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Abstract

Objective: Manual auscultatory is the gold standard for clinical non-invasive blood
pressure (BP) measurement, but its usage is decreasing as it requires much professional
skills and training, and its environmental concerns related to mercury toxicity. As an
alternative, automatic oscillometric technique has been used as one of the most
common methods for BP measurement, however, it only estimates BPs based on
empirical equations. To overcome these problems, this study aimed to develop a deep
learning-based automatic auscultatory BP measurement method, and clinically validate
its performance.

Methods: A deep learning-based method that utilized time-frequency characteristics
and temporal dependence of segmented Korotkoft sound (KorS) signals and employed
convolutional neural network (CNN) and long short-term memory (LSTM) network
was developed and trained using KorS and cuff pressure signals recorded from 314
subjects. The BPs determined by the manual auscultatory method was used as the
reference for each measurement. The measurement error and BP category classification
performance of our proposed method were then validated on a separate dataset of 114
subjects. Its performance in comparison with the oscillometric method was also
comprehensively analyzed.

Results: The deep learning method achieved measurement errors of 0.2 + 4.6 mmHg
and 0.1 + 3.2 mmHg for systolic BP (SBP) and diastolic BP (DBP), respectively, and
achieved high sensitivity, specificity and accuracy (all > 90%) in classifying

hypertensive subjects, which was better than those of oscillometric method.



Conclusion: This validation study demonstrated that deep learning-based automatic
auscultatory BP measurement can be developed to achieve high measurement accuracy

and high BP category classification performance.

Keywords: Blood pressure measurement, deep learning, manual auscultatory method,

oscillometric method.



Introduction

High blood pressure (BP) is one of the major modifiable risk factors for
cardiovascular disease, aggravating the greatest global burden of disease.! 2 Accurate
BP measurement helps to identify the presence of high BP, which contributes to
reducing the risk of future cardiovascular events, whereas, inaccurate BP estimation
may result in serious clinical consequences.> * Even 5 mmHg error either above or
below the actual BP would result in tens of million people being exposed to unnecessary
treatment or being denied treatment.’

Manual auscultatory method is the gold standard for non-invasive clinical BP
measurement.® This method auscultates the brachial artery with a stethoscope detecting
the appearance as well as the disappearance or muffling of the Korotkoff sounds (KorS),
which corresponds to the systolic blood pressure (SBP) and diastolic blood pressure
(DBP), respectively.” However, since the manual auscultatory method always use a
mercury manometer for measuring the pressure, and requires professional skills and
training, it has been widely replaced by automatic technique in clinic, ambulatory, home
and hospital settings.® The oscillometry is one of the most common techniques for
automatic BP measurement. In principle, the automatic oscillometric method estimates
mean arterial BP (MAP) from the cuff pressure when the oscillation amplitude is
maximal, and then mathematically computes SBP and DBP using empirical ratios
derived from the recorded oscillometric waveform envelope.® ° Since the empirical

ratios are obtained based on population averages during device development, the BPs



determined by oscillometric technique are actually ‘empirical’ BPs. Therefore,
automatic oscillometric method only estimates BPs, and does not actually measure BPs
in theory. Furthermore, it is difficult for the oscillometric technique to accurately
estimate BPs in hypertensive subjects and in subjects with arterial stiffness, which are
common conditions that occur with aging and many diseases.'® ' Therefore,
investigating an alternative method which can achieve accurate BP measurement is still
clinically important.!2

For the gold standard manual auscultatory method, accurate identification of the
KorS features is the key to detect the appearance and disappearance of the KorS, from
which BPs are measured. It is therefore crucial for automatic methods to be able to
identify these features. However, due to the poor ability of traditional signal processing
technologies (e.g., time-frequency analysis or power spectrum analysis) to recognize
complex features, it is difficult to accurately differentiate the KorS features (e.g.,
amplitude, frequency range or during time) between subjects to aid BP determination.
To the best of our knowledge, there is still no well-accepted clinic automatic
auscultatory BP monitor that has been widely adapted in the healthcare system.

