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Article history: Background & aims: Chimeric Antigen Receptor (CAR) T-cell therapy has emerged as a revolutionary
Received 4 April 2024 treatment for patients with refractory or relapsed B-cell malignancies. However, a significant proportion

Accepted 21 May 2024 of patients experience negative outcomes, including severe inflammatory toxicities and relapse. Cachexia

and malnutrition are known secondary syndromes in many cancer patients, attributed to the effects of
Keywords: active malignancy, systemic inflammation, and cumulative treatment burden; however, further research
CAR T-cell therapy is required to accurately characterise these issues in CAR T-cell patients. The aims of this service eval-
CMaeflii)?r?tion uation were to explore the changes in nutritional status (malnutrition and cachexia) in CAR T-cell
Body weight loss therapy patients and the potential impact on patient outcomes including survival. Additionally, we
Dietitian describe the utilisation of dietetic resources in this specific patient population in a London tertiary
Service evaluation referral centre.
Methods: Adult haematology patients receiving licensed CD19-targeting CAR T-cell therapy at University
College London Hospital between 01/04/19 and 01/09/21 were included. Data were collected from the
time of treatment consent, and throughout admission to day of discharge: body weight (BW), C-reactive
protein, albumin, lactate dehydrogenase, nutrition-risk screening scores (hospital-specific) and dietetic
input. Clinical outcomes such as 12-month all-cause mortality, intensive care unit (ICU) admission, high-
grade toxicities, and length of hospital stay (LoS) were also recorded. Cachexia and malnutrition were
defined using the modified Glasgow Prognostic Score (mGPS) and Global Leadership Initiative on
Malnutrition (GLIM) consensus, respectively.
Results: 114 patients (55.6 + 15.1 years; 57% males) with B-cell non-Hodgkin's lymphoma (n = 109) and
B-cell acute lymphoblastic leukaemia (n = 5), receiving axicabtagene ciloleucel (n = 89) and tisa-
genlecleucel (n = 25) were included. Median LoS for treatment was 34 (27—38) days. Prior to treatment,
31.5% of patients developed malnutrition, with pre-cachexia/refractory cachexia (mGPS) identified in
43.6% of patients. This altered nutritional status pre-treatment was significantly associated with adverse
patient outcomes post-infusion; mGPS was independently associated with inferior overall survival
(HR = 3.158, CI = 1.36—7.323, p = 0.007), with malnutrition and mGPS associated with increased LoS
(p = 0.037), sepsis (p = 0.022) and ICU admission (p = 0.039). During admission, patients experienced
significant BW loss (—5.6% (—8.8 to —2.4); p=<0.001), with 68.4% developing malnutrition. Malnutrition
screening during admission identified 57% patients at-risk, with 66.6% of patients referred to dietetics;
however, there was a lack of malnutrition screening and dietetic referrals prior to treatment.
Conclusion: Pre-treatment malnutrition and cachexia was significantly associated with adverse CAR T
patient outcomes, including mGPS cachexia status independently associated with inferior overall sur-
vival. Further research in this novel space is essential to confirm the extent and impact of nutritional
issues, to assist with implementing dietetic pathways, and to identify potential interventions with a view
to optimising outcomes.
© 2024 The Authors. Published by Elsevier Ltd on behalf of European Society for Clinical Nutrition and
Metabolism. This is an open access article under the CC BY license (http://creativecommons.org/licenses/
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1. Introduction

The rapidly expanding field of CAR T-cell therapy is revolutio-
nising treatment outcomes for patients with relapsed or refractory
B-cell malignancies [1]. Utilising a patient's own T-cells to treat
their disease, these immune cells are genetically engineered with a
synthetic receptor ex vivo, to enable the identification and target-
ing of antigens on specific cancer cells in vivo [2]. Although the
feasibility of CAR T-cell therapy is being investigated in various
cancers, CD19-targeting CAR T-cell therapy for B-cell malignancies
has been the most successful to date [2—4]. Consequently, several
CD19-targeting CAR T-cell products have been approved for use in
the United Kingdom (UK) National Health Service (NHS) in patients
with refractory or relapsed B-cell malignancies since 2018 [5]. For
those who do not respond to (or relapse after) CAR T-cell therapy,
few curative treatment options are available [G]; therefore, identi-
fying and managing potential determinants of patient outcomes is
key to improving the efficacy of this treatment modality and
facilitating its expansion beyond haematological malignancies.

Altered nutritional status syndromes such as malnutrition and
cachexia are commonly under-diagnosed and undertreated prob-
lems facing cancer patients [7]. Malnutrition and cachexia in
oncology and haematology have been shown to negatively impact
treatment efficacy, severity of side effects, infection rates, quality of
life, financial healthcare costs and prognosis [7]. The importance of
screening and providing tailored nutrition advice from trained allied
health professionals to prevent these nutritional concerns in stan-
dard cancer therapies is a well-established, essential component of
multidisciplinary cancer care [7]. However, for the novel field of CAR
T-cell therapy, there is currently limited research available regarding
the incidence or impact of altered nutritional status syndromes,
their potential determinants, or the need for allied health services.

