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Abstract

Large-scale text-guided image diffusion models have shown
astonishing results in text-to-image (T2I) generation. How-
ever, applying these models to synthesize textures for 3D
geometries remains challenging due to the domain gap be-
tween 2D images and textures on a 3D surface. Early works
that used a projecting-and-inpainting approach managed to
preserve generation diversity but often resulted in notice-
able artifacts and style inconsistencies. While recent meth-
ods have attempted to address these inconsistencies, they of-
ten introduce other issues, such as blurring, over-saturation,
or over-smoothing. To overcome these challenges, we pro-
pose a novel text-to-texture synthesis framework that lever-
ages pretrained diffusion models. We first introduce a lo-
cal attention reweighing mechanism in the self-attention lay-
ers to guide the model in concentrating on spatial-correlated
patches across different views, thereby enhancing local de-
tails while preserving cross-view consistency. Additionally,
we propose a novel latent space merge pipeline, which fur-
ther ensures consistency across different viewpoints without
sacrificing too much diversity. Our method significantly out-
performs existing state-of-the-art techniques regarding tex-
ture consistency and visual quality, while delivering results
much faster than distillation-based methods. Importantly, our
framework does not require additional training or fine-tuning,
making it highly adaptable to a wide range of models avail-
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able on public platforms.

1 Introduction

Digital assets are essential for the gaming, film, and anima-
tion industries. The role of textures is pivotal, as they in-
fluence the visual effects and aesthetics. However, creating
appealing textures takes considerable effort, even for pro-
fessionals. Recently, diffusion models trained on billions of
image-text pairs have enabled users to generate stunning im-
ages from text prompts. However, applying this approach
to texture synthesis faces significant challenges, primarily
due to: 1) a lack of high-quality text-labeled training data
for textures and 2) a domain gap between 2D images and
3D surface textures. Therefore, most methods of text-guided
texture generation circumvent the limitations by employing
pretrained 2D text-to-image diffusion models. However, cre-
ating 3D consistent textures that maintain high quality re-
mains a significant challenge, even with geometric guidance
like Depth maps in ControlNet.

Existing approaches typically navigate a trade-off be-
tween single-image quality and multi-view consistency,
falling into two main categories. The first group optimizes
an underlying 3D structure based on Score Distillation Sam-
pling (Poole et al. 2022; Lin et al. 2023; Wang et al. 2024).
However, these optimization-based methods are often time-
consuming and struggle to match the diversity and quality of
text-to-image generation. The second group generates im-



ages from various viewpoints to create the final texture in
an optimization-free fashion. This can be achieved through
sequential inpainting (Chen et al. 2023b; Richardson et al.
2023) or a multi-view diffusion approach (Liu et al. 2023c;
Gao et al. 2024). Our method falls in this category.

We tackle the challenges of achieving both consistency
and quality by introducing a cross-view local attention tech-
nique and a latent space merge pipeline specifically designed
for the text-to-texture task, using only pretrained T2I mod-
els. For the local attention, we input the 3D mesh and con-
struct dense patch-level weight matrices based on the 3D lo-
cations of patches across different views. Patches that are
closer in 3D receive higher weights, while farther ones get
lower weights. The weight matrices are then incorporated
into the self-attention layers during diffusion to amplify or
attenuate the effect of specific patches, thereby enhancing
local details and improving the consistency of multi-view
images. Additionally, we design a latent space merge frame-
work to ensure consistent and high-quality texture synthe-
sis. Finally, we propose an efficient texture completion algo-
rithm to fill uncolored UV pixels caused by self-occlusion.
The algorithm approximates color dilation in surface space
by discretizing the UV into sub-UV islands.

Our contributions can be summarized as follows:

* We propose a novel local attention mechanism for pre-
trained T2I models, which leverages 3D priors and es-
tablishes patch correspondences across different views.

* We design a framework that incorporates a latent merge
pipeline and an efficient texture dilation algorithm in sur-
face space, enabling a stable generation of consistent and
high-quality textures.

* We have conducted extensive evaluations on a variety of
3D objects. The evidence demonstrates that our approach
significantly surpasses the performance of the baseline
methods by better preserving the generative potential of
the original T2I models in aspects of details and color
richness while maintaining multi-view consistency.