Unlike traditional signal processing technology, deep learning technique has
multiple layers of non-linear processing and do not rely on feature selection to obtain
reliable results. Deep learning techniques have been widely applied to a variety of
medical fields, such as diabetic retinopathy detection'®, arrhythmia detection and
classification'®, hypertrophic cardiomyopathy detection'’, and disease prediction'®,

where impressive outcomes have been achieved. We have recently developed a new



deep learning-based automatic auscultatory BP measurement method in a preliminary
study and evaluated its performance under different measurement conditions (resting,
deeper breathing, talking and arm movement) with normotensive subjects.!”> !* These
investigations have demonstrated the significant potential of using deep learning
technique to automatically measure BP accurately. However, its performance has not
been clinically validated on subjects with a wide range of BPs, and also has not been
compared to the commonly used automatic oscillometric BP measurement method.
This study aims to provide clinical evidence on the measurement accuracy as well as
on the performance of classifying different BP categories.

This paper is organized as follows. In the second part of this paper, we introduce
a deep learning-based automatic BP measurement method employed CNN and LSTM.
The third part includes the results of measurement accuracy of the deep learning method
and the comparison of its performance with oscillometric method. The fourth part
discusses and analyses the results, and displays the advantages of our method in

comparison with oscillometric method. Finally, the fifth part concludes the paper.

Methods
Figure 1 shows the overall methodology flow of this study. The KorS and cuff
pressure signals were simultaneously recorded during reference manual BP
measurement for each subject, which were used to develop a deep learning-based
automatic BP measurement method. Then, the measurement error and BP category

classification performance of the deep learning-based method were validated, and its



performance was also compared with the traditional oscillometric method.
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Figure 1. Overall flow diagram of the study methodology.

Subjects

Manual BPs were taken from 428 subjects (194 female and 234 male, age of 53 +
18 years). All subjects gave their written informed consent to participate. This study
received ethical permission from the Newcastle & North Tyneside Research Ethics
Committee. The investigation conformed with the principles in the Declaration of
Helsinki. All the analyses involved were performed on anonymized data.

The subjects were divided randomly into two sub-groups. One sub-group used for
developing deep learning-based BP determination algorithm included 314 subjects (147
female and 167 male), aged from 16 to 84 years (56 + 18 years), while, another sub-
group used for validating the performance of the deep learning-based algorithm
included 114 subjects (47 female and 67 male), aged from 17 to 84 years (51 & 18 years).
According to the American College of Cardiology (ACC)/American Heart Association
(AHA) guidelines for the prevention, detection, evaluation, and management of high
blood pressure in adults, subjects were classified into three BP categories: normal (SBP

< 120 and DBP < 80 mmHg), elevated (SBP 120 — 129 and DBP < 80 mmHg) and



hypertension (SBP > 130 or DBP > 80 mmHg) categories.!” The detailed subject

demographic information of two sub-groups, including age, gender, height, weight, arm

circumference, BP, body mass index and BP distribution are summarized in Table 1.

Table 1. Baseline characteristics of the study subjects

Characteristics

No. of total subject

Female

Male

Age (years)

Biomarkers
Height (cm)
Weight (kg)
Arm circ (cm)
SBP (mmHg)
DBP (mmHg)

Body mass index (kg/m2)

BP category
Normal
Elevated

Hypertension

Development Group

314
147 (46.8)
167 (53.2)
56 + 18

168.1 + 94
73.9 + 13.2
28.1 £+ 26
134.7 + 26.5
734 + 12.3
262 + 4.4

89 (28.3)
91 (29.0)
134 (42.7)

Validation Group

114
47 (41.2)
67 (58.8)
52 + 18

1699 + 111
775 + 183
28.7 + 34
129.9 + 248
776 + 152
26.7 + 5.3

30 (26.3)
32 (28.1)
52 (45.6)

