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Point2PartVolume: Human Body Volume Estimation 
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Abstract—Human body volume is a useful biometric feature 
for human identifcation and an important medical indicator 
for monitoring body health. Traditional body volume estimation 
techniques such as underwater weighing and air displacement 
demand a lot of equipment, and are diffcult to be performed 
under some circumstances, e.g. in clinical environments when 
dealing with bedridden patients. In this contribution, a novel 
vision-based method dubbed Point2PartVolume based on deep 
learning is proposed to rapidly and accurately predict the part-
aware body volumes from a single depth image of the dressed 
body. Firstly, a novel multi-task neural network is proposed 
for jointly completing the partial body point clouds, predicting 
the body shape under clothing, and semantically segmenting 
the reconstructed body into parts. Next, the estimated body 
segments are fed into the proposed volume regression network 
to estimate the partial volumes. A simple yet effcient two-step 
training strategy is proposed for improving the accuracy of 
volume prediction regressed from point clouds. Compared to 
existing methods, the proposed method addresses several major 
challenges in vision-based human body volume estimation, in-
cluding shape completion, pose estimation, body shape estimation 
under clothing, body segmentation, and volume regression from 
point clouds. Experimental results on both the synthetic data 
and public real-world data show our method achieved average 
90% volume prediction accuracy and outperformed the relevant 
state-of-the-art. 

Index Terms—Volume estimation, Biometric data security, 3D 
Scanning, Deep learning, Human body shape reconstruction, 
Human body under clothing, Point cloud completion 

H
I. INTRODUCTION 

UMAN body volume data, including the volumes of 
the whole body and body parts, is necessary for many 

human-centered applications. Body volume data is valuable for 
determining the drug dosage for emergency patients [1], early 
detection of peripheral oedemas [2], fbrosis [3] and lymphede-
mas [4], measurements of muscle atrophy [5], supervision 
of recovery process after invasive surgeries [6]. Furthermore, 
body volume data is an important indicator to evaluate growth 
of muscle mass, which helps creating an optimal training 
schedule in sports [5]. Human body volume estimation is 
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also of particular importance to derive total body composition, 
by measuring the resistivity of the whole body or only its 
segments and by determining their volumes. While resistivity 
measurements are very accurate, volume estimation remains 
the main uncertainty factor [7]. 

To estimate the body volume, traditional methods mainly 
consist of underwater weighing, air displacement, and medical 
imaging methods. Underwater weighing measures the volume 
change of water when a person is immersed into the water. 
Air displacement is similar to underwater weighing, but it uses 
air displacement rather than water immersion. However, both 
methods require a lot of non-portable equipment and can only 
measure the whole-body volume. Users have to remove clothes 
during volume acquisition. More important is the fact that such 
methods are diffcult to use for disabled or bedridden people. 

Medical imaging methods for body volume estimation make 
use of Magnetic Resonance Imaging (MRI) or Computed 
Tomography (CT). However, these kind of methods rely on the 
expensive systems and require expert knowledge for operation, 
being also inconvenient for the user. It is for these reasons that, 
some vision-based methods for human body volume estimation 
have been proposed. The vision-based approaches for volume 
estimation can be mainly classifed into two categories accord-
ing to the type of input: RGB image-based methods and depth 
image-based methods. RGB image-based methods [8] usually 
suffer from scale ambiguity due to the lack of accurate range 
information. The depth image-based approach [12] is more 
popular in the task of volume estimation. However, fast and 
accurate estimation of body volume is still under-researched. 

With the advent of consumer depth cameras, depth images 
have been widely used in different works [9], [10], [11], 
[12], [13]. Given a precise 3D model of a subject, both the 
whole-body volume and partial volumes can be extracted [14]. 
However, 3D model-based body volume estimation methods 
have the following drawbacks: (1) existing methods require 
to manually extract the part volume values; (2) they require 
a clean watertight body mesh as the input. However, due to 
limited resolution of the scanner and acquisition conditions, 
noise and occlusions are inherent and strongly infuence the 
quality of the resulting 3D scans. Even though many post-
processing techniques such as denoising and hole-flling have 
been proposed to address these problems, they may introduce 
new errors during post-processing which infuence the accu-
racy of the volume estimates; (3) the user has to wear minimal 
clothes and multiple depth images have to be captured from 
various views to obtain the complete shape of subjects, which 
makes these methods slow and inconvenient in practice, in 
particular to immobilized / bedridden patients; (4) 3D scanned 
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body models contain personal information of scanned subjects 
(e.g. faces, gender, body measurements), which may result in 
biometric data leakage problems. 

To address these issues, we propose to take a partial body 
scan as input and to predict the undressed complete body and 
its part volume values. A major advantage is that the method 
can be used for bedridden subjects. In addition, compared to 
complete 3D body models, the use of partial noisy body point 
clouds contributes by design to protecting the biometric data 
of subjects. 

The main contributions of this paper can be summarized as 
follows: 
• A novel vision-based approach is proposed for estimating 

human body volume from a single depth image. To the 
best of our knowledge, this is the frst deep learning 
method for estimating human whole-body and part vol-
umes. 

• A novel Multi-task network is proposed for Human 
Body Reconstruction (MHBR) from a single depth image. 
It jointly completes partial point cloud of the subject, 
predicts the body shape under clothing, and segments the 
estimated complete body. A novel part-ware feature is 
presented to improve the performance of the MHBR. 

• A novel human Body Volume Network (BVN) is pro-
posed for predicting volume values from point clouds. 
To improve the performance of BVN, we propose a 
simple yet effcient two-step training strategy to extend 
the learning of PointNet and its variants from sparse point 
sets to dense point sets. 

• A novel 3D human dataset is constructed consisting of 
400k models with actual volumes labeled and used to 
train and evaluate the proposed method. 

