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Fig. 1. Multi-character interactions coordinated with transition planning. (Left) We highlight the three currently interacting characters with blue, purple, and
green, while others are grey. The more saturated the color, the more recent the frame. (Upper right) The key frame of the transition where the blue and purple
characters proceed to have a coordinated interaction. (Lower right) The key frame of the transition where the blue and green characters proceed to have a

coordinated interaction.

Generating large-scale multi-character interactions is a challenging and im-
portant task in character animation. Multi-character interactions involve not
only natural interactive motions but also characters coordinated with each
other for transition. For example, a dance scenario involves characters danc-
ing with partners and also characters coordinated to new partners based on
spatial and temporal observations. We term such transitions as coordinated
interactions and decompose them into interaction synthesis and transition
planning. Previous methods of single-character animation do not consider
interactions that are critical for multiple characters. Deep-learning-based
interaction synthesis usually focuses on two characters and does not con-
sider transition planning. Optimization-based interaction synthesis relies on
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manually designing objective functions that may not generalize well. While
crowd simulation involves more characters, their interactions are sparse and
passive. We identify two challenges to multi-character interaction synthesis,
including the lack of data and the planning of transitions among close and
dense interactions. Existing datasets either do not have multiple characters
or do not have close and dense interactions. The planning of transitions for
multi-character close and dense interactions needs both spatial and temporal
considerations. We propose a conditional generative pipeline comprising
a coordinatable multi-character interaction space for interaction synthe-
sis and a transition planning network for coordinations. Our experiments
demonstrate the effectiveness of our proposed pipeline for multi-character
interaction synthesis and the applications facilitated by our method show
the scalability and transferability.
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1 Introduction

Generating large-scale multi-character interactions is a challenging
and important task in character animation. For example, a dance
scenario involves characters dancing with partners and simulta-
neously planning potential interactions with new partners based
on spatial and temporal observations. We term such behaviors as
coordinated interactions in multi-character settings, and decompose
them into interaction synthesis and transition planning. The former
requires a multi-character interaction space to generate realistic
interactions, and the latter demands the ability to plan transitions
among characters. As the number of characters can vary, such a
method needs to be scalable to support broader applicability.

Multi-character interaction synthesis is an underdeveloped area
despite recent advances in character animation, interaction gener-
ation, and crowd simulation. Single-character animation focuses
on modeling motions for a single character with control [Starke
et al. 2022]. However, it does not learn the interaction patterns
that are critical for multiple characters. Interaction generation with
deep learning focuses more on learning motions for two charac-
ters [Liang et al. 2024]. While some optimization-based interaction
synthesis methods [Shum et al. 2008b] can produce interactions for
multiple characters, they depend on manually designing objective
functions that may not generalize well. Crowd simulation involves
more than two characters, but their interactions are relatively sparse
[Charalambous et al. 2023] and passive [Yue et al. 2024]. Our task
of large-scale multi-character interaction synthesis requires active
and denser interactions with transition planning, and needs to be
scalable to multiple characters.

Large-scale multi-character interaction synthesis faces two chal-
lenges. The first challenge is the lack of data. Existing datasets for
interactions [Liang et al. 2024] focus on two characters and do not
consider coordinated interactions. Existing datasets for crowd simu-
lation [Zhong et al. 2022] do not contain dense and close interactions.
Capturing such a dataset for our task would be time-consuming
and labor-intensive, which becomes unmanageable as the number
of characters scales up. The second challenge is to plan dense and
close interactions based on spatial and temporal context for multiple
characters. Scheduling suitable interactions for multiple characters
is a highly correlated problem. In the temporal domain, previous
coordination could heavily influence the interactions that follow,
and in the spatial domain, the difficulty of planning increases with
the increasing number of characters.

We propose a generative pipeline for large-scale multi-character
interaction synthesis, including a coordinatable interaction space to
generate natural interactions for multiple characters and a transi-
tion planning network to coordinate potential transitions among
multiple characters. In the absence of suitable data, we divide multi-
character interactions into several two-character groups that are
modeled by a pre-trained two-character interaction diffusion model.
With such a division, we can generalize the natural two-character
interaction manifold to an interaction space for multiple charac-
ters in the absence of data. Additionally, our division is agnostic to
the number of characters and is scalable to multiple characters. To
plan transitions for coordinated interactions, we propose a planning
network to predict high-level transition plans that are represented
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as re-grouping choices. Thus, our transition planning network is
motion-agnostic, which is transferable to other types of motion.
In the absence of suitable data, we propose to train our method
through reinforcement learning. Specifically, our coordinatable in-
teraction space works as the environment to generate coordinated
interactions, and the transition planning is the policy network. We
define transition smoothness and transition diversity as rewards.

