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Abstract
The rapid advancement of Unmanned Aerial Vehicle (UAV) technology has facilitated
dynamic, high-resolution remote sensing, significantly benefiting applications in agri-
culture, forestry, urban planning, and disaster management. However, detecting small
objects in UAV imagery remains challenging due to severe scale variations and envi-
ronmental complexities. While traditional detection methods and even many advanced
YOLO variants achieve reasonable performance, they often either incur high computa-
tional costs or fail to preserve the fine-grained features essential for reliably detecting
extremely small targets. To overcome these limitations, we propose SRD-YOLOv5, an
enhanced version of the lightweight YOLOv5n model, distinguished by its novel multi-
scale feature fusion framework. Our approach introduces two innovative modules: the
Scale Sequence Feature Fusion Module (SSFF) and the Multi-Scale Feature Extraction
Module (MSFE), which collaboratively capture global contextual information and preserve
detailed semantic cues that are typically lost in conventional fusion techniques. Further-
more, we incorporate an Extremely Small Target Detection Layer (ESTDL) specifically
designed to retain high-resolution features for micro-scale object detection. Addition-
ally, the implementation of a Decoupled Head, which independently processes regres-
sion and classification tasks, further optimizes the detection of small targets by reduc-
ing task conflicts and improving localization precision. Experimental results demonstrate
that SRD-YOLOv5 outperforms existing methods in detecting small targets within UAV
remote sensing images. It achieves higher accuracy while maintaining low computational
demands, making it suitable for real-time applications in UAV remote sensing.
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Introduction
With the rapid advancement of Unmanned Aerial Vehicle (UAV) technology, remote sensing
has achieved dynamic, high-resolution observations of the geographical environment, signif-
icantly advancing applications in agriculture, forestry, urban planning, and disaster manage-
ment [1]. The effectiveness of target detection algorithms in automated remote sensing image
analysis is critical to the practical value of UAV imagery. In particular, the ability to accu-
rately detect small targets is crucial, as they often carry essential information but are easily
overlooked due to complex backgrounds and limited spatial resolution [2–4].

Despite significant progress in modeling and deep learning [5–9], remote sensing images
captured by UAVs still pose challenges stemming from large-scale variations, diverse shooting
angles, and complex environmental factors such as lighting and weather [3,4,10]. Traditional
object detection methods often struggle with high computational costs, suboptimal adapt-
ability to changing conditions, and insufficient accuracy, particularly when small targets are
densely distributed or severely occluded. This necessitates new strategies that can effectively
preserve fine-grained feature information, robustly fuse multi-scale features, and maintain
real-time performance on resource-constrained UAV platforms.

Recent years have seen remarkable advancements in deep learning-based object detection
frameworks, which can be broadly divided into one-stage and two-stage methods [11–25].

Two-stage algorithms typically start by generating candidate boxes, followed by feature
extraction and classification using convolutional neural networks, and conclude with target
localization refinement through post-processing operations, such as Regional Convolutional
Neural Networks (e.g., R-CNN [23], Faster R-CNN [24], and Mask R-CNN [25]). While two-
stage algorithms have significantly advanced detection accuracy and target localization, they
remain insufficient for satisfying real-time processing requirements.

In contrast, one-stage detectors like YOLO [11–13] integrate classification and localization
into a single step, enabling faster inference while maintaining competitive accuracy. Succes-
sive YOLO iterations, from YOLOv1 to YOLO11 [14–18,20–22], have introduced anchor-
based mechanisms, pyramid network structures, and a variety of architectural optimizations
to improve small object detection.