The rest of the paper is organized as follows. First, we 
review the related works in Section II including 3D hu-
man body reconstruction, body volume estimation from a 
3D model, and deep learning on point clouds. Second, we 
introduce the proposed method and dataset in Section III. Next, 
expensive experimental results are given in Section V. Finally, 
we conclude the article in Section VI. 

II. RELATED WORK 

A. 3D Human Body Reconstruction 

A great deal of works have proposed various methods of 
reconstructing a 3D human body model. Using structured light 
or a laser scan, high-quality human models can be created. 
However, these systems are generally very expensive and 
bulky, and usually require expert knowledge for operation. 
With the advent of Microsoft Kinect, many researchers have 
attempted its use for low-cost 3D scanning. In [15], the 
3D data captured from varying viewing positions was fused 
based on non-rigid registration algorithms. The authors of 
[16] observed that a Kinect device should be put at around 3 
meters away from the body in order to scan a complete human 
shape; this results in very low-resolution scan data. They 
proposed a scanning system based on three Kinect devices plus 
a turntable system to obtain better human models. However, 
these methods require that the subject should stand without 

moving for about 30 seconds or more, while ordinary people 
can keep a ”frozen stand” for only several seconds (typically 3 
seconds). [17] presented a multi-sensor Kinect system based 
on RGB-D devices to address this problem. Although these 
methods can reconstruct detailed human models, they assume 
the subject can stand still in a canonical pose, e.g. A-pose 
or T-pose. Old people or bedridden patients, however, are not 
able to stand still. 

Another interesting approach has been proposed in [18], 
whereby body shapes are inferred from single RGB images. 
However, this method often has a large bias due to the scale 
ambiguity and occlusions, which is less accurate. Similarly, 
[19] predicts an opposite-view depth image from a single 
depth image using a convolutional neural network (CNN), 
then combines the 3D points from the depth images. Although 
they assume that the input depth image contains half of 
the whole-body and the predicted opposite-view depth image 
provides the other half, missing data on the boundary area still 
exists. Besides, this method has to be integrated with other 
techniques including denoising, surface completion, surface 
reconstruction and auto rigging to be able to perform body 
volume estimation. These post-processing steps, however, will 
introduce new errors. 

B. Body Volume Extraction from a 3D Model 

3D scanning has been successfully adopted by many health-
care applications. Earlier medical scientists make use of body 
scanners and manual post-processing, their accuracy having 
been validated [14]. Although the acquisition of scanned data 
is quick, the manual post-processing is time-consuming and 
highly depends on the technical expertise. To address this 
issue, several automated works have been proposed. [20] 
assessed the whole-body volume from 3D photogrammetric 
scanning by comparing with measurements from traditional 
underwater weighing and air displacement. Part volumes, 
however, are missing. In [14], a bespoke method for obtaining 
whole-body volumes and part volumes from 3D scanned data 
has been proposed. However, this method has to take an A-
pose, clean and complete model as input. [7] developed a 
system consisting of sixteen stereo cameras, four projectors 
and a custom-built couch for human body volume estimation in 
a clinical environment. During testing, a parametric humanoid 
model from Makehuman open source project was applied 
to ft the frontal-view scan of the lying-down patient by 
minimizing the Euclidean distance between the parametric 
humanoid model and the partial scan of the subject. Once 
reconstructing a complete body, the whole-body volume is 
calculated using cross sections along the body. This work is a 
step forward for estimating body volume in the clinical envi-
ronment. But the user has to manually select the joint positions 
and part volumes cannot be measured. Besides, this system 
needs precise calibration and is computationally expensive. 
[1] proposed a similar system by replacing the high number 
of cameras and projectors with a portable Kinect. However, 
this method adopted an inaccurate solution to recover the 
back side of the patient by simply projecting the front surface 
along the rays emerging from the sensor to the stretcher plane. 
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Moreover, the above methods will fail when the subject wear 
loose clothes. 

Our study is mainly inspired by the work of [1][7]. Com-
pared to the existing approaches, our method mainly has the 
following advantages: 1) we address the volume estimation 
problem from only a single depth image using a novel 
learning-based framework; 2) the proposed method can work 
for dressed bodies; 3) the method can accurately predict the 
body part volumes; 4) the proposed method is fully-automatic 
and fast; 5) our method is robust against the inherent pose 
variations and outliers. 

C. Deep learning on point clouds 

3D point clouds represent accurate shapes of subjects. Depth 
images are directly converted to point clouds given the intrinsic 
parameters of the depth camera. A pioneering work on deep 
learning for point cloud processing is PointNet proposed in 
[21]. It utilizes a pointwise multi-layer perceptron with a 
symmetric aggregation function to implement invariance to 
permutations, and shows competitive performance for extract-
ing features from point clouds. PointNet-based methods have 
been employed in various applications [21]. Although Point-
Net has not been extended for the task of human body volume 
estimation, some works that address similar problems to those 
addressed in this study have been proposed. The authors 
of [22] proposed a method based on PointNet to complete 
point clouds. This method is not trained on human datasets, 
and outputs point clouds which cannot be accurately used to 
estimate volumes. In [23] a method to deform a predefned 
template to ft the input point cloud has been proposed. Its 
performance highly depends on an additional optimization 
refnement that minimizes the Euclidean distance between the 
prediction and the input. Such an approach would fail in our 
task, as one takes a partial scan as input point cloud. The 
closest to our work is [12], which trained two PointNet-based 
neural networks to implement point cloud completion and 
volume estimation of food for dietary assessment purposes. 
However, the models are trained on a synthesized food dataset 
and can only predict whole volumes. Compared to the work 
of [12], we aim to address a more challenging problem due to 
the following reasons: 1) human body is a articulated shape 
that is complex due to the large pose variation; 2) human body 
is usually covered by cloth while the food is exposed; 3) to 
estimate part volumes is more challenging than to predict the 
whole-body volume. 

