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Abstract—Many spatial filtering methods have been proposed
to enhance the target identification performance for the steady-
state visual evoked potential (SSVEP)-based brain-computer
interface (BCI). The existing approaches tend to learn spatial
filter parameters of a certain target using only the training data
from the same stimulus, and they rarely consider the information
from other stimuli or the volume conduction problem during
the training process. In this paper, we propose a novel multi-
objective optimisation-based high-pass spatial filtering method
to improve the SSVEP detection accuracy and robustness. The
filters are derived via maximising the correlation between the
training signal and the individual template from the same target
whilst minimising the correlation between the signal from other
targets and the template. The optimisation will also be subject
to the constraint that the sum of filter elements is zero. The
evaluation study on two self-collected SSVEP datasets (including
12 and 4 frequencies, respectively) shows that the proposed
method outperformed the compared methods such as CCA,
MsetCCA, SSCOR, and TRCA. The proposed method was also
verified on a public 40-class SSVEP benchmark dataset recorded
from 35 subjects. The experimental results have demonstrated the
effectiveness of the proposed approach for enhancing the SSVEP
detection performance.

Index Terms—Brain-computer interface (BCI), electroen-
cephalography (EEG), steady-state visual evoked potential
(SSVEP), multi-objective optimisation, high-pass spatial filter.

I. INTRODUCTION

The brain-computer interface (BCI) establishes a direct

communication path between the human brain and external

devices without relying on normal motor output pathways [1]–

[3]. The steady-state visual evoked potential (SSVEP)-based

BCI has been widely explored in various applications, such

as robot arm [4], communication [5] and augmented reality

(AR) glasses [6] [7] due to its high signal-to-noise ratio (SNR),

minimal training time, and fast communication rate [8]–[10].

The main task of the SSVEP-based BCI system is to identify

target stimuli and then translate them into corresponding com-

mands for subsequent control actions. Thus far, various spatial
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filters applied transformations in the channel domain, which

enhanced the SSVEP identification effectively via removing

background artifacts [10]–[12]. As one of the most popular

spatial filtering methods, canonical correlation analysis (CCA)

seeks a pair of weights to maximise the correlation between

SSVEP signals and sine-cosine reference signals [13]. Some

extended versions of the standard CCA were proposed to

further improve the performance of SSVEP detection. In these

methods, one branch starts with brain activity processing,

such as filter bank canonical correlation analysis (FBCCA)

[14]. As it decomposes SSVEP signals into various sub-band

components, the specific information contained in harmonic

components can be employed for frequency recognition. An-

other branch is to optimise the predefined artificial reference

signal by incorporating individual calibration data. For ex-

ample, Zhang et al. presented multiway CCA (MwayCCA)

[15] and L1-regularized MwayCCA [16] to construct the new

reference template via the third-order EEG data tensor. They

later proposed the Multiset CCA (MsetCCA) which extracts

common features shared by multiple calibration signals to

create optimised references, and it outperforms MwayCCA in

classification [17] [18]. The latest SSVEP detection methods

tend to learn the spatial filter by incorporating a training

stage. Besides, these methods are commonly based on template

matching, in which the individual template is acquired by

averaging multiple training trials [19]. For instance, Wei et

al. [20] proposed a training data-driven CCA algorithm that

yields more robust spatial filters to enhance the SNR of SSVEP

signals. However, the inter-trial relationship from the same

target was not fully considered. In another study, Nakanishi

et al. [5] presented task-related component analysis (TRCA)

based on the idea that the source signal can be reconstructed

through a linear summation of multi-channel EEG signals. The

TRCA-based spatial filter is learned by inter-trial covariance

maximisation. However, during the spatial filter training pro-

cess, the aforementioned methods only utilised the signal from

a single stimulus, and they rarely considered the information

from other stimuli.