Although these one-stage detectors have proven effective, deploying them in UAV scenar-
ios still faces hurdles [14–18,20–22]. On the one hand, many state-of-the-art YOLO variants
involve large backbone networks and complex feature fusion modules, which may not be ideal
for real-time processing on UAV platforms with limited onboard computing resources. On
the other hand, lightweight models such as YOLOv5n [15] reduce computational overhead
but often struggle to detect densely clustered, small-scale targets. Recent methods aimed at
overcoming these limitations (e.g. YOLO-LITE [26], YOLO-TLA [27], and LE-YOLO [28])
successfully reduce model size and computational cost. However, they still struggle to bal-
ance efficiency with the robust detection of extremely small objects in cluttered environ-
ments. Similarly, approaches focusing on small object detection in UAV imagery (e.g., UAV-
YOLOv8 [29], HSP-YOLOv8 [4], YOLO-Drone [30], Drone-YOLO [31], and YOLOX_w
[32,33]) enhance feature fusion and introduce novel loss functions or attention mechanisms
to improve small-scale target detection. Yet, despite these advancements, challenges remain in
achieving high detection performance for small objects while maintaining a lightweight archi-
tecture suitable for UAV deployment. Balancing the trade-offs among model complexity, com-
putational efficiency, and detection accuracy remains a key research objective, particularly
under harsh imaging conditions or when targets appear at extremely small scales.

To address these limitations, this paper proposes SRD-YOLOv5, a multi-scale fea-
ture fusion framework that enhances the lightweight YOLOv5n model for more robust
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small-target detection in UAV remote sensing imagery. Specifically, we aim to: (1) preserve
fine-grained details that are crucial for accurate small-object recognition; (2) extract and
fuse multi-scale features more effectively; and (3) maintain a compact network architecture
suitable for deployment under resource constraints. The key contributions of this work are
summarized as follows:

• We propose an enhanced version of the YOLOv5n model, named SRD-YOLOv5, which
incorporates a novel multi-scale feature fusion algorithm for UAV remote sensing target
detection. By integrating a multi-scale feature fusion mechanism, our approach significantly
improves the detection of small targets, particularly excelling in scenarios involving dense
small targets within complex backgrounds.

• We developed the Scale Sequence Feature Fusion Module (SSFF) and the Multi-Scale Fea-
ture Extraction Module (MSFE). These modules enhance the model’s ability to capture
global multi-scale information while effectively preserving semantic details during the
feature fusion process.

• Furthermore, we designed an Extremely Small Target Detection Layer (ESTDL) to improve
the detection of small targets in high-resolution images. This layer significantly enhances
the sensitivity and accuracy of the detection head by refining feature representations,
thereby strengthening the model’s ability to locate and identify small targets.

• Finally, we propose a Decoupled Head that adopts a decoupling strategy to separate the
processing paths for regression and classification tasks. This design enhances the accuracy
of small-target localization, enabling the model to handle different tasks more efficiently
and thereby improving overall detection performance.

Related work
In recent years, with the advancement of object detection, both two-stage and single-stage
methods have been proposed [11–25]. While two-stage methods typically offer higher accu-
racy, single-stage approaches have gained attention for real-time applications—particularly
in resource-constrained scenarios such as UAVs [34]. Among single-stage models, the YOLO
family achieves an optimal trade-off between speed and accuracy, making it particularly
effective for UAV deployments [11–22].

Object detection for UAV applications
Two-Stage Methods: Two-stage detection methods first generate candidate bounding boxes
through a Region Proposal Network (RPN), followed by classification and bounding box
refinement for each candidate [35]. For example, Faster R-CNN uses an RPN that shares con-
volutional features to efficiently generate candidate regions. In the second stage, it classifies
and predicts object categories and bounding box locations [24]. Mask R-CNN extends Faster
R-CNN by adding a mask prediction branch for instance segmentation, while retaining the
detection branch with minimal computational overhead [25]. Two-stage methods typically
achieve high detection accuracy and robust instance recognition, excelling in complex scenar-
ios. However, their substantial computational overhead and slower inference speed impose
significant hardware requirements, limiting real-time applicability on resource-constrained
UAV platforms [36]. Despite this limitation, these methods remain valuable for offline anal-
yses where accuracy is prioritized over real-time performance.

Single-Stage Methods: Single-stage detectors perform object localization and classifica-
tion in a single forward pass, without a separate region proposal step. For instance, the Single
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Shot Detector (SSD) directly regresses bounding boxes and predicts classes on multi-scale fea-
ture maps, while the YOLO series divides the image into grids and simultaneously predicts
bounding boxes and class probabilities using anchor boxes [35]. These detectors significantly
improve detection speed by eliminating sequential RoI cropping and classification steps, mak-
ing them particularly suitable for real-time UAV applications. However, SSD has demon-
strated limited effectiveness in detecting small objects captured by UAVs, performing notably
worse than advanced YOLO models and Faster R-CNN [37]. Advanced YOLO variants (e.g.,
YOLOv3 [13], YOLOv4 [14], YOLOv5 [15]) have effectively integrated multi-scale feature
fusion, enhanced backbone architectures, and refined loss functions, significantly improving
detection accuracy while maintaining high frame rates. Single-stage detectors, especially the
YOLO series, provide an optimal balance between computational efficiency and accuracy for
real-time UAV tasks.