III. PROBLEM STATEMENT 

Given a point set of the partial body scan 
X = {xi ∈ R3, i = 1, ..., n}, the goal is to determine 
the volume vector V = {vi ∈ R, i = 1, ..., m} which stores 
the body part volume values of the user. This problem 
can be conventionally resolved by factoring it into three 
sub-problems, namely (i) predicting a complete body mesh� � 
B = { pi ∈ R3, ej ∈ Z2 , i = 1, ..., n, j = 1, ..., m} given 
X by ftting a template mesh to the partial scan, where 
pi, ej are the vertices and edges in B respectively, (ii) 
adjusting or normalizing the pose of B to obtain mesh B 

′ 
in 

an suitable pose for volume extraction, and (iii) extracting 
V from B 

′ 
by existing automatic algorithms or manual 

processing. Although this formulation is intuitive, such a 
method has the following disadvantages: 1) it requires the 
user to wear minimal clothes, and will fail for the dressed 
body; 2) it highly relies on the template-based ftting which 
is time-consuming and prone to the initialization and outliers; 
3) when the posture of subject is not suitable, posture 
adjustment is required. However, an automatic rigging yields 
a poor pose normalization, leading to situations when the 
algorithm gets stuck; 4) human interaction is necessary for 
accurate volume prediction. In stark contrast, we do so using 
two key ideas based on deep learning. First, we propose 
a deep neural network taking X as input to reconstruct a 
complete body point cloud Y = {ypart , part =∈ RN×3 

head, torso, left arm, right arm, left leg, right leg,N ∈ 
Z}. Y is an assembly of semantic body parts. Such a 
formulation provides the foundation for jointly completing 
the partial body point clouds, predicting the body shape 
under clothing, and segmenting the reconstructed body 
into parts. Second, taking ypart as input, our proposed 
volume prediction network regresses the partial volumes 
from point clouds of reconstructed body parts. Our method 
avoids expensive template-ftting optimization and error-prone 
posture adjustment. More importantly, our method proves to 
work well for dressed bodies. 

IV. PROPOSED METHOD 

A. Overview 

The overview of proposed method is illustrated in Figure 
1. Given a depth image of the front-facing dressed body, 
it is frstly converted to a partial point cloud. Then, the 
partial point cloud is fed into the proposed HMBR for 
reconstructing a complete body shape under clothing with 
semantic segmentation. Each part of the reconstructed body 
is further fed into the proposed BVN for regressing corre-
sponding part volume values. The architectures of HMBR 
and BVN are shown in Figure 2. The partial point cloud is 
fed into a multi-path encoder represented by a set of sub-
encoders {HE, T E, LAE, RAE, LLE, RLE}, where HE is 
the Head Encoder, TE is the Torso Encoder, LAE is the 
Left Arm Encoder, RAE is the Right Arm Encoder, LLE is 
the Left Leg Encoder, and RLE is the Right Leg Encoder. 
Each sub-encoder focuses on learning features for different 
body parts. We, thus, call them part-aware features denoted 
by {fHE , fTE , fLAE , fRAE , fLLE , fRLE }. Each set of part-
aware features aims at reconstructing the corresponding body 
part by means of a part-aware decoder. For instance, the 
head features fHE are fed to the head decoder HD which 
reconstructs the head shape. All of the reconstructed body 
parts make up the complete body shape. It can be seen that 
our reconstructed body shape is complete and well-segmented. 
Besides, it is important to observe that the proposed method 
provides an estimate of the body shape under clothing. In this 
sense, the design in Figure 2(a) is a multi-task network. In the 
subsequent steps, each of reconstructed parts is fed into the 
volume regression network to regress the volume values, as 
shown in Figure 2 (b). 
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Fig. 1. Overview of the proposed method. First, the partial body scan is fed 
into the HMBR to obtain a complete body shape under clothing with semantic 
segmentation. Next, the part of reconstruct body and the whole reconstructed 
body are further fed into BVN for regressing the corresponding part volume 
and the whole-body volume 
. The details of proposed HMBR and BVN are illustrated in 

Figure 2. 

Fig. 2. Network architectures for body volume estimation. (a) Ar-
chitecture of multi-task human body shape reconstruction network. 
{HE, T E, LAE, RAE, LLE, RLE} represents the part-aware multi-path 
Encoder for {head, torso, left arm, right arm, left leg, right leg}, 
and {HD, T D, LAD, RAD, LLD, RLD} represents the Multi-task De-
coder for {head, torso, left arm, right arm, left leg, right leg}. (b) 
Architecture of human body volume network. It regresses the vol-
ume values for the reconstructed part point clouds of the subject. 
E denotes the point cloud encoder, MLP acts as the volume re-
gressor, and {VH , VT , VLA, VRA, VLL, VRL} denotes the volumes for 
{head, torso, left arm, right arm, left leg, right leg}. 

B. Proposed Synthetic Dataset 

To train our algorithm, a large-scale 3D dataset is required. 
More specifcally, we require various arbitrarily-posed partial 
scans of dressed bodies as input and its paired complete 
undressed body labelled by volume values as the ground truth. 
There exists no such dataset in the literature. We, thus, propose 

a new synthetic dataset, termed Body Volume (BV) Dataset, 
which is needed in order to train our model. The proposed 
pipeline of synthesizing our dataset is summarized in Figure 
3. It mainly consists of the following modules. 

Fig. 3. Illustration of our pipeline for synthesizing the training dataset. 