Patients receiving CAR T-cell therapy experience a unique and
potentially detrimental combination of factors that present
heightened biological plausibility for malnutrition and cachexia
risk. Many of these elements relate to inflammation, driven by the
refractory/relapsed disease status of eligible patients, and by the
common side effects of CAR T-cell therapy, namely cytokine release
syndrome (CRS) and immune effector cell-associated neurotoxicity
syndrome (ICANS). CRS, a potentially life-threatening side effect
caused by the rapid release of inflammatory cytokines post CAR T-
cell infusion occurs in 54—93% of patients [8]. ICANS, the patho-
physiology of which is less well understood, can affect up to 64% of
patients and encompasses symptoms such as altered speech,
cognition, and consciousness [9].

Additionally, 15—47% of patients require intensive care unit (ICU)
treatment [10], with sepsis one of the leading causes for ICU admis-
sion [11]. Patients requiring ICU often experience significant muscle
wasting [12], which can be exacerbated by the profound inflamma-
tory response associated with sepsis [ 13]. The potential for secondary
nutritional effects in this patient group is further compounded by
corticosteroids used to treat CAR T-cell associated toxicities, and the
prolonged inpatient stay for treatment, both known to exacerbate
muscle wasting [ 14,15]. Given this distinctive treatment modality and
its unique side effect profile, provision of standard nutritional
oncology care may not be appropriate, warranting further research.

The primary aim of this retrospective service evaluation was to
characterise the changes in nutritional status (malnutrition and
cachexia) experienced by haematology patients prior to, and during
their admission for CD19-targeting CAR T-cell therapy at University
College London Hospital (UCLH). Our secondary aim was to deter-
mine if changes to nutritional status (prior to, and during admis-
sion) were associated with inferior patient outcomes, including 12-
month all-cause mortality, ICU admission, length of stay and
treatment toxicities (ICANS, CRS and sepsis). Furthermore, we
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propose a potential pathway to optimise the nutritional status of
CAR T-cell patients throughout treatment.

2. Material & methods

A retrospective service evaluation was undertaken using con-
venience sampling at UCLH between April 2019 to September 2021.
All adults (>18 years) with haematological malignancies receiving
NHS-licensed CD19-targeting CAR T-cell therapies (axicabtagene
ciloleucel [axi-cel] and tisagenlecleucel [tisa-cel]) were included.
Patients receiving any other form of CAR T-cell therapy were
excluded. This service evaluation was conducted in accordance
with the UK Framework for Health and Social Care Research (Health
Research Authority (HRA)).

Data were extracted from electronic health records (EHR) at
various timepoints along the patients' treatment pathway (Fig. 1),
including:

- Pre-treatment period: from the patient's initial review at UCLH
CAR T-cell clinic, up to 15 days prior to CAR T-cell infusion (Day
minus 15). During this pre-treatment period, routine patient
care includes T-cell apheresis (withdrawal of patient's T-cells),
and additional anti-cancer therapies (bridging therapies — BT) if
appropriate whilst awaiting CAR T-cell manufacturing.

- Admission for CAR T-cell therapy: from lymphodepletion
(chemotherapy administered in the week prior to infusion to
reduce lymphocyte count [16]), to the day of hospital discharge.

- 12-months post CAR T-cell infusion: review of adverse outcomes
(all-cause mortality).

2.1. Pre-CAR T-cell treatment data collected

2.1.1. Patient characteristics and treatment history

Patient demographics, diagnosis, treatment history, serum
lactate dehydrogenase (LDH) and ferritin levels, and BT were
collected (Fig. 1).

- BTs were categorised according to intensity and type, as per
Roddie et al. (2023) [17]. This includes: none (no BT), cortico-
steroids, radiotherapy (RT), immunotherapy, combined-
modality therapy (CMT, i.e chemotherapy and RT) or chemo-
therapy, subdivided into Rituximab-Bendamustine-
Polatuzumab (RBP), low-dose therapy (LDT), or high-dose ther-
apy (HDT): Gemcitabine-based (HDT-Gem), Ifosphamide-based
(HDT-Ifos), or Others (HDT-Other) (Supplementary Table 1).

2.1.2. Nutritional status pre-treatment

Where available, serum levels of C-reactive protein (CRP) and
albumin at treatment consent were collected. Repeated body
weight measurements taken over the duration of the pre-
treatment period, from consent to Day minus 15, were also
recorded.

2.1.3. Dietetic services

Any information regarding dietetic services provided to patients
was reviewed, including nutrition screenings, dietetic referrals, and
interventions.