Values are n (%) or mean + SD

Reference BP measurement

The manual auscultatory method was employed as a reference for BP

measurement in this study. As shown in Figure 2, two trained operators took these

measurements simultaneously using a clinically validated manual electronic



sphygmomanometer (Accoson Greenlight 300; AC Cossor & Son (Surgical) Ltd,
Harlow, UK). Manual auscultatory SBP and DBP were determined from the appearance
and disappearance of the KorS, respectively. The guidelines from the British
Hypertension Society and American Heart Association were followed.® 2°

BP measurements from each of the two trained operators were reviewed. If the
observers’ BP reading disagreed with > 4 mmHg in SBP or DBP, another BP
measurement was taken. According to the statistical analysis, there was no significant
BP difference (for both SBP and DBP) between the BP readings from two observers
(both P > 0.05). The mean BP values obtained from reference measurements by the
observers were then used as the reference BPs for that subject in the following analysis.

For each subject, two valid repeated BP measurements were taken, with a one-
minute interval between them, allowing recovery of cardiovascular hemodynamics. All
BP measurements were performed in a quiet and temperature-controlled clinical
measurement room. Prior to the measurement, each subject had been asked to rest on a

chair for 5 minutes and breathe gently during the whole measurement.

Data recording

As shown in Figure 2, during reference manual BP measurement, an automatic
and programmable air pump was used to firstly inflate the cuff, and then deflate linearly
at the recommended rate of 2-3 mmHg/s. The cuff pressure was recorded by a pressure
sensor connected to the cuff via a tube, and the KorS were simultaneously recorded by

a bespoke system that included a stethoscope end and a microphone. These analogue



signals were converted to digital signals with a sampling rate of 2000 Hz and a

resolution of 16 bits. The final digital KorS and cuff pressure signals were stored in a

computer for oft-line analysis and processing.
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Figure 2. Illustration of the measurement system for simultaneously recording

Korotkoff sound and cuff pressure signals. Two trained operators performed the manual

auscultatory blood pressure measurement simultaneously. During the measurement the

cuff pressure and Korotkoff sounds were digitally recorded and stored in a computer.

Oscillometric automatic BP determination

Oscillometric characteristic ratio determination from development sub-group

Firstly, the oscillometric pulses were extracted from the recorded cuff pressure

after segmenting each pulse and removing the baseline cuff pressure. The oscillometric

envelope was obtained by fitting a sixth-order polynomial model to the extracted

oscillometric pulse peak amplitude, which was plotted against the baseline cuff pressure.
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Then, the reference SBP and DBP were used to determine two arterial pulse where the
baseline cuff pressure was equal to the reference BPs. Next, the systolic and diastolic
characteristic ratios were calculated by dividing the peak amplitude of two arterial
pulses by the maximum amplitude of the oscillometric envelope. Finally, the mean
systolic and diastolic characteristic ratios were obtained across all subjects in the
development sub-group, which were 0.51 and 0.79 for SBP and DBP, respectively. The
two ratios were then used for the following oscillometric BP measurement in the

validation sub-group.

Oscillometric BP measurement on validation sub-group
The details of oscillometric BP determination have been described in our

previously published study.”!

Briefly, as described above, after obtaining the
oscillometric envelope, automatic oscillometric MAP was determined from the cuff
pressure at the maximum amplitude of the oscillometric envelope. Automatic
oscillometric SBP and DBP were determined when the amplitude of oscillometric

envelope reached a specific ratio (0.51 for SBP and 0.79 for DBP) of the maximum

amplitude of the oscillometric envelop.