Although multi-channel scalp EEG activities are beneficial

to achieve high-quality spatial filters, the volume conduc-

tion artifact may also be introduced due to the coherence

among various EEG channels [21]. It is well known that

the measurement of each EEG electrode is a linear mixture

of concurrently multiple brain source activities, not just the

activity of brain source in its vicinity [22]. In other words,
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since the signal from each brain source spreads among various

EEG channels when passing through the intracerebral area and

the scalp, it is infeasible to connect each electrode with a

single brain region [23]. Therefore, the volume conduction

decreases the spatial precision of EEG signals when spatially

broad features are shared among multiple electrodes [24]. The

high-pass spatial filter is commonly used to reduce the effect

of spatial blurring for EEG signals [25]. For example, the

surface Laplacian has been implemented to diminish volume

conduction effectively by attenuating low-spatial-frequency

activities whereas highlighting high-spatial-frequency signals

[24] [26]. The surface Laplacian filter has some advantages in

EEG signal analysis including ease of use and conceptually

simple. However, it is still a kind of “stationary” spatial

filter since it assumes that the EEG activity is not variable

across time [27] [28]. In order to solve this problem, Lu et.al

[29] designed an adaptive Laplace filter for the sensorimotor

rhythms (SMR) analysis, which employs a Gaussian kernel

to construct parameters of the spatial filter. Currently, most

existing research on volume conduction focused on other

paradigms of EEG, like event-related potential (ERP) [27] [26]

and SMR [29] [30], rather than SSVEP signals. Therefore,

there is still a lack of sufficient studies about the high-pass

spatial filter on the volume conduction phenomenon in SSVEP

signals. The feasibility of this filter to enhance target detection

in the SSVEP paradigm remains unclear.

In this study, we proposed a multi-objective optimisation-

based high-pass spatial filtering method to improve the SSVEP

identification performance. The filter was derived by max-

imising the correlation between the training signal and the

individual template from the same target, whilst minimising

the correlation between signals from other targets and the

template. Meanwhile, the constraint condition is that the sum

of spatial filter elements is zero. This setting allows the high

spatial-frequency SSVEP signals to pass and attenuates low

spatial-frequency signals. Therefore, the proposed approach

has the potential to extract the target-relevant features, reject

the target-irrelevant information, and reduce the effect of

volume conduction simultaneously. The method’s performance

was evaluated on two self-collected SSVEP datasets contain-

ing 12 and 4 visual stimulation, respectively. The effectiveness

of the proposed approach was verified with an averaged

SSVEP recognition accuracy of 87.58% in Dataset I and

87.5% in Dataset II using a 1s-long data epoch. Many well-

known and state-of-the-art methods such as CCA, MsetCCA,

sum of squared correlations (SSCOR) [31], and TRCA were

implemented for extensive comparisons. In addition, a 40-

class SSVEP benchmark dataset [32] recorded from 35 sub-

jects was also employed to evaluate the feasibility of the

proposed model. The experimental results demonstrate the

outperformance of the proposed method in terms of classi-

fication accuracy and information transfer rates (ITRs), which

is particularly true when the number of stimuli is small. As the

number of stimuli increases, the performance of our proposed

method will downgrade slightly, but it could still achieve better

performance than compared methods.

The remaining paper is arranged as follows. The experiment

description and multi-objective optimisation-based high-pass

spatial filtering methodology are described in Section II. The

results and discussion are provided in Section III. Section IV

presents the conclusion.

II. OUR METHODS

A. SSVEP experiment

A public benchmark SSVEP dataset [32] and two self-

collected SSVEP datasets (termed as Dataset I and Dataset

II hereafter) are employed in this study. The benchmark

dataset was collected from 35 healthy subjects with 40 visual

stimulation modulated at different frequencies (8-15.8 Hz with

an interval of 0.2 Hz), while the phase difference between

two neighboring targets is 0.5 π. More information about

this dataset can be found in [32]. For the two self-collected

datasets, the detailed information is elaborated below.

1) Participants: In Dataset I, SSVEP signals were recorded

from 11 subjects (four females and six males, mean age:

twenty-five years). In Dataset II, eight subjects (four females

and four males, mean age: twenty-seven years) participated

in the SSVEP-based BCI experiment. All subjects were in

good health, with normal or corrected to normal vision. Each

participant seated in a comfortable chair facing the visual

simulation. The experiment has been approved by the Research

Ethics Committee of the University of Leeds. All subjects have

read and signed the participant consent form before the SSVEP

experiment.