Realistic human shape and posture. To synthesize the 
realistic human bodies, we make use of SMPL [26], a state-
of-the-art generative body model. SMPL is parameterized 
by a shape parameter denoted by β and a pose parameter 
denoted by θ. Both β and θ are represented by the vectors 
with the size of 10 and 72 respectively. Sets of β and θ 
values for the SMPL model are collected from the SURREAL 
dataset [27] in order to build realistically posed human bodies. 
One limitation of the SURREAL dataset [27] is it does not 
have in-bed poses. Without adapting these training poses, 
our algorithm generalized poorly to the in-bed patients. To 
overcome this limitation, we collected 1051 SMPL θ values 
from the PressurePose dataset [24] using HMR [25]. The 
PressurePose dataset has in-bed posed RGB images for 20 
human subjects. HMR is a technique that fts the SMPL model 
to a single RGB image and outputs the β and θ values of 
SMPL. However, the predicted β is usually not reliable due to 
the ambiguity from 2D to 3D. Consequently, we only use the 
pose information extracted by HMR in our study. Finally, we 
sample 2·105 parameters by randomly combining our collected 
SMPL β and θ values for the male and female respectively. 
Our fnal dataset has 4·105 human meshes with a large variety 
of realistic poses and body shapes. 
Clothing. Next, garments need to be put on the synthetic 
body meshes. As our dataset is very large-scale, to dress these 
synthetic body meshes is time-consuming and expensive using 
physically-based simulation. The method of [13] is adopted to 
dress our synthetic bodies due to its effciency and simplicity. 
Moreover, the method of [13] can also dress shoes on the 
body. This method mainly consists of two procedures. Firstly, 
the ftted garments are manually designed based on a SMPL 
body in a canonical posture by a fashion expert. This manual 
preparation is only done once for each type of clothing. 
Next, the garments will be automatically transferred from the 
reference body onto other SMPL bodies in arbitrary postures. 
In this study, we put the shoes and the common type of 
clothing, namely the long-sleeved shirt and long pants, onto 
our body shapes to validate our algorithm. More clothing types 
can be easily added to support the specifc task of body shape 
estimation under clothing [13]. 
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Rendering. We utilize the open-source Blender Sensor Simu-
lation plugin Blensor to render realistic partial scans. In our 
experiments, we set the camera as Microsoft V2 sensor. During 
rendering, the position and orientation of camera are randomly 
selected at intervals from 1.5 to 2.5 meters in x, y, z directions 
and solid-angle orientations relative to the vertical axis from 
−10 degrees to 10 degrees. We also add noise with noise 
parameters set to µ = 0.0, σ ∈ (0.0, 0.025). 
Volume Annotation. To avoid the effects of posture on the 
volume prediction, we perform the volume annotation on the 
canonical ”T” pose. By setting the SMPL θ to be zero, a 
T-pose body can be obtained. The whole-body volume can 
then be easily computed [32]. To compute the part volumes, 
it is necessary to segment the body into parts. To address 
this problem, a simple yet effcient method is employed. We 
manually select fve planes {s1, s2, s3, s4, s5} on one of the 
T-pose SMPL meshes to segment the body into fve parts 
including head, left arm, right arm, left leg and right leg, as 
shown in 4. Each plane si is obtained by manually selecting 
three different points and by parametrizing the plane passing 
through them. It is possible that one of the selected points is 
not a vertex of the SMPL mesh (e.g., a point inside a triangle 
of the SMPL mesh). To address this, we represent the selected 
points via barycentric coordinates. It should be noted that this 
manual operation is only done once, and a more complicated 
or refned body segmentation can be obtained by selecting 
more planes. 

Fig. 4. The defnition of the cutting planes for volume annotation. 

C. Multi-task Human Body Shape Reconstruction Network 

If using partial point clouds of dressed bodies to determine 
the whole-body and part volume values, predicted results will 
be largely overestimated. To address this problem, three key 
problems should be resolved before estimating the volume: 
completing the partial point cloud, estimating body shape 
under clothing, and semantically segmenting the complete 
body. To this end, a novel multi-task network (MHBR), shown 
in Figure 2(a), is tailored for jointly implementing these three 

tasks. The proposed multi-task network is built based on the 
proposed encoder–decoder architectures. 

1) Part-aware Feature Learning: Following the paradigm 
of encoder-decoder architecture, we frst attempt to extract 
features from partial point clouds. Point clouds are unstruc-
tured data, which is not easy for direct analysis. PointNet 
[21] has become a popular deep learning-based encoder that 
directly takes point clouds as input. The readers can refer 
to PointNet for detailed discussion. State-of-the-art encoder-
decoder architectures usually aggregate a single feature rep-
resented by a vector f from the input signals, and then 
interpret f to the designed predicted signals. For instance, 
Point2Volume [12] used a PointNet-based encoder to learn a 
feature vector from a partial point cloud, and used a decoder 
to interpret the feature vector to a complete point cloud. 
Such a feature was learned by considering all of the input 
points. However, our insight is that the foot points of the 
input are signifcantly important for reconstructing the foot 
shape while they are nearly useless for reconstructing the head 
shape. To address this, we proposed multi-path encoders to 
extract part features. Specifcally, each sub-encoder focuses on 
extracting corresponding part features. We represent the part-
aware features by a matrix F = [f1; f2; ...; fM ] consisting of 
M vectors fi. M is a hyper parameter, and in this study we 
set M = 6 as we hope to predict the head, left arm, right 
arm, left leg, right leg, and the torso parts. We design the 
part-aware feature extractor e based on the unit of PointNet-
based encoder g. In this study, similar to PCN [22], we use 
two stacked PointNet architectures with maxpooling operation 
to model g, which is expressed as: 

2f = g (X|wg) , g = g 1 ◦ g (1) 
2 2where wg denotes the weights of g1 and g , where g1 and g 

represent the two PointNet-based sub-networks, respectively. 
e is a set of g, which is expressed as: 

[f1; f2; ...; fM ] = e (X|wg1 , wg2 , ..., wgM ) (2) 

where wgi , i = 1, 2, ..., M denotes the weights of 
g1, g2, ..., gM , respectively. 