2.2. During CAR T-cell treatment admission data collected
2.2.1. CAR T-cell therapy treatment and adverse outcomes

Information collected included: CD19-targeting CAR T-cell
therapy products, length of hospital stay (LoS), rate of ICU
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CAR T-cell therapy admission period:

Treatment consent:
- Patient characteristics
and treatment history.
- Body weight, height,
serum albumin, CRP and

- Changes in body weight.

- LoS, ICU admission, treatment side effects
(CRS, ICANS, sepsis), medications
(corticosteroids, IL-6 receptor antagonists).

- Nutrition screening, dietetic referrals, input,

LDH. and interventions.
A
Pre-treatment period CAR T-cell treatment admission 12-months post-
infusion:
Treatment Day Day of Day of - All-cause
consent minus 15 admission discharge mortality
N\

Na

Pre-treatment period:
- Changes in body weight.
Bridging therapy

-Serum ferritin

Lymphodepletion:

prescription.
- Nutrition screening, dietetic
referrals, and input.

Fig. 1. Study flowchart for data collection. Abbreviations: C-Reactive Protein, CRP; Lactate Dehydrogenase, LDH; length of hospital stay, LoS; intensive care unit, ICU; cytokine
release syndrome, CRS; Immune Effector Cell-Associated Neurotoxicity Syndrome, ICANS; interleukin-6, IL-6.

admission, incidence and grading of toxicity (including CRS, ICANS
and sepsis) and toxicity management strategies such as interleukin-
6 (IL-6) receptor antagonists and corticosteroids (dexamethasone,
prednisolone and methylprednisolone). Sepsis incidence was diag-
nosed by treating physicians; the presence and severity of CRS and
ICANS were evaluated daily also by treating physicians, according to
the American Society for Transplantation and Cellular Therapy
consensus (graded 1-5) [9].

2.2.2. Nutritional status during admission

Repeated body weight measurements taken throughout the
admission were collected, from the first day of admission to day of
discharge.

2.2.3. Dietetic services

Information regarding dietetic services provided were
reviewed, including nutrition screenings, dietetic referrals, and
interventions. UCLH guidelines recommend the use of the inter-
nally developed Nutrition Screening Tool (NST) by nursing staff for
all inpatients, on admission, and weekly thereafter (Supplementary
Table 2). Patients with an NST score >7 are considered at-risk of
malnutrition and require referral to dietetics for full assessment
and management.

2.3. Definitions: Malnutrition and cachexia

Baseline cachexia prevalence at treatment consent was identi-
fied using the modified Glasgow Prognostic Score (mGPS): no
cachexia (mGPS 0 — Albumin >3.5 g/dL and CRP <10 mg/L), un-
dernourished (mGPS 0 — Albumin <3.5 g/dL and CRP <10 mg/L),
pre-cachexia (mGPS 1 — Albumin >3.5 g/dL and CRP >10 mg/L) and
refractory cachexia (mGPS 2 — Albumin <3.5 g/dL and CRP >10 mg/
L) [18] (Supplementary Table 3).

Malnutrition incidence was identified both pre-treatment
(treatment consent to Day minus 15), and during CAR T-cell
admission (first to last day of admission), using the Global Lead-
ership Initiative on Malnutrition (GLIM) consensus definition,
including the phenotypical criteria of weight loss or low BMI [19].
Additional phenotypical criteria of reduced muscle mass and
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strength/function were not evaluated, as this data was not available
in this retrospective cohort. The aetiological GLIM criteria were met
by all patients, attributed to the chronic or recurrent mild to
moderate inflammation associated with malignant disease
(Supplementary Table 3).

2.4. Statistical analysis

Statistical analysis was undertaken using SPSS V.29 (IBM). Data
are presented as mean (standard deviation - SD) or median
(interquartile range — IQR) and/or [range]. Elevated serum LDH
levels were defined using UCLH's upper limit of normal: (male:
>250 IU/L, females: >214 IU/L); elevated serum ferritin defined
using quartile analysis (high: upper quartile, low: lower three
quartiles). Continuous variables were analysed using Spearman
correlation coefficient, simple group comparisons completed by
Mann—Whitney U tests, and categorical data analysed using Chi-
squared test. Wilcoxon signed-rank tests were used to analyse
changes over time for non-parametric data. Group differences on
continuous variables were evaluated using analyses of variance
(one-way ANOVA). Univariate and multivariate Cox regression was
used to evaluate the prognostic impact of mGPS scores on survival
outcomes (12-month overall survival - OS). Statistical significance
was set as p=<0.05.

