
them by: GiSj, SiSj, GiGj and SiGj. Here, SiGj = GiSj. Note
that throughout the text, G(or g) and S(or s) shall indicate
terms corresponding to Gas/Volume, and Surface respectively.

C. INTRODUCING TENSOR NOTATIONS FOR HOTTEL ZONE
METHOD BASED NEURAL NETWORK
To account for our formulation of a neural network based
approach, we first introduce the following four tensors to
collectively represent the above TEAs: GS ∈ R|G|×|S|×|Ng|,
SS ∈ R|S|×|S|×|Ng|, GG ∈ R|G|×|G|×|Ng|, SG ∈ R|S|×|G|×|Ng|.
Here, |G|, |S| respectively denote the number of gas/ volume
zones, and number of surface zones. In practice, |Ng|
gases representing real gas medium are used, and hence,
a third dimension has also been used in the above tensors.
As discussed above, TEAs are pre-computed constants, used
as inputs to our model. Slightly abusing notations, we can
refer to a TEA by considering only the first two dimensions
(for a pair of zones).

The next step is to compute the Radiation Exchange factors,
or the Directed Flux Areas (DFA), considering radiating gas

FIGURE 1. Derivation of matrix forms of the DFA terms (using GS as
reference).

medium through a Weighted Sum of the mixed Grey Gases
(WSGG) model [9]:

↼

GiGj =
Ng∑
n=1

ag,n(Tg,j)(GiGj)k=kn

↼

SiSj =
Ng∑
n=1

as,n(Ts,j)(SiSj)k=kn (3)

↼

GiSj =
Ng∑
n=1

as,n(Ts,j)(GiSj)k=kn

↼

SiGj =
Ng∑
n=1

ag,n(Tg,j)(SiGj)k=kn (4)

Here, ↼ indicates the direction of flow. Tg,j and Ts,j
denote the temperatures for the jth volume and surface zones
respectively, and are the values we want our model to predict
(at each time step). Note that the collective representation of
the DFAs can be expressed as:

↼

GS ∈ R|G|×|S|,
↼

SS ∈ R|S|×|S|,
↼

GG ∈ R|G|×|G|,
↼

SG ∈ R|S|×|G|. In Eq (3)-(4), the TEA terms
correspond to a particular grey gas being used, for example,
(GiGj)k=kn represents the TEA GiGj with the nth gas.

WSGG is a method used to represent the absorptivity/
emissivity of real combustion products with a mixture of a
couple of grey gases plus a clear gas, i.e, the number of grey
gases is equal to Ng − 1.
For each gas indexed by n, we have a set of pre-computed

correlation coefficients {bi+1,n}
Ng
i=0 for both gas and surface

related coefficients, and an absorption coefficient kg,n.
Then, the weighting coefficient ag,n(Tg,j) (for gas-zone
temperatures) and the weighting coefficient as,n(Ts,j) (for
surface-zone temperatures) can be expressed as a N th

g order
polynomial in Tg,j (or Ts,j):

ag,n(Tg,j) =
Ng∑
i=0

bi+1,nT ig,j; as,n(Ts,j) =
Ng∑
i=0

bi+1,nT is,j (5)

Using (3), (4, (5), and with GS as a reference, we make
use of Figure 1 to illustrate the derivation of a compact
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FIGURE 2. Derviation of the matrix forms of the EBV equations for physics
based regularizers.

matrix form for computing a DFA term efficiently for getting
training samples of a neural network. Let, (GS)n be the nth

slice of GS along the third dimension, and an = b̃n(tS ).
broadcast(a⊤n ) reshapes a

⊤
n to the same dimension as (GS)n,

i.e., R|G|×|S|. tS ∈ R|S| is a vector containing all the surface
zone temperatures (in a time step), such that its jth entry
tS (j) = Ts,j. The jth entry an(j) of an ∈ R|S| is computed using
the function b̃n with the correlation coefficients {bi+1,n}

Ng
i=0 as

the parameters, and by following eq (5). We can also assume
similar vector containing all gas zone temperatures (in a time
step) tG ∈ R|G|, with jth entry tG(j) = Tg,j.
Then, the DFA terms related to gas-zone temperatures

can be expressed as:

↼

GS =
Ng∑
n=1

(GS)n ⊙ broadcast(a⊤n )

↼

GG =
Ng∑
n=1

(GG)n ⊙ broadcast(b̃n(tG)⊤) (6)

and, the DFA terms related to surface-zone temperatures
can be expressed as:

↼

SS =
Ng∑
n=1

(SS)n ⊙ broadcast(b̃n(tS )⊤)

↼

SG =
Ng∑
n=1

(SG)n ⊙ broadcast(b̃n(tG)⊤) (7)

D. ENERGY-BALANCE BASED PHYSICS-REGULARIZATION
With the above DFA terms at our disposal, we can compute the
gas/volume and surface zone temperatures at each time step
of furnace operation by respectively using Energy-Balance
Volume (EBV) and Energy-Balance Surface (EBS) equations.
EBV and EBS are a set of simulataneous equations to capture
the governing physics of RHT [9]. Figure 2 visually illustrates
computation of the terms g(g)arr , s(g)arr and gleave involved in
the EBV equation to compute the gas zone temperatures of a
time step.
Let, g(g)arr ∈ R|G| be a vector whose ith entry represents

the amount of radiation arriving at the ith gas zone from all
the other gas zones, s(g)arr ∈ R|G|, a vector whose ith entry

represents the amount of radiation arriving at the ith gas zone
from all the other surface zones, gleave ∈ R|G|, a vector whose
ith entry represents the amount of radiation leaving the ith gas
zone, and hg ∈ R|G| a heat term. Also, let Tg,j (or Tg) and
Ts,j (or Ts) denote the jth gas and surface zone temperatures
respectively. Then, following EBV equations, the ith entries
of g(g)arr , s(g)arr , gleave and hg can be computed as:

g(g)arr (i) =
|G|∑
j

↼

GiGjσT
4
g,j

s(g)arr (i) =
|S|∑
j

↼

GiSjσT 4
s,j

gleave(i) =
|Ng|∑
n

ag,n(Tg,i)kg,nσViT 4
g,i

hg(i) = −(Q̇conv)i + (Q̇fuel,net )i + (Q̇a)i + qi (8)

Here, the constants (known apriori) (Q̇conv)i, (Q̇fuel,net )i,
and (Q̇a)i respectively denote the convection heat transfer,
heat release due to input fuel, and thermal input from air/
oxygen. An enthalpy vector q ∈ R|G| is computed using
the flow-pattern obtained via polynomial curve fitting during
simulation. σ is the Stefan-Boltzmann constant, Vi is volume
of ith gas zone.
Let, s(s)arr ∈ R|S|, be a vector whose ith entry represents

the amount of radiation arriving at the ith surface zone from
all the other surface zones, g(s)arr ∈ R|S|, a vector whose
ith entry represents the amount of radiation arriving at the
ith surface zone from all the other gas zones, sleave ∈ R|S|,
a vector whose ith entry represents the amount of radiation
leaving the ith surface zone, and hs ∈ R|S| a heat term. Then,
following EBS equations, the ith entries of s(s)arr , g(s)arr , sleave
and hs can be computed as:

s(s)arr (i) =
|S|∑
j

↼

SiSjσT 4
s,j

g(s)arr (i) =
|G|∑
j

↼

SiGjσT
4
g,j

sleave(i) = AiϵiσT 4
s,i

hs(i) = Ai(q̇conv)i − Q̇s,i (9)

For a surface zone i, the constants (known apriori) Ai(q̇conv)i
and Q̇s,i respectively denote the heat flux to the surface by
convection and heat transfer from it to the other surfaces. Here,
Ai is the area, and ϵi is the emissivity of the ith surface zone.

The calculated terms in the Energy-Balance (EB) equations
represent the heat entering and leaving each zone. In simpler
terms, these equations ensure an energy balance by placing
all incoming heat terms on the left-hand side (LHS) and
outgoing terms on the right-hand side (RHS). Leveraging these
terms in an optimization framework allows us to minimize
the difference between LHS and RHS. To achieve this,
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we introduce the following terms:

vg = (g(g)arr + s(g)arr − 4gleave + hg) ∈ R|G|

vs = (s(s)arr + g(s)arr − sleave + hs) ∈ R|S| (10)

Here, |G|/|S| denotes the number of Gas/ Surface zones.
Intuitively, vg and vs are vector representatives corre-
sponding to EBV and EBS. Let, λebv, λebs > 0 are
hyper-parameters corresponding to Lebv and Lebs, such that
Lebv=||normalize(vg)||22 is our proposed regularizer term corre-
sponding to theEBV. Similarly,Lebs=||normalize(vs)||22 is our
proposed regularizer term corresponding to the EBS. We use:
normalize(v) = v/max(v), where max(v) is the maximum
value from among all components in v.

The core idea is to leverage the Energy Balance (EB)
equations, which represent well-established physical laws
governing heat transfer in the furnace. These equations enforce
a balance between incoming and outgoing heat for each
zone. The vectors vg and vs capture the residuals between
the incoming and outgoing heat terms in the EB equations
for gas (g) and surface (s) zones, respectively. By minimizing
the L2 norm of these residuals (after normalization), we are
essentially penalizing the network for deviating significantly
from the physical constraints imposed by the EB equations.
This encourages the network to learn temperature profiles that
adhere to these well-defined energy balances.
Minimizing the L2 norm encourages the network to drive

all components of the residual vectors towards zero. The
normalization step ensures all zones contribute equally to
the penalty, regardless of their absolute temperature values.
This prevents zones with naturally higher temperatures from
dominating the regularization term.

E. PUTTING TOGETHER THE NEURAL NETWORK
OBJECTIVE
We now discuss the design of our final neural network.
We formulate the objective in such a way that we can plug the
above proposed regularizers in a standalone neural network
architecture trained to regress output temperatures given a
set of easily available input entities at each time step of
a furnace operation. While starting the furnace operation,
ambient temperatures are readily available (depicting the
initial state of the furnace), along with walk interval, desired
target set point temperatures. Then, based on the firing rates
chosen for the burners of the furnace, there would be a resulting
flow pattern in the furnace. This is a result of heat flow, and
mass flow within the furnace (mass flow happens because
of the slab movements, which need to be heated). This flow
pattern would cause a change in the overall enthalpy, leading
to a new temperature profile (new state) of the furnace, which
can be measured by the resulting new gas and surface zone
temperatures. These temperatures in turn could serve as input
temperatures for the next step’s prediction. For a more intuitive
understanding of furnace operation, please refer Section A-H.

