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Abstract—Many spatial filtering methods have been proposed
to enhance the target identification performance for the steady-
state visual evoked potential (SSVEP)-based brain-computer
interface (BCI). The existing approaches tend to learn spatial
filter parameters of a certain target using only the training data
from the same stimulus, and they rarely consider the information
from other stimuli or the volume conduction problem during
the training process. In this paper, we propose a novel multi-
objective optimisation-based high-pass spatial filtering method
to improve the SSVEP detection accuracy and robustness. The
filters are derived via maximising the correlation between the
training signal and the individual template from the same target
whilst minimising the correlation between the signal from other
targets and the template. The optimisation will also be subject
to the constraint that the sum of filter elements is zero. The
evaluation study on two self-collected SSVEP datasets (including
12 and 4 frequencies, respectively) shows that the proposed
method outperformed the compared methods such as CCA,
MsetCCA, SSCOR, and TRCA. The proposed method was also
verified on a public 40-class SSVEP benchmark dataset recorded
from 35 subjects. The experimental results have demonstrated the
effectiveness of the proposed approach for enhancing the SSVEP
detection performance.

Index Terms—Brain-computer interface (BCI), electroen-
cephalography (EEG), steady-state visual evoked potential
(SSVEP), multi-objective optimisation, high-pass spatial filter.

I. INTRODUCTION

The brain-computer interface (BCI) establishes a direct
communication path between the human brain and external
devices without relying on normal motor output pathways [1]-
[3]. The steady-state visual evoked potential (SSVEP)-based
BCI has been widely explored in various applications, such
as robot arm [4], communication [5] and augmented reality
(AR) glasses [6] [7] due to its high signal-to-noise ratio (SNR),
minimal training time, and fast communication rate [8]-[10].

The main task of the SSVEP-based BCI system is to identify
target stimuli and then translate them into corresponding com-
mands for subsequent control actions. Thus far, various spatial

This work was supported in part by Engineering and Physical Sciences
Research Council (EPSRC) (Grant No. EP/S019219/1) and in part by China
Scholarship Council (CSC) (Grant No. 201906460007). (Corresponding au-
thor: Zhi-Qiang Zhang.)

Yue Zhang, Zhenhong Li, Sheng Quan Xie, and Zhi-Qiang Zhang are
with the Institute of Robotics, Autonomous System and Sensing, School of
Electrical and Electronic Engineering, University of Leeds, Leeds LS2 9JT,
U.K. (e-mail: elyzh@Ileeds.ac.uk; z.h.li@leeds.ac.uk; s.q.xie@leeds.ac.uk;
z.zhang3 @leeds.ac.uk). He Wang is with School of Computing, University
of Leeds, LS2 9JT, UK (email: H.E.Wang@leeds.ac.uk). Zhibin Yu is with
School of Electrical Engineering, Southwest Jiaotong University, 611756,
Chengdu, Sichuan, China (zbyu@swjtu.edu.cn).

filters applied transformations in the channel domain, which
enhanced the SSVEP identification effectively via removing
background artifacts [10]-[12]. As one of the most popular
spatial filtering methods, canonical correlation analysis (CCA)
seeks a pair of weights to maximise the correlation between
SSVEP signals and sine-cosine reference signals [13]. Some
extended versions of the standard CCA were proposed to
further improve the performance of SSVEP detection. In these
methods, one branch starts with brain activity processing,
such as filter bank canonical correlation analysis (FBCCA)
[14]. As it decomposes SSVEP signals into various sub-band
components, the specific information contained in harmonic
components can be employed for frequency recognition. An-
other branch is to optimise the predefined artificial reference
signal by incorporating individual calibration data. For ex-
ample, Zhang et al. presented multiway CCA (MwayCCA)
[15] and L1-regularized MwayCCA [16] to construct the new
reference template via the third-order EEG data tensor. They
later proposed the Multiset CCA (MsetCCA) which extracts
common features shared by multiple calibration signals to
create optimised references, and it outperforms MwayCCA in
classification [17] [18]. The latest SSVEP detection methods
tend to learn the spatial filter by incorporating a training
stage. Besides, these methods are commonly based on template
matching, in which the individual template is acquired by
averaging multiple training trials [19]. For instance, Wei et
al. [20] proposed a training data-driven CCA algorithm that
yields more robust spatial filters to enhance the SNR of SSVEP
signals. However, the inter-trial relationship from the same
target was not fully considered. In another study, Nakanishi
et al. [5] presented task-related component analysis (TRCA)
based on the idea that the source signal can be reconstructed
through a linear summation of multi-channel EEG signals. The
TRCA-based spatial filter is learned by inter-trial covariance
maximisation. However, during the spatial filter training pro-
cess, the aforementioned methods only utilised the signal from
a single stimulus, and they rarely considered the information
from other stimuli.