Deep learning-based automatic BP determination
Algorithm development to identify audible KorS using development sub-group
There are four steps of our automatic algorithm to identify audible KorS. The first

three steps were the pre-processing of KorS signal, to be specific, as shown in figure
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3(a), the KorS signal was firstly segmented into beat-by-beat sequenced frames (1s
window with 2,000 sample points per frame) according to the peak of oscillometric
pulse associated with each cardiac heartbeat. Each frame was then converted into a
matrix ‘image’ (where the x-axis and y-axis represent the time and frequency,
respectively, while the value of every pixel indicates the power at a particular time and
frequency) by short time Fourier transformation (STFT) with 60 ms Hamming window
(sampling rate = 2000 Hz) and 87% overlap. Thirdly, all the frames between the
manually determined SBPs and DBPs were labeled as audible KorS beats, while the

others were labeled as non-audible KorS beats.
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Figure 3. Framework of deep learning-based automatic BP determination algorithm.
(a) The pre-processing of KorS signal and the converted KorS time-frequency images

as the input of the neural network. (b) The CNN modules learn the features from the



12

images in sequence. The extracted features were then fed into a LSTM network for
temporal features extraction and binary classification. The blue line between CNN
modules indicates that these CNN modules share weights. (¢) The identified audible
KorS beats were used to determine SBP and DBP corresponding to the cuff pressure.

(d) The structure of the developed CNN.

During the fourth step (Figure 3(b)), convolutional neural networks (CNNs) were
applied to extract features from all frames in sequence and generate a feature sequence
for a KorS signal record. Detailly, the CNNs follows standard feature extraction
strategies for image-based deep learning tasks such as object recognition, where
convolutions layers are used to capture local-to-global features via convoluting
information in a sliding window. After every convolution, max-pooling is used to
extract the most prominent signal and halve the size of the input, from 76x34 finally to
10x9. After convolution and max-pooling, the features are pulled through three fully-
connected layers. The kernel size and stride for the sliding window of each convolution
layer are given in Table 2. We in total used three convolution layers and three max-
pooling layers. We empirically chose the specific parameters such as kernel size, layer
number, etc. to achieve the best results. Then, the feature sequence was fed into a long
short-term memory (LSTM) network for binary classification. LSTM is specialized for
processing sequential inputs, which can learn the temporal and contextual information
of the frames in sequence, especially the dynamics of the input sequence, i.e. the

dependencies between consecutive frames.??> A standard one layer LSTM model was
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used to the learn the dynamics. It takes as input the output of the CNNs, then outputs
to a fully-connected layer which finally predicts the class label which could perform
automatic identification of audible and non-audible KorS beats. The overall structure

and setting of the neural networks are given in Table 2.

Table 2. The structure of the proposed neural networks

Layer Setting Output
Convolution 8@3x3/1,1 64x76%x34%x8
Max-Pooling 2x2/2.2 64x38x17x8
Convolution 16@3x3/1,1 64x38x17x16
Max-Pooling 2x2/2,2 64x19%x9x16
Convolution 16@3x3/1,1 64x19x9%x16
Max-Pooling 2x2/2,1 64x10x9%x16

Fully Connected - 64x1440
Fully Connected - 64x96
Fully Connected - 64x96
LSTM 64x96
Fully Connected - 64x2

The setting is presented as: number of filters @ kernel size / stride

During the training process, the parameters of the neural networks were initialized

random values. Then, for each input signal, the prediction given by the neural networks
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was compared with the known label from development sub-group, and parameters of
the neural networks were then modified to decrease the error on that signal (adaptive
moment estimation). This process was repeated for every signal record in the
development sub-group until the neural networks ‘learn’ how to accurately identify
audible and non-audible KorS. The training process were performed on a computer with

CPU (AMD Ryzen 5 2600 @ 3.4 GHz) and GPU (NVIDIA GTX 1080).

Deep learning-based BP measurement on the validation sub-group

The overall framework of our deep learning-based automatic BP determination
algorithm is shown in Figure 3. The trained neural networks with fixed parameters were
used to identify the audible and non-audible KorS beats. Then, a mapping algorithm
was developed to associate the identified Korotkoff beats for BP determination (Figure
3(c)). The first and last identified audible KorS beats were used, respectively, to
determine SBP and DBP corresponding to the baseline cuff pressure.!” In order to
follow the guideline of manual auscultatory BP measure, an additional determination
rule was applied: SBP was determined with at least two consecutive identified audible
KorS beats, and DBP was determined at the point at which all sounds finally disappear

completely.