In a practical setup, a neural network deployed could expect
to consume the previous step temperatures, firing rates, walk

interval, and set point temperatures as inputs. The output could
then be the new temperatures, and the next firing rates as
well. With input-output data X={(x(i), y(i))}Ni=1 acquired in
this manner, we can estimate parameters θ of a neural network
fθ (.) by training it to predict y(i) given x(i), for all time step i,
as:

θ∗← argmin
θ

Lsup (11)

Here, Lsup = E(x(i),y(i))∈X [||y
(i)
− fθ (x(i))||22] is a standard

supervised term for regression. To make such a network
physics-aware, all we need to do is include the above proposed
terms Lebv and Lebs into the final objective. It should be noted
that, in doing so, we do not need to make any architectural
changes to the network in terms of inputs and outputs. Also,
all auxiliary variables used in computation of (8) and (9) are
only used during training of a physics-aware network, and are
not required in the inference.
The regularization terms are computed using additional

vectors as described earlier, influence the learning because
they have the temperature terms in them. For example, in (10),
vg depends on gas zone temperatures Tg,j via g(g)arr , gleave
in (8).While computingLebv we obtain the Tg,j terms using the
network output, which are associated with the computational
graph and thus help the updates during back-propagation.
On the other hand, s(g)arr is associated with Ts,j which
are detached for back-propagation while updating gas zone
temperatures.

Similarly, in (10), vs depends on surface zone temperatures
Ts,j via s(s)arr , sleave in (9). While computing Lebs we obtain
the Ts,j terms using the network output, which are associated
with the computational graph and thus help the updates during
back-propagation. On the other hand, g(s)arr is associated with
Tg,j which are detached for back-propagation while updating
surface zone temperatures.

The overall physics-aware loss is formulated as:

Ltotal = Lsup + λebvLebv + λebsLebs (12)

When calculating the physics-aware loss terms we detach
certain temperature terms associated with one zone type
(e.g., surface zone temperatures) during updates of the
other zone type (e.g., gas zone temperatures). This prevents
the network from altering these relationships unnaturally
during backpropagation. As analogy, we can refer to a
Teacher-Student Learning setup: Imagine the network learning
from a teacher (the EB equations) that provides the correct
temperature relationships. Detaching specific terms allows the
network to focus on learning the mapping between furnace
inputs and its own predicted zone temperatures, while still
adhering to the guidance provided by the teacher (the EB
equations) through the physics-aware loss terms. Algorithm 1
provides detailed steps of our proposed approach.

IV. EXPERIMENTS
In this section we report results on 11 datasets obtained
using different configurations of a real-world furnace based
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Algorithm 1 Algorithm of the Proposed Method

1: Input: X={(x(i), y(i))}Ni=1, furnace configuration (set
points and walk interval). maxeps > 0.

2: Initialize θ , TEAs, λebv, λebs > 0.
3: Initialize tG ∈ R|G|, tS ∈ R|S| with ambient temperatures,

and firing rates.
4: for EN=1 to maxeps do ▷ EN: Epoch No.
5: for i=1 to N do ▷ i: time step
6: Compute DFAs

↼

GG(t),
↼

GS(t),
↼

SG(t),
↼

SS(t)

using (6) and (7).
7: Compute Lebv using (8) and (10).
8: Compute Lebs using (9) and (10).
9: Compute Lsup using X .

10: θ (i)← θ (i−1) − η∇θLtotal ▷ Using (12)
11: end for
12: end for
13: θ∗← θN .maxeps

14: return θ∗

on [7] (details in Section A-H3). Major objective of
the experiments is to consider different neural network
architectures with and without our proposed regularizers (and
keeping everything else constant). Any gains reported could
be attributed to our proposed regularizers that seek to enhance
the physics-awareness of a network. Results across all the
11 datasets are reported in Tables 6, 7, 8, 9.

For neural network architectures, we study following
variants: MLP, LSTM, a stacked/deep LSTM (DLSTM) and
recently proposed KAN and xLSTM. We use commonly used
regression performance metrics such as RMSE and MAE for
the temperature prediction. We also report MAPE additionally
for predicting the next firing rates (MAPE is more suitable
due to the range of values that firing rates take). A metric
against each of the different entities has been reported. For
example, RMSE tS fur denotes the average RMSE for all the
furnace surface zone predictions, RMSE tS obs denotes the
average RMSE for all the obstacle surface zone predictions,
RMSE tG denotes the average RMSE for all the gas zone
predictions. mMAPE fr indicates the performance on the firing
rate predictions. For all metrics, a lower value indicates a better
performance. All metrics are reported along the rows of a table,
and the columns represent the different methods. For each row,
the best performingmetric corresponding to amethod is shown
in bold.
In Table 1 we report the performance of the architectures

MLP, LSTM, DLSTM, KAN and xLSTM on the N1-2
dataset. We also report performances of PBMLP, PBLSTM,
PBDLSTM, PBKAN and PBxLSTM, which are the Physics-
Based (PB) variants of MLP, LSTM, DLSTM, KAN and
PBxLSTM respectively. The green colored cells indicate
that a PB variant has obtained a better performance than a
vanilla variant without our proposed regularizers. Compared
to the simpler MLP, we could see massive gains by the
PBMLP.

TABLE 1. Comparison of proposed methods on the N1-2 dataset.

TABLE 2. Comparison of proposed methods on the N2-1 dataset.

The DLSTM (and xLSTM) variant possibly tends to overfit
due to stacking of more LSTM layers, and performs worse
compared to a vanilla LSTM model. Stacking LSTMs offered
no advantage likely due to the data’s inherent structure. Unlike
language tasks that benefit from complex LSTM modeling
with longer windows/time steps, zone-based method only
requires capturing the relationship between the current state
(s(i)) and the next (s(i+1)). Our data generation (details
in Appendix) captures the relationship between current
state (s(i)) and next state (s(i+1)), making complex LSTM
architectures unnecessary. Initial experiments confirmed this,
showing no significant improvement with longer windows
compared to the simpler s(i), s(i+1) pairs. This aligns with
Occam’s razor - favoring simpler models with comparable
performance.
However, when equipped with our regularizers, the

PBDLSTM (and PBxLSTM) method obtains much better
performance than the DLSTM (and xLSTM). The vanilla
LSTM which performs better than the MLP and DLSTM,
also obtains improvements after using the physics based
regularizers, as indicated by the performance of PBLSTM.
We also notice KAN to perform better than the base MLP
(as observed in recent literature). In fact, the PBKAN variant
performs the best among all methods at times.

In Table 2 we report performances of the same approaches
on the N2-1 dataset. We observed similar conclusions: the PB
variants were outperforming their vanilla variants (as shown by
green), thus depicting the benefit of the proposed regularizers.
In this case, we observed that the PBKAN method obtains the
best performance among all.

Difference in the datasets N1-2 and N2-1 comes by varying
setpoint temperatures of the first and second control zones
of the furnace. This shows that depending on the furnace
configuration of the same geometry, the performance of a
deep learning model may vary as the data distribution changes
due to the difference in underlying physical entities. However,
if equipped with physics based regularizers, we could make
the network adhere to the governing laws, and get a reasonable
predictive performance.

VOLUME 13, 2025 75139



U. K. Dutta et al.: Hottel Zone Physics-Constrained Networks for Furnaces

TABLE 3. Comparison of proposed methods on average across the
datasets.

FIGURE 3. Plot of actual (blue) and predicted (red) temperatures (in ◦C)
across all obstacle surface zones using PBMLP. In (a) we omit previous
furnace temperatures from the neural network input to show that
performance degrades.

FIGURE 4. Convergence of PBMLP in training, considering: a) Supervised,
b) EBV, and c) EBS terms.

FIGURE 5. Performance metrics against varying λebv = λebs = λ in PBMLP.

We further report on how the different methods per-
form across varying configurations or datasets on average,
in Table 3. We observed similar performances, where the PB
variants led to better performance. In Tables 6, 7, 8, 9 we
report the performances of the compared approaches across
all the 11 datasets. We noticed that not only the PB variants
obtain a better performance throughout, they are also more
stable across different datasets as indicated by their standard
deviations.

In Figure 4 we plot the convergence of our PBMLP method.
Losses with respect to all the individual terms converge well.
In Figure 3 we report visual plots of actual and predicted
temperatures for PBMLP.We also show that omitting previous
temperatures from the neural network inputs leads to an worse
performance, thus, highlighting the impact of a furnace state on
the model performance. We conducted a sensitivity analysis

TABLE 4. Comparison of proposed methods on average across the
datasets against recent SOTA.

of λebv and λebs in Figure 5, observing stable performance
across values.

A. FINAL NOTE ON IMPACT OF ENERGY-BALANCE
REGULARIZATION
Throughout the text, for all baseline methods in a column,
the counterpart with the PB- prefix (eg, PBMLP, PBLSTM,
PBDLSTM, PBKAN, PBxLSTM) indicates the usage of
energy-balance regularization terms, and the green colored
metrics all denote the consistent performance boost, as com-
pared to the vanilla variants (eg, MLP, LSTM, DLSTM, KAN,
xLSTM).

B. COMPARISON AGAINST RECENT STATE-OF-THE-ART
(SOTA)
While we acknowledge the importance of contextualizing
our work, we recognize that making direct comparisons is
challenging due to the unique characteristics of our framework.
Most existing methods in the literature focus on limited
exchange areas in furnace temperature modeling. In contrast,
our robust data generation framework encompasses the
entire set of exchange areas, which is essential for accurate
temperature profiling.

To facilitate meaningful comparisons, we relate our results
to established baselines recognized as State-Of-The-Art
(SOTA) techniques in settings similar to ours. Specifically,
we evaluate the impact of our research by comparing our
proposed Physics-Based (PB) variants against the following
methods: i) MLRVPST ( [31]) and ii) PTDL-LSTM ( [27]), the
latter of which is comparable to our LSTM implementation.
The results of the comparisons are presented in Table 4.
We observed that our proposed variants outperform the SOTA
in general. The full set of results are presented in Tables 11,
12, 13, and 14.