Although multi-channel scalp EEG activities are beneficial
to achieve high-quality spatial filters, the volume conduc-
tion artifact may also be introduced due to the coherence
among various EEG channels [21]. It is well known that
the measurement of each EEG electrode is a linear mixture
of concurrently multiple brain source activities, not just the
activity of brain source in its vicinity [22]. In other words,
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since the signal from each brain source spreads among various
EEG channels when passing through the intracerebral area and
the scalp, it is infeasible to connect each electrode with a
single brain region [23]. Therefore, the volume conduction
decreases the spatial precision of EEG signals when spatially
broad features are shared among multiple electrodes [24]. The
high-pass spatial filter is commonly used to reduce the effect
of spatial blurring for EEG signals [25]. For example, the
surface Laplacian has been implemented to diminish volume
conduction effectively by attenuating low-spatial-frequency
activities whereas highlighting high-spatial-frequency signals
[24] [26]. The surface Laplacian filter has some advantages in
EEG signal analysis including ease of use and conceptually
simple. However, it is still a kind of “stationary” spatial
filter since it assumes that the EEG activity is not variable
across time [27] [28]. In order to solve this problem, Lu et.al
[29] designed an adaptive Laplace filter for the sensorimotor
rhythms (SMR) analysis, which employs a Gaussian kernel
to construct parameters of the spatial filter. Currently, most
existing research on volume conduction focused on other
paradigms of EEG, like event-related potential (ERP) [27] [26]
and SMR [29] [30], rather than SSVEP signals. Therefore,
there is still a lack of sufficient studies about the high-pass
spatial filter on the volume conduction phenomenon in SSVEP
signals. The feasibility of this filter to enhance target detection
in the SSVEP paradigm remains unclear.

In this study, we proposed a multi-objective optimisation-
based high-pass spatial filtering method to improve the SSVEP
identification performance. The filter was derived by max-
imising the correlation between the training signal and the
individual template from the same target, whilst minimising
the correlation between signals from other targets and the
template. Meanwhile, the constraint condition is that the sum
of spatial filter elements is zero. This setting allows the high
spatial-frequency SSVEP signals to pass and attenuates low
spatial-frequency signals. Therefore, the proposed approach
has the potential to extract the target-relevant features, reject
the target-irrelevant information, and reduce the effect of
volume conduction simultaneously. The method’s performance
was evaluated on two self-collected SSVEP datasets contain-
ing 12 and 4 visual stimulation, respectively. The effectiveness
of the proposed approach was verified with an averaged
SSVEP recognition accuracy of 87.58% in Dataset I and
87.5% in Dataset II using a 1s-long data epoch. Many well-
known and state-of-the-art methods such as CCA, MsetCCA,
sum of squared correlations (SSCOR) [31], and TRCA were
implemented for extensive comparisons. In addition, a 40-
class SSVEP benchmark dataset [32] recorded from 35 sub-
jects was also employed to evaluate the feasibility of the
proposed model. The experimental results demonstrate the
outperformance of the proposed method in terms of classi-
fication accuracy and information transfer rates (ITRs), which
is particularly true when the number of stimuli is small. As the
number of stimuli increases, the performance of our proposed
method will downgrade slightly, but it could still achieve better
performance than compared methods.

The remaining paper is arranged as follows. The experiment
description and multi-objective optimisation-based high-pass

spatial filtering methodology are described in Section II. The
results and discussion are provided in Section III. Section IV
presents the conclusion.

II. OUR METHODS

A. SSVEP experiment

A public benchmark SSVEP dataset [32] and two self-
collected SSVEP datasets (termed as Dataset 1 and Dataset
IT hereafter) are employed in this study. The benchmark
dataset was collected from 35 healthy subjects with 40 visual
stimulation modulated at different frequencies (8-15.8 Hz with
an interval of 0.2 Hz), while the phase difference between
two neighboring targets is 0.5 7. More information about
this dataset can be found in [32]. For the two self-collected
datasets, the detailed information is elaborated below.