3. Results

A total of 114 patients, receiving axi-cel (78.1%, n = 89) or tisa-
cel (21.9%, n = 25) were included. 43.0% (n = 49) of patients were
women, with a median age of 60 (47—67) years. The median
number of previous systemic therapies received was 2 (2—3), and
the median days from consenting for treatment to CAR T-cell
therapy infusion was 56 (47—71) days. Median LoS for CAR T-cell
treatment was 34 (27—38) days; 19.3% (n = 22) of patients required
ICU support during their treatment admission, with a median ICU
LoS of 88 (39—265) hours. Baseline elevated serum LDH levels
(marker of tumour burden [20]) were present in 84% (n = 84) of
patients, with elevated ferritin levels post lymphodepletion, a
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marker of inflammation, present in 67.4% (n = 62) of patients
(Table 1).

3.1. Pre-treatment

3.1.1. Malnutrition and cachexia

Using body weight change over the pre-treatment period, or
BMI at Day minus 15, 31.5% (n = 36) of patients were identified as
malnourished pre-treatment (GLIM criteria [19], Table 2). At time of
consenting for treatment (baseline), 101 of 114 (88.6%) patients had
a single measurement of serum CRP and albumin available to assess
cachexia status using mGPS [18], with pre-cachexia (mGPS 1) and
refractory cachexia (mGPS 2) identified in 41.6% (n = 42) and 2%
(n = 2), respectively (Table 2).

Univariate Cox regression analysis found that patients with
baseline pre-cachexia or refractory cachexia experienced signifi-
cantly increased risk of mortality at 12-months (HR = 3.158,
Cl = 1.36—7.323, p = 0.007) (Fig. 2) compared to patients without
cachexia. Notably, after adjusting for the potential cofounding
variable of baseline serum LDH levels with multivariable Cox
regression, pre-cachexia and refractory cachexia remained an in-
dependent negative prognostic marker for OS (HR = 3.012; 95%
Cl = 1.27-7.12, p = 0.012). Additionally, patients with baseline pre-
cachexia or refractory cachexia experienced greater percent body
weight loss pre-treatment (p = 0.038) and longer LoS (p = 0.037;
Table 3). Malnutrition pre-treatment was significantly associated
with increased ICU admissions during CAR T-cell treatment (16.4%
vs 30.5%, p = 0.039).

3.1.2. Pre-treatment bridging therapies

Additional anti-cancer bridging therapies (BT) are commonly
administered during the pre-treatment period between the T-cell
apheresis and admission; primarily to stabilise disease during the
CAR T-cell manufacturing process. BTs vary in intensity, with their

Table 1
UCLH CAR T-cell patient demographics.
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individual selection based on patient and clinician preferences [17].
Most patients at UCLH received BT (87.7%, n = 100), with the ma-
jority (64.0%, n = 73) undergoing chemotherapy (Supplementary
Table 1). Using one-way ANOVA, percent body weight change
pre-treatment (available for 88.6% (n = 101) of patients) was ana-
lysed according to BT prescription, with a significant difference
between BT groups identified (p=<0.001; Table 4). CMT patients
(=10.1% + 6.7) lost significantly more body weight than those
receiving RBP (—2.5% + 4.6, p = 0.047), RT (—2.0% + 3.7, p = 0.039),
HDT-Gem (—1.4% + 3.8, p = 0.028), or no BT patients (+2.7% + 5.6,
p=<0.001). Those who received RBP (p = 0.021) or HDT-Ifos
(—4.8% + 4.1, p = 0.002) lost significantly more body weight than
patients not receiving BT (+2.7% + 5.6). No significant difference in
body weight change was seen in patients receiving LDT
(—1.6% + 3.0) or HDT-Other (—3.9% + 2.7) compared to any other BT
groups. The twelve patients who did not receive BT were the only
group to increase body weight during this pre-treatment period.

3.1.3. Dietetic services
During the pre-treatment period, no patients in our facility were
screened for malnutrition risk, or referred to dietetic services.

3.2. During CAR T-cell treatment admission

3.2.1. Malnutrition and body weight change

During the hospital admission, patients experienced significant
body weight loss (p=<0.001), with median percent body weight
change —5.6% (—8.8 to —2.4%) (Table 2). Using the GLIM criteria, 78
(68.4%) patients developed moderate/severe malnutrition over the
course of their treatment admission (Table 3). No association was
found between either 1) CAR T-cell product or 2) baseline serum
LDH levels and percent body weight change during admission.
Patients' BMI on admission are shown in Table 2 [21]. Using Cox
regression analysis, neither increased BMI (defined as BMI >25 kg/

Patient characteristics

CAR T-cell therapy patients (n = 114)

Patient age (years)

Male (n, %)

Female (n, %)

Ethnicity (n, %)
White British
Other White Background
White Irish
Other Asian Background
Black African
Mixed White and Black Caribbean
Other Ethnic Group
Not Disclosed

Diagnosis (n, %)
De novo diffuse large B-cell lymphoma
Transformed indolent lymphomas
Primary mediastinal large B-cell lymphoma
B-cell acute lymphoblastic leukaemia
Intravascular lymphoma

Number of previous systemic therapies (excluding BTs) received prior to CAR T-cell therapy