2 Related Works
2.1 Text-to-Image Diffusion Models

Diffusion models are a class of generative models that use
Markov chains to transform random noise into high-quality
visuals sequentially. A pioneering work, GLIDE (Nichol
et al. 2021), is the first to employ diffusion models for gen-
erating images in pixel space while supporting text con-
ditioning by adopting classifier-free guidance. Following
GLIDE (Nichol et al. 2021), Imagen (Saharia et al. 2022)
integrates diffusion models for high-resolution text-guided
image generation. DALLE-2 (Ramesh et al. 2022) leverages
CLIP (Radford et al. 2021), a popular model that aligns texts
and images to generate images from CLIP latent space. Sta-
ble diffusion is a landmark work built upon Latent Diffusion
Model (LDM) (Rombach et al. 2022) trained on a large-scale
text-image dataset (Schuhmann et al. 2022), which proposes
to adapt the diffusion process in latent space to further re-
duce computational cost. Besides text conditioning, various
flexible conditions have been introduced for image genera-
tion such as ControlNet (Zhang, Rao, and Agrawala 2023)

and T2I-Adapter (Mou et al. 2024). These control methods
aim to generate results that align with a given spatial con-
dition, such as depth or normal images, which can be either
predicted from input images or rendered from 3D meshes,
supporting mesh-guided image generation.

2.2 Text-driven 3D Generation

Many recent studies (Jun and Nichol 2023; Hong et al. 2023;
Huang et al. 2023; Xu et al. 2023; Nichol et al. 2022) at-
tempt to replicate the success of 2D diffusion models in text-
guided 3D content generation, after the supervision of text-
paired 3D data. A common constraint of these methods lies
in the scarcity of publicly available labeled 3D data. As such,
rather than direct leaning a 3D diffusion model, many works
resort to using pretrained 2D image diffusion models for 3D
tasks (Gao et al. 2024; Cao et al. 2023; Chen et al. 2023b;
Liu et al. 2024, 2023a; Long et al. 2023; Shi et al. 2023).
Pioneering works (Poole et al. 2022; Wang et al. 2023) sug-
gest optimizing a 3D representation(E.g., NeRF) by distill-
ing from 2D diffusion models. Subsequent research (Lin
et al. 2023; Metzer et al. 2023) further improved such text-
to-3D distillation methods in various aspects. A recent re-
markable work (Wang et al. 2024) proposed a technique
called Variational Score Distillation (VSD) that further en-
riches the details and diversity. Another line of work (Shi
et al. 2023; Liu et al. 2023b; Tsalicoglou et al. 2023) typ-
ically fine-tune a multi-view diffusion model by incorpo-
rating camera directions to image diffusion models and si-
multaneously generate multi-view images. Zero-1-to-3 (Liu
et al. 2023a) first attempts to leverage 3D data and camera
parameters to fine-tune pretrained 2D diffusion models for
3D-consistent novel view synthesis. MVDream (Shi et al.
2023) and SyncDreamer (Liu et al. 2023b) share a similar
idea to improve consistency by fine-tuning attention layers
in 2D diffusion models using 2D and 3D data.

2.3 Mesh-guided Texture Synthesis

Beyond generating 3D objects using text prompts, creating
textures for given meshes is also a critical and challenging
task with various applications. Initial studies (Oechsle et al.
2019; Siddiqui et al. 2022; Yu et al. 2021; Chen, Yin, and Fi-
dler 2022) have shown promising results using GANs. How-
ever, their application is limited to specific categories. In
contrast, many recent works on mesh-guided text-to-texture
synthesis have achieved broader applicability by leveraging
large-scale pretrained diffusion models. These methods typ-
ically employ strategies such as sequentially generation and
inpainting (Chen et al. 2023b; Richardson et al. 2023; Cao
et al. 2023), multi-view diffusion (Gao et al. 2024; Liu et al.
2023c¢) or score distillation (Chen et al. 2023a; Metzer et al.
2023; Youwang, Oh, and Pons-Moll 2023).