2) Stimulus Design: In Dataset I, the visual stimulation is

designed as a 4 × 3 matrix coded by the joint frequency

and phase modulation (JFPM) method on a 23.6-inch LCD

monitor. Its resolution and refresh rate are 1920 × 1080 pixels

and 60 Hz. The 12 visual stimuli flashed at frequencies ranging

from 9.25 Hz to 14.75 Hz with an interval of 0.5 Hz. The

phase started from 0π to 1.5π in steps of 0.5π. The experiment

consisted of 5 blocks for each subject. Each block includes

12 trials corresponding to 12 stimuli. Each trial began with a

0.5 s red dot cue which indicates the target flicker. Later, 12

stimuli started to flash for 5 s simultaneously, during which

the subject should stare at the target stimulus and avoid eye

movements. In Dataset II, we adopted the g.SSVEPbox for

stimulation design. It contains 4 LEDs flickering at various

frequencies, namely 14 Hz, 15 Hz, 16 Hz, and 17 Hz. The

experiment of each participant also consists of 5 blocks, and

there are 4 trials corresponding to four visual stimulation in

each block. A small green light appeared about 2 mm away

from one of the LEDs for cue-guided purpose. In each trial,

four stimuli flash in white for 5 s concurrently. There was a

short break of a few seconds between two adjacent blocks in

both datasets.

3) EEG Recording: In this study, SSVEP signals were

recorded by the experiment equipment from g.tec medical

engineering GmbH. The g.USBamp amplifier was applied to

sample data at 256 Hz. For Dataset I and II, nine channels

including Pz, PO3, POz, PO4, PO7, O1, Oz, O2, and PO8

were selected for EEG data collection. The ground electrode

was located over electrode FPz, and the right earlobe served

as the reference channel.
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B. Data preprocessing

Considering the latency delay in the visual system of each

participant, the data epoch after 0.14 s is extracted for analysis.

This study incorporated the Chebyshev Type I Infinite Impulse

Response (IIR) filter to provide a band-pass filter with a band

[8 40] Hz for Dataset I and [13 40] Hz for Dataset II. The

zero-phase digital filtering was performed in both the forward

and reverse directions.

C. Data processing and target identification method

In this subsection, we introduce a novel multi-objective

optimisation-based high-pass spatial filter method. The pro-

posed algorithm aims to extract maximally target-relevant

features and minimally target-irrelevant information while

reducing the volume conduction artifact.

Denote the single-trial individual calibration signal as χh
i ∈

R
Nc×Ns (h = 1, 2, ..., Nt, i = 1, 2, ..., Nf ), where h and i re-

fer to the index of training trial and the stimulus, respectively.

Hereafter, Nc represents the number of channels, Ns is the

number of samples, Nt is the number of training trials, and Nf

is the number of visual stimulation. Therefore, the continuous

training signal of i-th stimulus yielded by concatenating Nt

training trials is represented as χi = [χ1
i ,χ

2
i , ...,χ

Nt

i ] ∈

R
Nc×(Ns·Nt). The single-trial individual template signal is

denoted as χi = 1
Nt

Nt∑
h=1

χh
i ∈ R

Nc×Ns which obtained by

averaging multiple training trials. Therefore, the continuous

individual template signal is defined as Xi = [χi,χi, ...,χi] ∈
R

Nc×(Ns·Nt). Compared with the artificial reference with sine

and cosine waves, the averaged SSVEP signal can effectively

enhance the SNR of EEG data [18].

The multi-objective optimisation-based high-pass spatial

filtering method designs objective functions for each visual

stimulation by means of training signals from not only the

same stimulus but also others. To be specific, as the model

trains the spatial filter ŵi ∈ R
Nc , i-th stimulus is regarded

as “aim” and the remaining (Nf − 1) stimuli represent “non-

aim”. For ease of reference, signals of (Nf − 1) “non-aim”

form a new dataset [γ1, γ2, ..., γNf−1]. The proposed method

aims to maximise the correlation coefficient between the

continuous training signal χi from “aim” and its continuous

individual template Xi, whereas minimise the correlation

between the continuous training signal from each “non-aim”

γj (j = 1, 2, ..., Nf − 1) and Xi. Therefore, Nf objective

functions are designed as:

f1(wi) = −ρ(χT

i wi,X
T

i wi),

f2(wi) = ρ(γT

1 wi,X
T

i wi),

f3(wi) = ρ(γT

2 wi,X
T

i wi),

...

fNf
(wi) = ρ(γT

Nf−1wi,X
T

i wi)