V. CONCLUSION
This work proposes a novel regularization technique that
leverages the Hottel Zone method to make deep neural
networks physics-aware for improved furnace temperature
profile prediction. Our approach is effective across various
network architectures, including Multi-Layer Perceptrons
(MLPs), Long Short-Term Memory (LSTM) networks,
Kolmogorov-Arnold Networks (KANs) and Extended LSTM
(xLSTM), as evidenced on datasets based on real-world
furnace configurations with varying set points. In Sections A-I
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and A-J, we respectively discuss further real-life applications
of our work, along with limitations of our work and future
research directions.

APPENDIX A APPENDIX
A. MOTIVATION OF OUR WORK
Reference [8] in their study, have proved the elegance
and superiority of the zone method over contemporary
counterparts to model the physical phenomenon in high-
temperature processes. In our work, we use the zone method
towards a real-world application for the Foundation Industries
(FIs), applied to reheating furnaces, due to the close and
natural association/ relation of the zone-method with the
latter. Foundation Industries (FIs) constitute glass, metals,
cement, ceramics, bulk chemicals, paper, steel, etc. and
provide crucial, foundational materials for a diverse set of
economically relevant industries: automobiles, machinery,
construction, household appliances, chemicals, etc. FIs are
heavy revenue and employment drivers, for instance, FIs in the
United Kingdom (UK) economy are worth £52B [1], employ
0.25 million people, and comprise over 7000 businesses [2].
The rapid acceleration in urbanization and industrialization
over the decades has also led to improved building design and
construction techniques. Great emphasis has been gradually
placed on efficient heat generation, distribution, reduction,
and optimized material usage.
However, despite their economic significance, as depicted

by the above statistics, the FIs leverage energy-intensive
methods. This makes FIs major industrial polluters and the
largest consumers of natural resources across the globe. For
example, in the UK, they produce 28 million tonnes of
materials per year, and generate 10% of the entire UK’s
CO2 emissions [1], [2]. Similarly, in China, the steel industry
accounted for 15% of the total energy consumption, and 15.4%
of the total CO2 emissions [3], [4]. These numbers put a
challenge for the FIs in meeting our commitment to reduce
net Green-House Gas (GHG) emissions, globally.
Various approaches have been relied upon to achieve

the Net-Zero trajectory in FIs [58]: switching of grids to
low carbon alternatives via green electricity, sustainable bio-
fuel, and hydrogen sources, Carbon Capture and Storage
(CCS), material reuse and recycling, etc. However, among
all transformation enablers, a more proactive way to address
the current challenges would be to tackle the core issue
of process efficiency, via digitization, computer-integrated
manufacturing, and control systems. Areas of impact by
digitization could be reducing plant downtime, material and
energy savings, resource efficiency, and industrial symbiosis,
to name a few. Various computer-aided studies have already
been conducted in notable industrial scenarios. The NSG
Group’s Pilkington UK Limited explored a sensor-driven
Machine Learning (ML) model for product quality variation
prediction (up to 72h), to reduce CO2 emission by 30%
till 2030 [2]. Similar studies on service-oriented enterprise

solutions for the steel industry have also been done recently
in China [6].
In this work, we tackle the key challenge of accurate and

real-time temperature prediction in reheating furnaces, which
are the energy-intensive bottlenecks common across the FIs.
To give a perspective to the reader on why this is important,
considering any process industry, such as the steel industry,
one can observe that at the core, lies the process of conversion
of materials (e.g., iron) into final products. This is done using
a series of unit processes [5]. The production process involves
key steps such as dressing, sintering, smelting, casting, rolling,
etc. A nice illustration of the different stages and processes in
the steel industry can be found in [6]. The equipment in such
process industries operates in high-intensity environments
(e.g., high temperature), and has bottleneck components
such as reheating furnaces, which require complex restart
processes post-failure. This causes additional labor costs and
energy consumption. Thus, for sustainable manufacturing, it is
important to monitor the operating status of the furnaces via
the furnace temperature profile.
A few studies [7] have shown promise in achieving

notable fuel consumption reduction by reducing the overall
heating time by even as less as 13 minutes while employing
alternate combustion fuels. A key area of improvement
for furnace operating status monitoring lies in leveraging
efficient computational temperature control mechanisms
within them. This is because energy consumption per kilogram
ofCO2 could be reduced by a reduction in overall heating time.

As existing computational surrogate models have predictive
capability bottlenecks, DL approaches can be used as suitable
alternatives for real-time prediction. However, as only a
handful of sensors/ thermo-couples could be physically placed
within real-world furnaces (and that too at specific furnace
walls), the challenge of obtaining good-quality real-world
data at scale to train DL models in such scenarios remains
infeasible. To alleviate this, we identify the classical Hottel’s
zone method [59], [60] which provides an elegant, iterative
way to computationally model the temperature profile within
a furnace, requiring only a few initial entities which are easily
measurable. However, straightforward utilization of the same
is not suitable for real-time deployment and prediction, due
to computational expensiveness. For this reason, we propose
that we generate an offline data set using the zone method,
consisting of input-output pairs to train and evaluate ML
models. We will provide a detailed description of the data
generation methodology using the zone method.

1) COMPUTATIONAL MODELS
Available computational surrogate models based on Compu-
tational Fluid Dynamics (CFD) [61], [62], Discrete Element
Method (DEM) [63], CFD-DEM hybrids [64], Two Fluid
Models (TFM) [14], etc. incur expensive and time-consuming
data acquisition, design, optimization, and high inference
times. To break through the predictive capability bottlenecks
of these surrogate models, DL approaches can be suitable
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candidates for real-time prediction, owing to their accuracy
and inherently faster inference times (often only in the order
of milliseconds).

2) DISCUSSION ON COMPUTATIONAL ASPECTS
In general, PINNs/ PCNNs and accurate simulators (e.g., CFD
models) are two different approaches to solving a physical
problem. In terms of computational efficiency, they cannot
be compared at the same level. While PCNNs could take
milliseconds for inference, accurate simulators have difficulty
even achieving real-time simulation. Thus, PCNNs have the
potential to be integrated directly into a control system for real-
time control. This is because PCNNs are a type of approaches
that encode the governing equations of the problem into the
network training, whereas, accurate simulators are based on
numerical methods that discretize the problem domain and
solve the equations on a mesh, which can be time-consuming,
and challenging to generate for complex geometries or moving
boundaries (such as the furnace studied in our work).
Generally speaking, the zone method is faster and simpler

to implement than the CFD method. For example, even with
a consumer-level PC, to simulate a 341-min real reheating
process, the zone model only takes 5 mins, but CFD models
often take several days, if not weeks, to provide useful
results [9]. Therefore, in this study, we utilize the zone model
to generate training data for PCNNs. In future studies, the
trained PCNNs will be integrated directly into furnace control
systems. For our study, typically, generating 1500 timesteps
of data for a single furnace using the zone method took about
2 hours, including the time for setting different configurations.
However, talking about the absolute time of a CFD case

simulation itself depends on many factors, such as mesh
density, sub-model selection, step size settings, and computer
hardware configuration. Specific to our case, using the same
configuration of PC, CFD simulation of the steady-state
operating conditions of each setting takes about 5 hours.
So the total time taken is 5 hours multiplied by the number of
simulated working conditions. For the simulation of unsteady
operating conditions, CFD is currently very difficult to
implement, and some simplifications must be made. The
specific time consumption depends on the duration of the
simulated unsteady process. For the real process of 341 min
for the case we studied, CFD would take at least 5 days (vs,
5 min of the zone method). As for the neural-network based
implementations, for ML-based inference on a Apple M2Max
32GB, our PCNN takes roughly 0.5s for inferring the entire
furnace profile for a single time step instance, given the input
variables as discussed.

3) COMPUTATIONAL EFFICIENCY (TRAINING AND TESTING
TIME) BETWEEN METHODS WITH AND WITHOUT
ENERGY-BALANCE BASED PHYSICS-REGULARIZATION
The training time per mini-batch/iteration increases by up to
10x for smaller batch sizes when compared to the vanilla
variant without Energy-Balance (EB) regularization. This
increase is primarily due to the various matrix multiplications

involving the DFA/TEA terms with higher-order matrices,
particularly from the surface zones that comprise the
regularization terms. However, when considering absolute run
times, the increase is minimal; for example, the runtime per
mini-batch is approximately 76.11 seconds/iteration.We could
reduce this further by using larger batch sizes to fully leverage
GPU capabilities, although the performance gains would be
marginal. In contrast, the simpler vanilla variants have a
runtime of about 7.48 seconds/iteration.
During inference, the time remains the same for both

variants, as the regularization terms are only required during
training for the Physics-Based (PB) variants, with no changes
in the architectures.

B. DETAILS OF RELATED WORK
While the research conducted in this work is at nascent stage,
we believe it could pave way for further developments from
an ML perspective, to solve a real-world application problem
with value in terms of environmental sustainability. Our work,
for an applied physical sciences reader, could inspire how
ML and DL could be used to address a niche domain scenario.
At the same time, for anML audience, we believe that our work
showcases a novel way to integrate physics based constraints
into a neural network, especially using the zone method.
Arguably, there exists a plethora of works related to PINNs,
however, using PINNs to incorporate the zone method based
regularizers as in our work, is a novel contribution to the
community. The motivation to leverage the zone method also
comes from the fact that it provides an elegant (and superior)
way, as studied by [8], to model the physical phenomenon in
high-temperature processes inside reheating furnaces.
In this section, we exhaustively present a set of relevant

approaches with which our work can be loosely associated
with. Specifically, we categorize them into two major classes:
i) nonlinear dynamic systems, radiative heat transfer and
view factor modeling, and, ii) modeling in reheating furnaces.
We also talk about PINNs, and how our method is unique with
respect to the existing literature.

1) (CATEGORY 1) NONLINEAR DYNAMIC SYSTEMS,
RADIATIVE HEAT TRANSFER AND VIEW FACTOR MODELING
Our work at its heart is based on the zone method, which in
turn relies on notions of radiative heat transfer and view factor
modeling (or interchangeably, exchange area calculation).
Describing the behavior of a furnace state involves combustion
models, control loops, set point calculations, and fuel flux
control in zones. It also involves linearization and model
order reduction for state estimation and state-space control.
The inherent complexity makes the modeling a nonlinear
dynamic system. While there is no exact similarity, our work
shares some common philosophies with few earlier works. For
instance, [17] discuss the modeling of radiative heat transfer
using simplified exchange area calculation. Radiative heat
transfer in high-temperature thermal plasmas has been studied
by [18] while comparing two models. A nonlinear dynamic
simulation and control based method has been studied by [19].
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A classical work based on genetic algorithm for nonlinear
dynamic systems [20] is also present, which, instead of a data-
driven approach, leverages a pre-defined set of mathematical
functions.

