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Figure 1: Given an input partial point cloud (a), we first encode the visible observation as a set of local basis functions (32 in
this example) (b), and then use them to predict the local basis functions for the overall shape (64 in this example) (c), which are
blended to form the final shape (d). We visualize the implicit surfaces inferred from the local basis functions in the bottom of
(b) and (c), while (b) and (c) show the positioned local basis functions without the overlapped regions.

ABSTRACT
In this paper, we focus on the task of 3D shape completion from
partial point clouds using deep implicit functions. Existing methods
seek to use voxelized basis functions or the ones from a certain
family of functions (e.g., Gaussians), which leads to high compu-
tational costs or limited shape expressivity. On the contrary, our
method employs adaptive local basis functions, which are learned
end-to-end and not restricted in certain forms. Based on those
basis functions, a local-to-local shape completion framework is
presented. Our algorithm learns sparse parameterization with a
small number of basis functions while preserving local geometric
details during completion. Quantitative and qualitative experiments
demonstrate that our method outperforms the state-of-the-art meth-
ods in shape completion, detail preservation, generalization to un-
seen geometries, and computational cost. Code and data are at
https://github.com/yinghdb/Adaptive-Local-Basis-Functions.

∗Corresponding author.

KEYWORDS
shape completion, deep implicit functions, adaptive local basis func-
tions

1 INTRODUCTION
3D Shape completion from partially scanned point clouds has been
widely studied due to its importance to various applications such
as automatic driving, augmented reality, and robotics. Naturally,
one needs to rely on certain schemes to represent the 3D shapes
we want to complete such as point clouds [Liu et al. 2020; Mazur
and Lempitsky 2021; Wang et al. 2022; Xiang et al. 2021; Xie et al.
2020; Yuan et al. 2018], deformable meshes [Litany et al. 2018; Rock
et al. 2015], and voxels [Choy et al. 2016; Dai et al. 2017b; Han
et al. 2017; Häne et al. 2017]. On the downside, those classic rep-
resentations also exhibit several intrinsic limitations. For instance,
a point cloud often needs extra post-processing; the deformable
template mesh may not fit the topology of target object; while pro-
cessing voxel-based shapes is much more expensive. Deep implicit
functions or DIFs have recently attracted more attention, which
have been proven to be highly effective for the completion of 3D

ar
X

iv
:2

30
7.

08
34

8v
1 

 [
cs

.C
V

] 
 1

7 
Ju

l 2
02

3

https://github.com/yinghdb/Adaptive-Local-Basis-Functions


Hui Ying, Tianjia Shao, He Wang, Yin Yang, and Kun Zhou

objects [Genova et al. 2020, 2019; Mescheder et al. 2019; Park et al.
2019].

Traditionally, an implicit function is regarded as a weighted
combination of multiple basis functions [Turk and O’Brien 2002;
Walder et al. 2006]. Those basis functions and the associated weights
can be computed with respect to an individual geometry. In the
context of deep learning, a DIF encodes an input observation using a
latent vector z and adopts a network-based embodiment to estimate
the function value 𝑓 (x, z) for a given 3D query location x. Most
existing DIF methods follow this modality but use different choices
of implicit functions (i.e., either as a global basis function ormultiple
local basis functions) andweightingmechanisms, which collectively
determine the expressivity of the DIF.

Early DIF methods [Genova et al. 2019; Mescheder et al. 2019;
Park et al. 2019] estimate a signed distance or an occupancy func-
tion utilizing a single latent code, with a global basis function.
This representation is later proven to be limited in describing com-
plex shapes [Chibane et al. 2020; Genova et al. 2020]. Therefore,
researchers switched to localized basis functions for shape comple-
tion by dividing the whole shape into multiple regions and region-
conditioned latent codes. One line of research is to discretize the
space into a regular voxel grid and embed the local latent codes
in the voxels [Chen et al. 2021; Chibane et al. 2020]. While being
able to achieve the state-of-the-art results in shape completion, the
required grid resolution leads to a significant growth of computa-
tional cost. Alternatively, adaptive parameterization is sought for
more compact representations (LDIF) [Genova et al. 2020], which
learns to decompose a shape into a collection of overlapping re-
gions represented by 3D Gaussian basis functions. In each region a
latent code is assigned to learn a residual coefficient function for the
Gaussian basis function to produce details. Despite the impressive
results in shape completion, as the final shape is based on a mixture
of refined Gaussians, it inherently has a limited capacity to capture
full details, and therefore can still miss geometric details in difficult
cases (see Fig. 3 for example).

In this paper, we argue that the specific form of basis functions
should be learnable without being restricted to a certain family
of functions. Such basis functions can potentially bring multiple
benefits. Since the basis functions are learnable and local, they
are more likely to capture local fine details due to the data-driven
nature. Because the center and the shape of basis functions are
learnable, fewer basis functions can achieve equal or better repre-
sentation for the same geometry compared to analytical functions.
For this reason, we aim to learn arbitrarily shaped basis functions
so that we can complete 3D shapes with more local details and
lower computational costs.

Learning basis functions for shape completion however is a
challenging task. It is known that global DIFs can still miss local
details [Chibane et al. 2020; Genova et al. 2020], and we would
like to keep our learned functions local. Enforcing such locality is
non-trivial during the training process. In addition, unlike learning
DIFs from full observations [Chabra et al. 2020; Jiang et al. 2020; Li
et al. 2022; Yao et al. 2021], we only have partial observations in
shape completion tasks, which impose further difficulties. To this
end, our method leverages a progressive, observed-to-unobserved
process. We first encode the visible shape as a sequence of local
basis functions and then use them to predict the basis functions in

the missing region in a sequence-to-sequence manner. This strategy
tends to preserve the fine details for the visible area while learning
the correlations between the visible and missing parts.

We address the locality problem by learning the function domain
of each basis. Following the intuition that points located near a
basis should be more likely to be inside its domain, we adopt the
Radial Basis Function (RBF) kernels with learnable parameters to
parameterize the domain. In our implementation, the RBF-based
domains and DIF-based basis functions are learned jointly in an end-
to-end manner for a compact shape representation and preserved
local details. Based on such shape formulations, we build the shape
completion pipeline in two main steps. As shown in Fig. 1, the first
step is to map the partial input points into a collection of local
bases which encode the visible shape compactly with details. In the
second step, we predict the local bases for the missing areas and
refine the local bases of the visible areas by adopting Transformer
encoders [Vaswani et al. 2017]. The self-attention mechanism of
Transformers mimics the pairwise interaction between local bases,
thus enabling the accurate sequence-to-sequence translation among
visible local bases and missing local bases.

To summarize, our main contributions include the following as-
pects. First, we propose DIF-based local basis functions for effective
and efficient shape representation, which can capture fine details
with a small number of local basis functions. Second, we introduce
a local-to-local shape completion pipeline, which is both efficient
and geometry-rich. Experiments demonstrate that our method out-
performs previous state-of-the-art methods by a large margin.