(1)

where ρ(a, b) refers the Pearson correlation coefficient be-

tween vector a and vector b. In this case, all objective

functions are to be minimised. Therefore, the feature related

to the i-th stimulus is maximally extracted. On the contrary,

Fig. 1. Flowchart of the proposed SSVEP recognition model. In the training
stage, the spatial filter for each stimulus ŵi, i = 1, 2, ..., Nf , is generated
with formulas (1)-(3), and the new reference signal, i.e. χ

1
,χ

2
, ...,χNf

, is

obtained by averaging across multiple training trials. In the test stage, with

spatial filters ŵ1, ŵ2, ..., ŵNf
, the correlation between a test trial X̃ and

each individual template χi, i = 1, 2, ..., Nf , is computed by formula (4).
The frequency of template signal with the maximum correlation coefficient is
determined as that of the test sample by formula (5).

the information relevant to “non-aim” is minimally included

in the spatial filter ŵi. Simultaneously, considering the effect

of volume conduction in SSVEP signals, the model is subject

to a linear equality constraint, that is, the sum of spatial filter

elements is zero. It aims to reduce the low spatial-frequency

signal whilst retaining the high spatial-frequency. Therefore,

the multi-objective optimisation problem is formulated by the

following statement:

minimise
wi

F (wi) = [f1(wi), f2(wi), ..., fNf
(wi)],

subject to

Nc∑

c=1

wc
i = 0,wi ∈ W

(2)

where c is the channel index and wc
i refers to the c-th element

of spatial filter vector wi. The W ⊆ R
Nc is the feasible

set of solution vectors. Therefore, the spatial filter ŵi can be

acquired as follows:

ŵi = argmin
wi

F (wi). (3)

This constrained multi-objective optimisation problem can

be solved by the fgoalattain() function in Matlab. In the test

phase, the signal-trial test SSVEP data X̃ ∈ R
Nc×Ns and

the single-trial template signal χi are both spatially filtered

with the optimal solution vector ŵi. The correlation coefficient

calculated between two optimised signals is shown as follows:

ri = ρ(X̃Tŵi,χ
T

i ŵi), i = 1, 2, ..., Nf (4)
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(c) Benchmark dataset

Fig. 2. Averaged recognition accuracy and ITRs across subjects of various methods using different time windows on (a) Dataset I, (b) Dataset II and (c)
benchmark dataset. The error bars represent standard errors. The asterisks indicate significant difference between the five methods obtained by one-way
repeated-measures ANOVA (∗ p<0.05, ∗∗p<0.01, ∗ ∗ ∗p<0.001).

The Nf coefficients can be calculated by this formula. The

frequency of the template signal corresponding to the maximal

correlation coefficient value is determined as the frequency f

of the SSVEP test trial X̃ , and it is can be represented as:

f = argmax
fi

ri, i = 1, 2, ..., Nf (5)

The diagram of the whole SSVEP recognition model is

shown in Fig.1. It includes two stages, namely training and

test. For each stimulus, the training part provides its spatial

filter and corresponding reference signal. The test part aims to

classify the single-trial test signal to a specific visual stimulus

based on outputs of the training phase.

III. RESULTS AND DISCUSSION

In this section, we first evaluated the performance of the

proposed multi-objective optimisation-based high-pass spatial

filtering method on two self-collected SSVEP datasets and

a 40-target benchmark dataset [32]. Extensive comparisons

were implemented between the proposed method and many

state-of-the-art SSVEP recognition methods. The ensemble-

based methods were also implemented in this section for

comparison purposes. The influences of different parameters

such as the number of electrodes, the number of training

blocks, and the number of frequencies on the performance

were also discussed.

A. Performance Evaluation

The performance comparison was conducted between the

proposed model and many recognition methods such as CCA,

MsetCCA, SSCOR, and TRCA. The classification accuracy

and ITRs were calculated by leave-one-out cross-validation

to evaluate the recognition performance of these algorithms.