Within this category, some approaches have also employed
neural networks. In [21], a network was trained for simulating
non-gray radiative heat transfer effect in 3D gas-particle
mixtures. Some approaches have used networks for view factor
modeling with DEM-based simulations [22], and some have
addressed the near-field heat transfer or close regime [23].

2) (CATEGORY 2) MODELING IN REHEATING FURNACES
We now discuss methods dealing with some form of prediction
or optimization in reheating furnaces. Classically, [32]
discussed a method to predict transient slab temperatures in a
walking-beam furnace for rolling of steel slabs. Reference [33]
proposed a model for analyzing transient slab heating
in a direct-fired walking beam furnace. Reference [34]
investigated the slab heating characteristics with the formation
and growth of scale. Reference [35] studied slab heating
for process optimization. A distributed model predictive
control approach was proposed in [36]. Few multi-objective
optimization methods were discussed in [37] and [38]. A fuel
supplies scheme based approach was proposed in [39].
Other related works involved multi-mode model predictive
control approach for steel billets [40], and a hybrid model
for billet tapping temperature prediction [41]. Some neural
network based approaches in this category studied transfer
learning [24], [25], digital twin modeling [26], and steel
slab temperature prediction [27]. Reference [28] discussed
an integrated hybrid-PSO and fuzzy-NN decoupling based
solution. Other works have studied aspects related to time-
series modeling [29], [30], and multivariate linear-regression
in steel rolling [31].

3) PINNs
The methods mentioned above discuss alternatives aimed at
modeling either exchange factors with radiative heat transfer,
or specific slab temperature predictions in reheating furnaces.
However, they do not explicitly address physics-based prior
incorporation within their optimization frameworks, especially
for the neural network variants. To this end, we now discuss a
few relevant works in the body of literature on PINNs. For a
detailed review on PINNs in general, we refer the interested
reader to the papers by [42] and [43]. It should be noted that
PINNs are a broad category of approaches, and the literature
is vast. Here, we discuss those methods which relate to certain
aspects of thermal modeling.
Reference [44] proposed a physics-constrained method

to model multi-zone building thermal dynamics. A multi-
loss consistency optimization PINN [45] was proposed for
large-scale aluminium alloy workpieces. Other approaches
focus on prototype heat transfer problems and power
electronics applications [46], minimum film boiling tem-
perature [47], critical heat flux [48], solving direct and
inverse heat conduction problems of materials [49], lifelong

learning in district heating systems [50], PINN and point
clouds for flat plate solar collector [51], residential building
MPC [52], hybrid ML and PINN for Process Control and
Optimization [53], reinforcement learning for data center
cooling control [54], flexibility identification in evaporative
cooling [55], and fast full-field temperature prediction of
indoor environment [56].

4) UNIQUENESS OF OUR WORK WITHIN EXISTING
LITERATURE
While we have observed a number of loosely related methods
as discussed above, upon a clear look at them, we can conclude
the following:
1) Comparison with category 1 methods: Among the

approaches focusing on view factor modeling with
radiative transfer, the area of interest is often simplified.
The modeling covers select few exchange areas. The
methods are also geometry-specific. Our approach on the
other hand seeks a generic, geometry-agnostic modeling
that covers the entire set of exchange areas. The exchange
areas can be intuitively perceived as those interfaces
from where radiation can transfer, between a pair of
zones (surface/gas). A background on exchange areas
is provided in the proposed work section.
The ones involving neural networks, often employ feed-
forward Multi-Layer Perceptron (MLP) models with few
hidden layers. As showcased in our experiments, a simple
MLP trained to regress the outputs given certain inputs
may not generalize well to unseen distributions, due to
lack of explicit understanding of the underlying physics.
On the other hand, we empirically showcase that our
proposed PCNN performs better than such a baseline
MLP. Within a single PCNN framework, our method can
also cover other architectures such as LSTMs, KANs,
xLSTMs etc.

2) Comparison with category 2 methods: Both
non-neural and neural-network based methods presented
in this category, as observed, focus on predicting
temperatures only in certain regions of a furnace, often,
the slab temperature profiling. Our work, on the other
hand aims at achieving a complete furnace temperature
profiling, ranging from the gas zones, to both types of
surface zones: furnace walls as well as the slab/obstacle
surfaces. Our training data set is obtained based on the
iterative zone method, and is more holistic in nature
as compared to the discussed methods. This makes an
apple-to-apple comparison difficult with other methods
as they deal with different problem setups. Furthermore,
the neural methods in this category are not trained to be
physics aware.

3) Comparison with PINNs: It should be noted that any
PINN approach is driven by the priors corresponding
to the underlying physical phenomenon. As we did
not find PINN methods addressing zone method based
modeling, we could claim our PCNN variant to be
novel in nature, especially, in this studied problem setup.
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Essentially, casting the temperature prediction task in
reheating furnaces as in our work, and modeling via
explicit physics-constrained regularizers (based on zone
method) as done in our work, is a first of its kind.
It is a simple paradigm, and could be used to build
further sophisticated developments. At the same time,
it simply requires input-output pairs (as shown later)
to train the underlying ML/PCNN model, and makes
no geometry-specific assumptions of the furnace. The
data creation method discussed in our method is holistic,
covers all possible exchange areas, and thus, is unique in
nature itself.

C. PERFORMANCE METRICS
For a data set containing N samples: X = {(x(i), y(i))}Ni=1,
we make use of the following standard regression performance
evaluation metrics:
1) Root Mean Squared Error (RMSE), defined as:

RMSE =

√∑N
i=1(y(i) − fθ (x(i)))2

N
(13)

2) Mean Absolute Error (MAE), defined as:

MAE =

∑N
i=1

∣∣y(i) − fθ (x(i))∣∣
N

(14)

Mean Absolute Percentage Error (MAPE) is unsuitable for
firing rate prediction due to potential division by zero. We use
a modified MAPE (mMAPE) with a small epsilon (ϵ = 0.05)
added to the denominator:

mMAPE =
1
N

N∑
t=1

∣∣∣∣∣ ft − f̂tft + ϵ

∣∣∣∣∣ (15)

Here, ft is the actual firing rate, and f̂t is the predicted value.
We evaluate model performance for each entity (gas

zone temperatures, tG; furnace surface temperatures, tS fur;
obstacle surface temperatures, tS obs; firing rates, fr)
separately as: RMSE tG, RMSE tS fur, RMSE tS obs,
MAE tG, MAE tS fur, MAE tS obs, and mMAPE fr.
Performance metrics (RMSE, MAE, mMAPE) are computed
using corresponding predictions from the model (fθ (x(i))) and
ground truth values from the data (y(i)). Results are presented
for the test split (standard practice). mMAPE is evaluated only
for the firing rates. RMSE, MAE and mMAPE range in [0,∞]
with lower values indicating better performance (↓) as shown
in the tables.

D. TRAINING DETAILS AND MODEL ARCHITECTURES
We train our PBMLP for 10 epochs using PyTorch (early
stopping to avoid over-fitting), and report results with the
final checkpoint. For the EB equations, we perform the same
normalization for enthalpy, flux, and temperatures, as in the
final neural network output as discussed earlier. We found a
learning rate of 0.001 with Adam optimizer and batch size of
64 to be optimal, along with ReLU non-linearity.

We pick the [50,100,200] configuration for hidden layers,
i.e., 3 hidden layers, with 50, 100, and 200 neurons
respectively. We use λebv = λebs = 0.1. In general, a value
lesser than 1 is observed to be better, otherwise, the model
focuses less on the regression task. Following are values of
other variables: |G| = 24, |S| = 178 (76 furnace surface
zones and 102 obstacle surface zones), Ng = 6, and Stefan-
Boltzmann constant=5.6687e-08. Unless otherwise stated, this
is the setting we use to report any results for our method,
for example, while comparing with other methods. Please
note that the MLP baseline has exactly the same training
configuration as the PBMLP except that it does not use the
physics regularizers.
We provide details about the LSTM variants used. The

LSTM variant has a single LSTM layer with 50 hidden nodes,
followed by FC layer-1 with 50 input nodes and 100 output
nodes, FC layer-2 with 100 input nodes and 200 output nodes.
Both FC layer-1 and FC layer-2 have ReLU non-linearity.
Lastly, there is a final FC layer with sigmoid nonlinearity that
maps to the number of output features as in the data set. The
DLSTM variant has three stacked LSTM layers, each with
100 hidden nodes, followed by a final FC layer with sigmoid
nonlinearity. As we can see, we have kept the total number
of layers in LSTM and DSLTM comparable to that of the
baseline MLP.
For the xLSTM implementation, we follow a similar

architeture as the DLSTM model. Similar to the DLSTM we
place a LSTM layer that maps the input to 100 hidden nodes.
However, after that, instead of stacking two more LSTM
layers, we place a single xLSTM block stack (as mentioned in
the official repository https://github.com/NX-AI/xlstm). After
the xLSTM block, the remaining layers are similar to that
of the DLSTM. Within the xLSTM block stack, the sLSTM
block has 4 heads, conv1d_kernel_size=4, and, the mLSTM
block has conv1d_kernel_size=4, qkv_proj_blocksize=4, and
4 heads. Overall, xLSTM block has context length of 1,
7 blocks, and embedding dimension of 100.

For KAN, we follow the implementation suggestions as
in https://github.com/KindXiaoming/pykan and use a single
hidden layer with one neuron. Interestingly, the KAN despite
being simpler than the MLP baseline, is not only easier
to train, but also outperforms the MLP, as evidenced in
many contemporary works. Broadly speaking, the training
specific hyperparameters across all the compared models
are the same (e.g., number of epochs, optimizer, batch
size, learning rate, etc). The only difference comes from
their respective architectures. For a similar architecture, the
additional difference for the physics based variants lie in
terms of usage of the additional regularization terms. Table 5
summarizes the details.

E. FULL SET OF RESULTS ON THE 11 DATASETS
In Tables 6, 7, 8, 9 we report the performances of the compared
approaches across all the 11 datasets. We noticed that not only
the PB variants obtain a better performance throughout, they
are also more stable across different datasets as indicated by
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TABLE 5. Architectural and training details across different studied models.