3 Method

Given a mesh M and a textual prompt P, our goal is to
produce a texture 7 that well depicts the prompt and suits
the shape with high quality. An overview of our pipeline is
shown in Fig. 1. In this section, We first introduce prelimi-
naries on image space diffusion models and define notations
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Figure 1: Given a mesh and a textual prompt, we aim to produce textures that well depict the prompt and suit the shape. To
achieve this, we propose a local attention technique in Sec. 3.2, which enhances local details by reweighing the original self-
attention layers based on the 3D shape. In addition, we introduce a framework for consistent texture synthesis in Sec. 3.3,
which includes a latent merge pipeline and an efficient texture dilation algorithm, enabling the stable generation of consistent

and high-quality textures.

for rendering. Next, we provide details on how to adapt the
local attention to the diffusion process to improve the lo-
cal details in the generated images while preserving consis-
tency. Then, we illustrate our latent merge pipeline, which
is combined with the local attention mechanism and ensures
the consistency. The final texture can be obtained by inverse
rendering and merging the generated multi-view images.

3.1 Preliminary

2D Image Diffusion models In this paper, we employ Sta-
ble Diffusion (Rombach et al. 2022). Stable Diffusion is a
latent diffusion model that operates in the latent space of an
autoencoder D(E(+)), where £ and D represent the encoder
and decoder, respectively. For a given image [ with its cor-
responding latent feature zg = £(I), the DDPM forward
process(Ho, Jain, and Abbeel 2020) iteratively adds gaus-
sian noise to zg.

q(2z¢|zt-1) = N(2z; Vouze 1, (1 — ap)T), )]

where t = 1,...,T is the time step, ¢(z:|z;—1) is the con-

ditional density of z; given z;_;, and oy is hyperparameter.

In the DDPM backward process, a U-Net €g is trained to

predict the noise and z,_; can be sampled based on z; and
prompt P:

Va1 5

Zi—1 = - t—0
1-— (677

(1 — 1) (\/ouz + Bier)

1—ay

, (2)

where oy and B; = 1 — o, are pre-defined hyperparamters,
Zt—0 is the denoised estimation at time step ¢, €y (z¢, t, P) is
the predicted noise for z;, and ¢; ~ N(0,I). We can sam-
ple z by iteratively performing denoising using Eq. 2 from
the standard Guassian noise zr,zr ~ N (0, I) with DDPM
sampling, and decode to the final generated image by D(zg).

Rendering Representation In this paper, textures are de-
fined in 2D image space in an injective UV parameterization
of M, represented as UV : p € M — (u,v) € [0,1]2.
This parameterization can be automatically constructed us-
ing tools like xatlas (Young 2016). We focus on synthe-
sizing base color maps and disregard any shading effects.
Given a mesh M, a texture map 7 and a viewpoint C,
we use the rendering function R to get the rendered image

= R(T; M, C). Conversely, the inverse rendering func-
tion R~ is utilized to reconstruct the texture map from the
rendered image: 7/ = R~!(x; M, C). For simplicity, we
omit M and C for R and R~! throughout this paper.

3.2 Local Attention

The attention layer is crucial in Stable Diffusion, featuring
two types of attention mechanisms: 1) cross-attention, which
measures the similarity between the latent features and text
embeddings, and 2) self-attention, which can be viewed as
patch matching and voting within a single image. In Stable
Diffusion, each self-attention layer receives the deep spa-
tial feature ¢(z;) of the noisy latent z;, and linearly projects
¢(z) to the query, key, and value matrices Q = lg(4(z:)),
K = lx(¢(z)), V = ly(o(z)), where lg, i, Iy are pre-
trained linear networks for feature projection The output of
self-attention layers is given by Softmax( ¥~ T ) V, where
d is a constant representing the dimension of deep features,
we omit v/d for simplicity in this paper.

Previous works in zero-shot video editing(Yang et al.
2023, 2024; Khachatryan et al. 2023) have demonstrated
that modifying the self-attention layers to incorporate cross-
frame attention can help regularize style across multiple
frames. In texture synthesis, a similar strategy for improving
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Figure 2: A visualization of attention maps concerning the
query patch (in red star). The upper part illustrates the ren-
dered position map and calculated weight map. The bottom
part shows the attention map of different layers before and
after reweighed by the weight map. B{i}T{j} stands for the
i-th Block and j-th Transformer layer in the output layers.

style consistency involves using features from other views as
keys and values to perform cross-view attention, as in (Gao
et al. 2024; Liu et al. 2023c). The cross-view attention for
view n can be written as:

cross_view_atin(n) = Softmax(Q,K} )V,.,  (3)

where v,, is a set of views that attend to the query view
n. The cross_view_attn behaves as the original self-attention
when v,, contains only n.