We train our method with a two-character dancing subset from
the InterHuman dataset [Liang et al. 2024] and evaluate it by syn-
thesizing a larger number of characters and transferring to other
motion types. We calculate transition smoothness and hip distance
as two metrics for comparison. Our experiments show that our
method is scalable and transferable.

We summarize our two contributions below:

e We propose a framework to synthesize large-scale multiple
characters by decomposing their coordinated interactions
into interaction synthesis and transition planning.

e We propose a method of combining a pre-trained two-character
diffusion model and a transition planning network to learn
the coordinated interactions via deep reinforcement learning
without the requirement for data.

2 Related Work
2.1 Deep Learning-based Motion Synthesis

Deep learning has been extensively utilized for single-character mo-
tion synthesis, emphasizing high-fidelity motion details [Zhou et al.
2023] with motion control. Action labels have been popular [Chang
et al. 2023a; Xu et al. 2023b] to generate various categories of ac-
tions. To achieve finer controllability, texts have been explored as a
control signal [Petrovich et al. 2022]. Text-to-motion synthesis aims
to integrate language representation into pose representation. For
example, a unified text-motion joint space has been modeled [Tevet
et al. 2022a] for better representation. More recently, many methods
leverage diffusion models [Tevet et al. 2022b] and design conditional
mechanisms to control the generation. They either fine-tune a diffu-
sion model on conditional data [Xie et al. 2024] or leverage classifier
guidance for post-hoc control without requiring conditional data.
Other types of control signals, such as physical constraints [Yuan
et al. 2023] and objects,[Li et al. 2023] have also been explored. While
the aforementioned methods are effective for modeling character
motions, they primarily focus on motion synthesis for a single char-
acter. Adding control to such methods does not generalize well to
multi-character interactions.

2.2 Interaction Synthesis

A popular line of work is based on optimization. It optimizes indi-
vidual character motions with spatial-temporal constraints [Kwon
et al. 2008; Liu et al. 2006] and game theory [Shum et al. 2007, 2008a,
2010] to connect motions smoothly. Optimization is usually based
on motion patches, where a patch includes a short interaction of
multiple characters [Kim et al. 2012; Shum et al. 2008b; Won et al.
2014; Yersin et al. 2009]. However, a goal function usually needs to
be designed manually to perform optimization and may not be well
generalized to different motion patterns.
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Fig. 2. Framework overview. Our pipeline is an autoregressive conditional generative model to plan transitions and synthesize interactions for multiple
characters. It has two components: The first component divides multiple characters into groups and leverages a pre-trained diffusion-based model to
autoregressively generate interactions for each group. The second component predicts a transition plan based on the observed interactions and serves as the

conditional signal for the interaction synthesis.

Another line of interaction synthesis is based on modeling the
interaction distribution with deep learning methods. The interaction
is further defined differently. Some methods simplify interaction
synthesis as reaction synthesis [Xu et al. 2024] where the interaction
includes active characters performing actions and passive characters
responding to such actions. Some methods synthesize character
interactions with a large interaction dataset that is usually designed
to have two characters by default. They learn the individual motion
distribution by modeling the dependency between two characters
[Liang et al. 2024; Xu et al. 2023b]. Another line of work synthesizes
future interactions based on the observed interactions [Guo et al.
2022; Xu et al. 2023a]. They extract interaction relationships from
observed motions and predict future interactions. Others leverage
deep reinforcement learning to learn movements for two characters
[Won et al. 2021; Zhang et al. 2023]. However, these methods focus
more on two characters and cannot be easily extended to multi-
character interactions.