Data and statistical analysis
For each subject, there were two repeated measurements and three BP

determinations (1 from the reference manual BP measurement, 1 from oscillometric
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method and 1 from deep learning method). In total, there were 684 SBP and 684 DBP
values from 114 validation subjects (684 = 114 subject * 2 repeats * 3 determination
methods).

The SPSS Statics 19 software package (SPSS Inc, Chicago, IL, USA) was
employed in this study to perform the statistical analysis and a P value less than 0.05
was considered to be significant.

The fusion matrix was firstly employed to evaluate the performance of proposed
algorithm to identify audible and non-audible KorS beats. Then, The BPs obtained by
the oscillometric method were compared to the reference measurement to calculate
their mean paired BP difference (measurement error) and standard deviation (SD) of
their differences, respectively for all the validation subjects as well as for the three BP
categories (normal, elevated and hypertension). The same data analysis approach was
performed for the deep learning method. Analysis of variance analysis (ANOVA)
method was used to investigate the repeatability between the 2 repeated measurements,
and the effect of the three measurement methods on the obtained BPs with post-hoc
paired comparison. Next, the histograms of BP differences across all the validation
subjects, the distribution of absolute BP differences within 5, 10 and 15 mmHg and the
Bland-Altman scatterplots were obtained.

Finally, the performance of the oscillometric and deep learning methods were
compared in terms of their ability to correctly classify the subject into three categories
(normal, elevated and hypertension). Three standard metrics (classification sensitivity,

specificity and accuracy) were calculated from the calculation of true positive (TP),
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true negative (TP), false positive (FP) and false negative (FN), where the sensitivity is
the ratio of correctly classified events (i.e., normal, elevated or hypertensive subjects)
among all the events, Sensitivity = TP / (TP + FN); the specificity is the radio of
correctly classified nonevents (i.e., non-normal, non-elevated or non-hypertensive
subjects) among all of the nonevents, Specificity = TN / (TN + FP); and the accuracy is
the ratio of the number of correctly classified subjects to the total number of subjects

classified, Accuracy = (TP + TN) / (TP + TN + FP + FN).

Results
Performance of the identification of audible and non-audible KorS beat
The confusion matrix on validation sub-group obtained by the proposed neural
networks has been given in Table 3, where 253 audible KorS beats were misidentified
as non-audible KorS beats and 462 non-audible KorS beats were misidentified as

audible KorS beats, and the identification accuracy is 95.1%.

Table 3. Confusion matrix for the KorS beat identification of the validation sub-group

Audible KorS beats Non-audible KorS beats

Audible KorS beats 4511 253

Non-audible KorS beats 462 9366

Comparison of the measurement error from the oscillometric method and the deep

learning method
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According to the statistical analysis, there was no significant BP difference (SBP
and DBP) between the oscillometric method and the reference manual BP measurement
(all P> 0.3). Similarity, there was no significant BP difference determined between the
deep learning method and the reference manual BP measurement (all P > 0.5).

The automatic BP differences (mean = SD) in comparison with the reference
manual BPs are given in Table 4, separately for the oscillometric and deep learning
methods. This is respectively given for the three BP categories. The overall BP
differences of oscillometric method were -0.4 mmHg and 0.2 mmHg, respectively, for
SBP and DBP, while the deep learning method achieved 0.2 mmHg and 0.1 mmHg,
respectively, for SBP and DBP. More interestingly, the deep learning method produced
smaller SD of difference (with the range of 2.6 to 4.8 mmHg for SBP and DBP from all
three BP categories) than those of oscillometric method (with the range of 4.4 to 6.7

mmHg).