Specifically, the SSVEP signals from four (in Dataset I and

II) or five (in benchmark dataset) blocks were employed as

the training data, and the left-out block was used as test

data. Fig. 2 illustrates the averaged classification accuracy

and ITRs across all subjects in three datasets with different

time windows (TWs). It is obvious that the proposed method

can in general achieve the highest accuracy and ITRs with

different data lengths. One-way repeated-measures ANOVA

was conducted to investigate the similarity of accuracy or ITRs

of different SSVEP detection approaches. The results indicate

that their accuracy and ITRs have a significant difference in

most TWs on three datasets. For example, in Fig. 2(a), the

proposed method improved by 27.24% for CCA, 38.64% for

MsetCCA, 17.88% for SSCOR, and 7.27% for TRCA with 1s

data length.

In addition to the averaged values, we further explored

the distribution of numeric data across multiple methods.

Fig. 3 adopts the violin plot to show the probability density

of recognition accuracy of all subjects on (a) Dataset I,

(b) Dataset II, and (c) benchmark dataset, respectively. The

plots are based on five methods with different data lengths.

Each density curve can be compared to see the similarities

or differences between the methods. Fig. 3(a) and Fig. 3(b)

show that our method achieves the highest median and most

concentrated distribution with most data lengths. Therefore, to

a large extent, the proposed method provides higher and more

consistent accuracy across subjects. In Fig. 3(c), all methods

show a more scattered distribution compared with Fig. 3(a) and

Fig. 3(b), because there are significantly more subjects in the
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Fig. 3. Violin plots represent the distributions of classification accuracy of all subjects achieved by the five methods with various TWs on (a) Dataset I, (b)
Dataset II, and (c) benchmark dataset. Black solid line in each violin indicates median, and two black dotted lines represent interquartile ranges (25% and
75% percentiles).

benchmark dataset. The proposed method provides medians

similar to TRCA, but obviously higher than the values of CCA,

MsetCCA, and SSCOR.

Aside from the overall comparison of the five approaches,

we further carried out a pairwise analysis between the pro-

posed method and each comparison method on three datasets.

Table I shows the multiple comparison results in terms of

SSVEP recognition accuracy with different TWs. The multiple

comparison correction method is Dunnett’s test. The proposed

method is regarded as the control group. The results show that

in most TWs, the proposed method is statistically superior to

MsetCCA, CCA, and SSCOR, and provides similar accuracy

to TRCA.

The above experiment results were carried out on a DELL

laptop with a 1.8GHz quad-core CPU, 8 GB RAM, using

Matlab 2019a and running on Windows 10. The first step was

to train the spatial filter, and it took up to 6.36 s in Dataset I,

2.33 s in Dataset II, and 26.81 s in benchmark dataset. Once

the spatial filter is trained, the averaged recognition time per

time window for performing the proposed method on Dataset

I, Dataset II, and benchmark dataset was 0.044s, 0.012s, and

0.193s, respectively. We would like to point out that although
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TABLE I
MULTIPLE COMPARISON ON CLASSIFICATION ACCURACY OF FIVE METHODS BY DUNNETT’S TEST

Methods

Time windows

Dataset I Dataset II benchmark dataset

0.25s 0.5s 0.75s 1s 0.25s 0.5s 0.75s 1s 0.2s 0.4s 0.6s 0.8s

MsetCCA vs Proposed method* <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

CCA vs Proposed method <0.0001 <0.0001 <0.0001 0.0158 <0.0001 0.0982 0.1534 0.4514 <0.0001 <0.0001 <0.0001 <0.0001

SSCOR vs Proposed method <0.0001 0.0012 0.0299 0.1378 <0.0001 0.1436 0.1042 0.0672 <0.0001 0.0178 0.1567 0.3664

TRCA vs Proposed method 0.2428 0.3339 0.8348 0.9998 0.0193 0.3312 0.1042 0.1932 0.8771 0.9893 0.9778 0.9999

*The proposed methods serves as the control group.

the training time is a bit long, it won’t affect the performance

of the proposed method. We could always train the spatial filter

offline before we move on to real-time SSVEP recognition.