2.3 Crowd Simulation

Crowd simulation methods can generally be categorized into two
streams: macroscopic and microscopic methods [Pelechano et al.
2016]. Macroscopic methods recognize characters as active matter.
They aim to synthesize the density of such active matter in both the
spatial and temporal domains. By such an abstraction, they do not
focus on the different motions of individual characters.
Microscopic methods for crowd simulation focus on synthesiz-
ing individual movements for multiple characters. Trajectories are
widely used to represent the movements of crowds. Many recent
methods use reinforcement learning to learn instantaneous actions
such as the velocity or acceleration of each character. These methods
usually focus on the navigation of crowd characters [Charalambous
et al. 2023; Panayiotou et al. 2022] by designing rewards for colli-
sion avoidance and target reaching. Some learn spatial-temporal
features from large trajectories of crowd characters [Mao et al. 2023;
Xiang et al. 2024]. Human skeletal joint trajectories have also been
considered [Jeong et al. 2024] in a manually crafted dataset where

several independent groups are concatenated in a scene and their
motions are rather static. Although these methods consider more
than two characters, their interactions among characters are sparse
in time and space.

3 Methodology
3.1

Our goal is to generate large-scale multi-character interactions with-
out available data. In the absence of data, we decompose the coordi-
nated interactions into interaction synthesis for multiple characters
and transition planning for future interactions. The former requires
a multi-character interaction space to synthesize natural interac-
tions, while the latter demands the ability to plan transitions with
close and dense interactions for multiple characters.

We represent interactions with full-body poses and motion clips.
We learn full-body poses for more realistic synthesis because full-
body poses may provide social cues [Fiore et al. 2013] for realistic
interaction synthesis and transition planning. Moreover, to consider
coordinated interactions in the temporal domain, we represent mo-
tions by short clips that contain a few consecutive frames to provide
contextual information that could reflect character intentions for
transitions when compared with poses in a single frame.

Specifically, we denote multi-character interactions as

Problem Formulation

1.T _ 1 2 t T
MI:N_ Ml:N’Ml:N"“’Ml:N"“’Ml:N]’ (1)

where T is the total number of motion clips and N is the total num-
St = [t ot ¢ t
ber of characters. The ¢-th clip M1;N = [ml, Mo, -« My, -+ ,mN]
consists of motions for N characters where each clip contains w
frames and m, is the t-th clip of the n-th character. We follow the
representations in [Liang et al. 2024] and represent a motion clip by

global positions, local rotations, and velocities of each joint.
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3.2 Pipeline Overview

Our pipeline is an autoregressive conditional generative model to
synthesize coordinated interactions for multiple characters. We de-
sign our method to be autoregressive to allow characters to dynami-
cally plan their future transitions based on the observed interactions
between themselves and other characters. This is more flexible than
planning everything ahead.

Overall, our framework ¥, as illustrated in Fig. 2, consists of two
components for synthesizing multi-character coordinated interac-
tion. Specifically, the first component, namely the coordinatable
interaction space, provides a natural interaction space for multiple
characters to synthesize interactions with coordination signals. The
second component, namely transition planning, predicts transition
plans to coordinate interactions that arise from the first component.

The first component, as shown in Fig. 3, divides multiple charac-
ters into several groups of two characters. In the absence of data,
such a division allows us to simplify the multi-character interaction
space by means of learnable two-character spaces. Concretely, we
leverage a pre-trained two-character diffusion model to simplify
the multi-character interaction space. We group multiple charac-
ters by their indices to select corresponding historical motions as
conditions for generation. The diffusion model generates the inter-
actions for each group autoregressively. Additionally, by dividing
multiple characters into two-character groups, our multi-character
interaction space is agnostic to the number of characters.

The second component, as shown in Fig. 4 predicts a future transi-
tion plan C? based on the observed interactions Mlt_Nl We design the
plan to be high-level re-grouping choices for all characters. By re-
grouping characters, the newly grouped characters are coordinated
to interact with each other in the next motion clip. We leverage a
virtual character in a two-character group if the transition plan for
this group contains only one existing character.

Specifically, our method follows an autoregressive conditional
generative formulation:

M{:N = %(ij\fl’ ei:N’ Ct)’ (2)

where F represents our autoregressive generative pipeline, elt: N is
the sampled standard Gaussian noise for generation, M{;\} is the
last observed interaction clip for all characters 1,2--- , N, Mlt: N is
the next interaction clip for all characters, C? is the transition plan
for next motion clip Mlt .n» and 0 represents all trainable parameters.

3.3 Coordinatable Multi-Character Interaction Synthesis

A natural and coordinatable interaction space for multiple charac-
ters is vital for coordinated interaction synthesis. It requires the
interaction space to have a realistic interaction manifold and to be
controllable for coordination. Without available data, we consider
simplification by a divide-and-conquer paradigm.