2 RELATEDWORK
2.1 Deep Implicit Shape Representation
A large amount of learning-based methods has achieved promis-
ing results using implicit shape representation. With the strength
of deep learning, neural networks serve as a powerful tool to
fit various implicit functions, such as signed/unsigned distance
fields [Park et al. 2019; Venkatesh et al. 2020], occupancy indica-
tor functions [Chen and Zhang 2019; Mescheder et al. 2019; Peng
et al. 2020], deformation functions [Deng et al. 2021; Hui et al.
2022; Paschalidou et al. 2021] or other specifically defined implicit
functions [Aumentado-Armstrong et al. 2022; Chen et al. 2022a;
Morreale et al. 2021].

Pioneering works such as OccNet [Mescheder et al. 2019], IM-
Net [Chen and Zhang 2019], and DeepSDF [Park et al. 2019] show
that many simple shapes can be represented by a latent code and
the corresponding deep implicit function. However, such deep rep-
resentations often fail to capture local geometries for more complex
shapes. Recent works overcome the problem by focusing on the
localized basis functions. Some methods divide the 3D space into
voxel grids and assign each voxel with a latent code [Chabra et al.
2020; Jiang et al. 2020], while some store the latent codes in the
grid points [Chen et al. 2021; Chibane et al. 2020; Peng et al. 2020]
(or octree [Takikawa et al. 2021]) and interpolates them for query
points within the voxel. Then the local basis functions are learned
separately for each voxel and all local bases are combined for the
final shape reconstruction. While state-of-the-art results can be
achieved, increased resolution yields a significant growth in the
number of codes, resulting in high computational costs.
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In addition to the grid-based DIFs, some methods [Chen et al.
2022b; Genova et al. 2020, 2019; Hertz et al. 2022; Li et al. 2022;
Tretschk et al. 2020; Xiao et al. 2022; Yao et al. 2021; Zhang et al.
2022] seek to formulate the local bases with irregular positions.
SIF [Genova et al. 2019] decomposes a shape into a collection of
overlapping regions represented by 3D Gaussian basis functions,
and LDIF [Genova et al. 2020] learns adaptive weights with DIFs
for further refinement. LGCL [Yao et al. 2021] samples a set of key
points and divide the 3D space into local regions based on Euclidean
distance, within which it learns a DIF for local shape representation.
Some other methods [Chen et al. 2022b; Li et al. 2022] store the
latent codes in multiple irregularly distributed key points, and the
new code is interpolated from these codes. The advantage of these
methods is that less computation is used to represent a complex
shape. In our method, we follow this strategy but propose a novel
formulation such that the DIF-based local bases are learned along
with the combining weights so as to capture more details.

2.2 Shape Completion
Recently, neural networks have been used to predict the whole
shape from partial input with the help of data priors. The shape
completion methods can be classified according to the output repre-
sentations, such as voxels, meshes, point clouds, and deep implicit
functions. Voxel-based methods [Choy et al. 2016; Dai et al. 2017b;
Han et al. 2017; Häne et al. 2017; Sun et al. 2022] can directly gener-
ate output data thanks to 3D convolution networks, but the mem-
ory and time costs are too high when dealing with high-resolution
shape grids. And mesh-based methods [Litany et al. 2018; Rock et al.
2015] are hard to handle shapes with arbitrary topology. Therefore,
a mass of methods [Liu et al. 2020; Mazur and Lempitsky 2021;
Wang et al. 2022; Xiang et al. 2021; Xie et al. 2020; Yuan et al. 2018]
focus on performing shape completion in point clouds which do
not have those problems. But usually what we want are the mesh
outputs rather than the point clouds. Other popular methods re-
cently for shape completion is using DIF [Genova et al. 2020, 2019;
Mescheder et al. 2019; Park et al. 2019]. For preserving details and
using the convenient 3D convolution, most methods [Chen et al.
2021; Chibane et al. 2020; Mittal et al. 2022; Yan et al. 2022; Zheng
et al. 2022] employ grid-based features to process data and express
the implicit function of the output shape. ShapeFormer [Yan et al.
2022], AutoSDF [Mittal et al. 2022] and SDF-StyleGAN [Zheng et al.
2022] propose to model the shape completing as a generative task
which aims to generate a series of voxelized latent codes for repre-
senting the complete shape. However, due to the large amount of
latent codes and the use of 3D convolution, these methods suffer
the problem of high computational cost. SIF [Genova et al. 2019]
and LDIF [Genova et al. 2020] perform 2D convolutions on the
input partial depth map(s) to extract the features which encode
the whole shape. But their Gaussian-based local bases limit their
expression capacity of arbitrary shapes. Without the above issues,
our shape completion method utilizes DIF-based local bases with
arbitrary shapes to preserve better details and avoid the use of 3D
convolution to consume lower computation.

2.3 Transformers
Transformer [Vaswani et al. 2017] is a powerful framework for
sequence-to-sequence translation tasks, which has been proved
useful in natural language processing [Devlin et al. 2018; Radford
et al. 2019] and image processing [Carion et al. 2020; Dosovitskiy
et al. 2020; Parmar et al. 2018]. Most recently, a number of meth-
ods [Mittal et al. 2022; Yan et al. 2022; Yu et al. 2021] model the
shape completion as a sequence-to-sequence task by taking ad-
vantage of Transformers. PoinTr [Yu et al. 2021], as a point cloud
completing method, uses the Transformer encoder-decoder archi-
tecture to predict point proxies for missing parts. ShapeFormer [Yan
et al. 2022] and AutoSDF [Mittal et al. 2022], as implicit-function
based methods, use the Transformer-based autoregressive model
to predict the complete shape conditioned on the partial inputs.
In our method, we utilize the Transformer encoder to model the
dependencies among the visible and missing parts and predict the
local bases for complete shape representation.

3 IMPLICIT FIELD FORMULATION
A surface can be described as an SDF and represented implicitly as
{x|𝑓𝜙 (x, z) = 0}, where 𝑓𝜙 (x, z) can be implemented by a neural
network with learnable parameters 𝜙 . Unlike previous methods
which assume a global latent code z [Park et al. 2019], we represent
the SDF as a weighted sum of multiple local basis functions. Each
DIF 𝑓𝜙 (x − 𝝁𝑖 , z𝑖 ), or 𝑓𝑖 (x) for simplicity, is defined with a center
position 𝝁𝑖 , and a latent code z𝑖 is used for expressing the local
SDF. For a given query point x ∈ R3, its final signed distance is
decided by a linear combination of 𝑁 DIF-based basis functions
with weights 𝛼𝑖 ,

𝑠𝑑 𝑓 (x) =
∑︁

𝑖∈[𝑁 ]
𝛼𝑖 𝑓𝜙 (x − 𝝁𝑖 , z𝑖 ),

𝛼𝑖 =
𝑔(x − 𝝁𝑖 ,A𝑖 )∑

𝑗∈[𝑁 ] 𝑔(x − 𝝁 𝑗 ,A𝑗 )
,

𝑔(x − 𝝁𝑖 ,A𝑖 ) = exp (−||A𝑖 (x𝑖 − 𝝁𝑖 ) | |22),

(1)

where 𝑔(x−𝝁𝑖 ,A𝑖 ), or 𝑔𝑖 (x) for simplicity, is an RBF function with
learnable parameter A𝑖 . A𝑖 is a linear transform matrix, which is
constructed by the product of a scaling matrix S𝑖 and a 3D rotation
matrix R𝑖 . Practically, S𝑖 is mapped from a 3-dimensional vector,
and R𝑖 is mapped from a 6-dimensional vector as in [Zhou et al.
2019], in which these vectors are predicted from networks directly.
Eq. 1 naturally encourages sparsity through 𝛼𝑖 , which increases
exponentially when x is close to 𝝁𝑖 , but quickly becomes damped
when x moves away from 𝝁𝑖 .