B. Ensemble-based method evaluation

This work extends the proposed method with an ensemble

version. Ideally, the transformation coefficients from SSVEP

source to scalp could be treated similarly within the used fre-

quency range [5] [33] [31]. Hence, Nf different spatial filters

should be similar. The ensemble-based method concatenates

all Nf spatial filters to construct an ensemble spatial filter

W ∈ R
Nc×Nf ,

W = [ŵ1, ŵ1, ..., ŵNf
] (6)

Then the (4) can be re-defined as follows:

ri = ρ(X̃TW ,χT

i W ), i = 1, 2, ..., Nf (7)

The intended target is determined via (5). Fig. 4 shows the

performance comparison between different standard methods

and ensemble methods on (a) Dataset I, (b) Dataset II, and (c)

benchmark dataset. As shown by the blue and purple lines in

Fig. 4, the performance of the proposed method is improved

via the ensemble version in three datasets. Meanwhile, in

Fig. 4(a) and Fig. 4(c), the classification accuracy of the

ensemble proposed method is slightly better than that of

ensemble TRCA, but the gap with ensemble SSCOR is even

greater. In Fig. 4(b), the standard proposed method shows

superiority compared with ensemble TRCA and ensemble

SSCOR with all data lengths.

C. The Influence of Parameters on Performance

In order to further evaluate the performance of the five ap-

proaches, we explored the impact of the number of electrodes,

training blocks, and stimulation on the SSVEP recognition

accuracy.

1) The number of electrode: Fig. 5 depicts the averaged

SSVEP classification accuracy with various numbers of chan-

nels using 0.75s-long data on (a) Dataset I, (b) Dataset II, and

(c) benchmark dataset. In Fig. 5, the accuracy of each method

generally declines as the number of channels decreases. It in-

dicates that the number of channels affects the performance of

various SSVEP recognition methods. Specifically, the method

with more channels can commonly achieve better classification

accuracy. It is worth mentioning that for channels = 5, 6, 7, 8,

and 9, the proposed model (bars in blue) always outperforms

the other four recognition methods on all datasets.

2) The number of training blocks: We further investigated

how the number of training blocks affects the target iden-

tification performance of five algorithms on three datasets.

The heat maps in Fig. 6 illustrate comparison results with

0.75 s TWs. The x-axis refers to the method with a different

number of training blocks. The y-axis is the subject index, and

color indicates the corresponding performance. The maximal

SSVEP detection accuracy shows the deepest color. For all

methods in the three datasets, the color obtained with more

training blocks is usually darker than that obtained with fewer

training blocks. In addition, the proposed method generally

shows deeper color compared with the other four methods for

most subjects under the different number of training blocks.

The results indicate that, to some extent, our method is

superior to other methods regardless of the number of training

blocks.

3) The number of frequencies: In this study, we also

investigated the influence of the number of targets on the

proposed method. In order to explore more types of target

numbers, we employed the 40-class benchmark dataset in

this subsection. SSCOR and TRCA significantly outperform

CCA and MsetCCA on the benchmark dataset as shown in

Fig. 2, so these two methods are utilized for performance

comparison. Fig. 7 shows the averaged classification accuracy

of three methods to classify 8, 16, 24, 32, and 40 stimulation,

respectively. The choice of targets is random. The comparison

result indicates that the performance of our method tends to

decrease slightly with the increasing number of stimulation.

Under the same setting, TRCA and SSCOR also show a similar

declining trend. However, even with a large number of targets,

the recognition accuracy of the proposed method is always

better than other models. Similar comparison results can also

be found in Fig. 2(a) with 12-class Dataset I and Fig. 2(b)

with 4-class Dataset II.

D. Discussion

In order to learn the class-specific spatial filter, the tra-

ditional SSVEP recognition scheme generally considers the

correlation among training trials from the same class [5] [17]

[31]. For example, TRCA trains the spatial filter by maxi-

mizing the sum of covariance of all possible combinations of
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Fig. 4. Averaged recognition accuracy comparison between ensemble methods and standard methods on (a) Dataset I, (b) Dataset II, and (c) benchmark
dataset.
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Fig. 5. Barcharts of the five methods’ classification accuracy with different number of channels on (a) Dataset I, (b) Dataset II, and (c) benchmark dataset.
The error bars represent standard errors.
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Fig. 6. Heat maps of the classification accuracy of five methods under different number of training blocks on (a) Dataset I, (b) Dataset II, and (c) benchmark
dataset.