1) Participants: In Dataset I, SSVEP signals were recorded
from 11 subjects (four females and six males, mean age:
twenty-five years). In Dataset II, eight subjects (four females
and four males, mean age: twenty-seven years) participated
in the SSVEP-based BCI experiment. All subjects were in
good health, with normal or corrected to normal vision. Each
participant seated in a comfortable chair facing the visual
simulation. The experiment has been approved by the Research
Ethics Committee of the University of Leeds. All subjects have
read and signed the participant consent form before the SSVEP
experiment.

2) Stimulus Design: In Dataset I, the visual stimulation is
designed as a 4 x 3 matrix coded by the joint frequency
and phase modulation (JFPM) method on a 23.6-inch LCD
monitor. Its resolution and refresh rate are 1920 x 1080 pixels
and 60 Hz. The 12 visual stimuli flashed at frequencies ranging
from 9.25 Hz to 14.75 Hz with an interval of 0.5 Hz. The
phase started from Or to 1.57 in steps of 0.57. The experiment
consisted of 5 blocks for each subject. Each block includes
12 trials corresponding to 12 stimuli. Each trial began with a
0.5 s red dot cue which indicates the target flicker. Later, 12
stimuli started to flash for 5 s simultaneously, during which
the subject should stare at the target stimulus and avoid eye
movements. In Dataset II, we adopted the g.SSVEPbox for
stimulation design. It contains 4 LEDs flickering at various
frequencies, namely 14 Hz, 15 Hz, 16 Hz, and 17 Hz. The
experiment of each participant also consists of 5 blocks, and
there are 4 trials corresponding to four visual stimulation in
each block. A small green light appeared about 2 mm away
from one of the LEDs for cue-guided purpose. In each trial,
four stimuli flash in white for 5 s concurrently. There was a
short break of a few seconds between two adjacent blocks in
both datasets.

3) EEG Recording: In this study, SSVEP signals were
recorded by the experiment equipment from g.tec medical
engineering GmbH. The g.USBamp amplifier was applied to
sample data at 256 Hz. For Dataset I and II, nine channels
including Pz, PO3, POz, PO4, PO7, O1, Oz, O2, and POS8
were selected for EEG data collection. The ground electrode
was located over electrode FPz, and the right earlobe served
as the reference channel.
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B. Data preprocessing

Considering the latency delay in the visual system of each
participant, the data epoch after 0.14 s is extracted for analysis.
This study incorporated the Chebyshev Type I Infinite Impulse
Response (IIR) filter to provide a band-pass filter with a band
[8 40] Hz for Dataset I and [13 40] Hz for Dataset II. The
zero-phase digital filtering was performed in both the forward
and reverse directions.

C. Data processing and target identification method

In this subsection, we introduce a novel multi-objective
optimisation-based high-pass spatial filter method. The pro-
posed algorithm aims to extract maximally target-relevant
features and minimally target-irrelevant information while
reducing the volume conduction artifact.

Denote the single-trial individual calibration signal as x? €
RNeXNs (b =1,2,..., Ny, i = 1,2, ..., Ny), where h and i re-
fer to the index of training trial and the stimulus, respectively.
Hereafter, N, represents the number of channels, N, is the
number of samples, V; is the number of training trials, and Ny
is the number of visual stimulation. Therefore, the continuous
training signal of ¢-th stimulus yielded by concatenating NV
training trials is represented as x; = [x}, X2, X)) €
RNex(Ns'Ne) - The single-trial individual template signal is

Ny
denoted as x; = N% > xP € RNe*Ne which obtained by

averaging multiple training trials. Therefore, the continuous
individual template signal is defined as X; = [X;, X ---» X;] €
RNex(No-Nt)  Compared with the artificial reference with sine
and cosine waves, the averaged SSVEP signal can effectively
enhance the SNR of EEG data [18].