We propose to simplify the interaction space for multiple char-
acters by dividing multiple characters into two-character groups.
Multiple character interactions are usually composed of several
groups that contain fewer characters [Jeong et al. 2024] and each
group can be modeled from an existing model. Theoretically, any
division is feasible if a group can be modeled. For our implementa-
tion, we divide characters into two-character groups and leverage
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an existing two-character diffusion model to generate two-character
interactions. Through our division, we leverage its ability to syn-
thesize natural interactions for each group. Meanwhile, the division
facilitates integrating the transition plan as the conditional signal by
re-grouping two characters in an existing group for new interaction
groups. Additionally, group division allows our interaction space to
be flexible to synthesize varying numbers of characters.

We propose to generalize a two-character diffusion model for
multiple characters by autoregressively synthesizing groups. We
design our generative method to be based on a two-character dif-
fusion model due to its high capacity to model complex data space
[Chang et al. 2023b] and flexible conditional mechanism without be-
ing trained on the conditional data [Dhariwal and Nichol 2021]. To
autoregressively synthesize the next motion clip for a two-character
group, we leverage classifier guidance from the already generated
other groups and the observed motion clip for this group. As shown
in Fig. 3, the red arrow indicates that we condition on the clips of
other groups already generated.

Coordinatable Interaction Space
Group Syntl

Group 1

=
5

Diffusion Group2|
>
Model

3_.

Fig. 3. Coordinatable multi-character interaction space by group division.
We divide multiple characters into groups and re-group them for potential
coordination. The group synthesis generates new motions group by group.
The newly generated group is conditioned on the already generated ones,
which is indicated by red arrows.

Specifically, when given the observed interaction clip for multiple
characters M! 71, we generalize a state-of-the-art diffusion model
[Liang et al. 2024] for two-character interactions to generate the next
interaction clip for all characters. We autoregressively generate a
new social group under the condition of existing social groups. These
social groups form the next interaction clip for multiple characters
Mlt: ~- This generation process is formulated as:

My, = [g(Ml.{;l, M), for (i, j)inC!|, 3)
where g is the two-character diffusion model, M’ represents groups
that have already been generated during this autoregressive proce-
dure, and Mlt le represent the observed interaction clip for the i-th
and j-th character in a group, C? is the transition plan to re-grouping
observed motions.

We propose to leverage the classifier guidance in the diffusion
model to maintain the social distance between the newly generated
group Mi’i ; and the already generated groups M’. To maintain suit-
able distances, we leverage a distance function d(-) between different



groups. The hip distance follows Proxemics Theory [Rios-Martinez
et al. 2015], which states that humans regulate their personal space
based on hip position. This promotes the appropriate distances be-
tween individuals. Other joints are less representative and would
require the pre-trained diffusion model to solve a more complex
high-dimensional spatiotemporal constraint. The distance function
measures the average of hip-wise distances:

M|
1 .
AM} M) = o 3 min(llps = purlF = 0), (@
n/

where 7 is the threshold, and p; ; is the hip position of the character
i and j. We also constraint the smoothness between the observed
clip and the generated clip, which is calculated as:

d(M! ,METY) = 3 Jlaces 113, 6)

where acc represents the acceleration of all joints. Therefore, the
constraint function is:
_ toap toagt-1
d=d(M; ;M) +d(M; ;, M;; (6)
Our design for the coordinatable interaction space is summarized
in Algorithm 1.

3.4 Transition Planning

Multi-character interactions contain not only realistic interaction
details but also the ability to plan suitable transitions. Their transi-
tion is planned on the basis of the currently observed interactions of
themselves and others. After a transition is planned, they perform
the next actions, which are synthesized by the aforementioned in-
teraction space. Therefore, transition planning contains high-level
decisions on interaction groups for multiple characters.

ALGORITHM 1: Coordinate-able Multi-Character Interaction Space

Data: Re-grouping choice (i, j) from a transition plan C?, motion
mask m for motion inpainting, observed motions Mlt:;\}, other
groups M’, a pre-trained model g(-), distance function d(-)

Result: a group Ml’]

MG MG > Re-grouping by transition plan;

N
u—U > U is total number of diffusion timestep;
el — N(0,I) > Sample a random noise;
x% — €t

while u # 0 do
x0 = g(x¥,u) > Diffusion predicts xstart;
0 _ -1 0
x —m®Mi’j +(1-m)®x’]
X =x"+V,d

u—u-1;

> Masking for inpainting;

> Classifier guidance;

end
t 0.
Mi,j —x;
M — M UMi’j

To achieve the planning ability, we design a conditional mecha-
nism via re-grouping for the previously introduced multi-character
interaction space. While considering all characters for coordination
is theoretically feasible, we implement transition planning locally
within four characters to pursue a balance between the complexity

Large-Scale Multi-Character Interaction Synthesis « 5

of grouping choices and the number of potential transition candi-
dates, i.e., the trade-off between transition representativeness and
learning complexity. A character evaluating all others as potential
transition partners improves representativeness, but increases train-
ing complexity. Conversely, considering only the nearest character
removes the need for learning, but limits transition diversity.