2) Multi-task Prediction: In this study, the multi-task 
prediction encompasses three components: to complete 
the partial point cloud, to estimate the body shape under 
clothing, and to segment the predicted complete body 
point cloud. Despite these tasks have been separately 
investigated, no existing methods can offer an all-in-one 
solution to jointly deal with the three problems. To this end, 
we propose a multi-path decoder architecture to take the 
[f1; f2; ...; fM ] as input and output the complete segmented 
body point cloud under clothing Y = {ypart ∈ RN×3, part = 
head, torso, left arm, right arm, left leg, right leg,N ∈ 
Z}. As shown in Figure2(b), our multi-task decoder consists 
of M units. These units act as point cloud predictors, which 
are responsible for interpreting the feature vector fi to the 
part-specifc point cloud of the complete body from the 
proposed part-aware features [f1; f2; ...; fM ]. Similar to the 
coarse-to-fne prediction strategy [13], we use two stacked 
architectures to model the unit h, which is expressed as 
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y = h (f |wh) , h = h1 ◦ h2 (3) 

where wh denotes the weights of h1 and h2 , h1 and h2 repre-
sent the two MLP-based sub-networks, respectively. Specif-
cally, h1 is a MLP with 1024, 1024, and m×3 neurons, where 
m is the number of predicted coarse points. In this study, we 

1set m = 1024. h2 is a stack of g and h1 . Accordingly, our 
multi-task decoder d is expressed as: 

{yhead, ytorso, yleftarm, yrightarm, yleftleg, yrightl eg } = 
(4)

d ([f1; f2; ...; fM ] |wh1 , wh2 , ..., wgM ) 

3) Multi-task Loss Function: The loss function of our 
multi-task human body shape reconstruction network consists 
of two parts: part-aware multi-stage reconstruction (PMR) loss 
and the global reconstruction (GR) loss. PMR loss measures 
the difference between the ground truth of body segments 
and the predicted body segments. GR loss tries to make the 
estimated body shape closer to the ground truth. 
Part-aware Multi-stage Reconstruction Loss. Previous 
works [12], [13], [22] have introduced two permutation-
invariant metrics to compare the similarity of two unstructured 
point clouds: the Earth Mover’s Distance (EMD) and the 
Chamfer Distance (CD). We choose (CD) to design our 
loss as it is differential and more computationally effcient 
compared to EMD. Given two point clouds P1 and P2 and 
their cardinalities are denoted by |P1| and |P2|, respectively, 
CD measures the average closest squared distance between 
them, which is defned by 

X1 
CD (P1, P2) = min ||x − y||2 

|P1| y∈P2 
x∈P1 (5)X1 

+ min ||x − y||2 

|P2| y∈P1 
x∈P2 

Since our multi-task decoder will output M × 2 point 
clouds (M coarse point clouds and M fne point clouds) in 
different resolution, our part-aware multi-stage reconstruction 
loss consists of M × 2 terms, as shown in Equation 6. X � � 

coarse GTLPMR = λpart × CD ypart , ypart 
part∈YX � � (6)

fine GT+ y , y αpart × CD part part 
part∈Y 

where λpart and αpart denote the weights that satisfy the 
following condition: αpart = 2 × λpart = 1. 
Global Reconstruction Loss. GR loss is designed to improve 
the performance of the proposed network. Similar to the 
PMR loss, but GR focuses on the global shape. Our global 
reconstruction loss is defned as: � � 

LGR = CD Y, Y GT (7) 

Joint Reconstruction Loss. The joint loss of network is 
defned as: 

L = ρ × LPMR + ξ × LGR (8) 

ρ and ξ are the weight of PMR loss and GR loss. In this study, 
we set ρ = 1, ξ = 0.001. 

D. Human Body Volume Network 

To estimate object volumes, the common approach is to 
employ the alpha-shape algorithm. [14] extended it to estimate 
body volume from 3D body model. However, this method 
requires a complete clean body model as input and manual 
interaction, and it is is prone to the selection of α. To address 
this, we propose a novel human body volume network (BVN) 
to predict volume values directly from unstructured point 
clouds. As Figure 2 (b) shows, BVN takes point clouds as 
input and outputs a scalar which represents the corresponding 
volume value. 

1) Architecture: The architecture of BVN consists of two 
modules: feature encoder and volume regressor. The feature 
encoder of BVN follows the design principle of MHBR, which 
also takes point clouds as input and outputs a latent feature 

1vector k. We use the frst sub-network encoder architecture g 
from MHBR to model the feature encoder, which is expressed 
as: � � 

1 
1k = e ypart|ψg , e = g (9) 

where ψe is the weight of e in BVN. The volume regressor 
is built by means of a MLP with 1024, 1024, and 1 neurons, 
which is expressed as: 

V olumeestimated = r (k|τr) (10) 

τr denotes the weight of r. BVN is optimized by minimizing 
the following L1-norm loss: 

Loss = |V olumeestimated − V olumeGT | (11) 

2) Performance Enhancement: We observed that deep neu-
ral network performs worse in volume regression task com-
pared to the task of point cloud reconstruction. Our insight 
is to regress volume from point clouds is a global task, but 
the volume regression network is prone to the individual 
point. PointNet-based encoders have to be trained based on 
the sparse point clouds instead of dense point clouds due to 
the memory problem. In the shape reconstruction task, sparse 
point clouds are proved to well represent the global 3D shape 
for the shape prediction [13], [22]. However, for the regression 
task, since the neural network is trained based on the sparse 
point clouds, individual points will cause larger variations for 
volume prediction. To address this, we propose a two-step 
training method to enhance the performance of BVN. 
Learning on Sparse Point Clouds. The frst step is similar 
to the previous work [12] that takes sparse point clouds as 

sparse input. We sampled a set of sparse points ypart from the 
sparse dense points ypart, and feed y into BVN for training. part 

We denote the trained volume prediction model by: 

V olumeestimated = v (ypart) , v = e ◦ r (12) 

Learning on Dense Point Clouds. After the frst-step training 
based on the sparse point clouds, we use the trained feature 
encoder e as a volume-specifc feature extractor. By applying 
e onto the dense point clouds ypart, we obtain the features 
kdense . Then, we take kdense as input to retrain the volume 
regressor r. Note that the feature encoder is not trainable in 
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the second-step training. We denote the updated weight of r 
as τ dense . In the inference stage, the fnal volume predictionr 
model can be expressed as: 