Transformer-Based Methods: Transformer-based approaches introduce transformer
architectures [38] into object detection tasks. For example, DETR formulates detection as a
set prediction problem, extracting global context through a Transformer following CNN-
based feature extraction to directly output object bounding boxes and class labels, without
requiring region proposals or non-maximum suppression (NMS) [39]. The Swin Transformer,
a hierarchical visual Transformer, replaces traditional backbones such as ResNet in detec-
tion frameworks (e.g., Faster R-CNN, Mask R-CNN) by modeling long-range dependencies
through sliding-window self-attention while preserving local receptive fields [40]. DINO
further improves upon DETR by incorporating contrastive denoising training and hybrid
queries to enhance detection accuracy and accelerate training convergence [41]. Nonetheless,
Transformer-based models are characterized by substantial parameter sizes and high com-
putational costs. For instance, Swin-L contains approximately 280 million parameters, and
DINO with a ResNet-50 backbone achieves inference speeds of only around 5 FPS [41]. While
Transformers excel in capturing global contextual relationships beneficial for UAV imagery
with densely distributed small objects and significant scale variations, their computational
demands severely constrain real-time deployment on UAV platforms.

Therefore, YOLO-based models remain the preferred choice for UAV object detection. The
single-stage architectures of YOLO enable fast inference speeds and real-time performance,
satisfying the demanding operational requirements of UAVs [42]. Moreover, advancements
in the YOLO series have improved detection accuracy while maintaining model efficiency,
further reinforcing their suitability for resource-constrained UAV applications.

YOLO
YOLOv1 [11], introduced by Joseph Redmon et al. in 2016, marked a significant shift from
multi-stage pipelines to a single-stage, end-to-end detection framework. By predicting both
bounding boxes and class probabilities using a single neural network, YOLOv1 achieved faster
inference speeds than earlier approaches such as Fast R-CNN [24] and SSD [43]. However, it
struggled with detecting small objects and handling complex scenes involving multiple tar-
gets. YOLOv2 [12] introduced anchor boxes, batch normalization, and high-resolution clas-
sifiers, enhancing the model’s generalization capability and detection accuracy, particularly
for smaller objects. YOLOv3 [13] further built on these improvements by incorporating a
multi-scale detection approach that predicts objects at three different scales. It also adopted
the deeper Darknet-53 backbone with residual connections, improving feature extraction
and gradient flow. These advancements made the model more effective at detecting objects
of varying sizes and complexities—a capability particularly beneficial for UAV applications.
In 2020, YOLOv4 [14], developed by Alexey Bochkovskiy, introduced major innovations by
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integrating CSPDarknet53, spatial pyramid pooling (SPP), and path aggregation networks
(PAN). These improvements enhanced multi-scale feature extraction, while the adoption of
the Mish activation function improved training stability. Released in the same year, YOLOv5
[15] emphasized usability and flexibility by transitioning to the PyTorch framework. It intro-
duced key innovations, including auto-learning of anchor boxes, mosaic data augmenta-
tion, and hyperparameter optimization, making it more accessible to developers. YOLOv5
quickly gained popularity in various UAV applications, such as smart farming and real-time
surveillance, due to its ease of use and fast inference speeds.

In 2022, YOLOv6 [16], developed by Meituan Vision AI, was designed for industrial appli-
cations. It incorporated CSPDarknet as the backbone and enhanced its architecture with a fea-
ture pyramid network (FPN) to improve multi-scale detection. YOLOv6 demonstrated supe-
rior efficiency and speed, surpassing its predecessors and proving highly effective for UAV-
based monitoring systems. YOLOv7 [17] introduced notable advancements in efficiency and
scalability. It implemented the Extended Efficient Layer Aggregation Network (E-ELAN),
enhancing gradient flow and supporting deeper network designs without compromising
learning capacity. Furthermore, the model adopted scalable concatenation-based architecture,
making it adaptable to a wide range of hardware platforms, from high-performance servers
to embedded devices. In 2023, YOLOv8 [18] introduced a paradigm shift with its anchor-
free design, eliminating the reliance on predefined anchor boxes. Instead, it directly predicted
object centers, reducing post-processing time and improving accuracy. Additionally, it fea-
tured a user-friendly Python interface and online data augmentation, enhancing accessibility
for developers.