training trials from the same stimulation [5]. For the proposed

model, it constructs multi-objective functions creatively not

only to decrease the distance between the training signal

and the template from the same class but also to increase

the distance between SSVEP data from other classes and

the template, as shown in formulas (1)-(3). Therefore, the

trained spatial filters have the potential to extract target-related

features and decrease target-unrelated information. Besides,

the optimisation problem is subject to the constraint that the

sum of filter elements is zero so that low spatial-frequency

signals can be alleviated. With the spatial filters, the proposed

model could better distinguish between target and non-target

stimulation. The false positive rate (FPR) for a multi-target

system is the percentage of non-targets that are wrongly

categorised as the true target [20]. As a representative example,

the confusion matrix in Fig. 8 provides the averaged FPR

across all subjects and targets. Clearly, the averaged FPRs

of the proposed method and TRCA are 12.5% and 26.25%,

respectively. Further, we explored the probability density of

detection accuracy of the proposed method in Fig. 3. The

frequency of data points in each region correlates to the width

of each curve. The thicker part means that the corresponding

value has a higher frequency. As shown in Fig. 3, when

the median value among methods is approximated (e.g. 1 s

data length in Dataset II), the proposed method has a more

concentrated distribution. It implies that the proposed method

could achieve a more stable and consistent performance across

subjects.
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Fig. 7. Performance comparison with various numbers of targets, i.e. 8, 16,
24, 32, and 40 using different data lengths (a) TW=0.2s, (b) TW=0.4s, (c)
TW=0.6s, (d) TW=0.8s. The error bars represent standard errors.

In order to further clarify the effect of stimulation mech-

anisms on the performance, visual stimuli are displayed in

different ways, i.e. LCD monitor in Dataset I and LEDs in

Dataset II, respectively. As shown by the blue lines in Fig. 2,

the proposed method always exhibits the best classification

accuracy with various TWs. Blue violins in Fig. 3 reflect the

same result via another form. It illustrates that different choices

of stimulation mechanisms do not affect the performance of

the proposed method too much.

As a classical method, CCA has been widely validated by

many studies in detecting SSVEPs [13] [14]. Traditionally,

its reference signals, constructed by sine-cosine waves, are

employed to model the visual stimuli [34]. Fig. 2 shows

that CCA could reach an averaged recognition accuracy of

71.81% in Dataset I, 77.5% in Dataset II, and 29.57% in

the Benchmark dataset. It does not achieve as high accuracy

as other methods at some TWs. A potential problem with

this method is that the artificially predefined reference signal

cannot reflect subject-specific features [17] [35]. Our method

adopts the individual training data to construct subject-specific

templates. As illustrated in [18], one of the factors in the target

recognition method that leads to class and non-class SSVEP

signals being more distinguishable is individual templates.

Although our proposed method provides good recognition

performance in SSVEP-based BCIs, it still has some potential

improvement directions. First, as shown in Fig. 7, as the

number of stimuli increases, the performance of our approach

tends to decline slightly. In fact, as the number of objec-

tives in a multi-objective optimisation problem increases, the

dimensionality of the model also increases, which makes it

difficult to converge [36]. In addition, the interaction among

various objective functions makes the optimisation problem

more intricate. It has been observed that the multi-objective

optimisation technique experiences performance degradation

when applied to a problem with a high number of objective

functions [37]. Therefore, the performance comparisons do

not show a huge difference when the proposed approach is

applied to an optimisation problem based on a large number

of objective functions. Future work will thus be required to 1)

optimise the selection of non-aim stimuli to reduce the number

of minimisation objectives and 2) explore other algorithms to

solve complex multi-objective optimisation problems with a

large number of objectives for the SSVEP-based BCI system.

Second, as Fig. 6 demonstrated, the training blocks may not

be sufficient for some subjects, resulting in relatively low

classification accuracy. Therefore, future work would transfer

information from other subjects to solve the data insufficiency

problem.

IV. CONCLUSION

In this study, a novel multiple-objective optimisation-based

high-pass spatial filtering method was proposed to improve

the target recognition performance for the SSVEP-based BCI

system. Our method defined multi-objective functions for each

target by the correlation between the training signal and the

individual template from the same stimulation maximisation,

whereas the correlation between SSVEP data from others

and the template minimisation. It aims to effectively extract

target-relevant information while decreasing target-irrelevant

features. Meanwhile, the proposed model has the constraint

that the sum of filter elements is zero. This setting could

reduce the negative effect of volume conduction by alleviating

low spatial-frequency signals. Experimental results based on

two self-collected SSVEP datasets and a public benchmark

database showed that the proposed model achieved better

classification performance than some state-of-the-art methods.
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