TABLE 6. All results (Normal type 1 datasets).

TABLE 7. All results (Normal type 2 datasets).

TABLE 8. All results (Normal type 3 datasets).

their standard deviations (Table 10). On the other hand, the
performances of the vanilla networks were not stable across
different datasets.

TABLE 9. All results (Normal type 4 datasets).

TABLE 10. All results (standard deviations).

TABLE 11. All results against SOTA (Normal type 1 datasets).

However, we also noted that Physics-Based (PB) variants
perform slightly worse than the vanilla methods in certain
datasets. This because we did not tune hyperparameters
for each configuration, but rather aimed to obtain average
performance across configurations. While there may be
potential for further improvements at the configuration level,
our primary goal was to assess the generalizability of our
approach. In real-world scenarios, variability is to be expected.
It is possible that, for certain configurations, the underlying
physics is better captured by a stronger vanilla architecture
(e.g., LSTM vs. MLP). If the vanilla model is effectively
learning and generalizing, the explicit regularization may yield
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TABLE 12. All results against SOTA (Normal type 2 datasets).

TABLE 13. All results against SOTA (Normal type 3 datasets).

TABLE 14. All results against SOTA (Normal type 4 datasets).

minimal gains. However, we do not consider this a case of PB
variants performing worse than vanilla methods; rather, their
performance metrics are comparable.

Algorithm 2 PyTorch-styled pseudo-code for training loop of
our framework

1

2 ### TRAINING ###
3 c r i t e r i o n = nn . MSELoss ( )
4 o p t im i z e r = opt im .Adam( model . p a r ame t e r s ( ) , l r =

LEARNING_RATE)
5 f o r e i n tqdm ( r ange ( 1 , EPOCHS+1) ) :
6 model . t r a i n ( )
7 f o r ( b a t ch_ i dx , s amp l e_ba t ched ) i n enumera t e (

t r a i n_ loade r_EBVS ) :
8 # samp l e_ba t ched [ 0 ] : da t a , s amp l e_ba t ched [ 1 ] :

l a b e l s , s amp l e_ba t ched [ 2 ] : a uxva r s
9 X_ t r a i n _ b a t c h = samp l e_ba t ched [ 0 ] . t o ( d e v i c e )

10 y _ t r a i n _ b a t c h = samp l e_ba t ched [ 1 ] . t o ( d e v i c e )
11 a u x v a r s _ d i c t _ b a t c h = samp l e_ba t ched [ 2 ]
12

13 d fa_GG_ten so r_ba t ch = a u x v a r s _ d i c t _ b a t c h [ ’
d fa_GG_tensor ’ ] . t o ( d e v i c e )

14 s g a r r _ p l u s _ h g _ t e n s o r _ b a t c h =
a u x v a r s _ d i c t _ b a t c h [ ’ s g a r r _ p l u s _ h g ’ ] . t o ( d e v i c e )

15 d f a _SS_ t e n s o r _ b a t c h = a u x v a r s _ d i c t _ b a t c h [ ’
d f a _SS_ t e n s o r ’ ] . t o ( d e v i c e )

16 g s a r r _ p l u s _ h s _ t e n s o r _ b a t c h =
a u x v a r s _ d i c t _ b a t c h [ ’ g s a r r _ p l u s _ h s ’ ] . t o ( d e v i c e )

17

18 o p t im i z e r . z e r o_g r a d ( )
19

20 y _ t r a i n _ p r e d = model ( X_ t r a i n _ b a t c h )
21 t r _ l o s s _ r e g tm p s = c r i t e r i o n ( y _ t r a i n _ p r e d ,

y _ t r a i n _ b a t c h )
22

23 ## EBV te rms
24 pb_ebv_pred = ge t_pb_ebv_p red (
25 s g a r r _ p l u s _ h g _ t e n s o r _ b a t c h ,

d fa_GG_tenso r_ba t ch ,
26 y _ t r a i n _ p r e d [ : , : n_gas_zones ]
27 )
28 pb_ebv_a c t u a l = t o r c h . z e r o s ( pb_ebv_pred . s i z e ( )

) . t o ( d e v i c e )
29

30 ## EBS te rms
31 pb_ebs_p red = ge t _pb_eb s_p r ed (
32 g s a r r _ p l u s _ h s _ t e n s o r _ b a t c h ,

d f a _SS_ t en so r _b a t c h ,
33 y _ t r a i n _ p r e d [ : , n_gas_zones : n_gas_zones+

n _ f u r _ s u r f _ z o n e s + n_ob s_ s u r f _ zon e s ]
34 )
35 pb_ e b s _ a c t u a l = t o r c h . z e r o s ( pb_ebs_p red . s i z e ( )

) . t o ( d e v i c e )
36

37 t r _ l o s s _ e b v = c r i t e r i o n ( pb_ebv_pred ,
p b_ ebv_a c t u a l ) / y _ t r a i n _ p r e d . s i z e ( 0 )

38 t r _ l o s s _ e b s = c r i t e r i o n ( pb_ebs_pred ,
p b _ e b s _ a c t u a l ) / y _ t r a i n _ p r e d . s i z e ( 0 )

39

40 b a t c h _ l o s s = t r _ l o s s _ r e g tm p s + lambda_ebv∗
t r _ l o s s _ e b v + lambda_ebs∗ t r _ l o s s _ e b s

41 b a t c h _ l o s s . backward ( )
42 o p t im i z e r . s t e p ( )

Conversely, it is important to note that PB variants generally
outperform vanilla variants by significant multiplicative
factors in performance metrics.
The performances of the proposed Physics-Based (PB)

approaches across all the 11 datasets are also compared against
the following SOTA methods: i) MLRVPST ( [31]) and ii)
PTDL-LSTM ( [27]), the results of which are presented in
Tables 11, 12, 13, and 14. We notice that our proposed variants
outperform the SOTA consistently in general.

F. PSEUDO-CODES FOR OUR TRAINING FRAMEWORK
In Algorithm 2, we outline the key steps required in training
our physics-constrained framework. The training involves a
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Algorithm 3 PyTorch-styled pseudo-code for helper functions
in our framework

1

2 ### HELPER FUNCTIONS ###
3

4 # For EBV
5 d f a _GG_ t e n s o r _ a l l = g e t _ d f a _AB_ t e n s o r _ a l l (
6 tea_GG , g e t _ t o r c h _ f l o a t ( X_tG_gaszone_prev ) . t o (

d e v i c e )
7 )
8 s g a r r _ p l u s _ h g _ a l l = g e t _ s g a r r _ p l u s _ h g _ a l l (
9 g e t _ t o r c h _ f l o a t ( X_hg ) . t o ( d e v i c e ) , tea_GS ,

10 t o r c h . h s t a c k ( ( g e t _ t o r c h _ f l o a t ( X_ tS_ fu rnace_p r ev ) ,
11 g e t _ t o r c h _ f l o a t ( X_ tS_ob s t a c l e _p r e v ) ) ) . t o (

d e v i c e )
12 )
13

14 de f g e t _ p b _ e bv_p r e d _ i n s t a n c e ( s g a r r _ p l u s _ h g _ t e n s o r ,
dfa_GG_tensor , tG_ s i n g l e _ p r e d ) :

15 ## computes \ mathbf {v}_g v e c t o r f o r one t ime s t e p
16

17 de f ge t_pb_ebv_p red ( s g a r r _ p l u s _ h g _ t e n s o r _ b a t c h ,
d fa_GG_tenso r_ba t ch , y _ t r a i n _ p r e d _ on l y _ tG ) :

18 ## c a l l s g e t _ p b _ e bv_p r e d _ i n s t a n c e f o r a l l
i n s t a n c e s i n t h e b a t c h

19

20 # For EBS
21 d f a _ SS _ t e n s o r _ a l l = g e t _ d f a _AB_ t e n s o r _ a l l (
22 tea_SS , g e t _ t o r c h _ f l o a t ( np . h s t a c k (
23 [ X_ tS_ fu rnace_p rev , X_ tS_ob s t a c l e _p r e v ]
24 ) ) . t o ( d e v i c e ) )
25 g s a r r _ p l u s _ h s _ a l l = g e t _ g s a r r _ p l u s _ h s _ a l l (
26 g e t _ t o r c h _ f l o a t ( X_hs ) . t o ( d e v i c e ) , tea_SG ,
27 g e t _ t o r c h _ f l o a t ( X_tG_gaszone_prev ) . t o ( d e v i c e )
28 )
29

30 de f g e t _ p b _ e b s _ p r e d _ i n s t a n c e ( g s a r r _ p l u s _ h s _ t e n s o r ,
d f a_SS_ t en so r , t S _ s i n g l e _ p r e d ) :

31 ## computes \ mathbf {v} _s v e c t o r f o r one t ime s t e p
32

33 de f g e t _pb_eb s_p r ed ( g s a r r _ p l u s _ h s _ t e n s o r _ b a t c h ,
d f a _SS_ t en so r _b a t c h , y _ t r a i n _ p r e d _ o n l y _ t S ) :

34 ## c a l l s g e t _ p b _ e b s _ p r e d _ i n s t a n c e f o r a l l
i n s t a n c e s i n t h e b a t c h

typical mini-batch based optimization, where each instance in
a mini-batch contains the various entities obtained from one
row/time step of the data set. The entities are present in their
respective columns. The columns for the constant terms (e.g.,
(Q̇conv)i, (Q̇fuel,net )i, (Q̇a)i, Ai(q̇conv)i and Q̇s,i) will have the
values repeated across all the corresponding rows to create a
dataloader.
As observed in Algorithm 2, X_train_batch and

y_train_batch correspond to x(i) and y(i) in X , and are
used to compute tr_loss_regtmps representing Lsup in
eq(12). tr_loss_ebv and tr_loss_ebs respectively
correspond to Lebv and Lebs in eq(12). The collection of
the Tg terms for being associated with the computational
graph for back-propagation by virtue of use in eq(8), is done
by y_train_pred[:,:n_gas_zones]. Similar role
towards back-propagation via Ts terms in eq(9) is taken
care of by y_train_pred[:,n_gas_zones:n_gas_
zones+n_fur_surf_zones+n_obs_surf_zones].
get_pb_ebv_pred() computes vg in eq(10) for each

instance (corresponding to a time-step of zone method)
present in a mini-batch of the variables obtained from
the already created data set. In doing so, each of the