Released in early 2024, YOLOv9 [20] introduced two core innovations: the Programmable
Gradient Information (PGI) framework and the Generalized Efficient Layer Aggregation Net-
work (GELAN). These advancements addressed bottlenecks in information flow and enabled
lightweight models to achieve high accuracy, enhancing performance across both deep and
shallow architectures. Later in 2024, YOLOv10 [21] further advanced real-time detection by
eliminating non-maximum suppression (NMS) through a dual-label assignment strategy.
This significantly reduced inference time, making it well-suited for autonomous drones and
agricultural monitoring applications.

YOLO variants for UAV applications
Recent research on object detection in UAV imagery has extensively focused on enhancing
the YOLO framework to improve small object detection—a challenging task due to low res-
olution, complex backgrounds, and overlapping targets. Numerous studies have proposed
modifications to YOLOv5, YOLOv8, and YOLOX, emphasizing improvements in accuracy,
efficiency, and real-time deployment [4,26–29,31].

To address the computational limitations of UAV platforms, several lightweight versions
of YOLO have been developed. YOLO-LITE [26] simplifies the original YOLO framework
by reducing the number of convolutional layers and employing depthwise separable con-
volutions, thereby minimizing memory usage and computational requirements. Despite its
lightweight design, it maintains reasonable detection accuracy, making it suitable for real-
time surveillance and wildlife tracking on drones with limited processing capabilities. Simi-
larly, YOLO-TLA [27] aims to combine the advantages of tiny models with high-performance
architectures. By integrating channel attention mechanisms and employing aggressive down-
sampling, it ensures efficiency without compromising detection quality. These enhancements
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enable the model to achieve high accuracy while maintaining low computational require-
ments, making it well-suited for UAV applications such as disaster response, traffic monitor-
ing, and autonomous navigation. LE-YOLO [28] builds upon YOLOv8n, focusing on reducing
model size and computational overhead while maintaining high detection accuracy. It incor-
porates a lightweight backbone (LHGNet), efficient neck modules, and a specialized detection
head designed for small-object recognition.

Several studies have addressed the challenge of detecting small objects in UAV imagery.
Recent modifications to YOLOv5 [2,3] focus on redesigned anchor sizes, attention modules,
and the implementation of Complete IoU (CIoU) loss for improved bounding box predic-
tion. Additionally, the introduction of a P2 feature layer helps preserve fine-grained features
during detection, enhancing the model’s ability to identify small objects. UAV-YOLOv8 [29]
introduces modifications to the YOLOv8 framework to improve small-object detection in
complex aerial environments. The model incorporates the Wise-IoU (WIoU) v3 loss function
for enhanced localization, BiFormer attention mechanisms for improved feature selection,
and a multiscale feature fusion network to strengthen detection across different scales. These
enhancements make UAV-YOLOv8 highly effective for UAV-based applications where object
size and scene complexity vary significantly. HSP-YOLOv8 [4] focuses on enhancing detec-
tion performance for small objects in UAV imagery. The model incorporates a tiny prediction
head for high-resolution detection, a Space-to-Depth Convolution (SPD-Conv) module to
minimize feature loss during down-sampling, and Soft Non-Maximum Suppression (Soft-
NMS) to reduce missed detections. These improvements make HSP-YOLOv8 well-suited for
cluttered environments, ensuring greater detection reliability in aerial applications with dense
or complex backgrounds.

To address the challenges of varying altitudes, dynamic backgrounds, and overlapping
targets in UAV-based detection, YOLO-Drone [30] incorporates multi-scale feature extrac-
tion techniques to enhance the detection of objects at different scales. Additionally, the inclu-
sion of an enhanced Region Proposal Network (RPN) reduces false positives, making YOLO-
Drone well-suited for applications in urban environments and forests, where objects may be
occluded or camouflaged.