For complex shapes, one may still need to use many basis func-
tions to capture local shape variations, and 𝛼𝑖 alone is insufficient
to guarantee the sparsity. To this end, we require each 𝑓𝜙 only
parameterizes a local neighborhood around it. As a result, only a
small number of 𝑓𝜙 s contribute the actual value of 𝑠𝑑 𝑓 (x) for a
given x. In our experiments, we found that only two nearest 𝑓𝜙 s to
xwill give reasonably good results. Let 𝑝 and 𝑞 be the indices of two
largest RBFs 𝑔𝑖 (x), and 𝑠𝑑 𝑓 (x) becomes the linear combining the
local bases with these two indices (i.e., replacing [𝑁 ] with {𝑝, 𝑞} in
Eq. 1).
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Figure 2: The overall network architecture of shape completion is divided into three parts. ‘Visible Points Encoding’ takes a
partial point cloud as input and encodes it into 𝑁𝑣𝑖𝑠 local bases for visible regions, which is supervised by L𝑠𝑑 𝑓 . ‘Missing Centers
Prediction’ predicts 𝑁𝑚𝑖𝑠𝑠 centers of local bases for invisible regions based on the encoding and centers of visible local bases,
which is supervised by L𝑐ℎ𝑎𝑚 . With the above predictions, ‘Whole Local Bases Prediction’ predicts the final 𝑁𝑐𝑜𝑚𝑝 local bases for
the complete shape, which is supervised by L𝑖𝑛𝑡𝑒 . Within the figure, yellow blocks stand for learnable networks or parameters,
¤𝑒 and { ¥𝑒}𝑁𝑚𝑖𝑠𝑠

are query embeddings, and ⊗ means a concatenate operation. Both Missing Centers Transformer and Local Bases
Transformer use the Transformer encoder architecture with multiple self-attention layers. Note that 𝑁𝑐𝑜𝑚𝑝 = 𝑁𝑣𝑖𝑠 + 𝑁𝑚𝑖𝑠𝑠 .

4 COMPLETION PIPELINE
As shown in Fig. 2, we first encode the input partial points into a
series of local bases as the shape representation for the visible area
(see Sec. 4.1), and then utilize the power of Transformers [Vaswani
et al. 2017] to generate the whole local bases (see Sec. 4.2), which
can further be optimized for better results (see Sec. 4.3).

4.1 Compact Point Cloud Encoding
As shown in the orange dashed box in Fig 2, the PointNet++ en-
coder [Qi et al. 2017] serves to downsample and encode input points
into 𝑁𝑖𝑛𝑖𝑡 center points with coordinates 𝝁̂𝑖 and embeddings ê𝑖 .
Then Multi-Layer Perceptrons (MLPs) are used to decode the em-
beddings into latent codes ẑ𝑖 and domain parameters Â𝑖 which
together with the centers 𝝁̂𝑖 form the local bases for the shape
representation.

In the PointNet++ encoder, key points are sampled uniformly
from the input points. Such sampling is unnecessary. Ideally, re-
gions with complex geometry should be densely sampled while
regions with simple geometry should be sparsely sampled, as the
domain of the local basis will be smaller for complex geometry
and larger for simple geometry. Therefore, we propose an adaptive
downsampling strategy based on the predicted domains of local
bases after the uniform sampling in PointNet++ encoder. The de-
tailed downsampling algorithm is shown in Alg. 1. 𝑔𝑖 (𝝁 𝑗 ) can be
regarded approximately as the the probability that the center of
𝑗-th local basis is inside the domain of the 𝑖-th local basis. So the
higher 𝑠 ( 𝑗) implies the higher probability that the domain of 𝑗-th
local basis can be covered by the other local bases, so we eliminate
the key point with the highest 𝑠 ( 𝑗) sequentially. Note that after
eliminating one key point, all the other 𝑠 ( 𝑗) needs to be updated.

ALGORITHM 1: Domain-based Downsampling
Let 𝑆 = {𝑠 ( 𝑗) = ∑

𝑖∈[𝑁𝑖𝑛𝑖𝑡 ],𝑖≠𝑗 𝑔𝑖 (𝝁 𝑗 )} 𝑗∈[𝑁𝑖𝑛𝑖𝑡 ] ;
Let 𝑇 = [𝑁𝑖𝑛𝑖𝑡 ] be the reserved indices;
for 𝑖𝑡𝑒𝑟 = 1 to 𝑁𝑖𝑛𝑖𝑡 − 𝑁𝑣𝑖𝑠 do

Find the max 𝑠 (𝑘) in 𝑆 ;
Eliminate 𝑘 from 𝑇 , and 𝑠 (𝑘) from 𝑆 ;
Update 𝑠 ( 𝑗) = 𝑠 ( 𝑗) − 𝑔𝑘 (𝝁 𝑗 ) for 𝑠 ( 𝑗) ∈ 𝑇 ;

end

In order to learn the compact encoding for the input partial point
cloud, we perform end-to-end training for partial shape representa-
tion with the following loss:

L𝑠𝑑 𝑓 =
1
|X|

∑︁
x,y∈X,Y

𝛼𝑝 |𝑓𝑝 (x) − y| + 𝛼𝑞 |𝑓𝑞 (x) − y|,
(2)

where X and Y stand for the set of query points and target signed
distances, and {𝑝, 𝑞} are as described in Sec. 3. For partial point
cloud encoding, the query points X for training are sampled near
the input points. With the loss function, we want each local basis
function 𝑓𝑖 to accurately learn the local SDF function. And at the
same time, the learning of 𝛼𝑖 and 𝑓𝑖 is adaptive: if |𝑓𝑖 (x) − y| is
smaller, the corresponding 𝛼𝑖 will be learned to be larger to reduce
L𝑠𝑑 𝑓 since 𝛼𝑝 + 𝛼𝑞 = 1. This means that if a position can be more
accurately described by a local basis function, it will be more likely
in the local domain of the basis.
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4.2 Whole Local Bases Prediction
In Sec. 4.1, we get 𝑁𝑣𝑖𝑠 centers 𝝁̂𝑖 and embeddings ê𝑖 which can be
decoded into local bases for visible shape representation. Taking
these results as input, we aim to predict more centers and embed-
dings for complete shape representation in two steps as shown in
the green and blue dashed boxes in Fig. 2.