Time from consenting for treatment to CAR T-cell infusion (days)
CAR T-cell therapy received (n, %)
Axicabtagene ciloleucel (axi-cel)
Tisagenlecleucel (tisa-cel)
Length of hospital stay (days)
Mortality (all-cause) at 12-months (n, %)
Baseline serum CRP levels (mg/L) (n = 102)
Baseline serum LDH levels (IU/L) (n = 100)
Serum ferritin post lymphodepletion (ug/L) (n = 92)

60 (47—67) [18—78]
65 (57.0)
49 (43.0)

45 (39.5)
29 (25.4)
8 (7.0)
5 (4.4)
2(1.8)
1(0.9)
5 (4.4)
19 (16.6)

76 (66.7)

24 (21)

8 (7.0)

5 (4.4)

1(0.9)

2(2-3) [2-7]

56 (47—71) [41—266]

89 (78.1)

25 (21.9)

34 (27-38) [15—102]

29 (25.4)

6.6 (2.5-32.3) [1-343]

291 (235-403) [155—2463]
719 (306—1301) [18—9608]

Abbreviations: BT; Bridging Therapy; BMI, Body Mass Index; CRP, C-Reactive Protein; LDH, Lactate Dehydrogenase. Data shown as number (percent) or median (IQR)

[range].
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Table 2
Nutritional status characteristics of CAR T-cell patients.
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Nutritional status characteristics

CAR T-cell therapy patients

Pre-CAR T-cell therapy
>5% body weight loss pre-treatment (n, %) (n = 101)
Pre-treatment GLIM malnutrition status (n, %) (n = 114)
Nil
Moderate malnutrition
Severe malnutrition
Baseline mGPS score (n, %) (n = 101)

Undernourished (mGPS 0 - Albumin: <3.5 g/dL, CRP: <10 mg/L)

No signs (mGPS 0 - Albumin: >3.5 g/dL, CRP: <10 mg/L)
Pre-cachexia (mGPS 1 - Albumin: >3.5 g/dL, CRP: >10 mg/L)

Refractory cachexia (mGPS 2 - Albumin: <3.5 g/dL, CRP: >10 mg/L)

During CAR T-cell therapy admission (n = 114)
BMI category on admission (n, %)

Underweight (<18.5 kg/m?)

Healthy weight range (18.5—24.9 kg/m?)

Overweight (25—29.9 kg/m?)

Obese Class 1 (30—34.9 kg/m?)

Obese Class 2 (35—39.9 kg/m?)

Obese Class 2 (>40 kg/m?)
Percent body weight change during treatment admission (%)
>5% body weight loss during treatment admission (n, %)
During treatment GLIM malnutrition status (n, %)

Nil

Moderate malnutrition

Severe malnutrition

29 (28.7)

78 (68.5)
26 (22.8)
10 (8.7)

0(0.0)
57 (56.4)
42 (41.6)
2(2.0)

4(35)

45 (39.5)

44 (38.6)

10 (8.8)

6(5.2)

5 (4.4)

5.6 (—8.8 to —2.4) [-26.4 to +11.8]
69 (60.5)

36 (31.6)
53 (46.5)
25 (21.9)

Abbreviations: GLIM, Global Leadership Initiative on Malnutrition; mGPS, modified Glasgow Prognostic Score; CRP, C-Reactive Protein; BMI,
Body Mass Index. Data shown as number (percent) or median (IQR) [range].
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Fig. 2. modified Glasgow Prognostic Score (mGPS) cachexia status pre-treatment was associated with 12-month overall survival (Cox regression) p = 0.007.

m?) or low BMI (defined as BMI <20 kg/m?) on admission were
significantly associated with 12-month OS.

3.2.2. Treatment side effects and medications

The incidence of side effects during admission, including sepsis,
CRS and ICANS can be seen in Table 5. Both 1) baseline mGPS
cachexia and 2) pre-treatment malnutrition status were associated
with a higher risk of sepsis development (p = 0.022 and p = 0.048,
respectively; Table 3). However, pre-treatment nutritional status
(mGPS cachexia and malnutrition) was not associated with grade
>2 ICANS or CRS. BMI on admission was not associated with any
treatment-related toxicities.
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The use and duration of medications with potential secondary
metabolic effects were reviewed, including corticosteroids with
glucocorticoid effects (dexamethasone, prednisolone, and methyl-
prednisolone) and IL-6 receptor antagonists (tocilizumab) (Table 5).
No significant associations were found between the use of either of
these medications and the development of malnutrition during the
admission.