Drone-YOLO [31] enhances the YOLOv8 framework by introducing new architectural
components to improve small object detection and handle overlapping targets. It incorporates
an additional detection head, a sandwich-fusion module, and RepVGG blocks to enhance fea-
ture extraction. These modifications make Drone-YOLO particularly effective for UAV tasks
in complex environments, such as urban surveillance and environmental monitoring, where
small and overlapping objects are common.

YOLOX_w [32] is a modified version of YOLOX-X [33], designed for UAV aerial photog-
raphy. The model employs image slicing techniques (SAHI) to more effectively detect small
objects and integrates ULSAM attention mechanisms to enhance feature learning. Further-
more, it replaces the standard IoU loss with SIoU loss to improve localization accuracy. These
modifications enable YOLOX_w to perform well in UAV applications that require precise
small-object detection across varying scales.

While these models demonstrate impressive improvements by adding lightweight back-
bones, extra prediction heads, or enhanced loss functions, they often address scale adapta-
tion and fine-grained feature preservation separately or mainly rely on additional heads and
post-processing. To overcome these limitations, we propose SRD-YOLOv5, which differs
from existing methods by introducing a dedicated multi-stage feature refinement framework.
Unlike LE-YOLO’s [28] backbone optimization or Drone-YOLO’s sandwich-fusion, SRD-
YOLOv5 integrates a novel Scale Sequence Feature Fusion (SSFF) and Multi-Scale Feature
Extraction (MSFE) to progressively enhance global context and detailed semantics. Moreover,
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our Extremely Small Target Detection Layer (ESTDL) specifically retains high-resolution
cues for micro-scale objects, and a Decoupled Head minimizes task conflict between classi-
fication and regression—features that are not jointly addressed in prior works such as HSP-
YOLOv8 [4] or Drone-YOLO [31].

By unifying these modules, SRD-YOLOv5 achieves stronger adaptability to severe scale
variation while maintaining real-time performance with low computational cost, effectively
balancing accuracy and efficiency for UAV-based small object detection in challenging remote
sensing scenarios.

Methods
This section introduces SRD-YOLOv5, a multi-scale feature fusion method for UAV-based
remote sensing object detection. The overall framework is illustrated in Fig 1. The backbone
adopts YOLOv5n for feature extraction, the neck integrates a Multi-Scale Feature Fusion

Fig 1. The architecture of SRD-YOLOv5 model.

https://doi.org/10.1371/journal.pone.0332408.g001
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Layer, and the head incorporates an Extremely Small Target Detection Layer along with a
Decoupled Detection Head. These components work together to improve the detection of
small targets in remote sensing images. First, the Multi-Scale Feature Fusion Layer is pre-
sented, combining a Multi-Scale Feature Extraction Module and a Scale Sequence Feature
Fusion Module. This layer enhances the extraction of global multi-scale information in dense
small-target environments, preserving semantic features and enriching positional detail. Sec-
ond, the Extremely Small Target Detection Layer is designed to retain high-resolution detail
and refine feature representations, significantly increasing the sensitivity of the detection head
to small targets. Finally, a Decoupled Detection Head with two parallel branches for regres-
sion and classification further improves the model’s ability to localize small targets accurately.

Multi-scale feature extraction and fusion layer
In convolutional neural networks, features from different layer scales convey distinct types of
information. Low-level features are rich in positional details, while high-level features con-
tain extensive semantic information. YOLOv5n employs an FPN+PAN pyramid structure to
fuse feature maps extracted by the backbone, enhancing semantic information transmission.
However, frequent up-sampling and down-sampling operations within the FPN+PAN pyra-
mid can lead to the loss of small target details in dense UAV remote sensing images, result-
ing in suboptimal small target detection. Furthermore, the PAN’s bottom-up fusion of fea-
ture maps at the same scale fails to effectively integrate rich feature information from various
scales, thereby reducing model performance.

To address these limitations, this paper introduces the Scale Sequence Feature Fusion
Module (SSFF) and the Multi-Scale Feature Extraction Module (MSFE). These modules are
designed to enhance the network’s ability to extract global multi-scale information for densely
distributed small targets while effectively fusing feature maps across different scales. This inte-
gration not only preserves the semantic information of targets but also retains rich positional
details.