Algorithm 4 PyTorch-styled pseudo-code for additional
helper functions in our framework

1

2 ### HELPER FUNCTIONS ( s e t 2 ) ###
3

4 de f i n v e r s e _ t r a n s f o rm_Ve c t o r i z e d _ p t ( s c a l e d t e n s o r , range
, min_along_dims , d i s t ) :

5 range_min , range_max= range
6 o r i g t e n s o r = min_a long_dims+ d i s t ∗ ( s c a l e d t e n s o r−

range_min ) / ( range_max − range_min )
7 r e t u r n o r i g t e n s o r
8

9 de f g e t _ a n_ma t _ t e n s o r ( t B _ s i n g l e r ow_ t e n s o r ) :
10 tMa t _ t e n s o r = t o r c h . t i l e ( tB_ s i n g l e r ow_ t e n s o r , (Ng ,

1 ) )
11 coef_b_mat_T=coef_b_mat . T
12 f o r i i i n r ange ( coef_b_mat_T . shape [ 1 ] ) : # Tay l o r

s e r i e s l oop
13 bn=coef_b_mat_T [ : , [ i i ] ]
14 bn_ t e n s o r = t o r c h . from_numpy ( bn ) . f l o a t ( ) . t o (

d e v i c e )
15 i f i i ==0:
16 an_ma t _ t e n so r = t o r c h . mul ( t o r c h . t i l e (
17 bn_ t en so r , ( 1 , tMa t _ t e n s o r . s i z e ( 1 ) ) ) ,

tMa t _ t e n s o r ∗∗ i i )
18 e l s e :
19 an_ma t _ t e n so r += t o r c h . mul ( t o r c h . t i l e (
20 bn_ t en so r , ( 1 , tMa t _ t e n s o r . s i z e ( 1 ) ) ) ,

tMa t _ t e n s o r ∗∗ i i )
21 r e t u r n an_ma t _ t e n so r
22

23 de f g e t _ p b _ e bv_p r e d _ i n s t a n c e ( s g a r r _ p l u s _ h g _ t e n s o r ,
dfa_GG_tensor , tG_ s i n g l e _ p r e d ) :

24 s t a r t i d _ c o l , e n d i d _ c o l =0 , n_gas_zones
25

26 t G _ c u r r e n t _ t e n s o r =
i n v e r s e _ t r a n s f o rm_Ve c t o r i z e d _ p t (

27 tG_ s i n g l e _p r e d , ( 0 , 1 ) , y t r _min_a long_d ims [ [ 0 ] ,
s t a r t i d _ c o l : e n d i d _ c o l ] . t o ( d e v i c e ) ,

28 y t r _ d i s t [ [ 0 ] , s t a r t i d _ c o l : e n d i d _ c o l ] . t o ( d e v i c e )
)

29

30 g g a r r _ t e n s o r = t o r c h . sum ( t o r c h . mul ( d fa_GG_tensor ,
sbcons ∗ t o r c h . t i l e (

31 t G _ c u r r e n t _ t e n s o r ∗∗4 , ( d fa_GG_tensor . s i z e ( 0 ) ,
1 ) ) ) , 1 , keepdim=True ) . T

32

33 an_mat_G_tensor= g e t _ a n_ma t _ t e n s o r (
t G _ c u r r e n t _ t e n s o r )

34

35 tmpmat2= sbcons ∗ t o r c h . mul ( t o r c h . t i l e (
36 V i _ c u r r e n t _ t e n s o r , ( an_mat_G_tensor . s i z e ( 0 ) , 1 )

) ,
37 t o r c h . t i l e ( t G _ c u r r e n t _ t e n s o r ∗∗4 , (

an_mat_G_tensor . s i z e ( 0 ) , 1 ) ) )
38 tmpmat1= t o r c h . mul ( an_mat_G_tensor , t o r c h . t i l e (
39 coe f_k_ma t_T_ tenso r , ( 1 , an_mat_G_tensor . s i z e

( 1 ) ) ) )
40 g l e a v e _ t e n s o r = t o r c h . sum ( t o r c h . mul ( tmpmat1 , tmpmat2 )

, 0 , keepdim=True )
41

42 pb_ ebv_p r e d_ i n s t a n c e = t o r c h . abs ( g g a r r _ t e n s o r +
s g a r r _ p l u s _ h g _ t e n s o r −4∗g l e a v e _ t e n s o r )

43 pb_ ebv_p r e d_ i n s t a n c e /= pb_ ebv_p r e d_ i n s t a n c e . max ( dim
=1 , keepdim=True ) [ 0 ]

44

45

46 r e t u r n pb_ ebv_p r e d_ i n s t a n c e

|G| elements of vg are computed using eq(8) and the
corresponding/relevant auxiliary variables from the data.
sgarr_plus_hg_tensor_batch collects mini-batch
terms using relevant terms like s(g)arr ,hg in eq(10)
towards vg. The relevant DFA terms are collected in
tensor dfa_GG_tensor_batch. Similarly, we make use
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TABLE 15. Performance of PBMLP (ReLU) variant of our
method against varying hidden layer configurations.

of get_pb_ebs_pred(), dfa_SS_tensor_batch,
gsarr_plus_hs_tensor_batch for computing vs in
eq(10) and using eq(9). Having obtained the dataset,
it only involves sampling mini-batches via appropriate helper
functions in any Deep Learning framework (e.g., PyTorch).
In Algorithms 3-4, we provide a few helper functions which
can be useful to further understand the computation of some
of the tensors involved in the training loop described in
Algorithm 2.

G. IN-DEPTH SENSITIVITY ANALYSIS OF PBMLP
We evaluated PBMLP’s sensitivity to hyperparameters (loss
terms, hidden layers, batch size, activation functions) using
shuffled test data from all furnace configurations. To establish
an upper bound on performance, we employed teacher
forcing during evaluation (providing ground truth values from
previous time steps as inputs). This explains the improved
metrics c ompared to auto-regressive real-world like inference
from earlier tables.
We observed good convergence of PBMLP (Fig 4), with

the default setting mentioned in Appendix A-D. Table 15
shows performance with different hidden layer configurations,
with [50, 100, 200] providing competitive results. Here, [100]
denotes one hidden layer with 100 neurons, [50, 100] denotes
two hidden layers with 50, and 100 neurons respectively, and
so on. The maximum values for each row (corresponding to
a metric) are shown in bold. In Table 16, we vary the batch
size in our method. We found a batch size of 64 to provide an
optimal performance for our experiments. In our exploration of
activation functions, ReLU, SiLU, and Mish exhibited similar
performance, with ReLU proving more robust across batch
sizes (Table 18).
We also examined all possible combinations of the

regularizer weights λebv and λebs. Table 17 highlights extreme
cases where one regularizer is set to zero while the other is
at a higher value, i.e., keeping only the EBV term by setting
λebv = 0.1 and λebs = 0, and only the EBS term by setting
λebv = 0 and λebs = 0.1. We found that performance is
better while using both regularizers together rather than in
isolation.
However, we found that excessively high values for the

regularizers can compete with the regression loss terms,
a common issue noted in PINN literature. Specifically, when
λebs is set too high, it can significantly degrade performance
due to the larger number of surface zones typically present
in a furnace overpowering the loss function. Based on these

TABLE 16. Performance of the proposed PBMLP
variant using different batch sizes.

TABLE 17. Effect of individual regularizer terms in PBMLP.

TABLE 18. Performance of PBMLP using different activation functions in
the underlying network.

observations and to avoid unnecessary complexity with
varying values (e.g., 0.1, 0.3, etc), which resulted in minimal
performance differences, we opted for a single value of λebv
and λebs for the sensitivity analysis for both regularizers.
This decision simplifies our design while ensuring optimal
learning rate adjustments are considered. The results are
presented in Figure 5 where we observe a stable performance
across values except a drop in R-MSE tG at λebs = 10 as
mentioned.

H. DATA DETAILS: FROM FURNACE TO ML MODEL
TRAINING AND EVALUATION
We now discuss the data set details of our benchmarking.
Prior to discussing the data used for ML model training and
evaluation, we provide the reader a brief flavor on the physical
understanding of a real-world furnace, along with its operation.

1) BACKGROUND ON FURNACE OPERATION
For experimentation, we consider a real-world, walking
beam top-fired furnace in Swerim (former Swerea MEFOS),
Sweden, which has been studied by Hu et al. [7]. Figure 6
illustrates the furnace, which can be conceptually subdivided
into several zones along both its length and height, such as dark,
control, and soaking, which represent regions with distinct
temperatures. It has varying heights for different zones but is
of fixed length and width. It has a target heating temperature
of 1250 ◦C and its production capacity is 3 tonne/hr. Reheating
furnaces are used to heat intermediate steel products usually
known as stock (e.g., blooms, billets, slabs).
Through a series of discrete pushes, the transport of slabs

occurs within a furnace. As shown in Figure 6, a first slab at an
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FIGURE 6. Illustration of the real-world furnace in Swerim, Sweden, and its
subdivision as different zones [7]. Figure is best viewed in color. The
temperature increases towards the discharge end (at the right),
as indicated by a darker shade. The slabs are heated while moving from
the left to the right.

ambient temperature is pushed from the charging end at the left
side of furnace (lower temperature, shown in a lighter shade).
At each push, all slabs move forward towards the discharge
end at the right (higher temperature, shown in a darker shade).
For a few specific regions in the furnace, the process operator
pre-defines a few set point temperatures, which indicate the
temperatures to which the slabs must be heated. The slabs once
heated to the required set point temperatures, are collected at
the discharge end. The movement of the slabs is controlled
by the walk-interval (walk rate), depending on the desired
throughput.

The internal combustion is controlled via firing rates of a
few burners located in specific regions. In Figure 6, we can
see that there are six burners: 2 in each of control zones 1, 2,
and 3. In this particular furnace, the pair of burners in a control
zone share the same firing rate values. Note that these firing
rates are normalized in [0, 1].
Describing the behavior of a furnace state involves

combustion models, control loops, set point calculations,
and fuel flux control in zones. It also involves linearization
and model order reduction for state estimation and state-
space control. The inherent complexity makes the modeling a
nonlinear dynamic system. We provide set point temperatures,
walk interval, firing rates and initial state of the furnace
(indicated by temperatures of various gas and surface
regions/zones in it) as inputs to this system. These inputs,
along with the overall movement of the slabs within the
furnace, influence the mass and energy flow throughout the
furnace system. This, in turn, results in a new furnace state,
characterized by a new set of temperatures.