However, directly adopting this strategy in the diffusion
process often leads to a decrease in color diversity and local
details in the generated images, as demonstrated in Fig. 3.
The root cause of the degradation lies in a reduction of vari-
ance in the cross-view attention mechanism, as the predicted
feature embedding with the same underlying 3D structure
can vary when viewed from different perspectives. This can
result in a large attention weight for irrelevant patches, as
illustrated in the visualization of attention maps in Fig. 2.
In this situation, it becomes necessary to guide the atten-
tion module to give greater weight to the same surface area
across different viewpoints. This requires considering the
correlation of patches among multiple views. Fortunately,
we have the input 3D proxy in the texture synthesis task,
which naturally builds a strong semantic correspondence be-
tween patches of different views.

Inspired by (Hertz et al. 2022), which enables prompt-
based image editing by modifying the cross-attention layers
in diffusion models, we introduce an attention bias matrix
W to reweigh the original attention produced by the pre-
trained self-attention layers in Stable Diffusion. Similar to

the attention mask mechanism that masks certain words in
the cross-attention layers, W, in our case, is used to em-
phasize or diminish the correlation between specific pairs
of query-key patches within the self-attention layers. Unlike
the previously mentioned cross-view global attention, we re-
fer to our approach as cross-view local attention.

We now define the process for calculating the attention
bias W. Without loss of generality, let us consider the local
attention of the n-th query view with attended views denoted
as vy,. For simplicity, we will omit the subscript n until the
end of this section. We render a set of position maps {O}
by applying the rendering function R()) to each view in v,
where V' denotes the vertex position of M. Then, we calcu-
late a distance matrix d based on the rendered position maps
{O}. Each entry of d can be calculated using Euclidean dis-
tance: d; ; = ||O; — O,|| for any location ¢ € {1,..., N}
and j € {1,..., Nk }, where N and Nk stands for the num-
ber of patches in query and key features, respectively. We
do not use geodesic distance due to its significant computa-
tional cost, particularly for meshes with a large number of
vertices. Furthermore, the precision of the distance calcula-
tions is inherently limited by the low resolution of the atten-
tion maps, making the choice of distance calculation method
less critical.

Then, we compute W by:

0, if Q:€BGN K, cBG
Wi,j = —Oh’l(]. +7’d7;7j), if Qz e FG N Kj € FG
—00, else
“)

where o and r are hyper-parameters that determine the distri-
bution of the attention bias, BG and FG refer to background
and foreground patches, respectively. Intuitively, the atten-
tion bias approaches 0 for patch pair located at the same
position in 3D and attenuates towards —oo as the distance
increases. We do not reweigh attention between background
patches, and to avoid extreme cases, we set a lower bound
0 by applying a clamping operation: W = max (W, In(9)).
In our experiments, we empirically set o, r, d as 2, 20 and 0.1
to get the best performance.

Given the original similarity S = QK and attention bias
W, we can compute the reweighed attention matrix as fol-
lows:

M’ = Softmax(S + W), 5)
where each element M, ; is calculated by:
eWiieSia

M’ (6)

b= Wi jeSij
>, Ve

In this way, we manage to manipulate the attention maps
by emphasizing on the correspondence of feature patches
that are closer in 3D. We empirically find it helpful to replace
the original similarity with the weight matrix, to enforce
the local appearance consistency, i.e. M’ = Softmax(W).
However, the replacement operation can lead to blurring and
shape distortion in the late steps. Therefore, we limit the re-
placement strategy to the early stages of the diffusion pro-
cess for rough consistency guidance.
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Figure 3: Results of different attention mechanisms for 4-
view diffusion with prompt: A cute shiba inu dog. Images in
row 1 are generated without cross-view attention and exhibit
no consistency. Results using Global Attention (row 2) are
consistent but lose color diversity and details. Images with
Local Attention (row 3-5) show improvements in diversity
and details, all while maintaining a significant level of cross-
view consistency. We find that setting o = 2 achieves better
diversity while eliminating artifacts with o = 8.