The condition signal in our case is the indices of characters to be
grouped together. To address the lack of ground truth data, we use
re-grouping as high-level semantic control, which avoids the com-
putational burden of determining low-level joint movements in a
high-dimensional spatiotemporal space. Thus, our planning network
is agnostic to motion types. Specifically, the planning network takes
the motions of considered characters and returns a re-grouping
choice as a transition plan, which is formulated as:

Ch=fo(M 1 ). (7)

Due to the lack of an available dataset for our goal, we formulate
transition planning as a Markov Decision Process and learn our
planning network with a deep reinforcement framework, as depicted
in Figure 4. The MDP is represented by the tuple (S, A, R, E) where
S is the state space, A is the action space, R is a scalar reward
function, and E is the environment model.

Current State s* Action af

,‘“W\ I(at ¢ APTev)
9"\,

smoothness! diversity

Fig. 4. The planning network is learned as a policy network via deep rein-
forcement learning. The action is a transition plan that contains a high-level
grouping choice.

Specifically, a state s € S in our setting consists of clips of char-
acters of interest:

s = Mi,j,i’,j’- (8)
In our case, an action a € A is defined to be a transition plan:
a:=_C, )

where C represents the re-grouping choice for the four characters.
We leverage the previously defined interaction space as the en-
vironment for reinforcement learning. The transition function E :
(s%,a") — s™*! describes the probability that we transition to state
s*1 € S given that we executed action a’ € A in state s* € S. The
interaction synthesis module introduced in Section 3.3 works as the
environment model in our reinforcement learning setting:

E :=g("). (10)

SIGGRAPH Conference Papers 25, August 10-14, 2025, Vancouver, BC, Canada.
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To serve as the environment model, our generative model takes as
inputs the current state M’ and generates the next state M**1:
Sl‘+l Zg(€t,5t), (11)
where e/ ~ N(0,I). The first state M! is generated by setting the
current state to be empty.
The planning network is formulated as the policy network:

7= fo (). (12)

It takes four characters’ motions as the current state and predicts
the next state of these characters:

at = n(sh). (13)

A reward function R : S X A X S — R and the reward r :=
R(s*,a?, s"*1) evaluate a transition (s, a’, s**1) given the agent task.
In our case, the task is to interact with all the other three characters
as smoothly as possible. The reward function is designed to advocate
for such considerations. The smoothness reward is defined as:

t t+1
~llace’ ~ 2
T'smooth = € llace* ~ace II5 (14)

where acc corresponds to the acceleration of motions during the
transition. In particular, we consider ten frames to calculate the
acceleration. The second one is the diversity to encourage more
different transition choices. This diversity is calculated as:

1, if a! is novel (15)
Tdip =
div 0, otherwise
Therefore, we have the following reward function:
"' = Tsmooth t I'div- (16)

4 Experiments

We run a series of experiments to (i) investigate the effectiveness of
our method by employing two metrics and (ii) validate the scalability
and transferability of our method to three applications.

We evaluate our method with transition smoothness (TS) [Bar-
quero et al. 2024] and hip distance (HD) for comparison. Following
[Barquero et al. 2024], transition smoothness calculates the change
of acceleration, and we report its maximum change (peak jerk) as a
metric. For hip distance, we calculate the average distance between
the hip of a character and those of other characters. This metric
is designed to indicate whether characters overlapped in the same
position. We report the average value over all characters and frames,
which is calculated by

f_ 2
HP= N - l)FZ 2, I = ml, (17)

f=1i,jJEN
where N is the set of all characters, F is the number of frames,
m is an averaging term, and h{ and hf are the hip positions
for characters i and j at frame f.