3.2.3. Dietetic services, screening, and nutritional interventions
During admission, 64.9% (n = 74) of patients were referred to

dietetic services; with increased referral rates seen in patients with

baseline pre-cachexia or refractory cachexia (p = 0.002; Table 3).
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Table 3

Patient characteristics and outcomes by baseline mGPS groups.
Parameter Baseline mGPS 0 (no cachexia) Baseline mGPS 1 (pre-cachexia) or p-value

(n=57) 2 (refractory cachexia) (n = 44)

Patient characteristics and pre-treatment measures
CAR T-cell product — axicabtagene ciloleucel (n, %) 48 (84.2) 33(75.0) 0.249
Length of stay (days) 34 [15-66] 35[19-102] 0.037
Baseline serum LDH levels (IU/L) 252 [159—2463] 357 [155—1336] <0.001
Percent body weight loss pre-treatment (%) —1.0[-13.0 to 7.8] —4.7 [-18.8 to 5.5] 0.038
Presence of malnutrition pre-treatment (n, %) 12 (21.1) 20 (45.5) 0.009
During treatment admission measures
Serum ferritin levels at lymphodepletion (ug/L) 474 [37—-3230] 993 [18—9608] 0.003
Percent body weight loss during admission (%) —5.6 [-26.4 to 11.8] -5.8[-16.9 to 11.0] 0.574
BMI on admission (kg/m?) 26.5 [18.7—43.6] 25.2 [17.6—-52.5] 0.489
Referral to dietetics during admission (n, %) 31 (54.4) 37 (84.1) 0.002
Sepsis during admission (n, %) 17 (29.8) 23 (52.3) 0.022
CRS grade >2 during admission (n, %) 24 (42.1) 24 (54.5) 0.214
ICANS grade >2 during admission (n, %) 11(19.3) 14 (31.8) 0.148

Abbreviations: mGPS, modified Glasgow Prognostic Score; LDH, Lactate Dehydrogenase; BMI, Body Mass Index; NST, Nutrition Screening Tool; CRS, Cytokine Release Syn-
drome; ICANS, Immune Effector Cell-Associated Neurotoxicity Syndrome. Data shown as number (percent) or median [range].
Note: For body weight loss pre-treatment values, n = 90 (mGPS 0: n = 51; mGPS 1 or 2: n = 39). For serum LDH levels, n = 94 (mGPS 0: 55, mGPS 1 or 2: n = 39). For serum

ferritin levels, n = 81 (mGPS 0: n = 42, mGPS 1 or 2: n = 39).

Table 4

Percent body weight changes in CAR T-cell therapy patients by bridging therapies.

Bridging Therapy

Patients (n = 101) Change in body weight (%)

Combined modality therapy (CMT)

High dose chemotherapy, Ifosphamide-based (HDT-Ifos)
High dose chemotherapy, Gemcitabine-based (HDT-Gem)
High dose chemotherapy, others (HDT-Other)

Low dose chemotherapy (LDT)
Rituximab-Bendamustine-Polatuzumab (RBP)
Radiotherapy (RT)

Corticosteroids alone

Immunotherapy

No bridging therapy

4(4.0) —~10.1 (£6.7)><d

12 (11.8) —4.8 (+4.1)°

12 (11.8) —~1.4 (+3.8)°
2(2.0) -39 (x2.7)
3(3.0) —-1.6 (+3.0)

35 (34.7) —2.5 (+4.6)>f

19 (18.9) —2.0 (£3.7)°
1(1.0) -32
1(1.0) -0.1

12 (11.8) +2.7 (£5.6)%ef

abcdef yalues denoted by different superscript letters indicate p < 0.05 (one-way ANOVA). Data presented as number (percent) or mean (+ standard deviation).
* to meet the minimum requirements for post-hoc testing, groups with n = 1 were removed from analysis.

Table 5

Incidence of treatment side effects (Sepsis, CRS and ICANS), and toxicity management strategies during admission.

Side Effect Incidence and Medication Usage

Patients (n = 114)

Sepsis during admission (n, %)

Maximum CRS grade experienced during admission (graded 1-5)

CRS grade >2 during admission (n, %)
CRS grade >2 (days)

Maximum ICANS grade experienced during admission (graded 1-5)

ICANS grade >2 during admission (n, %)

ICANS grade >2 (days)

Corticosteroid required during admission (n, %)
Corticosteroid usage duration (days)
Corticosteroid use >7 days (n, %)

Tocilizumab required during admission (n, %)

45 (39.5)
2(1-2) [1-3]
54 (47.4)

3 (2—4) [1-8]
2 (1-3) [1-5]
28 (24.6)

4 (3-8) [2-25]
46 (40.4)

12 (+£7.9)
32(28.1)

73 (64.0)

Abbreviations: CRS, Cytokine Release Syndrome; ICANS, Immune Effector Cell-Associated Neurotoxicity Syndrome. Data
shown as number (percent), mean (+ standard deviation) or median (IQR) [range]. Corticosteroids used include dexa-

methasone, prednisolone, and methylprednisolone.

Note: For maximum CRS and ICANS grade values, only patients who developed any grade of CRS (n = 104) or ICANS

(n = 48) during treatment were included.