3.3 Consistent Texture Synthesis

Latent merge pipeline Applying cross-view local atten-
tion in the diffusion process can improve the style consis-
tentcy across different views, but it’s still insufficient for
synthesizing 3D consistent views, i.e., two pixels projected
to the same point in 3D have the same value. Directly merg-
ing these views will inevitably cause inconsistencies in the
final texture, as shown in the first two rows of Fig. 5. We
consider a latent space alignment strategy similar to (Liu
et al. 2023c; Gao et al. 2024; Kim et al. 2024) for better
cross-view consistency. However, the alignment operation
can lead to an over-smoothed appearance and degradation in
diversity due to a loss of variation in the alignment process,
see Fig. 4. To overcome these issues while maintaining view
consistency, we introduce a novel latent merge pipeline.

Specifically, we first initialize a set of noisy latent for each
view by {zr,, ~ N(0,I)})_, and an initial latent texture
Ur ~ N(0,1I) at the beginning of denoising process. At
each denoising step ¢, our goal is to predict 3D consistent
Zi_1,, from z;,. We first obtain the denoised prediction
Zt—,0,n iN image space by:

2t—>0,'!7, = (Zt,n -V 1- atee(zt,na ty P) dn))/\/a_t7 (7)
where d,, is the depth condition for ControlNet at view n.

We then apply inverse rendering to obtain the per-view
partial latent textures by:

Uison = R (2i0.0)- ®)

Note that the partial textures do not exhibit 3D consis-
tency at this moment. One way is to aggregate them into a
canonical one by averaging. However, trivially averaging the
partial textures of different views can lead to a loss of high-
frequency details and color diversity. Hence, we propose to
merge them in a view-dependent way:

3 _ EnN:1 winR™HN,) © Ui

Ut—)O - N ’ (9)

Y= W RTH(NR)

where N, is the cosine similarity map rendered at view
point C,, with each pixel representing the cosine similarity
between the normal vector of the 3D point and the reversed
view direction. The term w; , denotes the weight for view
n at time step t. wy ,, is set to 1 at time step 7" and is then
linearly interpolated to max(| cos 6|7, Wy, ) at time step ¢/,
where 6 is the angle between C), and Cj, and + is a hy-
perparameter that balances the influence of different views.
Intuitively, this approach ensures that at the beginning of the
diffusion process, different views are merged with similar
weights, promoting style consistency. As the diffusion pro-
gresses, each texel becomes predominantly influenced by a
single view, effectively preserving diversity and preventing
the loss of high-frequency details.

After merging the denoised partial textures into a single
one, we can update the latent texture U;_; by adding back
the variance with Eq. 2:

Qg — N 1—a;_
Uea = W0, S0 (i, 4 e,

(10)
The image space latent z;_; , for next step of ¢t — 1 can
be then obtained by blending the rendered foreground latent
R(Ui—1, Cy) with the image space latent Z;_1
Zt—1,n = M, ® R(Ut—l; Cn) =+ (1 - Mn) © 2t—l,na
1D
where Z,_1 ,, can be derived by Eq. 2, and M,, represents
the binary foreground mask for viewpoint C,.

The final denoised z ,, of each view can be obtained by
iterating the denoising steps. We do not perform latent merge
in the last 5 steps to prevent artifacts caused by the reprojec-
tion of low-resolution latents.

Final Texture Synthesis To reconstruct the texture map,
we first decode the latent of each viewpoint to generate
multi-view images Z,, by D(zo ). Subsequently, we final-
ize the texture by:

_ XL @RING ORTNT) g

Zﬁ:l wpR™1(Ny)

where N, is the similarity mask at viewpoint C,, and w,, =
max(] cos0]7, Wmin)-

After merging, the texture map still contains invalid pix-
els that fail to receive color from any perspective due to
self-occlusion. A straightforward approach to address this
issue is to expand the valid pixels on the texture map us-
ing a flood-fill technique within the image space. However,
this naive flood-fill method may propagate colors from pix-
els that are not adjacent in the 3D space, leading to inac-
curacies in the final texture map. An optimal solution in-
volves using geodesic distance, but the computational cost

Tmerge
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Figure 4: Qualitative comparison with different baselines.

is prohibitively high. Therefore, we introduce a fast texture
completion method that approximates color propagation in
surface space. The detailed algorithm could be found in the
Appendix.