The multi-objective optimisation-based high-pass spatial
filtering method designs objective functions for each visual
stimulation by means of training signals from not only the
same stimulus but also others. To be specific, as the model
trains the spatial filter w; € R™Me, i-th stimulus is regarded
as “aim” and the remaining (Ny — 1) stimuli represent “non-
aim”. For ease of reference, signals of (Ny — 1) “non-aim”
form a new dataset [y1,72, ..., v, —1]. The proposed method
aims to maximise the correlation coefficient between the
continuous training signal x; from “aim” and its continuous
individual template X,, whereas minimise the correlation
between the continuous training signal from each “non-aim”
v (j = 1,2,..,Ny — 1) and X;. Therefore, N objective
functions are designed as:

=T

fl(wi) = _p(x;rwlaXz 'LU,‘),
=T

fo(w;) = p(v{ wi, X; w;),

p
fa(w;) = p(vd w;, X, w;), ¢))

T T
Iy (wi) = P('VNf—fwm X w;)

where p(a,b) refers the Pearson correlation coefficient be-

tween vector a and vector b. In this case, all objective

functions are to be minimised. Therefore, the feature related
to the i-th stimulus is maximally extracted. On the contrary,
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Fig. 1. Flowchart of the proposed SSVEP recognition model. In the training
stage, the spatial filter for each stimulus w;,i = 1,2,..., Ny, is generated
with formulas (1)-(3), and the new reference signal, i.e. X1, X5, ...,YNf, is
obtained by averaging across multiple training trials. In the test stage, with
spatial filters Wi, wa, ..., Wy, , the correlation between a test trial X and
each individual template %;,% = 1,2, ..., Ny, is computed by formula (4).
The frequency of template signal with the maximum correlation coefficient is
determined as that of the test sample by formula (5).

the information relevant to “non-aim” is minimally included
in the spatial filter w;. Simultaneously, considering the effect
of volume conduction in SSVEP signals, the model is subject
to a linear equality constraint, that is, the sum of spatial filter
elements is zero. It aims to reduce the low spatial-frequency
signal whilst retaining the high spatial-frequency. Therefore,
the multi-objective optimisation problem is formulated by the
following statement:

min;brirlise F(w;) = [fi(w;), fa(w;), ..., fn; (wy)],

Ne (2)
subject to waf =0,w; €W

c=1
where c is the channel index and wy refers to the c-th element
of spatial filter vector w;. The W C RNe is the feasible
set of solution vectors. Therefore, the spatial filter w; can be

acquired as follows:
w; = argmin F(w;). 3)

wi

This constrained multi-objective optimisation problem can
be solved by the fgoalattain() function in Matlab. In the test
phase, the signal-trial test SSVEP data X € RMe*N: and
the single-trial template signal ¢; are both spatially filtered
with the optimal solution vector w;. The correlation coefficient
calculated between two optimised signals is shown as follows:

T :p(XVTU}ZvY;er)v Z:17277Nf “)
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Fig. 2. Averaged recognition accuracy and ITRs across subjects of various methods using different time windows on (a) Dataset I, (b) Dataset II and (c)
benchmark dataset. The error bars represent standard errors. The asterisks indicate significant difference between the five methods obtained by one-way

repeated-measures ANOVA (x p<0.05, #*xp<0.01, * % *p<0.001).

The Ny coefficients can be calculated by this formula. The
frequency of the template signal corresponding to the maximal
correlation coefficient value is determined as the frequency f
of the SSVEP test trial X, and it is can be represented as:

f=argmaxr;,i =1,2,..., Ny 4)

The diagram of the whole SSVEP recognition model is

shown in Fig.1. It includes two stages, namely training and

test. For each stimulus, the training part provides its spatial

filter and corresponding reference signal. The test part aims to

classify the single-trial test signal to a specific visual stimulus
based on outputs of the training phase.

III. RESULTS AND DISCUSSION

In this section, we first evaluated the performance of the
proposed multi-objective optimisation-based high-pass spatial
filtering method on two self-collected SSVEP datasets and
a 40-target benchmark dataset [32]. Extensive comparisons
were implemented between the proposed method and many
state-of-the-art SSVEP recognition methods. The ensemble-
based methods were also implemented in this section for
comparison purposes. The influences of different parameters
such as the number of electrodes, the number of training
blocks, and the number of frequencies on the performance
were also discussed.