Multi-scale feature extraction module. Traditional FPN fusion mechanisms typically
up-sample small-scale feature maps and add them to the previous layer, often overlooking
the rich details in large-scale feature layers. To address this limitation, we designed the MSFE
module. As shown in Fig 2, the MSFE module captures and combines detailed multi-scale
feature information by separately processing large-, medium-, and small-scale features.

The MSFE module consists of three parallel branches:
(1) Upper branch: Processes large-scale feature maps FL.
(2)Middle branch: Processes medium-scale feature maps FM.
(3) Lower branch: Processes small-scale feature maps FS.
The operations in each branch are formalized as follows:
Upper branch: A 1× 1 convolution adjusts the channel dimensions of large-scale feature

maps, followed by adaptive max-pooling and average-pooling to down-sample the features.

F′L =Conv1× 1(FL), (1)

F′′L =Concat(MaxPool(F′L), AvgPool(F′L)). (2)

Middle branch: For medium-scale feature maps, the channel dimensions are adjusted
using:

F′M =Conv1× 1(FM). (3)
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Fig 2. The structure of MSFE module.

https://doi.org/10.1371/journal.pone.0332408.g002

Lower Branch: For small-scale feature maps, we adjust the channels and up-sample:

F′S =Conv1× 1(FS), (4)

F′′S =Upsample(F′S). (5)

After processing each branch, we concatenate the features:

FMSFE =Concat(F′′L ,F′M,F′′S ). (6)

This concatenated feature map FMSFE retains comprehensive multi-scale information,
enhancing the detection accuracy for small targets in UAV remote sensing imagery.

Scale sequence feature fusion module. Since the high-resolution feature levels P2 and P3
contain the majority of key information for small object detection, we use the P3 level as an
example to design the SSFF (as shown in Fig 3). The input to the SSFF consists of three com-
ponents: P3, P4, and P5, representing feature maps with sizes of 80× 80, 40× 40, and 20× 20,
respectively.

First, the feature map from the P3 level undergoes atrous convolution to increase the
receptive field and enhance the network’s ability to detect small objects:

P3′ =AConv(P3) (7)

where AConv denotes atrous convolution.
Next, the feature maps from the P4 and P5 levels are processed using 1× 1 convolutions to

match the number of channels to P3, followed by up-sampling to resize the feature maps to
80× 80:

P4′ =Upsample (Conv1× 1(P4)) (8)
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Fig 3. The structure of SSFF module.

https://doi.org/10.1371/journal.pone.0332408.g003

P5′ =Upsample (Conv1× 1(P5)) (9)

Subsequently, the feature maps from the P3′, P4′, and P5′ levels are concatenated:

Fconcat =Concat(P3′,P4′,P5′) (10)

Atrous convolution is applied to the concatenated features to avoid information loss while
maintaining resolution.

F
′
concat =AConv(Fconcat;d′) (11)

Finally, the processed feature maps are passed through a 3D convolution layer to extract
scale sequence features:

FSSFF =Conv3D(F
′
concat) (12)

By extracting scale sequence features through 3D convolution and leveraging the invari-
ance of scale features, the method effectively combines the high-level semantic information
from deep feature maps at different scales with the detailed information from shallow fea-
ture maps, thereby strengthening the fusion of multi-scale information. This process ensures
an effective integration of high-level semantic information with detailed positional features,
significantly enhancing the detection of small targets.

Extremely small target detection layer
Fig 4 compares the original YOLOv5n detection network structure with the enhanced archi-
tecture incorporating the Extremely Small Target Detection Layer (ESTDL). In YOLOv5n,
when the input image size is 640× 640, the backbone feature extraction network performs
8× , 16× , and 32× down-sampling to extract feature information. The neck component then
fuses features from the backbone using the FPN+PAN feature fusion network. Finally, the
head outputs three feature maps of different sizes: 80× 80, 40× 40, and 20× 20, correspond-
ing to the detection of small, medium, and large objects, respectively. While this structure
performs well on datasets like COCO, where target category sizes are balanced, it faces chal-
lenges with UAV remote sensing images, where small targets predominate. In these images,
some targets are smaller than 8× 8 pixels. Even the small target detection head, with a size of
80× 80, struggles to make accurate predictions.