� � 
V olumeestimated , τdense = v ypart|ψe r , v = e ◦ r (13) 

V. EXPERIMENTS 

A. Training Setup 

We randomly split the dataset into training, validation, and 
testing using 97%, 2% and 1% of the samples in the dataset 
respectively. We note that, given the large size of the employed 
dataset (400k samples), the testing dataset has 4000 samples 
which is deemed to be large. Based on Tensorfow [29], 
Sanity checks based on the loss curves on the training and 
validation datasets indicate no overftting on the training data. 
The resulting body point cloud is normalized in two steps: 
1) it is centered to the origin, 2) and it is scaled by the Z-
axis length of its bounding box. The training is carried out 
using the Adam optimizer [28] with an initial learning rate 
of 0.0001 for 50 epochs and a batch size of 16. The training 
is performed on a desktop PC (Intel(R) Xeon(R) Silver 4112 
CPU @2.60GHz 64GB RAM GPU GeForce GTX 1080Ti) 
based on TensorFlow [29]. 

B. Evaluation Metrics 

To evaluate the performance of our algorithm, we employ 
two metrics to analyze the shape reconstruction error (SRE) 
and relative volume error (RVE). The Chamfer Distance (CD) 
is used to defne our SRE. Let the predicted points and volume 
be P and V . SRE is defned as: 

SRE (P, PGT ) = CD (P, PGT ) (14) 

The measurement unit for SRE is the millimeter. We also 
calculate the average value µ and average standard deviation 
σ of SRE. The RVE is defned as: 

V − VGT
RV E(V, VGT ) = | | × 100% (15)

VGT 

Intuitively, the accuracy of volume prediction is defned as 
(1 − RV E(V, VGT )) × 100%. 

C. Real-world Results 

Our method, solely trained based on our synthetic data, is 
able to generalize well to the real-world data. To demonstrate 
its generalization, we, thus, perform more experiments based 
on two real-world datasets: the PDT13 dataset [30], and the 
BUFF dataset [31]. They provide an ID for each subject, 
such as M1 and 00005. In the PDT13 dataset, the front- and 
back-facing partial scans of the standing subjects are captured 
by a Microsoft Kinect V1 sensor, while the ”ground-truth 
shape” are obtained by ftting a statistic human body model 
to a full-body laser-scan. BUFF is a scanned dressed body 
dataset consisting of 5 subjects wearing 2 clothing styles (T-
shirt and long pants, and soccer outft) in three motions by a 
custom-built multi-camera active stereo system. Its ”ground-
truth shape” is obtained by ftting the SMPL to the sequences 

in “A-T-U-Squat” motion and in “minimal clothing”. To obtain 
the accurate ”ground-truth volume”, we manually segment the 
”ground-truth shape” in PDT13 referring to the defnition in 
Figure 4. Since the ”ground-truth shape” in BUFF has the 
same topology with SMPL, our volume annotation technique 
is directly applied for obtaining ”ground-truth volume” for 
BUFF data. Figure 5 depicts our reconstruction results based 
on the PDT13 data. By overlapping our reconstructed bodies 
and the partial inputs, it can be seen that our results are visually 
correct while the ”ground-truth shape” from [30] is visually 
incorrect. For instance, it can be observed the height of the 
”ground-truth shape” for M1 subject is smaller compared with 
its real-world partial scan. Similar phenomena can be observed 
in the M3 subject. Accordingly, as shown in Table I, consistent 
results are obtained. Focusing on whole volume prediction 
accuracy, it is seen that ”M2>M3>M1”. Figure 6 illustrates 
our reconstruction results on the BUFF data, which is visually 
correct by observing the overlap between our reconstructed 
bodies and the partial inputs. The volume prediction results is 
shown in Table II, which demonstrates the average accuracy 
reaches about 90%. 

Fig. 5. Our results on PDT13 data. 

D. Results on Unseen Synthetic Data 

To further study the measurement accuracy of the proposed 
method, we randomly selected 450 unseen samples from 
the synthetic testing dataset and fed them into the proposed 
method. We defne the accuracy for a given threshold (conf-
dence level) as: 

AccuracyT = 
N 

(16)
M 

where T is a threshold of the volume prediction accuracy, M 
is the total number of tested samples and N is the number of 
samples above the threshold. In this study, M = 450, and we 
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TABLE I 
VOLUME PREDICTION ACCURACY ON PDT13 DATA (UNIT: %). 

Subject ID Head Torso Left arm Right arm Left leg Right leg Whole body 

M1 95.13 98.14 18.33 13.44 72.68 52.83 75.34 
M2 96.85 78.29 44.27 29.32 62.56 68.38 91.28 
M3 88.13 85.81 21.66 47.17 72.69 61.83 86.55 

TABLE II 
VOLUME PREDICTION ACCURACY ON BUFF DATA (UNIT: %). 

Subject ID Head Torso Left arm Right arm Left leg Right leg Whole body 

00005 96.42 98.81 99.99 99.28 98.47 94.17 96.3 
00032 89.74 78.48 93.95 97.48 88.59 85.60 82.23 

Fig. 6. Our results on BUFF data. Different color indicates different 
reconstructed body parts. 

set T to be 75%, 80%, 85% and 90%. Table III depicts the 
results. It can be seen that almost 90% of the results achieved 
80% accuracy and 80% of the results achieved 85% accuracy 
in terms of part-volume estimation. The proposed method 
worked best for predicting the torso volume with 94.4% of 
results achieving 90% accuracy. 

TABLE III 
VOLUME PREDICTION ACCURACY ON UNSEEN SYNTHETIC DATA. 