4 Experiments

4.1 Implementation details

We test our method on an NVIDIA A800 GPU, and the en-
tire process was able to finish within 1 minute. The diffu-
sion process takes around 50s with 25 denoising steps at
a resolution of 1280, and the final texture synthesis stage
takes around 2s. The CFG scale is set to 12. We linearly in-
terpolate the view-dependent weight w for the first 8 steps.
The paramters v and w,,;, are set as 8 and le — 3. We
adopt SDXL (Podell et al. 2023) as our base model and
ControlNet-Depth (Zhang, Rao, and Agrawala 2023) trained
for SDXL for spatial control. We replace the self-attention
layers in the output layers of SDXL by our proposed 3D-
aware local attention mechanism in all experiments.

Dataset The dataset used in evaluation contains 35 meshes
with 63 mesh-prompt pairs. The meshes are collected from
the publicly open dataset including objarverse (Deitke et al.
2023), shapenet (Chang et al. 2015), and stanford 3D Scan-
ning Repository (Turk and Levoy 1994). We use Xat-
las (Young 2016) to automatically unwrap the UV for all
meshes. We normalize all meshes to the range of [—0.5,0.5]

PS 1 KIDJ User study (%)
(%) x107* Dt Ct Qf

Text2Tex 9.7 88.1 14.2 143 45 7.0
TEXTure 102 922 17.1 133 57 6.7
GenesisTex 17.1  77.0 9.5 10.8 127 114
SyncMVD 13.6 857 10.2 35 5.7 8.9
Ours 494 664 7.3 581 714 66.0

Method FIDJ

Table 1: Quantitative comparisons with baseline methods. Pick
Score (PS), Diversity (D), Consistency (C), and Quality (Q).

and position the camera at a distance of 2 meters with the
field of view set to 35 degrees. To balance time-cost and
view coverage, we typically employ N = 8 fixed view-
points at angles of [0,45,90, 135,180, 225,270, 315] de-
grees, evenly distributed around the object of interest.

4.2 Comparisons

We conduct comparison with four available methods on text-
to-texture synthesis, including Text2Tex (Chen et al. 2023b),
TEXTure (Richardson et al. 2023), SyncMVD (Liu et al.
2023c), GenesisTex (Gao et al. 2024). We have also com-
pared our method with Meshy-3 (Meshy 2024), a state-of-
the-art commercial software that supports generating tex-
tures for 3D models using text prompts. The comparison re-
sults with Meshy-3 are placed in the Appendix. We strongly
recommend readers check the appendix for more details.

Qualitative comparisons. We compare qualitatively with
different baselines in Fig. 4. GenesisTex (Gao et al. 2024)
produces visually reasonable renderings, but they tend to
generate less diverse images. TEXTure (Richardson et al.
2023) and Text2Tex (Chen et al. 2023b) lacks multi-view
consistency since it operates on each view independently.
SyncMVD (Liu et al. 2023c¢) yields visually consistent ren-
derings. However, they tend to get blurry results, see the
dragon and lucky cat in Fig. 4, since the latent averaging
operation in their approach leads to a loss of high-frequency
details and color diversity.

Quantitative comparisons. Following GenesisTex (Gao
et al. 2024) and TexFusion (Cao et al. 2023), we report
FID (Heusel et al. 2017) and KID (Binkowski et al. 2018)
scores. We generate depth maps as conditional images for
all meshes by rendering them from 12 different viewpoints,
each separated by 30-degree intervals. Using these depth
maps and our textual prompts, we sample from pretrained
image diffusion model to create a set of ground truth im-
ages. Additionally, we render meshes with textures gener-
ated by different methods using the same views to get the
candidate set. We primary focus on the foreground, and we
set the background pixels of all images to white.

In addition, we also employ Pick Score (Kirstain et al.
2024) to evaluate the visual quality of our texture synthesis
results. Pick Score is an CLIP-based scoring function trained
on large-scale user preference regarding generated images
paired with text prompts. For each mesh, we compute the
average Pick Score using the same 12-view rendered images
employed for calculating the FID, identifying the method
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Figure 5: Ablation results on local attention and latent
merge. The left three columns show the generated images,
and the last column depicts the rendered result with synthe-
sized texture.

with the highest score as the winning approach for that mesh
and calculating the winning rate for each method.