A. Performance Evaluation

The performance comparison was conducted between the
proposed model and many recognition methods such as CCA,
MsetCCA, SSCOR, and TRCA. The classification accuracy

and ITRs were calculated by leave-one-out cross-validation
to evaluate the recognition performance of these algorithms.
Specifically, the SSVEP signals from four (in Dataset I and
I) or five (in benchmark dataset) blocks were employed as
the training data, and the left-out block was used as test
data. Fig. 2 illustrates the averaged classification accuracy
and ITRs across all subjects in three datasets with different
time windows (TWs). It is obvious that the proposed method
can in general achieve the highest accuracy and ITRs with
different data lengths. One-way repeated-measures ANOVA
was conducted to investigate the similarity of accuracy or ITRs
of different SSVEP detection approaches. The results indicate
that their accuracy and ITRs have a significant difference in
most TWs on three datasets. For example, in Fig. 2(a), the
proposed method improved by 27.24% for CCA, 38.64% for
MsetCCA, 17.88% for SSCOR, and 7.27% for TRCA with 1s
data length.

In addition to the averaged values, we further explored
the distribution of numeric data across multiple methods.
Fig. 3 adopts the violin plot to show the probability density
of recognition accuracy of all subjects on (a) Dataset I,
(b) Dataset II, and (c) benchmark dataset, respectively. The
plots are based on five methods with different data lengths.
Each density curve can be compared to see the similarities
or differences between the methods. Fig. 3(a) and Fig. 3(b)
show that our method achieves the highest median and most
concentrated distribution with most data lengths. Therefore, to
a large extent, the proposed method provides higher and more
consistent accuracy across subjects. In Fig. 3(c), all methods
show a more scattered distribution compared with Fig. 3(a) and
Fig. 3(b), because there are significantly more subjects in the
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Fig. 3. Violin plots represent the distributions of classification accuracy of all subjects achieved by the five methods with various TWs on (a) Dataset I, (b)
Dataset II, and (c) benchmark dataset. Black solid line in each violin indicates median, and two black dotted lines represent interquartile ranges (25% and

75% percentiles).

benchmark dataset. The proposed method provides medians
similar to TRCA, but obviously higher than the values of CCA,
MsetCCA, and SSCOR.

Aside from the overall comparison of the five approaches,
we further carried out a pairwise analysis between the pro-
posed method and each comparison method on three datasets.
Table I shows the multiple comparison results in terms of
SSVEP recognition accuracy with different TWs. The multiple
comparison correction method is Dunnett’s test. The proposed
method is regarded as the control group. The results show that
in most TWs, the proposed method is statistically superior to

MsetCCA, CCA, and SSCOR, and provides similar accuracy
to TRCA.

The above experiment results were carried out on a DELL
laptop with a 1.8GHz quad-core CPU, 8 GB RAM, using
Matlab 2019a and running on Windows 10. The first step was
to train the spatial filter, and it took up to 6.36 s in Dataset I,
2.33 s in Dataset II, and 26.81 s in benchmark dataset. Once
the spatial filter is trained, the averaged recognition time per
time window for performing the proposed method on Dataset
I, Dataset II, and benchmark dataset was 0.044s, 0.012s, and
0.193s, respectively. We would like to point out that although
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TABLE I
MULTIPLE COMPARISON ON CLASSIFICATION ACCURACY OF FIVE METHODS BY DUNNETT’S TEST

Time windows

Methods Dataset 1 Dataset 11 benchmark dataset
0.25s 0.5s 0.75s Is 0.25s 0.5s 0.75s Is 0.2s 0.4s 0.6s 0.8s
MsetCCA vs Proposed method* | <0.0001 <0.0001 <0.0001 <0.0001] <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
CCA vs Proposed method <0.0001 <0.0001 <0.0001 0.0158 | <0.0001 0.0982 0.1534 0.4514 | <0.0001 <0.0001 <0.0001 <0.0001
SSCOR vs Proposed method <0.0001 0.0012 0.0299 0.1378 | <0.0001 0.1436 0.1042 0.0672 | <0.0001 0.0178 0.1567 0.3664
TRCA vs Proposed method 0.2428 0.3339 0.8348 0.9998 | 0.0193 0.3312 0.1042 0.1932 | 0.8771 0.9893 0.9778  0.9999

*The proposed methods serves as the control group.

the training time is a bit long, it won’t affect the performance
of the proposed method. We could always train the spatial filter
offline before we move on to real-time SSVEP recognition.