Threshold Head Torso Left arm Right arm Left leg Right leg 

75% 99.1% 99.6% 91.1% 93.6% 98.2% 96.4% 
80% 97.3% 99.1% 84.9% 88.9% 94.9% 90.4% 
85% 93.8% 98.0% 71.6% 81.8% 84.4% 75.3% 
90% 79.1% 94.4% 53.6% 64.4% 54.7% 42.2% 

E. Comparisons with Related Works 

We proposed two deep neural networks in this study. To 
quantitatively compare our approach with related works, we 
frstly compare MHBR with state-of-the-art methods for single 
view-based body shape reconstruction. Next, we compare the 
performances of volume estimation using different methods. 
For reliable comparisons, the data used for comparisons should 

have partial dressed body scans, accurate ground-truth body 
shapes, accurate ground-truth part volume values. We, thus, 
perform the following experiments based on the male testing 
data (450 samples) that is not included in the training data. 

1) Performance of MHBR: We compare our algorithm 
against state-of-the-art single-view based methods including 
DecoMR [33] takes a RGB image as input, Point2Volume [12] 
takes a partial point cloud as input and outputs the complete 
shape, and the method proposed in [19] that takes the front-
facing body depth image as input and outputs back-facing 
body depth image. Table V shows the average reconstruction 
error comparisons, it can be seen [33] obtained the worst 
results due to the scale ambiguity from 2D to 3D, and our 
method achieve the best performance. Figure 7 illustrates some 
randomly-selected per-vertex error comparisons. 

Fig. 7. Comparison of shape reconstruction error with related works. Each 
point is colorized based on the per-vertex error in millimeters. 

2) Performance of BVN: To compare the effectiveness of 
the proposed BVN, we compare our volume estimation model 
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TABLE IV 
COMPARISONS WITH DIFFERENT SINGLE VIEW-BASED BODY RECONSTRUCTION METHODS. 

Method Input Body shape reconstruction Body shape completion Body estimation under clothing Body segmentation 

DecoMR [33] 
Point2Volume [12] 

Point2Volume+Our dataset 
[19] 
Ours 

1 RGB image 
1 depth image 
1 depth image 
1 depth image 
1 depth image 

! 
# 
! 
! 
! 

# 
# 
! 
! 
! 

# 
# 
! 
# 
! 

# 
# 
# 
# 
! 

TABLE V 
COMPARISONS OF RECONSTRUCTION ERRORS WITH STATE-OF-THE-ART 
SINGLE VIEW-BASED BODY RECONSTRUCTION METHODS (UNIT: mm). 

Method DecoMR [33] Point2Volume [12] [19] Ours 

µ 
σ 

max 

13.94 
13.08 
137.52 

0.18 
0.42 
8.03 

0.83 
0.59 
3.05 

0.02 
0.01 
0.13 

with VolumeNet proposed in Point2Volume [12] that is the 
state-of-the-art deep learning-based volume estimation method 
from partial point clouds. As shown in Table VI, our method 
signifcantly increases the volume prediction accuracy for the 
whole body, and we have better results in terms of the torso, 
left arm and right arm. We obtain comparable results in terms 
of left leg, right leg and head. Therefore, it can be concluded 
that our method outperforms [12]. It should be noted that the 
whole-body volume is not obtained by adding up all body-part 
volumes since the errors of each body part volume prediction 
will be accumulated. We take the reconstructed complete body 
point clouds as input and output the whole-body volume. 

F. Selectivity and Sensitivity 

In this section, we evaluated the Selectivity and Sensitivity 
of the proposed method. 

1) Selectivity evaluation: Our method takes a single front-
facing partial scan of the body as input and produces estimates 
of body volume parts. To study the selectivity of input, we also 
rendered partial scans from the back and the side of subjects. 
As shown in Table VII, the results obtained from the front-
facing partial scans are better than the results obtained from the 
side-view and back-facing partial scans. Note that the results 
from the back-facing are worst because the arms may be not 
visible from the back-facing view. 

2) Sensitivity evaluation: Sensitivity is how sensitive is our 
method to a change in the input body volume for a given body 
part. We randomly select 100 samples from unseen synthetic 
dataset and progressively increase the input scale or decrease 
the input point cardinality which corresponds to decreasing the 
number of points at the input for the same body volume. The 
frst set of experiments assesses the sensitivity of the method 
against scale changes. The second set of experiments illustrates 
the sensitivity of the method with the number of points at the 
input. The sensitivity K is defned as: 

∆V 
K = (17)

∆X 

where ∆V denotes the average change of the predicted vol-
umes and ∆X represents the change of the input. 

In this study, we investigated the input scale change and 
input point size change. As Figure 8 and Figure 9 show, the 
K value of torso changes more signifcantly than K values of 
other parts remain stable. When the input scale increases, a 
larger volume change can be observed. Figure 10 and Figure 
11 illustrate the sensitivity against input point cardinality. It 
can be noted that the volume change decreases when the 
sample ratio increases. The K values reach the minimal at 
the 60% sample ratio. 

Fig. 8. Measured volume change against input scale changes. 

∆VFig. 9. Graph of (sensitivity) against input scale. 
∆X 

G. Measurement Uncertainty 

We compute the Type A measurement uncertainty for vol-
ume prediction based on both synthetic data (unseen male sam-
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TABLE VI 
COMPARISONS OF VOLUME PREDICTION ACCURACY WITH STATE-OF-THE-ART METHODS 

Method Whole body Head Torso Left arm Right arm Left leg Right leg 

Point2Volume[12] 90.21% 95.04% 90.76% 84.30% 86.16% 89.43% 89.12% 
Ours 99.37% 92.68% 95.65% 88.71% 90.49% 90.19% 88.31% 

TABLE VII TABLE VIII 
COMPARISON OF THE RECONSTRUCTION RESULTS FROM FRONT-, BACK-

AND SIDE-VIEW PARTIAL SCANS (UNIT: mm). 

front-facing side-view back-facing 

µ 0.0182 31.158 38.3256 
σ 0.013 15.715 17.7564 

max 0.1339 155.6918 143.8 

Fig. 10. Measured volume change against input scale changes. 