We also conducted a user study to analyze the results
across three aspects: 1) consistency, 2) diversity, and 3) over-
all quality. We render the results of different methods into
videos that showcase the textured object from a 360° ro-
tating view. We randomly pick 15 meshes for each ques-
tionnaire. and ask the participants to judge which method
matches best for each aspect. Finally, We collected 30 valid
answers from professional artists and non-professionals.
The whole quantitative results can be found in Tab 1. Our
method achieves the highest pick score compared to other
methods and is preferred by most human evaluators in terms
of consistency, diversity, and overall quality.

4.3 Ablation Studies

Effectiveness of local attention To investigate the impact
of the cross-view local attention, we visualize the decoded
multi-view images of different attention strategy in Fig. 3
and Fig. 5. Fig. 3 illustrates an example with the prompt
A cute shiba inu dog. We can discover that the color and
pattern of the dog varies a lot across different viewpoints
without any cross-view constrain. With global attention, the
query view attends to all views in the attention layer and
brings higher consistency, but at a cost of losing image de-
tails and variance. Our proposed geometry-aware local at-
tention amplifies the local attentions on pixels that are closer
in 3D, which not only leads to vivid color and fine-grained
details, but also preserves cross-view consistency. Similar in
Fig. 5, the cross-view images are more consistent with local

attention than the baseline without cross-view attention.

Effectiveness of latent merge pipeline We ablate the la-
tent merge pipeline to evaluate the effectiveness of our latent
merge strategy in generating consistent textures. As shown
in the last column of Fig. 5, the full pipeline with latent
merge exhibits the best consistency compared with baselines
in the final renderings. Note how the full method achieves
the best multi-view consistency and generates rich details,
while the baselines without latent merge exhibit severe in-
consistencies.

4.4 More Applications

Our method is designed to be fully compatible with ex-
isting Stable Diffusion models without the need for addi-
tional training. This makes it readily applicable to a wide
range of models available on platforms such as Civitai (civ-
itai 2024) and HuggingFace (Huggingface 2024). Further-
more, our pipeline can be seamlessly integrated with aux-
iliary models tailored for Stable Diffusion, thereby enrich-
ing its versatility in practical scenarios. For instance, we can
incorporate the IP-Adapter into our framework to facilitate
image-guided texture generation, and leverage various Lo-
RAs to achieve distinct artistic styles. The texturing results
with LoRAs and IP-Adapters can be found in the supple-
mentary materials.

5 Discussions

Failure Cases Our algorithm employs texture dilation to
fill the fully-occluded regions, which may wrongly pro-
duce overly smoothed results on these fully-occluded ar-
eas which should have complex textures. Additionally, the
Janus effect is a challenge inherent to methods that utilize
pretrained 2D image diffusion models. While this issue is
alleviated through the proposed local attention and perspec-
tive prompts (as seen in DreamFusion), the inherent bias
presented in 2D image diffusion models can still result in
unwanted anatomical features.

Limitation As a common limitation in the field of texture
synthesis using pretrained 2D diffusion models, the align-
ment between the mesh and texture is not perfect, which is
largely due to the limited control capabilities of the currently
available ControlNets. It could be improved along with the
development of more powerful control models. The baked-
in lighting effect is another common limitation in this field,
and we will leave it as our future work.

6 Conclusions

In this article, we propose a pipeline aiming at generat-
ing consistent and high-quality textures for 3D meshes us-
ing textual prompts. Our method leverages pretrained Stable
Diffusion models without any further training or fine-tuning.
This makes it highly versatile, capable of handling a wide
range of geometry and texture types, and easily adaptable to
various models on model-sharing platforms. We believe this
work will advance Al-based texturing and opening up new
possibilities for 3D content generation.
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A Surface space color dilation