Table 4. The mean + SD of BP differences for three BP categories determined by the
oscillometric method and deep learning method in reference to the reference manual

BP measurement. The overall mean = SD of BP differences across all subjects are also

presented.
BP difference between BP difference between
Oscillometric and Reference Deep learning and Reference
(mmHg) (mmHg)
SBP DBP SBP DBP

Normal 2.1+£6.0 -0.6+4.4 -02+4.4 0.8+3.6
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Elevated 22455 -0.5+5.7 -1.0+4.2 -0.5+2.6
Hypertension  -0.7 + 6.7 1.0+6.2 1.1+48 02+32
Overall -04+64 02+£5.7 0.2+4.6 0.1+3.2

Figure 4 given the Bland-Altman scatterplots of the SBP and DBP determined by
the automatic oscillometric method and deep learning method versus the reference
manual BP values. The limits of agreement for the deep learning method (-8.8 to 9.2
mmHg for SBP (Figure 4b) and -6.2 to 6.4 mmHg for DBP (Figure 4d)) were smaller
than those corresponding values from the oscillometric method (-12.9 to 12.1 mmHg

for SBP (Figure 4a) and -11.0 to 11.4 mmHg for DBP (Figure 4c)).
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learning method versus reference manual BP measurement. The limits of agreement

(1.96 * SD of BP difference) are given using the dashed lines in figures.

The proportion of BP differences within 5, 10 and 15 mmHg are shown in Figure
5 and Table 5. It can be observed that, for each level (i.e. within 5, 10 and 15 mmHg),
the proportion of BP differences (both SBP and DBP) obtained by the deep learning
method were within the Grade A standard for BP device by BHS (60%, 85% and 95%
of BP differences are within 5, 10 and 15 mmHg, respectively).?® Although the
oscillometric method also achieved a grade of A for DBP, the results for SBP were in a
grade of B (50%, 75% and 90% of BP differences are within 5, 10 and 15 mmHg,

respectively).
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Figure 5. Histograms of within-subject (a) SBP and (c) DBP differences between the
oscillometric method and the reference manual BP measurement. And histograms of
within-subject (b) SBP and (d) DBP differences between the deep learning method and

the reference manual BP measurement.

Table 5. Distributions of BP differences between the oscillometric method and the
reference manual BP measurement, and between the deep learning method and the

reference manual BP measurement.

Oscillometric method Deep learning method

SBP (%) DBP (%) SBP (%) DBP (%)
Within 5 mmHg 58.3 62.3 73.2 89.0
Within 10 mmHg 89.5 91.2 97.4 99.6
Within 15 mmHg 97.4 98.2 100.0 100.0

Evaluation results for classifying BP categories

As shown in Table 6, against the reference measurement (manual auscultatory
method, the gold standard of noninvasive BP measurement), both automatic
oscillometric and deep learning methods had the same performance to identify the
normal and elevated categories. More importantly, the deep learning method achieved
higher sensitivity, specificity and accuracy for classifying hypertensive categories (all

metrics higher than 90%) than the oscillometric method.
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Table 6. Classification of BP categories by the oscillometric method and the deep
learning method along with sensitivity, specificity and accuracy (against the reference

measurement, gold standard of noninvasive BP measurement).

Sensitivity  Specificity  Accuracy

BP Category TP FN TN FP

(%) (%) (%)

Oscillometric method
Normal 30 0 74 10 100.0 88.1 91.2
Elevated 20 12 82 0 62.5 100.0 89.5
Hypertension 42 10 59 3 80.8 95.2 88.6

Deep learning method
Normal 30 0 74 10 100.0 88.1 91.2
Elevated 20 12 82 0 62.5 100.0 89.5
Hypertension 47 5 60 2 90.4 96.8 93.9

Abbreviations: TP, true positive; FN, false negative; TN, true negative; FP, false
positive. The BP category defined as: Normal (SBP < 120 and DBP < 80 mmHg),
Elevated (SBP 120 — 129 and DBP < 80 mmHg) and Hypertension (SBP > 130 or DBP

> 80 mmHg).