4.1 Quantitative Comparison

As currently there is no method for implementing our task, we use
InterGen [Liang et al. 2024] as the baseline for our comparison,
which is the state-of-the-art method for interaction synthesis. We
also implement an adaptation to InterGen for our comparison, and
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the adapted InterGen is denoted as InterGent. For our adaptation,
we implement exactly the same coordinatable interaction space
to allow InterGen to generate multiple characters. For transition
planning, as InterGen does not have such planning, we randomly
sample coordinations and use them as the control signal. To calculate
the metrics, we repeat the generation and report the average value.
Table 1 shows the results of our comparison. Our method has the
best transition smoothness, which indicates that the characters
generated by our method transit with fewer artifacts.

Table 1. Comparison with interaction synthesis models. T represents our im-
plementation of the coordinatable interaction space in the original method.
TS denotes transition smoothness and HD, the hip distance.

Methods TS| HD

InterGen  0.073  0.567
InterGent 0.117 1.578
Ours 0.071 1.963

The InterGen demonstrates close TS performance compared with
ours. However, the generated characters are heavily overlapped with
each other and the resulting motion is visibly worse. We hypothesize
that this better transition smoothness score achieved by InterGen,
compared to ours, is because the transition occurs within a much
smaller distance between characters and thus the TS value becomes
smaller. This is also further corroborated by the hip distance being
much higher in InterGen than ours. The InterGen Figure 5 shows
that the characters heavily overlap each other.

T e e

(b)

Fig.5. (a) An example result from our method. (b) An example from InterGen
where characters heavily overlap.

Figure 6 shows the density of the HD values for the three meth-
ods. The two modes in our density indicate that the characters are
not overlapped and are clearly transited with the learned planning
network. InterGent does not have the ability to plan transitions,
which leads to an averaged distance density with only one mode.
InterGen has a curve shape similar to that of InterGent because
both do not have transition planning. The mode value of InterGen is
much smaller than the other two, which indicates that the characters
are heavily overlapped.

As our method generalizes InterGen with coordinatable interac-
tion space and transition planning, Table 1 also shows that the two
proposed components are effective. When compared with InterGenf,
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Fig. 6. The density of hip distance for the three methods evaluated. The two
modes in our hip distance density demonstrate minimal character overlap
and clear transitions. InterGenT does not have the ability of transition plan-
ning, leading to an averaged distance density with a single mode. InterGen
has a similar curve shape with InterGen{ as both of them do not have
transition planning. Its much smaller mode value indicates that characters
heavily overlap.

our method performs better in transition planning. When we com-
pare InterGen and InterGenf, both of which do not have transi-
tion planning, we find that the coordinatable interaction space in
InterGent helps to reduce the overlap in InterGen.

4.2 Extended Applications

We demonstrate the scalability of our method and the transferability
of our planning network by implementing three applications. Our
method is scalable to multiple characters despite only having access
to a two-character dataset. We show that synthesizing more char-
acters via our method can be done by either gradually adding new
characters or generating a larger scene as a whole. Our planning
network is also transferable to other types of motion because our
action space is defined as the high-level grouping decision. We show
this transferability by taking boxing motions as an example.

4.2.1 Adding New Character Synthesis. Our method facilitates the
application of adding new characters to achieve a larger number of
characters. In this experiment, we start with four characters and
gradually add other characters. The newly added characters can
also be coordinated to interact with existing characters via the re-
grouping choice from our planning network. Table 2 shows the
performance of adding new characters.

4.2.2  Generating Large Scenes. We generalize our method to syn-
thesize a large number of characters. Although we only have access
to a two-character dataset, we generate a lot more characters in one
scene. Instead of gradually adding new characters, we choose to
generate these characters at once. Table 2 shows the performance
in the generation of large scenes.

4.2.3 Other types of motion. As we design the planning network
to predict the suitable re-grouping choice without considering the
actual movements, the planning network is transferable to other
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motion types. For our experimental implementation, we report the
performance of transferring the planning network trained on danc-
ing motions to boxing motions without any adaptation. Table 2
shows the transition smoothness and the hip distance.

When applying our planning network to boxing motions, the
transition smoothness does not get degraded and the hip distance
increases a bit. This shows that by designing transition plan to be
high-level re-grouping operation, the planning network is not re-
lated to future movements of characters. This helps our planning
network to be transferable. The hip distance increases slightly be-
cause boxing motions usually have larger distances than dancing.

Table 2. Method performance on extended applications. TS denotes transi-
tion smoothness and HD, the hip distance.