Missing Centers Prediction. First, the 𝑁𝑣𝑖𝑠 pairs of embeddings
ê𝑖 and centers 𝝁̂𝑖 , as well as one learnable query embedding ¤e, are
input into Missing Centers Transformer, and the output is then
fed to the MLP to get 𝑁𝑚𝑖𝑠𝑠 center points coordinates 𝝁̄𝑖 for the
missing area. We supervise the prediction of missing centers with
the following chamfer distance loss:

L𝑐ℎ𝑎𝑚 =
1

|M|
∑︁
𝝁∈M

min
𝝂∈N

| |𝝁 − 𝝂 | |2 +
1
|N |

∑︁
𝝂∈N

min
𝝁∈M

| |𝝂 − 𝝁 | |2,

(3)
where M is the set of 𝑁𝑚𝑖𝑠𝑠 predicted missing center point coordi-
nates, and N is the set of target missing center point coordinates.
The target centers are fetched by using Furthest Point Sampling
(FPS) in the surface points of the missing region.

Whole Local Bases Prediction. Local Bases Transformer takes as
input 𝑁𝑣𝑖𝑠 pairs of embeddings ê𝑖 and centers 𝝁̂𝑖 for visible region,
as well as 𝑁𝑚𝑖𝑠𝑠 pairs of query embeddings ¥e and centers 𝝁̄𝑖 for
missing region, to predict the final 𝑁𝑐𝑜𝑚𝑝 embeddings ẽ𝑖 . Then
the output embeddings are sent to MLPs to get latent codes z̃𝑖 and
domain parameters Ã𝑖 for complete shape representation. Note
that the 𝑁𝑚𝑖𝑠𝑠 query embeddings ¥e share the same parameter. In
addition, center offsets 𝜹̃𝑖 are predicted and added to the centers
𝝁̃𝑖 for the reason of providing optimal positions for local basis
functions.

To learn the whole local bases, we use four loss functions to su-
pervise the parameters of whole local bases, which areL𝑑𝑜𝑚

𝑠𝑑𝑓
,L𝑒𝑢𝑐

𝑠𝑑 𝑓
,

L𝑠𝑚𝑜𝑜𝑡ℎ , and L𝑟𝑒𝑔 . L𝑑𝑜𝑚
𝑠𝑑𝑓

has the same form and function as Eq. 2.

However, only using L𝑑𝑜𝑚
𝑠𝑑𝑓

will cause problems in learning missing
local basis functions. As with prior input embeddings, visible local
bases are learned more quickly than the missing ones so that their
domains soon expand to a wide range that even covers the missing
coordinates, making the weights 𝛼𝑖 close to 0 for missing local
basis functions. We address the problem by adding the loss function
L𝑒𝑢𝑐
𝑠𝑑 𝑓

, which simply discards the use of weights. The loss function
L𝑠𝑚𝑜𝑜𝑡ℎ is used to make the transition between two adjacent local
bases smooth, and L𝑟𝑒𝑔 is used for keeping the coordinate offsets
𝜹̃𝑖 small. The final loss functions are shown below,

L𝑖𝑛𝑡𝑒 = L𝑑𝑜𝑚
𝑠𝑑𝑓

+ L𝑒𝑢𝑐
𝑠𝑑 𝑓

+ 𝜆1L𝑠𝑚𝑜𝑜𝑡ℎ + 𝜆2L𝑟𝑒𝑔, (4)

L𝑠𝑚𝑜𝑜𝑡ℎ =
1
|X|

∑︁
x,y∈X,Y

|𝑓𝑝 (x) − 𝑓𝑞 (x) |, (5)

L𝑒𝑢𝑐
𝑠𝑑 𝑓

=
1
|X|

∑︁
x,y∈X,Y

|𝑓𝑘 (x) − y|, L𝑟𝑒𝑔 =
1

𝑁𝑐𝑜𝑚𝑝

∑︁
𝑖∈[𝑁𝑐𝑜𝑚𝑝 ]

|𝜹𝑖 |,

(6)

where 𝜆1 is 0.5, and 𝜆2 is 0.01 in the first epoch of training and
0.0 in the other epochs. 𝑘 is defined as the index of the 𝝁𝑖 which
is closest to the query point x in Euclidean distance. X are the
mixture of uniformly sampled points and the points sampled near
the complete surface as in DeepSDF [Park et al. 2019].

4.3 Post Optimization
From Sec. 4.2, we get a collection of local bases defined by latent
codes z𝑖 , domain parameters A𝑖 and coordinates 𝝁𝑖 to represent a
complete shape. The represented shapes already have good qual-
ity (see Tab. 1 and Fig. 3), but they can be further optimized. In
short, we optimize z𝑖 and 𝝁𝑖 to minimize the following loss, where
𝜆1, 𝜆2, 𝜆3, 𝜆4 = 1.0, 10.0, 10.0, 0.1.

L𝑜𝑝𝑡 = 𝜆1L𝑓 𝑎𝑐𝑒 + 𝜆2L𝑝𝑜𝑠 + 𝜆3L𝑎𝑑 𝑗 + 𝜆4L𝑠𝑡𝑎𝑏𝑙𝑒 , (7)
L𝑓 𝑎𝑐𝑒 is used to guarantee the predicted signed-distance values of
input points X𝑖𝑛 are close to 0. L𝑝𝑜𝑠 is used to ensure the signed
distance value of sampled points, whose signed distance value is
confirmed as positive, is larger than 0. L𝑎𝑑 𝑗 is used to make the
signed distance value change smoothly between two adjacent local
bases, andL𝑠𝑡𝑎𝑏𝑙𝑒 is used to keep the optimized parameters close to
the original ones. More details are in the supplementary material.

5 EXPERIMENT
We execute a series of experiments to evaluate our method for
3D completion. By default, we use 𝑁𝑖𝑛𝑖𝑡 = 128, 𝑁𝑣𝑖𝑠 = 64 and
𝑁𝑚𝑖𝑠𝑠 = 32, and test with unoptimized results.

Dataset. The experiments are run on the ShapeNet dataset [Chang
et al. 2015]. We preprocess the shapes to make them water-tight
following the instructions from Occupancy Networks [Mescheder
et al. 2019]. We first generate the 224×224 depth scans of 16 random
views around the objects. The input point clouds are fetched by
reprojecting the 2D pixels and sampling within the 3D points using
FPS. We set the number of input points𝑀 = 2048 in all our exper-
iments. Except in the ablation study, we use the official training
splits of 8 classes as [Yuan et al. 2018] for training, and for testing,
we perform two kinds of experiments. One experiment is for the
trained 8 classes where we use 3000 partial inputs randomly sam-
pled from the testing splits of the 8 classes, and the other is for the
unknown classes where we use 3000 partial inputs from 5 unseen
classes. As for the ablation study, we use the chair class for training
and testing. More details are in the supplementary material.

Metrics. For the evaluation we use the metrics of Intersection-
over-Union (IoU) [Mescheder et al. 2019], Chamfer L2 Distance
(CD) [Mescheder et al. 2019] and F-score%1 (F1) [Tatarchenko et al.
2019]. If there is no notation, we sampled 100k points on each mesh
surface for the computation of CD and F1.