∆VFig. 11. Graph of (sensitivity) against input point cardinality. 
∆X 

ples from the synthetic dataset) and real-world data (PDT13 
and BUFF). We defne the volume measurement uncertainty 
as: 

s 
µA = √ (18)

N 

where s is the standard deviation of measurements and N 
is the total number of measurements. The obtained type A 
measurement uncertainties are depicted in Table VIII. 

TYPE A UNCERTAINTIES FOR BODY VOLUME MEASUREMENTS BASED ON 
SYNTHETIC DATA AND REAL-WORLD DATA (UNIT: cm3 ) 

Data type Head Torso Left arm Right arm Left leg Right leg 

Synthetic 0.32 4.21 0.53 0.56 0.98 0.99 
Real-world 4.37 27.39 4.68 5.73 9.98 10.11 

H. Ablation Study 

We conduct ablation experiments to understand the value of 
our network design and the infuence of the different terms in 
our loss function. The Chamfer Distance is calculated to show 
the average reconstruction error, and RVE error is calculated 
to compare the volume regression results. 

1) Part-aware features VS Global features: Firstly, we 
compare the performance of part-aware features and global 
features in the proposed multi-task network. We preserve 
one sub-encoder and remove the rest of fve sub-encoders 
for learning the global features. As shown in Table IX, the 
proposed part-aware features can reduce the average recon-
struction errors compared to the popular global features. 

TABLE IX 
ABLATION STUDY ON FEATURES (UNIT: mm). 

Feature Part-aware Global 

µ 0.0182 0.023 
σ 0.013 0.0181 

max 0.1339 0.1761 

2) Loss selection: In the multi-task network, our loss con-
sists of two terms: LPMR and LGR. LPMR aims to minimize 
the body part shape reconstruction. LGR is designed as a con-
straint to better stitch different reconstructed body parts into 
a complete body shape by minimizing the global body shape 
reconstruction. To validate the contribution of the proposed 
constraint, we compared LPMR and LPMR + 0.001 × LGR. 
Table X shows that LPMR + 0.001 × LGR indeed performed 
better than LPMR since lower average reconstruction errors 
can be observed. 

TABLE X 
ABLATION STUDY ON THE LOSS (UNIT: mm). 

SRE LP M R LP M R + 0.001 × LGR 

µ 
σ 

max 

0.0186 
0.0142 
0.1675 

0.0182 
0.013 
0.1339 
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3) Volume regression from sparse point clouds VS Volume 
regression from dense point clouds: Regressing volume values 
from point clouds is a challenging problem. We observed 
that the regression result is prone to the position of each 
point. PointNet-based models have to be trained based on 
the sparse/sub-sampled point clouds. As Table XI shows, our 
proposed two-step training strategy can signifcantly improve 
the accuracy of volume regression from point clouds. 

TABLE XI 
ABLATION STUDY ON BODY VOLUME REGRESSION 

RVE downsampled 2048 points whole points 

µ 96.82% 99.37% 
max 99.94% 100.00% 
min 86.88% 93.89% 

VI. CONCLUSION 

In this article, a novel vision-based method was proposed 
to estimate human part volumes from a single depth image. 
It was built based on deep learning, and consisted of two 
networks. To the best of our knowledge, this is the frst 
deep learning method for estimating human whole-body and 
part volumes. Firstly, the dressed body partial point cloud 
was converted to a complete body shape under clothing with 
semantic segmentation via the proposed multi-task human 
body shape reconstruction network. Next, each part of the 
reconstructed body was further fed into the developed body 
volume network for regressing the corresponding part volume. 
We observed that the volume regression was prone to each 
point since it was a global problem. We, thus, proposed a 
two-step training strategy to improve the performance of body 
volume network. Extensive experiments based on real-world 
and synthetic datasets showed the feasibility and effciency of 
the proposed method, and showed our method outperformed 
the relevant approaches. It is attractive to extend the proposed 
method to various applications such as chest volume estima-
tion for bra customization and breast cancer diagnosis, edema 
diagnosis by comparing the volume changes, and body weight 
estimation, to name a few. They are the interests of our works 
in the future. Besides, studying the effects of the ambient 
environment conditions on volume extraction and assessing 
the contribution of each point to the reconstruction accuracy 
are interesting research aspects. These are left as topics of 
further investigation. 
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rauf, and A. Nüchter, “Libra3d: Body weight estimation for emergency 
patients in clinical environments with a 3d structured light sensor,” 
in 2015 IEEE International Conference on Robotics and Automation 
(ICRA). IEEE, 2015, pp. 2888–2893. 

[2] I. Haponiuk, M. Chojnicki, M. Steffens, R. Jaworski, A. Szofer-
Sendrowska, J. Juscinski, E. Kwasniak, K. Paczkowski, J. Zielinski, 
and K. Gierat-Haponiuk, “Miniinvasive interventional bridge to major 
surgical repair of critical aortic coarctation in a newborn with severe 
multiorgan failure,” Videosurgery and Other Miniinvasive Techniques, 
vol. 8, no. 3, p. 244, 2013. 

[3] R. C. B. Ribeiro, S. M. P. F. Lima, A. C. G. Carreira, D. Masiero, and 
T. R. Chamlian, “Inter-tester reliability assessment of the volumetric 
measurement of the hand in subjects without any changes in their upper 
extremities,” Acta Fisiatrica, vol. 17, no. 1, pp. 3–7, 2010. 

[4] S. H. Ridner, L. Montgomery, J. Hepworth, B. Stewart, and J. Armer, 
“Comparison of upper limb volume measurement techniques and arm 
symptoms between healthy volunteers and individuals with known 
lymphedema,” Lymphology, vol. 40, no. 1, pp. 35–46, 2007. 

[5] M. d. A. Silva-Couto, C. L. Prado-Medeiros, A. B. Oliveira, C. C. 
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