Methods TS HD

Adding New Characters  0.026  2.450
Generating Large Scenes  0.075  3.372
Boxing 0.057 2.155

5 Conclusion

We propose a method to synthesize coordinated interactions for mul-
tiple characters without any multi-character dataset. We decompose
coordinated interactions into interaction synthesis and coordina-
tion planning, and propose a coordinatable interaction space and a
planning network, respectively. Considering the lack of data, a pre-
trained two-character interaction diffusion model is leveraged in
our interaction space by decomposing multi-character interactions
into interactions of two-character groups. The planning network
provides control signals by re-grouping the observed motions. Our
experiments show that the motions from our method are smoother,
and character limbs penetrate less with one another compared with
other methods. We also demonstrate scalability and transferability
with extended applications.

While our method can achieve multi-character coordinated inter-
actions without accessing any multi-character dataset, limitations
exist, most of which arise due to the lack of multi-character datasets.
The first one is that our method relies on the dividing approximation
between multiple characters and two characters. The second one is
the controllability of diffusion models when there is no such condi-
tioned dataset. Although classifier guidance and motion inpainting
are used in our method, control accuracy can be further improved
[Karunratanakul et al. 2023] for better generation quality. Addition-
ally, our method relies on the pre-trained two-character interaction
diffusion model to synthesize motions for two-character groups.
The synthesis quality of two-character groups also influences the
quality of our method. One potential direction for future work is
collecting data on close interactions between two or more people.
Existing crowd simulation data mainly focus on 2D and recently 3D
motions like collision avoidance. With data collected, our method
would enhance fine-grained interactions and improve visual realism.
For large scenes, an imaginary character is introduced if the total
number of characters is not divisible by four and future improve-
ments could include predefined actions such as walking or recycling

SIGGRAPH Conference Papers 25, August 10-14, 2025, Vancouver, BC, Canada.



8 + Changet. al.

characters [Shum et al. 2008b] to further enhance transitions. Cur-
rently, a 4-character group is formed by a greedy distance-based
strategy, and future work could explore other advanced methods
such as a first-person receptive field.
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Fig. 7. Snapshot of key frames during a transition period for four characters. The more saturated the color, the more recent the frame. We highlight the three
interacting characters in red, purple, and green, while the others are grey as this transition only involves the three colored characters. (Left) We show character
movements during the transition using key frames. In this transition, the purple character previously interacted with the red one and now is coordinated to
interact with the green one. (Upper right) The starting key frame of this transition where the red and purple characters are interacting with each other. (Lower
right) The ending key frame of this transition where the purple and green characters are interacting with each other.

Fig. 8. Snapshot of key frames during a transition period in the experiment of transferring to a different motion type, e.g., boxing. The more saturated the
color, the more recent the frame. We highlight the four characters in red, purple, blue, and green. (Left) We show character movements during the transition
using key frames. In this transition, the purple and green characters previously interacted with each other, as did the red and blue ones. Now the red and
purple characters are coordinated to interact, and as do the blue and green ones. (Upper right) The starting key frame of this transition where the red and blue
characters are interacting with each other, and the purple and green ones are also interacting with each other. (Lower right) The ending key frame of this
transition where the purple and red characters are interacting with each other, and the blue and green are interacting with each other.

SIGGRAPH Conference Papers '25, August 1014, 2025, Vancouver, BC, Canada.



10 « Changet. al.

Fig. 9. Snapshot of key frames during a transition period in the experiment of adding new characters. The more saturated the color, the more recent the frame.
We highlight the three characters in red, purple, and blue while the others are grey because this transition only involves the three colored characters. The
purple and blue characters are added more recently than the red character. (Left) We show their movements during the transition using key frames. In this
transition, the purple character previously interacted with the blue one and now is coordinated to interact with the red character. (Upper right) The starting
key frame of this transition where the blue and purple characters are interacting with each other. (Lower right) The ending key frame of this transition where
the purple and red characters are interacting with each other.

Fig. 10. Snapshot of key frames during a transition period in the experiment involving a large number of characters. The more saturated the color, the more
recent the frame. We highlight the three characters in red, purple, and green, while the others are grey because this transition only involves the three colored
characters. (Left) We show their movements during the transition using key frames. In this transition, the purple character previously interacted with the green
one and now is coordinated to interact with the red character. (Upper right) The starting key frame of this transition where the green and purple characters
are interacting with each other. (Lower right) The ending key frame of this transition where the purple and red characters are interacting with each other.
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