B. Ensemble-based method evaluation

This work extends the proposed method with an ensemble
version. Ideally, the transformation coefficients from SSVEP
source to scalp could be treated similarly within the used fre-
quency range [5] [33] [31]. Hence, N different spatial filters
should be similar. The ensemble-based method concatenates
all Ny spatial filters to construct an ensemble spatial filter
W € RNex Ny,

W= [ﬁjlawla'-'awl\/f} (6)
Then the (4) can be re-defined as follows:
ri=p(XTW, X W), i=1,2,..., Ny (7)

The intended target is determined via (5). Fig. 4 shows the
performance comparison between different standard methods
and ensemble methods on (a) Dataset I, (b) Dataset II, and (c)
benchmark dataset. As shown by the blue and purple lines in
Fig. 4, the performance of the proposed method is improved
via the ensemble version in three datasets. Meanwhile, in
Fig. 4(a) and Fig. 4(c), the classification accuracy of the
ensemble proposed method is slightly better than that of
ensemble TRCA, but the gap with ensemble SSCOR is even
greater. In Fig. 4(b), the standard proposed method shows
superiority compared with ensemble TRCA and ensemble
SSCOR with all data lengths.

C. The Influence of Parameters on Performance

In order to further evaluate the performance of the five ap-
proaches, we explored the impact of the number of electrodes,
training blocks, and stimulation on the SSVEP recognition
accuracy.

1) The number of electrode: Fig. 5 depicts the averaged
SSVEP classification accuracy with various numbers of chan-
nels using 0.75s-long data on (a) Dataset I, (b) Dataset II, and
(c) benchmark dataset. In Fig. 5, the accuracy of each method
generally declines as the number of channels decreases. It in-
dicates that the number of channels affects the performance of
various SSVEP recognition methods. Specifically, the method
with more channels can commonly achieve better classification

accuracy. It is worth mentioning that for channels = 5, 6, 7, 8,
and 9, the proposed model (bars in blue) always outperforms
the other four recognition methods on all datasets.

2) The number of training blocks: We further investigated
how the number of training blocks affects the target iden-
tification performance of five algorithms on three datasets.
The heat maps in Fig. 6 illustrate comparison results with
0.75 s TWs. The x-axis refers to the method with a different
number of training blocks. The y-axis is the subject index, and
color indicates the corresponding performance. The maximal
SSVEP detection accuracy shows the deepest color. For all
methods in the three datasets, the color obtained with more
training blocks is usually darker than that obtained with fewer
training blocks. In addition, the proposed method generally
shows deeper color compared with the other four methods for
most subjects under the different number of training blocks.
The results indicate that, to some extent, our method is
superior to other methods regardless of the number of training
blocks.

3) The number of frequencies: In this study, we also
investigated the influence of the number of targets on the
proposed method. In order to explore more types of target
numbers, we employed the 40-class benchmark dataset in
this subsection. SSCOR and TRCA significantly outperform
CCA and MsetCCA on the benchmark dataset as shown in
Fig. 2, so these two methods are utilized for performance
comparison. Fig. 7 shows the averaged classification accuracy
of three methods to classify 8, 16, 24, 32, and 40 stimulation,
respectively. The choice of targets is random. The comparison
result indicates that the performance of our method tends to
decrease slightly with the increasing number of stimulation.
Under the same setting, TRCA and SSCOR also show a similar
declining trend. However, even with a large number of targets,
the recognition accuracy of the proposed method is always
better than other models. Similar comparison results can also
be found in Fig. 2(a) with 12-class Dataset I and Fig. 2(b)
with 4-class Dataset II.

D. Discussion

In order to learn the class-specific spatial filter, the tra-
ditional SSVEP recognition scheme generally considers the
correlation among training trials from the same class [5] [17]
[31]. For example, TRCA trains the spatial filter by maxi-
mizing the sum of covariance of all possible combinations of
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The error bars represent standard errors.
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Heat maps of the classification accuracy of five methods under different

training trials from the same stimulation [5]. For the proposed
model, it constructs multi-objective functions creatively not
only to decrease the distance between the training signal
and the template from the same class but also to increase
the distance between SSVEP data from other classes and
the template, as shown in formulas (1)-(3). Therefore, the
trained spatial filters have the potential to extract target-related
features and decrease target-unrelated information. Besides,
the optimisation problem is subject to the constraint that the
sum of filter elements is zero so that low spatial-frequency
signals can be alleviated. With the spatial filters, the proposed
model could better distinguish between target and non-target
stimulation. The false positive rate (FPR) for a multi-target
system is the percentage of non-targets that are wrongly