The ideal scenario involves a computational model that can
predict the next set of temperatures based on the provided
inputs. This predicted state can then be compared to the
desired set point temperatures. Deviations from the set points

trigger adjustments in the firing rates. If a region’s predicted
temperature falls short of the set point, the firing rate for the
corresponding burner increases. Conversely, if the predicted
temperature exceeds the desired value, the firing rate is
lowered. A Proportional-Integral-Derivative (PID) controller
is employed to manage these adjustments in practice. This
controller factors in the walk interval to ensure smooth and
controlled changes in the firing rates, ultimately leading to a
furnace state that aligns with the set point temperatures.

2) PROPOSED DATA GENERATION METHODOLOGY FOR
TEMPERATURE PREDICTION USING ML
As shown in Figure 6, it is possible to conceptually divide the
furnace into 1, 2, and 12 sections across its width, height, and
length respectively. This results in a total of 24 volume/gas
zones, where gaseous material could reside. These zones can
be visualized using the dashed vertical and horizontal lines in
the figure.
Additionally, at a time step, there can be 17 slabs inside

the furnace, each of which has 6 surfaces, thus, resulting in
102 slab surfaces. With prior knowledge of the 3D structure of
our furnace, we computed a total of 76 furnace walls, which
could be called furnace surfaces. We can respectively call
the 102 slab surfaces as obstacle/ slab surface zones, and the
76 furnace walls as furnace surface zones. Collectively, the
obstacle/ slab surface zones and furnace surface zones result in
a total of 178 surface zones, which in addition to the volume
zones form the basis of utilization of the Hottel’s zone method.

The flow of combustion products within the furnace results
in heat release. This causes radiation interchange among all
possible pairs of zones: gas to gas, surface to surface, and
surface to gas (and vice-versa). The dominating heat transfer
mechanism in such processes is Radiative Heat Transfer
(RHT), which naturally occurs among the other heat transfer
mechanisms: conduction and convection. For each pair of
zones, there would be an energy balance, i.e., the amount
of energy entering a zone would equal the amount leaving it.
To model the RHT, the zone method subdivides an enclosure
into a finite number of isothermal volume and surface zones,
and applies energy balance to each of them. In our case, for
example, we have a total of 202 zones (178 for surfaces and
24 for volumes).

We can model the radiative exchange among any two zones
by leveraging underlying governing physical equations, and
energy balances. The zonemethod also employs pre-computed
exchange areas (which are general forms of view factors). The
main objective is to then compute unknown parameters such
as temperatures (of volumes and surfaces), and heat fluxes.
This could be done by solving a set of simultaneous equations.
We direct the interested reader to [7], [8], and [9], for a better
perspective of the zone method.

We shall design the data framework in such a way that it can
easily plug in any standard ML (or DL) model for regression.
For this, notice that although the various entities within the
computational method depend on the geometry of the furnace,
we can make a learnable model agnostic of the geometry, if we
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FIGURE 7. Illustration of flow of the data generation algorithm. The figure
is best viewed in color. Dashed lines denote feedback from past time step.
Blue/red/gray lines correspond for tG/tS/fr , respectively. Block
Abbreviations are, FR: Firing Rate, FP: Flow-pattern, ENTH: Enthalpy, TRAN:
Heat-transfer, COND: Conduction analysis, EBV/S: Energy-Balance
Volume/Surface, and DFA: Directed Flux Area. Details of components
present in the text.

can train it by simply using data in the form of input-output
pairs, and (optional) auxiliary/ intermediate variables (say, for
regularization).

One simple way is to collect all relevant values from across
zones corresponding to an entity in the form of a vector. For
example, we could collect all gas zone temperatures within a
vector, and likewise, for other entities such as surface zones,
enthalpies, heat fluxes, node temperatures, etc, we could form
individual vectors. This gives us the freedom to ignore the 3D
structure during training as we can simply deal with vectors
and their mappings, say within a neural network, or any other
ML technique. Post-inference analysis or fine-grained process
control could later be performed via our knowledge of which
zone an attribute of the vector maps to.
In Figure 7, we present our proposed algorithmic flow

mimicking the Hottel’s zone method [8], [59], [60] based
computational model of Hu et al. [9], for data generation aimed
at training regression-based ML models. In this, notice how
we represent all the relevant entities as vectors. While we shall
discuss all relevant terms of the zone method in detail, during
the explanation of the modeling part, we now briefly give an
overview of the various stages of the zone method. Here, let
8 represents a particular block/ stage, and θ represents the
applicable parameters for the underlying function (abbreviated
name shown in the subscript). Following are the stages in the
generation method (represented by a block in Figure 7):
1) Firing Rates updation block (8θfr ):Using the predicted

gas (tG) and surface (tS ) zone temperatures from a
previous time step, a calibration against the setpoint
temperatures provided in sp is performed to update the
firing rates fr for the current time step (also denoted as
f ). In Figure 7 we use slightly abused notations of fr
and sp to represent firing rates and setpoints for avoiding
confusion with other notations such as surface.

2) DFA block (8θdfa): Notice that for a time step, the
inputs tS , tG are obtained from the corresponding values
obtained as outputs in the previous time step, shown
respectively by dashed red and blue backward arrows.
Here, |S| and |G| denote the total number of surface

and gas zones, and, tS ∈ R|S|, tG ∈ R|G| are vectors
collecting all the surface zone and gas/volume zone
temperatures respectively. Hu et al [9], using an updated
Monte-Carlo based Ray-Tracing (MCRT) algorithm [57],
provide fixed, pre-computed Total Exchange Areas
(TEAs) (forms of view factors [8]) as inputs along with
tS , tG, for computing the Radiation Exchange factors,
or the Directed Flux Area (DFA) terms.
The TEAs are denoted as: GS ∈ R|G|×|S|×Ng , SS ∈
R|S|×|S|×Ng , GG ∈ R|G|×|G|×Ng , and SG ∈ R|S|×|G|×Ng
(we can drop the third dimension for the sake of brevity).
Here, GS, SS, GG, and SG contain the pre-computed
gas-surface, surface-surface, gas-gas, and surface-gas
exchange areas.

↼

GS ∈ R|G|×|S|,
↼

SS ∈ R|S|×|S|,
↼

GG ∈
R|G|×|G|, and

↼

SG ∈ R|S|×|G| are the corresponding DFA
terms for GS, SS, GG, and SG respectively (↼ indicates
the direction of flow). Here, Ng denotes the number of
gases used for representing a real gas medium.
Initially, we assume that a steady-state has been
reached, and hence assign ambient temperature values
to tS , tG. The parameters θdfa represent fixed correlation
coefficients (as discussed in the methodology section).

3) Flow pattern (8θfp ) and enthalpy blocks (8θenth ):Given
initial firing rates in f ∈ R|B| (|B| is a function of the
number of burners), the block representing the function
8θfp obtains the flow pattern flat(F), which is further used
by the block representing the function 8θenth to obtain
the enthalpy vector q.
Note that, the flow of combustion gases within an
enclosure causes mass flow into (+ve) and out (-ve) of a
zone, for each inter-zone boundary plane. This flow could
be pre-computed in a CPU instantly using a polynomial
fitted through isothermal CFD simulations that define a
range of experimental points, derived with Box–Behnken
designs [65]. The flow pattern resulted is by nature a
matrix F ∈ R|G|×12, but the spatial dependency among
the matrix elements can be discarded for simplicity, and
we can rather represent an equivalent flattened vector
flat(F) ∈ R12|G| obtained in row-major fashion. Note
that, as already mentioned, we subdivide an enclosure
into several cubes/ boxes (zones in our case). Since any
cube has 6 surfaces, and for each surface we have two
directions of flow (+ve and -ve), this results in 12 flows
for each volume zone, and thus, the 12 arises in the
dimensionality of F.
Also, for each volume zone i, we would require
an enthalpy transport term (Q̇enth)i. We introduce an
enthalpy vector q ∈ R|G| to compactly represent these
terms.

4) Energy Balance Volume (EBV) block (8θebv ):We intro-
duce a block to compute the volume zone temperatures
tG using the enthalpy vector q and the DFA terms

↼

GG
and

↼

GS.
5) Heat transfer block (8θtran ): Together with the volume

zone temperatures tG, the obtained DFAs (
↼

SS,
↼

SG), and
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Algorithm 5 Data generation algorithm for a fixed furnace
configuration
1: Initialize a steady-state furnace configuration via set points and walk interval.
2: Initialize X = {}, T > 0 (max no. of steps).
3: Initialize t(0)G , t(0)S with steady-state ambient temperatures, and f (0).
4: for t=1 to T do ▷ t: time-step
5: f (t) ← 8θfr (f

(t−1), set point temperatures, t(t−1)G , t(t−1)S )

6: q(t) ← 8θenth (8θfp (f
(t)))

7:
↼
GG(t),

↼
GS(t),

↼
SG(t),

↼
SS(t) ← 8θdfa (t

(t−1)
G , t(t−1)S ,GG,GS,SG,SS)

8: t(t)G ← 8θebv (q
(t),

↼
GG(t),

↼
GS(t))

9: w(t) ← 8θtran (t
(t)
G , t(t−1)S ,

↼
SS(t),

↼
SG(t))

10: t(t)S ← 8ebs(n(t)), where n(t) ← 8θcon (w
(t))

11: Xt ← {f (t),F(t), q(t), t(t)S , t(t)G ,w(t),n(t)}
12: X ← X ∪Xt
13: end for
14: return X

the previously obtained (or initialized) surface zone
temperatures tS , we obtain the heat transfer/ flux to
the surfaces as a variable w.

6) Conduction analysis block (8θcon): The heat flux
on each surface zone serves as a boundary condition
for performing a conduction analysis, to compute the
transient heat conduction through each surface. The
conduction process results in the node temperatures,
which we represent as a variable n.

7) Energy Balance Surface (EBS) block (8θebs): The
computation of heat transfer/ flux and surface zone
temperatures are coupled together as the surface energy
balance equations. Having computed the heat transfer
and performing the conduction analysis, the surface
zone temperatures in tS can be updated using the node
temperatures n. This is a fixed function.