Baselines. We compare our method with the state-of-the-art
implicit-function based 3D completion methods: IF-Net [Chibane
et al. 2020], decoder-only DeepSDF [Park et al. 2019], LDIF [Genova
et al. 2020], and ShapeFormer [Yan et al. 2022]. For a fair compari-
son, we set the number of shape elements in LDIF to be 96 which
is the same as ours. For the training of ShapeFormer, in which the
latent resolution is set to 163, the scaling augmentation is used, or it
will fall into overfitting quickly. We also compare our method with
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Table 1: Quantitative comparison on 8 trained classes. ‘Ours (opt.)’ means the the optimized results of our method. ‘PoinTr-NDC’
and ‘SnowflakeNet-NDC’ convert the point cloud results of ‘PoinTr’ and ‘SnowflakeNet’ tomeshes using Neural Dual Contouring
(NDC) [Chen et al. 2022c]. As the reconstructed meshes are not watertight, their IoU scores are not listed.

Metric Method airplane cabinet car chair lamp sofa table vessel mean

IoU ↑

DeepSDF 0.174 0.490 0.611 0.376 0.286 0.437 0.287 0.356 0.377
IF-Net 0.811 0.656 0.845 0.765 0.676 0.825 0.646 0.799 0.753
LDIF 0.637 0.657 0.785 0.630 0.454 0.760 0.534 0.639 0.637
ShapeFormer 0.662 0.586 0.802 0.629 0.526 0.747 0.552 0.671 0.647
Ours 0.853 0.778 0.867 0.830 0.763 0.872 0.766 0.851 0.822
Ours (opt.) 0.843 0.778 0.863 0.822 0.756 0.868 0.759 0.845 0.817

CD ↓
(×10−3)

DeepSDF 9.55 2.96 2.31 3.81 8.76 6.51 7.55 8.58 6.25
IF-Net 0.142 1.12 1.08 0.523 0.687 0.338 1.44 0.645 0.747
LDIF 0.385 1.10 0.365 0.840 2.00 0.437 1.36 0.661 0.893
ShapeFormer 0.219 2.03 0.423 0.945 0.899 0.625 1.42 0.320 0.860
PoinTr-NDC 0.122 0.540 0.205 0.286 0.315 0.252 0.615 0.146 0.310
SnowflakeNet-NDC 0.128 0.536 0.202 0.300 0.400 0.251 0.580 0.173 0.321
Ours 0.0834 0.772 0.299 0.298 0.323 0.250 0.825 0.118 0.371
Ours (opt.) 0.0791 0.771 0.312 0.296 0.333 0.256 0.782 0.116 0.368

F1 ↑

DeepSDF 0.238 0.375 0.402 0.346 0.262 0.326 0.320 0.308 0.322
IF-Net 0.889 0.647 0.773 0.792 0.780 0.793 0.741 0.830 0.781
LDIF 0.691 0.537 0.651 0.579 0.484 0.637 0.606 0.572 0.595
ShapeFormer 0.764 0.552 0.678 0.653 0.640 0.665 0.661 0.664 0.659
PoinTr-NDC 0.826 0.642 0.737 0.728 0.699 0.767 0.725 0.788 0.739
SnowflakeNet-NDC 0.817 0.657 0.732 0.728 0.692 0.750 0.737 0.779 0.737
Ours 0.920 0.749 0.795 0.858 0.848 0.848 0.841 0.883 0.843
Ours (opt.) 0.918 0.778 0.789 0.855 0.845 0.847 0.844 0.883 0.841

Table 2: Quantitative comparison on unseen classes.

Method IoU↑ CD↓ (×10−3) F1↑
DeepSDF 0.335 6.74 0.311
IF-Net 0.674 0.837 0.721
LDIF 0.458 1.15 0.436
ShapeFormer 0.572 1.02 0.607
PoinTr-NDC - 0.511 0.656
SnowflakeNet-NDC - 0.648 0.652
Ours 0.771 0.611 0.812
Ours(opt.) 0.770 0.596 0.818

PoinTr [Yu et al. 2021] and SnowflakeNet [Xiang et al. 2021] which
are 3D point cloud completion methods that also use Transformer
architectures. All these baseline methods use the same training data
and testing data as ours. But the input formats are a little different
for some methods. The input of LDIF is a scanned depth map which
is the source of our partial point cloud, and the input of IF-Net is a
128 × 128 × 128 discrete occupancy grid from the input point cloud.

5.1 Results on Trained Classes
As shown in Tab. 1, our method achieves much better scores than
other methods. The IoU and F1 scores of our method outperform the
second place by 6.2% and 6.9%. We can find that DeepSDF is very
difficult to restore the shapes because of the limitation of a single

latent code. IF-Net, LDIF, and ShapeFormer achieve better scores but
are still not comparable with ours. PoinTr-NDC and SnowflakeNet-
NDC obtain slightly better scores in CD than ours as the target
of PoinTr and SnowflakeNet is to minimize the chamfer distance,
but they have lower scores in F1. An interesting phenomenon is
that after optimization, our method achieves better scores in CD
but worse scores in IoU and F1. It illustrates that the initial shapes
directly predicted from networks are accurate enough.

We also show the qualitative comparison in Fig. 3. From the
results, we can find that DeepSDF fails to repair shapes when facing
complex shapes. IF-Net preserves fine details for the visible part
because the input points are transferred into a high-resolution
voxel grid which saves the detail information in an explicit way,
but it cannot avoid the generation of noises for invisible parts.
LDIF, and ShapeFormer fail to recover fine details. We can see that
details such as small holes and thin curves are missing in their
results. It is mainly because of the low capacity of their shape basis
(i.e., Gaussians and vector quantized DIF) for capturing details.
Obviously, our method owns a better capacity in preserving details
for shape completion. For example, in Row 1 and Row 3, our method
preserves the correct holes on the chair back and the very thin
line correctly. Row 2 shows the power of our method in handling
complex surfaces, and it also shows the benefit of post optimization,
which is flattening the uneven surface.
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Table 3: Comparison on computational complexity. Floating
Point Operations (FLOPs) are counted according to a single
forward of eachmethodwith one partial input and one query
point.

Methods DeepSDF IF-Net LDIF ShapeFormer Ours

Latent Resolution 1 1283 96 163 96
FLOPs 1.84 M 20.6 B 7.07 B 112.5 B 1.65 B

Table 4: Ablation study on the number of local bases for
encoding.

Local Basis Number 128 96 64 32

IoU ↑ 0.836 0.828 0.818 0.793
CD (×10−3) ↓ 0.303 0.330 0.358 0.369

F1 ↑ 0.866 0.861 0.852 0.829

5.2 Results on Unseen Classes
The results on unseen classes can represent the generalization abil-
ity of the shape completing methods on other shapes. From Tab. 2,
we can find that our method shows outstanding generalization abil-
ity in completing the shapes of unseen classes. It is mainly because
of our adaptive local bases and the local-to-local translation mecha-
nism which enables predicting missing parts locally. As local parts
across different classes may share a similar shape distribution (e.g.
the legs of chairs and tables), our method can share the learned
local-to-local translation priors from the trained classes with the
unseen classes to improve the generalization ability. Again, PoinTr-
NDC obtains a slightly better score in CD than ours as PoinTr aims
to minimize the chamfer distance. We provide more qualitative
comparisons in the supplementary materials.