Discussions
This study clinically validated the performance of a deep learning-based method
on subjects with a wide range of BPs. Its performance was compared with the manual
reference method and the widely used automatic oscillometric method. Across all the
subjects, the deep learning method achieved overall BP measurement errors of 0.2
mmHg for SBP and 0.1 mmHg for DBP, where the SD of BP difference from deep

learning method were smaller than those of the oscillometric method (4.6 vs 6.4 mmHg
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for SBP and 3.2 vs 5.7 mmHg for DBP). This was also demonstrated from the Bland-
Altman plots, where the smaller limits of agreement were obtained from the deep
learning method. The better performance could be explained by the different
measurement principles used for the deep learning-based auscultatory method and
oscillometric method. The oscillometric method is based on empirical equations to
estimate BPs. Our proposed automatic deep learning auscultatory method automates
the principle of the gold standard of non-invasive BP measurement.?* In theory, the
outcome of our proposed method could identical to the manual auscultatory method if
the performance of our developed neural networks on identifying the audible and non-
audible KorS beats was perfect. Our previously published has evaluated the potential
variation of using CNN to identify audible KorS during BP measurement.?
Nevertheless, better measurement performance with smaller SD of BP difference has
been achieved by the deep learning method than the oscillometric method.

It was observed that, in comparison with the oscillometric method, the deep
learning method achieved better performance for classifying hypertension category.
This suggests that, the deep learning method had higher ability to correctly classify a
patient with hypertension as a hypertensive individual, whereas to correctly classify a
patient with no hypertension as a non-hypertensive individual. An increase in arterial
stiffness with reductions in arterial compliance, known to occur in older patients, might
have contributed to the explanation of the discrepancy.® 2 In hypertensive case, KorS

are still audible whereas the oscillations could be reduced due to artery stiffening,'!

lading to potential measurement variability.
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It is worth noting that, both oscillometric and deep learning methods had low
sensitivity (both were 62.5 %) for classifying elevated subjects, which indicates that
their ability of correctly identifying an elevated patient is not strong enough. However,
the deep learning method achieved smaller measurement error (-1.0 vs -2.2 mmHg for
SBP) and smaller SD of BP differences (4.2 vs 5.5 mmHg for SBP and 2.6 vs 5.7 mmHg
for DBP) on elevated subjects than those of oscillometric method. The misclassification
was observed with subjects whose determined BPs were close to the edge of the BP
range of the elevated category. For example, if SBP of a subject is 120 mmHg or 122
mmHg, even a little underestimated could result in classifying it incorrectly as
normotensive. This indicates that, repeated measurement is a very important strategy
for the classification of the BP categories, especially, in the case that the determined BP
is close to an edge of the BP ranges.

One limitation of this study is that the effect on measurement accuracy of
cardiovascular disease or comorbidities (such as obesity, diabetes, hyperlipidemia, or
peripheral vascular disease) has not been analyzed comprehensively. Future studies on
focused clinical groups with cardiovascular diseases and comorbidities are suggested
to investigate whether the measurement error would increase in these diseases in a
different manner.

Another limitation is that, non-invasive BP measurement is perfect in comparison
with the true invasive reference measurement. Picone D et al has reported that
oscillometric BP and auscultatory BP systematically underestimated intra-arterial

brachial SBP, and overestimated intra-arterial brachial DBP.?” However, the manual
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auscultatory method is regarded as gold standard of non-invasive BP measurement. It
has been widely accepted and used for automatic BP device validation. A future study

with an invasive intra-arterial reference standard could be proposed.

Conclusion
In summary, this study has provided clinical evidence that our proposed deep
learning-based automatic auscultatory method can achieve accurate measurement and
high BP category classification performance, demonstrating that it can be developed

further to replace the automatic oscillometric and manual auscultatory method.
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