We first divide the original UV map into sub-UV islands
using equal-sized grids, as illustrated in Fig. 6 and Fig. 8.
Next, we calculate the connectivity of sub-UV islands and
generate an adjacency matrix. Then, we iteratively traverse
the invalid pixels on the UV map which are invisible
from all perspectives. For each invalid pixel, we first pick
candidates from textured pixels based on their relative
distance in 3D, the cosine similarity of their vertex normal,
and the connectivity recorded by the adjacency matrix. We
then calculate the color for the invalid pixel by performing
a weighted average of these candidates. We iterate this
algorithm until all invalid pixels are filled or reach the max
step. The detailed algorithm on surface space color dilation
is shown in Algorithm. 1. An illustration of this process is
shown in Fig. 6. As demonstrated in column 3 of Fig. 8§,
the UV space dilation method may propagate colors from
pixels that are not adjacent in the 3D space, resulting in
inaccuracies in the final texture map. In contrast, our surface
space color dilation algorithm propagates valid texture color
in surface space instead of UV space, thereby effectively
addresses inaccurate color propagation when using naive
flood-fill method in UV space.

B Implementation details

We implement our algorithm using an open-source frame-
work: ComfyUI(ComfyUI 2024), and we adopt nvd-
iffrast (Laine et al. 2020) for rendering and inverse ren-
dering. We set the strength of ControlNet as 1.0 in all our
experiments. As for parameters of surface space dilation
algorithm, the grid size s = 064, the distance threshold
diyp, = 0.02, the angle threshold ay, = 90°, the nearest
neighbors number n = 30, and iterations iter = 10.

C More Results

We present additional ablation experiments on local atten-
tion in Fig. 7. This figure illustrates the ablation results
for various attention mechanisms in multi-view generation
without latent merging. Our local attention method demon-
strates superior multi-view consistency while effectively
preserving intricate details that close to the images gener-
ated by the original unconstrained diffusion (row 1). Further-
more, we include results compared with different methods in
Fig. 10, 11, and 12. The qualitative comparison with Meshy-
3 (Meshy 2024) can be found in Fig. 9. Meshy-3 produces
highly contrasting colors with considerable details but tends
to generate ghosting artifacts and sometimes over-saturated
results. In contrast, our method can produce textures with
better visual quality and considerable diversity, while keep-
ing surface consistency. Additional results showcasing our
methods across various meshes and styles can be found in
Fig. 13, 14, 15, 16, 17, and 18.

ALGORITHM 1: UV dilation in surface space

Input:

input UV map U

uv-space spatial position map X

uv-space normal map NV

uv-space face index map F

uv-space visibility map M

Parameters: grid size s, dilation distance threshold
dypn, dilation angle threshold ay,, iterations iter,
number of nearest neighbors n

Output: UV map after dilation U

Iori < get_original uv_island(F)
Igriq < get_grid_uv_island(F, s)
M4 + get_adjacency-matriz(F, Iyq, Iori)
P, Q « get_walid_invalid_points(M)
for:=1,2,...,iter do
for each g € Q do
A = Igrialg]
gn < KNN(q, P,n)
for each q;, € q,, do
B = Igrid[qk]
dist = || X[g] — X[ge]l]»
angle = angle_between(N|q], N|qx])
if g ¢ Q and angle < ay, and
M,q;[A][B] == True and dist < dy,
then
wE =1— (dist/dth)z
else
WE — 0
end
end
W= eq, Wk
if w # 0 then
Uld) = & Xgeeq, (Ular] = w)
remove ¢ from @
end
end
end
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in surface space. Note how the colors can be propagate be- valid texture color in surface space instead of UV space. This
tween distant UV islands. effectively addresses inaccurate color propagation when two

points are proximate to each other in 3D but situated on re-
mote UV islands (green arrow), or located on nearby UV
islands but having a large 3D distance (yellow arrow).
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Figure 7: Ablation results on different attention mechanisms

in multi—viev_v generation. Each view.attends to its neighbors Figure 9: Qualitative comparison with Meshy-3. Our results
(top), each view attends to all other views (middle), our local are shown on the left for each group with Meshy-3 on the
attention (bottom) achieves the best multi-view consistency right.

while preserving rich details.
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Figure 10: More comparison results with different methods.
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Figure 11: More comparison results with different methods.
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Figure 12: More comparison results with different methods.
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Figure 13: More results on meshes from objaverse(Deitke et al. 2023).
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Figure 14: More results on meshes from objaverse(Deitke et al. 2023).
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Figure 15: More results on meshes from objaverse(Deitke et al. 2023).
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Figure 16: More results on meshes from industrial games.
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Figure 17: More results on meshes from industrial games.
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Figure 18: More results on meshes from industrial games.