5.3 Comparison with PatchRD
PatchRD [Sun et al. 2022] is a voxel-based completion method.
While it uses 3D convolutional encoding, its output is based on
retrieval rather than direct convolutional decoding. We follow
PatchRD to crop out small regions to generate input data, and
perform qualitative comparison with it. The results are shown in
Fig. 5. Our method can produce more accurate and smoother results
than PatchRD.

5.4 Different Levels of Completeness
In order to validate the robustness of our method, we conduct
experiments on input points with different levels of completeness,
as shown in Fig. 6. Our method is robust to different levels of
completeness and can preserve fine details in general. But we still
observe floating crossbars near the chair legs (Column 1&5 in Row
3). It may be caused by the ambiguity of crossbar existence in chairs.
One interesting future work is how to avoid such ambiguities.

5.5 Results on Real Scans
We have investigated the completion ability of our method on
real-world scans. Fig. 4 shows the results of different objects from

Table 5: Ablation study on smooth loss and domain-based
downsampling.

Smooth
Loss

Domain-based
Downsampling IoU↑ CD ↓

(×10−3) F1↑

✘ ✔ 0.797 0.409 0.832
✔ ✘ 0.808 0.394 0.841
✔ ✔ 0.808 0.364 0.844

ScanNet [Dai et al. 2017a] and scanned by ourselves using Kinect
v2. Our method achieves high-quality completion results on real
scan data.

5.6 Comparison on Computational Cost
Tab. 3 gives the comparison of computational cost among DIF-based
baseline methods and ours. Although DeepSDF achieves the fewest
latent codes and FLOPs, it fails in completing complex shapes as
illustrated above. Among the other methods, it can be easily found
that our method has a much lower computational cost, because we
use a compact shape representation which requires a small number
of latent codes and avoids the use of 2D and 3D convolutions which
consume a lot of computations in LDIF, IF-Net, and ShapeFormer.

5.7 Ablation Studies
Weight Strategies. To prove that our learnable weights 𝛼𝑖 can

improve the learning of DIF-based basis functions and therefore
help with preserving details, we compare the completion results
with different weight strategies. The comparison results can be
found in Fig. 7 (right). The learnable strategy is what we used, while
the soft strategy means using the same formulation as Eq. 1 but the
weights 𝛼𝑖 are unlearnable which means the domain parameters
A𝑖 and the offsets 𝜹𝑖 are fixed (we set R𝑖 to be an identity matrix,
𝝈𝑖 = [500, 500, 500] and 𝜹𝑖=0.). The hard strategy is more direct
that 𝛼𝑖 is 1 if the center 𝝁𝑖 is closest to the query point x or 0
otherwise. Obviously, the learnable strategy can help provide more
details.

Local Basis Number. In order to verify that our local bases are
compact, we do an ablation study using different numbers of local
bases during partial point cloud encoding. Specifically, we fix the
initial local basis number (𝑁𝑖𝑛𝑖𝑡 ) to 128 but vary the downsampling
number (𝑁𝑣𝑖𝑠 ) for partial points encoding and shape completion.
From Tab. 4, we can find that the scores keep close with different
local basis numbers. When the local basis number decreases from
128 to 32, the scores only drop a little. That means our local bases
can be learned adaptively to faithfully represent the shapes.

Nearest Basis Number. In our framework, the signed distance of
a query point is determined by two nearest local basis functions.
We have also tried to use three nearest bases, and the IoU score
decreases by 0.2% and F1 score remains the same. Therefore, two
nearest local bases are sufficient to express the signed distance.

Loss Functions. We conduct ablation studies on different loss
functions. As shown in Row 1 and 3 in Tab. 5, by using the smooth
loss, the IoU score increases by 1.1% and F1 score increases by



Hui Ying, Tianjia Shao, He Wang, Yin Yang, and Kun Zhou

1.2%. As shown in Fig 7 (left), without L𝑒𝑢𝑐
𝑠𝑑 𝑓

, the prediction of
missing parts degrades. Removing L𝑟𝑒𝑔 makes the training unable
to converge.

Domain-based Downsampling. We validate the domain-based
downsampling by replacing it with uniform downsampling. As
shown in Row 2 and 3 in Tab. 5, domain-based downsampling
obtains the best scores.

6 CONCLUSION AND LIMITATION
We have proposed a new shape completion method based on im-
plicit function with adaptive local basis functions. These local basis
functions provide an effective and efficient compact representation
for complex shapes, preserving geometric details while reducing
computational costs. One limitation of our method is that the whole
local bases prediction does not guarantee to recover the target topol-
ogy of the shape, shown in (Fig. 1 (d)) where the cross-bar is not
tightly connected with one leg of the chair. This happens when the
connectivity of the local bases in the missing region is different
from the ground-truth. In the future, we will look into augment-
ing our method with a high-level graph-based representation that
focuses on the global topology of the shape.
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Figure 3: Qualitative comparison with other methods.‘Ours (opt.)’ means the optimized results of our method.
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Figure 4: Shape completion results on real-world scans.
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Ours

PatchRD

Figure 5: Qualitative comparison with PatchRD. For each pair, the left is the input and the right is the output.

Figure 6: Qualitative results on point clouds with different levels of completeness. For each pair, the left is the input and the
right is the output.
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Figure 7: Ablation study on L𝑒𝑢𝑐
𝑠𝑑 𝑓

(left) and different weight strategies (right).
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A IMPLEMENTATION DETAILS
A.1 Networks Details
In Tab. 6, we show the detailed network architecture of the Point-
Net++ encoder [Qi et al. 2017] and head networks. For the Point-
Net++ encoder, the sampling layer performs farthest point sampling
(FPS) to the input points to choose a subset of input points, and the
grouping layer uses 𝐾 nearest neighbors (KNN) to find a fixed num-
ber of neighboring points. The hierarchical sampling and grouping
operations in the PointNet++ encoder guarantee that the output
key point embeddings focus on the local region features.

Given 𝑁 input embeddings with feature size 256, four head
networks are used to decode them into the required parameters for
local bases, which are latent codes z𝑖 , domain parameters A𝑖 , and
offsets 𝜹𝑖 . Note that the domain parameter A𝑖 consists of sigma 𝝈𝑖

and rotationR𝑖 , so there are two head networks to predict these two
parameters separately. Also, the head networks used in the partial
point cloud encoding and the whole local bases prediction share the
same architecture but have different weights. In addition to these
four head networks, the coordinate head network takes as input
one 256-dimension embedding and predicts 𝑁𝑚𝑖𝑠𝑠 × 3 dimension
features that can be reshaped as 𝑁𝑚𝑖𝑠𝑠 coordinates for the missing
region.