Referral reasons included nutritional risk (75.6%, n = 56) and
nutrition impact symptoms (24.4%, n = 18). The median number of
dietetic reviews completed for referred patients was 4 (2—6). Of
those referred, dietetic interventions included: oral dietary modi-
fications and/or oral nutritional supplements in 72.9% (n = 54) of
patients, enteral nutrition in 18.9% (n = 14), and parenteral nutri-
tion in 8.2% (n = 6). Referred patients lost significantly more body
weight during the admission (—6.1% [-26 to +11.8]) compared to
patients not referred to dietetics (—3.9% [—11.8 to +4.8], p=<0.001).
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Using UCLH's internally developed malnutrition screening tool
(NST), 57% (n = 65) of patients scored >7, indicating at-risk of
malnutrition.

4. Discussion
In this service evaluation, we sought to characterise the changes

in nutritional status experienced by CD19-targeting CAR T-cell
therapy patients at UCLH, and its potential impact on clinical
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outcomes. Furthermore, we explore the dietetic resource utilisation
in this group, to identify current practices and areas for
development.

In our cohort, baseline cachexia status (mGPS 1 and 2) was
independently associated with inferior OS. This is consistent with
recently published data showing the negative impact of adverse
nutrition parameters pre-CAR T-cell treatment (including weight
loss and immuno-nutritional scores) on profession-free survival
and OS [20,22]. However, to our knowledge, our study is the first to
identify mGPS cachexia scores as a predictor of OS independent of
serum LDH, a marker of disease burden [20]. This highlights the
significance of using mGPS as a potential determinant for adverse
outcomes in this patient group, and the need for early screening
and intervention.

Malnutrition, pre-cachexia and refractory cachexia prior to CAR
T-cell therapy were associated with increased LoS, ICU admission,
and sepsis. The increased rate of adverse outcomes associated with
poor nutritional status in our cohort mirrors those observed in
standard cancer therapies [7,23], stem cell transplants [24,25], and
more recently in CAR T-cell therapy [20,22]. This underscores the
necessity for research to further explore its impact in this space,
encompassing broader outcome measures not yet investigated
such as quality of life, fatigue, and healthcare costs, given their
well-documented association with nutritional status in standard
cancer settings [7]. In contrast to data from Akhtar et al. (2023)
where mGPS 2 equivalent (using standard Glasgow Prognostic
Score) was associated with higher rates of grade >3 CRS and any
grade ICANS [26], we did not find associations between these
toxicities and nutritional status. Differing cohorts, assessment
timepoints, and mGPS/toxicity gradings for analysis may explain
these contrasting results, warranting additional investigation.

Factors associated with greater pre-treatment weight loss
included baseline cachexia and receiving intensive BT. Given the
increasing use of intensive BT in CAR T-cell therapy [17], identifying
these higher-risk patients may facilitate early nutrition screening
and intervention prior to initiation of BT, with the goal of mini-
mising weight loss and muscle wasting, potentially reducing pre-
treatment malnutrition incidence and improving treatment
outcomes.

A substantial proportion of patients developed malnutrition
(68.4%) during their admission, far exceeding the rate observed in
standard haematology treatment settings (26%) [27]. With minimal
comparative data available, the drivers for this elevated malnutri-
tion rate in our CAR T-cell population requires further research.
Weight loss during admission was not associated with CAR T
product, LDH levels, or use of CAR T-cell toxicity management
medications including corticosteroids and IL-6 receptor antago-
nists. This is despite the known exacerbation of muscle atrophy
associated with corticosteroid use [14], and the potential role of IL-
6 receptor antagonists in attenuating inflammatory-driven weight
loss [31]. Malnutrition prevalence is known to increase in patients
with advanced cancers [7], which is significant for this CAR T-cell
population given their refractory/relapsed disease status. Due to
the common occurrence of fluid retention secondary to cortico-
steroid use [32] and CRS [33], evaluating the intrinsic and extrinsic
factors driving this elevated malnutrition rate using body weight
alone may be challenging. Future research should consider the use
of sensitive body composition assessments (e.g. dual-energy x-ray
absorptiometry (DEXA), computerised tomography (CT), bioelec-
trical impedance [19]) and measures of muscle strength/function
(e.g. hand-grip strength) to assist with identifying the contributors
to poor nutritional status post-CAR T-cell infusion, including the
potential role of inflammatory processes such as CRS.