Number of training blocks

(b) Dataset IT

Number of training blocks
(c) benchmark dataset

number of training blocks on (a) Dataset I, (b) Dataset II, and (c) benchmark

categorised as the true target [20]. As a representative example,
the confusion matrix in Fig. 8 provides the averaged FPR
across all subjects and targets. Clearly, the averaged FPRs
of the proposed method and TRCA are 12.5% and 26.25%,
respectively. Further, we explored the probability density of
detection accuracy of the proposed method in Fig. 3. The
frequency of data points in each region correlates to the width
of each curve. The thicker part means that the corresponding
value has a higher frequency. As shown in Fig. 3, when
the median value among methods is approximated (e.g. 1 s
data length in Dataset II), the proposed method has a more
concentrated distribution. It implies that the proposed method
could achieve a more stable and consistent performance across
subjects.
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Fig. 7. Performance comparison with various numbers of targets, i.e. 8, 16,
24, 32, and 40 using different data lengths (a) TW=0.2s, (b) TW=0.4s, (c)
TW=0.6s, (d) TW=0.8s. The error bars represent standard errors.

In order to further clarify the effect of stimulation mech-
anisms on the performance, visual stimuli are displayed in
different ways, i.e. LCD monitor in Dataset I and LEDs in
Dataset II, respectively. As shown by the blue lines in Fig. 2,
the proposed method always exhibits the best classification
accuracy with various TWs. Blue violins in Fig. 3 reflect the
same result via another form. It illustrates that different choices
of stimulation mechanisms do not affect the performance of
the proposed method too much.

As a classical method, CCA has been widely validated by
many studies in detecting SSVEPs [13] [14]. Traditionally,
its reference signals, constructed by sine-cosine waves, are
employed to model the visual stimuli [34]. Fig. 2 shows
that CCA could reach an averaged recognition accuracy of
71.81% in Dataset I, 77.5% in Dataset II, and 29.57% in
the Benchmark dataset. It does not achieve as high accuracy
as other methods at some TWs. A potential problem with
this method is that the artificially predefined reference signal
cannot reflect subject-specific features [17] [35]. Our method
adopts the individual training data to construct subject-specific
templates. As illustrated in [18], one of the factors in the target
recognition method that leads to class and non-class SSVEP
signals being more distinguishable is individual templates.

Although our proposed method provides good recognition
performance in SSVEP-based BClIs, it still has some potential
improvement directions. First, as shown in Fig. 7, as the
number of stimuli increases, the performance of our approach
tends to decline slightly. In fact, as the number of objec-
tives in a multi-objective optimisation problem increases, the
dimensionality of the model also increases, which makes it
difficult to converge [36]. In addition, the interaction among
various objective functions makes the optimisation problem
more intricate. It has been observed that the multi-objective
optimisation technique experiences performance degradation
when applied to a problem with a high number of objective
functions [37]. Therefore, the performance comparisons do

not show a huge difference when the proposed approach is
applied to an optimisation problem based on a large number
of objective functions. Future work will thus be required to 1)
optimise the selection of non-aim stimuli to reduce the number
of minimisation objectives and 2) explore other algorithms to
solve complex multi-objective optimisation problems with a
large number of objectives for the SSVEP-based BCI system.
Second, as Fig. 6 demonstrated, the training blocks may not
be sufficient for some subjects, resulting in relatively low
classification accuracy. Therefore, future work would transfer
information from other subjects to solve the data insufficiency
problem.

IV. CONCLUSION

In this study, a novel multiple-objective optimisation-based
high-pass spatial filtering method was proposed to improve
the target recognition performance for the SSVEP-based BCI
system. Our method defined multi-objective functions for each
target by the correlation between the training signal and the
individual template from the same stimulation maximisation,
whereas the correlation between SSVEP data from others
and the template minimisation. It aims to effectively extract
target-relevant information while decreasing target-irrelevant
features. Meanwhile, the proposed model has the constraint
that the sum of filter elements is zero. This setting could
reduce the negative effect of volume conduction by alleviating
low spatial-frequency signals. Experimental results based on
two self-collected SSVEP datasets and a public benchmark
database showed that the proposed model achieved better
classification performance than some state-of-the-art methods.
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