For the implicit decoder, we follow the same architecture as
DeepSDF [Park et al. 2019]. Both Missing Centers Transformer and
Local Bases Transformer consist of several self-attention blocks
as the encoder in [Vaswani et al. 2017]. We use 3 and 6 blocks
for Missing Centers Transformer and Local Bases Transformer,
respectively. All of these blocks have 8 heads self-attention, and the
embedding dimension is 256. All input coordinates 𝝁𝑖 are mapped
into 256-dimension positional embeddings by 2 linear layers.

A.2 Training Details
Directly training the whole model makes it hard to converge, so we
adopt a two-phase training. The first phase is to train the networks
and parameters used in partial point cloud encoding and missing
centers prediction simultaneously. The used loss function is L𝑠𝑑 𝑓 +
𝜆L𝑐ℎ𝑎𝑚 with 𝜆 = 0.01. It is worth mentioning that during training,
the embeddings e𝑖 and coordinates 𝝁𝑖 after downsampling will be
inputted into Missing Centers Transformer in forward propagation,
but their gradients will not be returned from the Transformer in
backward propagation in order to avoid the influence of missing
centers prediction on partial point cloud encoding. After the first
phase of training, those trained networks and parameters are fixed,
and the next phase is to train the query embedding ¥e and Local Bases
Transformer, as well as the head networks and implicit decoder used
in whole local bases prediction, with the loss function L𝑖𝑛𝑡𝑒 . Before
the start of the second phase training, the weight of the untrained
implicit decoder and head networks can be initialized with the ones
trained in the first phase who share the same architectures.

In the both training phases, we utilize Adam optimizer and multi-
step learning rate scheduler to train the networks and parameters
with the batch size 16 and the initial learning rate 0.0005. In themain
experiments, during each phase we perform training for 20 epochs
and reduce the learning rate by 50% in the epochs of {10, 15, 18}.
While in the ablation study, during each phase we perform training
for 30 epochs and reduce the learning rate by 50% in the epochs

of {15, 22, 27}. More implementation details can be found in the
supplementary materials.

In the experiments, the trained classes for ShapeNet [Chang et al.
2015] include airplane, cabinet, car, chair, lamp, sofa, table, and
vessel, while the unseen classes include telephone, loudspeaker,
display, bench, and rifle.

A.3 Post Optimization
During inference, after predicting the parameters of local bases
from networks, we can further optimize z𝑖 and 𝝁𝑖 to get a more
accurate and smoother shape by minimizing the following loss. We
utilize Adam optimizer to perform optimization for 1000 iterations
with a learning rate of 0.001.

L𝑜𝑝𝑡 = 𝜆1L𝑓 𝑎𝑐𝑒 + 𝜆2L𝑝𝑜𝑠 + 𝜆3L𝑎𝑑 𝑗 + 𝜆4L𝑠𝑡𝑎𝑏𝑙𝑒 . (8)

The function ofL𝑓 𝑎𝑐𝑒 shown below is to guarantee the predicted
signed-distance values of input points X𝑖𝑛 are close to 0. We use a
margin 𝜖 to relax the loss that only the items with |𝑠𝑑 𝑓 (x) | larger
than 𝜖 will be punished.

L𝑓 𝑎𝑐𝑒 =
1

|X𝑖𝑛 |
∑︁

x∈X𝑖𝑛

𝑚𝑖𝑛( |𝑠𝑑 𝑓 (x) | − 𝜖, 0.0)2 . (9)

The function of L𝑝𝑜𝑠 shown below is to ensure the signed dis-
tance value of positive points X𝑝𝑜𝑠 is larger than 0. Similar to Eq. 9,
a margin 𝜖 is also used to relax the loss. The positive points X𝑝𝑜𝑠

are the points that are sampled around the key point coordinates
and whose signed distance value is confirmed as positive. For exam-
ple, if the sampled points are located between the camera and the
observed depth map or outside silhouette of the depth map, they
will be regarded as positive.

L𝑝𝑜𝑠 =
1

|X𝑝𝑜𝑠 |
∑︁

x∈X𝑝𝑜𝑠

𝑚𝑖𝑛(−𝑠𝑑 𝑓 (x) − 𝜖, 0.0)2 . (10)

The function of L𝑎𝑑 𝑗 shown below is to make the signed dis-
tance value change smoothly between two adjacent local bases. In
the function, X𝑠𝑎𝑚𝑝 are the points sampled around the key point
coordinates. 𝑝 and 𝑞 are the same as the ones introduced in Sec. 3 of
the main paper. 𝜔1 (x) and 𝜔2 (x) are the weight factors, that 𝜔1 (x)
gets larger when x is close to the surface and 𝜔2 (x) gets larger
when 𝑔𝑝 (x) and 𝑔𝑞 (x) are close. In practice, we set 𝑎1 = 10000 and
𝑎2 = 1000.

L𝑎𝑑 𝑗 =
1

|X𝑠𝑎𝑚𝑝 |
∑︁

x∈X𝑠𝑎𝑚𝑝

𝜔1 (x)𝜔2 (x) (𝑓𝜙,𝑝 (x) − 𝑓𝜙,𝑞 (x))2,

where 𝜔1 (x) = exp(−𝑎1 min(𝑓𝜙,𝑝 (x), 𝑓𝜙,𝑞 (x))2)
𝜔2 (x) = exp(−𝑎2 (𝑔𝑝 (x) − 𝑔𝑞 (x))2).

(11)

The last loss L𝑠𝑡𝑎𝑏𝑙𝑒 shown below is to keep the optimized
parameters close to the original latent codes 𝝁̂𝑖 and coordinates ẑ𝑖 .

L𝑠𝑡𝑎𝑏𝑙𝑒 =
1

𝑁𝑐𝑜𝑚𝑝

∑︁
𝑖∈[𝑁𝑐𝑜𝑚𝑝 ]

| |𝝁𝑖 − 𝝁̂𝑖 | |2 + ||z𝑖 − ẑ𝑖 | |2 . (12)
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Table 6: The detailed architecture information of our method. 𝑁 is the number of local bases. For linear layer (LinearLayer
and LinearLayer*), ‘i’ and ‘o’ stand for input channel size and output channel size. For convolutional layer (ConvLayer),
the ‘k’, ‘s’, and ‘p’ stand for kernel size, stride, and padding. For grouping layer (Grouping), ‘n’ stands for the number of
points in the neighborhood of centroid points, and the input consists of two point sets, which are the point set with features
before sampling (left) and the coordinates of a set of centroids (right). Also ‘LinearLayer’ denotes a single linear layer, while
‘LinearLayer*’ denotes the composition of linear layer + layer normalization + leaky ReLU. ‘ConvLayer’ denotes the composition
of convolutional layer + group normalization + leaky ReLU.