In our service evaluation, BMI on admission was not associated
with treatment toxicities or OS, which is consistent with data from
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Wudhikarn et al. (2021) [28]. To further characterise the impact of
pre-CAR T-cell body composition beyond simple anthropometric
measures such as BMI, several groups have utilised CT imaging in
this setting. Santos et al. (2022) observed that increased visceral
adipose tissue (AT) at lymphodepletion was negatively associated
with CRS severity and early onset [29]. In a similar study, Rejeski
et al. (2023) showed that increased total abdominal AT (but not
BMI) was associated with improved response to CAR T-cell therapy
[20]. The authors concluded that the obesity paradox as described
in other cancer settings [23], may extend to CAR T-cell therapy.
These results further highlight the importance of sensitive body
composition assessments in CAR T-cell therapy research and clin-
ical care. This may in the future enable identification of patients
with protective or adverse features such as increased abdominal AT,
or sarcopenic obesity (low muscle mass and function alongside BMI
>30 kg/m? [30]), which is often overlooked in clinical oncology
practice despite its association with poor outcomes [23].

Using the UCLH Nutrition Screening Tool (NST), 57% of patients
during admission were identified as at-risk of malnutrition, with
64.9% referred to dietetic services. Conversely, in the pre-treatment
setting, patients did not undergo formal malnutrition screening, or
receive dietetic referrals or input, despite 43.6% presenting with
pre-cachexia/refractory cachexia. As CAR T-cell services continue to
expand internationally and awareness of the impact of altered
nutritional status becomes increasingly apparent, further research,
collation of multidisciplinary evidence and development of guide-
lines to support this aspect of CAR T patient care will be essential.
Given the current emerging evidence, we propose the following
preliminary dietetic pathway to enable prompt screening and
intervention in this setting (Fig. 3). This includes consistent moni-
toring of nutrition parameters associated with patient outcomes
[20,22], sensitive body composition assessments [19], measures of
muscle strength/function, and early malnutrition screening using
tools validated in haemato-oncology [7,34]. As evidence regarding
recommended dietetic interventions specific to CAR T patients is
limited, adherence to current haemato-oncology dietetic guidelines
is advisable, pending further research [35].

With continued research, expansion of this pathway to incor-
porate services such as prehabilitation, initiated upon treatment
consent, could be considered to optimise pre-treatment nutritional
status. The benefits of CAR T-cell prehabilitation, including exercise
and nutrition interventions, have been suggested [20,36] and tri-
alled in selected countries [37], given their association with supe-
rior treatment outcomes in oncology and surgical settings [38].
Formal health economic analyses are recommended to determine
the cost-effectiveness of introducing different multidisciplinary
CAR T-cell pathways, such as the proposed dietetic pathway,
compared to multimodal prehabilitation interventions.

4.1. Limitations

This investigation has the following limitations: the retrospec-
tive design with convenience sampling, and small sample size
(n = 114) due to the novel nature of the treatment. In recognising
the inherent constraints of service evaluations, caution should be
exercised when interpreting these results as they cannot be
assumed generalisable; however, it is noteworthy that this cohort's
demographic profile extends beyond UCLH's catchment, as patients
from across the UK are referred to this specialist centre
(Supplementary Table 4). Despite limiting inclusion to licensed
CD19 targeting CAR T-cell products, there remains heterogeneity
within our selected population, primarily stemming from varia-
tions in patients' diagnoses (Table 1). The quality and completeness
of the data retrospectively collected (using EHR) may be limited;
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Fig. 3. Proposed preliminary dietetic management pathway for CAR T-cell patients at UCLH, utilising emerging evidence and key references [35,41,42].
Abbreviations. modified Glasgow Prognostic Score, mGPS; C-Reactive Protein, CRP; Patient-Generated Subjective Global Assessment, PG-SGA; computerised tomography, CT; hand-
grip strength, HGS; bridging therapy, BT; combined modality therapy, CMT; High-dose chemotherapy Ifosphamide-based, HDT-Ifos.

pre-treatment weight history and baseline serum CRP/albumin [19,39,40], are not routinely conducted in clinical care at present.
available in n = 101. Consequently, we were unable to comprehensively characterise
Assessment of muscle mass and strength/function, anorexia and cachexia status in our cohort, using solely baseline serum CRP and

fatigue, used in various cachexia and malnutrition diagnostic tools albumin levels, with CRP known to be a non-specific inflammatory
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marker. Similarly, weight loss and low BMI alone were used to
determine GLIM malnutrition status phenotypically, as data
regarding reduced muscle mass and strength/function was not
available retrospectively. Nevertheless, these findings serve as
proof-of-concept, prompting the need for ongoing research in this
emerging field.

5. Conclusion

This service evaluation highlights both the high rates of
malnutrition experienced by patients during CAR T-cell treatment,
and the independent association between pre-treatment nutri-
tional status and patient outcomes, including inferior overall sur-
vival. As CAR T-cell therapy extends beyond the realms of
haematological malignancies, application of sensitive nutrition
assessments, and evaluation of early intervention strategies should
be a focus of future work, aimed at optimising nutritional status
and subsequently, clinical outcomes. Parallel expansion and
implementation of dietetic resources should be considered a key
component of individualised care for CAR T-cell therapy patients,
shaping the future of comprehensive treatment strategies.
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