The Algorithm: Algorithm 5 presents the steps involved
in the data generation method. We assume that for a
steady-state furnace configuration (with fixed set points and
walk interval), our data set is in the form:X = {Xt }Tt=1, where,
Xt = {f (t),F(t), q(t), t(t)S , t(t)G ,w(t),n(t)} is the set of observed
variables as described in Figure 7, for a time-step t . Note
that the computations of flow patterns, enthalpy, and node
temperatures can be treated independently from the energy
balance equations.
Figure 8 illustrates a few sample time steps (in rows),

and the corresponding entities (in columns) generated by
using Algorithm 5. The full list of entities that we generate
for a time step is: ’timestep’, ’firing_rates’,
’walk_interval’, ’setpoints’, ’flowpattern’,
’q_enthalpy’, ’tG_gaszone’, ’tS_furnace’,
’tS_obstacle’, ’w_flux_furnace’, ’w_flux_
obstacle’, ’nodetmp_1d_furnace’, ’nodetmp_
2d_obstacle’. The names of the entities are self-
explanatory (e.g., ’nodetmp_1d_furnace’ refers to 1D
node temperatures for furnace surfaces, ’nodetmp_2d_
obstacle’ refers to 2D node temperatures for obstacle
surfaces), where G as usual, denotes gas zone and S denotes
surface zone, the latter, is further divided into furnace and
obstacle.

Assuming that the original data is stored in a Pandas
DataFrame (using a Python syntax), for each time step we
also need the following entities: ’firing_rates_next’,
’tG_gaszone_prev’, ’tS_furnace_prev’, and
’tS_obstacle_prev’. This is because, for computing
the entities in a time step, we make use of the temperatures
in the previous time step. At the same time, for experimental
purposes, we also try to directly predict the next firing rate
via ML. Thus, using Python syntax, we could perform the
following:
a) df[’firing_rates_next’] =
df[’firing_rates’].shift(-1)
followed by df = df.drop(df.tail(1).index).
b) df[’tG_gaszone_prev’]=
df[’tG_gaszone’].shift(1),
df[’tS_furnace_prev’] =
df[’tS_furnace’].shift(1),
df[’tS_obstacle_prev’] =
df[’tS_obstacle’].shift(1)
followed by df = df.drop(df.head(1).index).
The rearranged data can be visualized as in Figure 9 (we

only showcase relevant entities here, owing to limited space).
Essentially, we add a new column’firing_rates_next’
by shifting the original firing rates column a step back and
then dropping the last row. Likewise, we add new columns
for prev temperatures by shifting the original temperature
columns a step forward and then dropping the first row.
Please note that some additional auxiliary variables are used
by the computational method of Hu et al. [9], which are
mostly constants, and could thus be repeated/ copied for
each time step. They are: ’corrcoeff_b’, ’Qconvi’,
’extinctioncoeff_k’, ’gasvolumes_Vi’,
’QfuelQa_sum’, ’surfareas_Ai’, ’emissivity_
epsi’, ’convection_flux_qconvi’. We later lever-
age them in training our PCNN, with the help of regularizers.
Now we can form any data set containing N samples:

X = {(x(i), y(i))}Ni=1 to train an off-the-shelf, standard ML/
DL model fθ (.) with learnable parameters θ , which expects
an input instance x(i) as vector and predicts an output vector
y(i), i.e., y(i) = fθ (x(i)). Here, x(i) and y(i) can be formed using
entities from desired columns obtained from the rearranged
data as shown in Figure 9. Notice how the above proposed
ML training framework via our data generation in the form
of simple input-output pairs lets any generic regression
model learn freely without requiring 3D geometry-specific
knowledge during the training. This makes our proposed
framework geometry-agnostic, and hence flexible by nature
to accommodate any ML method.

3) BENCHMARKING DATA SET DETAILS FOR ML MODEL
DEVELOPMENT AND EVALUATION
Algorithm 5 outlines data generation for a fixed furnace
configuration (defined by set points and walk interval). Set
points are desired temperatures for certain zones. We represent
a configuration as: SP1_SP2_SP3_WI, where SP1, SP2,
SP3 and WI respectively denote the set point 1, set
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FIGURE 8. Sample training data instances for each time step within a configuration.

FIGURE 9. Rearranged training data instances (selected columns).

point 2, set point 3, and walk interval. Under normal
conditions naturally occurring in practice, following will
hold true: SP1<SP2<SP3. For robustness, we consider
50 configurations (based on the furnace in Fig 6) and generate
corresponding configuration datasets, including abnormal
configurations with arbitrary set points. Since each dataset has
a unique configuration, their inherent data distributions differ.
From the 50 distinct datasets, we combine configurations

(e.g., first, fourth, seventh) to form a consolidated training split.
Similar combinations create validation and test splits with no
overlap between them. This creates a test bed to evaluatemodel
generalization across different data distributions, crucial for
real-world deployment where inference data might differ from
training data. Table 19 details these configurations, indicating
their membership in training, validation, or test splits, within
parentheses. Test datasets (e.g., N1-2, N1-3) are named

based on their set point characteristics and are also shown in
bold.

It should be noted that the default SP1,SP2,SP3,WI setting
is kept: 955_1220_1250_750. With this, we vary each of
SP1, SP2, SP3, andWIwith certain step-size. This leads to four
groups/types of configurations within the Normal Behaviour
Configurations shown in Table 19. The nomenclature of the
test data sets is done to indicate their grouping, e.g., prefixes
N1-, N2-, N3- and N4- denote whether the configuration
belongs to the group with varying SP1, SP2, SP3, and WI
respectively. Thus, Ni-j indicates the j-th configuration of the
group i, and is used to represent a test configuration data set.
As it can be seen, there are 11 normal test data sets where
we evaluate the ML models.

Table 20 details the remaining 16 configurations repre-
senting abnormal conditions (arbitrary set points). These are
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TABLE 19. Benchmark data details.

TABLE 20. Benchmark data details (abnormal configurations).

split for training and validation to make the model robust
during training (similar to adversarial learning). We set
aside 7 configurations apart from training/validation. A well-
trained physics-aware model should perform poorly on these,
rendering them unnecessary for testing.
For training a DL model, we aggregate the configuration

datasets belonging to training splits as shown in Table 19.
Prior to collecting, each of the datasets are reformatted to
obtain time-shifted input-output pairs as discussed in the data
generation methodology. After that rows of these training
datasets are shuffled and stacked together to train the model.
Each configuration is stored by a.csv file containing 1500 time
steps sampled with a 15s delay, to account for conduction
analysis. Thus, each configuration accounts for 6.25h worth
data. Considering all 50 datasets, our generated data sets
consists of 312.5h (or roughly, 13 days) of furnace data.
We observed diminishing returns on model performance with
further data size increases, justifying our decision to focus on
this efficient data volume.
During time-shifted input-output pairs formation from a

configuration dataset, we drop the first and last rows resulting
in 1498 rows, to account for the shift operations. Thus,
by consolidating the 20 training datasets, we get a total of
29960 train rows. These can be packed within a standard
DataLoader in a framework like PyTorch, and train an off-
the-shelf DL model. We can similarly obtain 17976 val rows,
and also 26964 test rows (from across normal and abnormal
configurations, if desired). We have reported results on the
11 datasets individually, where a model trained is used for
auto-regressive, sequential prediction of subsequent time
steps.

The discussed data sets, along with necessary data pre-
processing, model training/evaluation scripts are provided in
the following github repository
https://github.com/ukdsvl/HZPCNet, which shall be updated
periodically to reflect the latest changes as available
(while adhering to FAIR guidelines [66]). As a highlight,
we provide the configuration datasets as separate.csv files.
We also provide the consolidated stacked data as a.npz file.
Furthermore, we also provide the TEA data as individual files,
which are used during model training.

I. POTENTIAL REAL-LIFE APPLICATIONS OF THE WORK
AND ITS IMPACT
We now discuss how our method for furnace temperature
profiling can be applied in various industries and contribute
to energy efficiency and reduced emissions.

1) STEEL AND METAL MANUFACTURING
Our model can be directly applied to improve the efficiency
of reheating furnaces used in steel and metal manufacturing
processes. By providing accurate real-time temperature
predictions, operators can optimize fuel consumption and
reduce energy waste, leading to significant cost savings
and lower carbon footprint. The ability to precisely control
temperature profiles can also enhance product quality and
consistency.

2) GLASS AND CERAMIC PRODUCTION
In the glass and ceramic industries, furnaces are crucial for
melting, annealing, and tempering processes. Our model can
be adapted to these furnace types, enabling tighter temperature
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control, reduced energy usage, and minimized defects. This
can translate to higher productivity, lower operational costs,
and a greener manufacturing process.

3) CEMENT AND LIME PRODUCTION
High-temperature furnaces are essential in cement and lime
manufacturing for calcination and clinker production. Our
physics-aware deep learning approach can be leveraged
to optimize these processes, reducing fuel consumption
and emissions while maintaining product quality. This can
contribute to the sustainability efforts of cement and lime
producers.

4) PETROCHEMICAL REFINING
Furnaces are widely used in petrochemical refineries for
various processes such as crude oil distillation, catalytic
cracking, and reforming. By implementing our model,
refineries can enhance energy efficiency, minimize fuel
wastage, and lower greenhouse gas emissions. This can help
refineries meet stringent environmental regulations while
maintaining profitability.

J. LIMITATIONS AND FUTURE WORK
1) INCORPORATION OF GEOMETRY-SPECIFIC
REGULARIZATION
Future research should investigate the integration of
geometry-specific regularization terms into our model. This
could involve developing customized regularization strategies
that account for the unique thermal characteristics of
various furnace designs. By tailoring the model to specific
configurations, we can potentially enhance its predictive
accuracy and applicability across different industrial scenarios.
This is beyond the scope of our work, which could be treated
as a starting point in this direction.

2) EXPLORATION OF FOUNDATIONAL MODELS
Our approach could serve as a foundation for developing
models that can be adapted for other related use cases.
We envision leveraging techniques such as few-shot learning,
continual learning, or transfer learning to enable our model
to learn from limited data in new contexts. This would allow
for rapid adaptation to different operational conditions and
requirements, making our model more versatile and applicable
across various industries.

3) ENGINEERING ASPECTS OF INTEGRATION WITH
REAL-TIME MONITORING SYSTEMS
Extensive study of challenges involved during engineering
integration in a monitoring system could itself be another
future direction of study, especially for a varied set of
industries and furnace configurations.
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