Layer Name Notes Input Size Output Size

PointNet++ Encoder
LinearLayer i3o16 2048 × 3 2048 × 16
Grouping n16 2048 × (3 + 16)/2048 × 3 2048 × 16 × 19
ConvLayer k1s0p0 2048 × 16 × 19 2048 × 16 × 32
ConvLayer k1s0p0 2048 × 16 × 32 2048 × 16 × 64
ConvLayer k1s0p0 2048 × 16 × 64 2048 × 16 × 128
MaxPooling 2048 × 16 × 128 2048 × 128
Sampling 2048 × 3 512 × 3
Grouping n16 2048 × (3 + 128)/512 × 3 512 × 16 × 131
ConvLayer k1s0p0 512 × 16 × 131 512 × 16 × 128
ConvLayer k1s0p0 512 × 16 × 128 512 × 16 × 128
ConvLayer k1s0p0 512 × 16 × 128 512 × 16 × 128
MaxPooling 512 × 16 × 128 512 × 128
Sampling 512 × 3 128 × 3
Grouping n16 512 × (3 + 128)/128 × 3 128 × 16 × 131
ConvLayer k1s0p0 128 × 16 × 131 128 × 16 × 128
ConvLayer k1s0p0 128 × 16 × 128 128 × 16 × 128
ConvLayer k1s0p0 128 × 16 × 128 128 × 16 × 128
MaxPooling 128 × 16 × 128 128 × 128
LinearLayer i128o256 2048 × 256 128 × 256

Latent Code Head
LinearLayer* i256o256 𝑁 × 256 𝑁 × 256
LinearLayer* i256o256 𝑁 × 256 𝑁 × 256
LinearLayer i256o256 𝑁 × 256 𝑁 × 256

Scaling Head
LinearLayer* i256o256 𝑁 × 256 𝑁 × 256
LinearLayer* i256o256 𝑁 × 256 𝑁 × 256
LinearLayer i256o3 𝑁 × 256 𝑁 × 3

Rotation Head
LinearLayer* i256o256 𝑁 × 256 𝑁 × 256
LinearLayer* i256o256 𝑁 × 256 𝑁 × 256
LinearLayer i256o6 𝑁 × 256 𝑁 × 6

Offset Head
LinearLayer* i256o256 𝑁 × 256 𝑁 × 256
LinearLayer* i256o256 𝑁 × 256 𝑁 × 256
LinearLayer i256o3 𝑁 × 256 𝑁 × 3

Coordinates Head
LinearLayer* i256o512 256 512
LinearLayer* i256o512 512 512
LinearLayer i512o96 512 𝑁𝑚𝑖𝑠𝑠 × 3
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Table 7: Comparison with PoinTr and SnowflakeNet.

Trained Unseen
CD ↓

(×10−3) F1 ↑ CD ↓
(×10−3) F1 ↑

PoinTr 0.279 0.585 0.405 0.558
SnowflakeNet 0.252 0.628 0.374 0.633
Ours 0.447 0.637 0.678 0.640

Table 8: Shape reconstruction results. ‘Lat. Res.’ means latent
resolution, and ‘ShapeF.’ means ShapeFormer.

Method Lat.
Res. IoU↑ CD ↓

(×10−4) F1↑

DeepSDF 1 0.560 18.5 0.425
IFNet 1283 0.915 0.312 0.985
LDIF 32 0.769 3.25 0.834
ShapeF. 163 0.814 0.641 0.884
ShapeF. 323 0.844 0.671 0.928
3DILG 128 0.864 0.782 0.920
3DILG 256 0.895 0.485 0.956
3DILG 512 0.920 0.374 0.978
Ours 32 0.892 0.804 0.936
Ours 64 0.928 0.437 0.968
Ours 128 0.948 0.348 0.981
Ours 256 0.957 0.274 0.987

B EXPERIMENTS
B.1 Comparison with PoinTr and SnowflakeNet
We also compare our method directly with the point-based comple-
tion method PoinTr and SnowflakeNet [Xiang et al. 2021] which
also adopts a Transformer architecture. As the number of output
points is fixed to be 8192 in PoinTr and SnowflakeNet, we sam-
ple the same number of points on the meshes of our method for
computing CD and F1. The results are listed in Tab. 7. We can find
that the PoinTr and SnowflakeNet have better scores in CD, and
our method achieves better scores in F1. That means the whole
point cloud generated by PoinTr and SnowflakeNet obtain lower
average errors in L2 distance, but there are numbers of outliers
that reduce the F1 score. Our methods can produce more stable
results with fewer outliers. It can also be proven in the visualization
results shown in the main paper. Notably, for both methods, there
are small gaps between the scores on trained classes and unseen
classes. It further proves that the generalization ability of shape
completion can be improved by building local-to-local translation
modules among local shape representations.

B.2 Shape Reconstruction on Complete Input
Points

To show the efficiency of our shape representation method, we
perform shape reconstruction using complete point clouds and
compared the results with other DIF-based methods. For this task,
we only use the ‘Visible Points Encoding’ module and use the loss

function L𝑠𝑑 𝑓 + 𝜆L𝑠𝑚𝑜𝑜𝑡ℎ in which 𝜆 = 0.5. Here, our post opti-
mization is not used. All the experiments are run on the chair class
of ShapeNet dataset [Chang et al. 2015], and the results are shown
in Tab. 8. The methods for comparison include DeepSDF [Park
et al. 2019], IF-Net [Chibane et al. 2020], LDIF [Genova et al. 2020],
ShapeFormer [Yan et al. 2022], and 3DILG [Zhang et al. 2022], which
also adopt deep implicit functions and auto-encoder architectures.
Our method achieves the best scores when using 256 local bases.
Notably, our method can achieve similar scores with much fewer
bases. For example, our method with 128 local bases can achieve
similar scores as IFNet with 1283 resolution, and our method with
64 local bases can achieve similar scores as 3DILG with 512 latent
features. Even with 32 local bases, our method outperforms LDIF
and ShapeFormer in most metrics.

B.3 More Qualitative Results
We show more qualitative comparisons on the trained and unseen
classes in Fig. 8 and Fig. 9. We can find that our completion results
clearly outperform the ones from other methods. DeepSDF [Park
et al. 2019] fails to generate reasonable shapes when meeting com-
plex cases. LDIF [Genova et al. 2020] and ShapeFormer [Yan et al.
2022] are difficult to preserve details. Also, ShapeFormer may gen-
erate shapes that do not match the input points. PoinTr [Yu et al.
2021] may generate outlier points. IF-Net [Chibane et al. 2020]
can preserve fine details for visible parts but is difficult to predict
smooth results for invisible parts. In contrast, our method can pre-
dict reasonable shapes for invisible parts while preserving fine
details. Fig. 9 demonstrates the strong generalization ability of our
method.
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Input GT DeepSDF IF-Net LDIF ShapeFormer PoinTr Ours Ours(opt.)SnowflakeNet

Figure 8: More qualitative comparison with other methods on trained classes.‘Ours (opt.)’ means the optimized results of our
method.
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Input GT DeepSDF IF-Net LDIF ShapeFormer PoinTr Ours Ours(opt.)SnowflakeNet

Figure 9: More qualitative comparison with other methods on unseen classes.‘Ours (opt.)’ means the optimized results of our
method.
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