To address this, we introduce a new 4× down-sampling layer, P2 (Extremely Small Target
Detection Layer, ESTDL), with a feature map size of 160× 160, specifically designed to detect
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Fig 4. The structure of extremely small target detection module.

https://doi.org/10.1371/journal.pone.0332408.g004

extremely small targets in remote sensing images. This high-resolution layer preserves rich
positional information and refined feature details, effectively enhancing the sensitivity of the
detection head and improving detection accuracy (Table 1).

Decoupled head layer
The YOLOv5 algorithm employs a coupled detection head to perform object category clas-
sification and bounding box regression on feature maps from the FPN+PAN feature fusion
network. However, in object detection tasks, researchers have observed that classification

Table 1.Detailed configurations and deployment considerations of the proposed MSFE, SSFF, and ESTDLmodules.
Module Branch/Layer Operation Kernel Size / Dilation Activation I/O Size (Example)
MSFE Upper 1× 1 Conv 1× 1, dil=1 ReLU 256× 128× 128→ 128× 128× 128

Upper Adaptive MaxPool – – 128× 128× 128→ 128× 64× 64
Upper Adaptive AvgPool – – 128× 128× 128→ 128× 64× 64
Middle 1× 1 Conv 1× 1, dil=1 ReLU 256× 64× 64→ 128× 64× 64
Lower 1× 1 Conv + Upsample 1× 1, dil=1 ReLU 256× 32× 32→ 128× 64× 64

SSFF P3 Atrous Conv 3× 3, dil=2 ReLU 256× 80× 80→ 128× 80× 80
P4 1× 1 Conv + Upsample 1× 1, dil=1 ReLU 512× 40× 40→ 128× 80× 80
P5 1× 1 Conv + Upsample 1× 1, dil=1 ReLU 1024× 20× 20→ 128× 80× 80
Fusion Atrous Conv 3× 3, dil=2 ReLU 384× 80× 80→ 128× 80× 80
Extractor 3D Conv 3× 3× 3 ReLU (1× 128× 80× 80)→

(1× 128× 80× 80)
ESTDL Backbone 3× 3 Conv 3× 3, dil=1 ReLU 128× 320× 320→ 128× 160× 160

Head 1× 1 Conv 1× 1, dil=1 Sigmoid 128× 160× 160→ output

https://doi.org/10.1371/journal.pone.0332408.t001
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and regression focus on different aspects, and using the same feature layer for both tasks can
reduce model performance. Specifically, classification tasks emphasizes the object’s salient
features, while regression tasks prioritize the object’s positional information.

In UAV remote sensing images, where targets are small, backgrounds are complex, and
objects are difficult to locate, the coupled detection head can reduce target detection accuracy.
Inspired by YOLOX, we designed a Decoupled Detection Head with two parallel branches to
handle regression and classification tasks separately, thereby improving the model’s sensitiv-
ity to small object localization. Fig 5 illustrates the structure of the Decoupled Detection Head
module. Formally, for each feature map Fin from the neck network, the Decoupled Detection
Head functions as follows:

Regression Branch:

Freg =Conv23× 3(Fin) (13)

treg =Conv1× 1(Freg) (14)

Classification Branch:

Fcls =Conv23× 3(Fin) (15)

tcls =Conv1× 1(Fcls) (16)

Fig 5. The structure of decoupled head module.

https://doi.org/10.1371/journal.pone.0332408.g005
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Here, Conv3× 32 denotes two consecutive 3× 3 convolutional layers, and treg, tcls denote
the outputs for regression (bounding box coordinates) and classification (object classes),
respectively.

The design of the Decoupled Head effectively balances the focus of both tasks, enhancing
the model’s performance by allowing each branch to specialize in its respective task.

Loss function
The SRD-YOLOv5 model utilizes both regression and classification loss functions to predict
object categories and perform bounding box regression. Specifically, it employs Complete
Intersection over Union (CIoU) Loss and Distribution Focal Loss (DFL) for regression, and
Varifocal Loss (VFL) for classification. The detailed formulations of these loss functions are as
follows:

LCloU = 1 – IoU +
𝜌2 (b, bgt)

c2
+ 𝜈2
(1 – IoU) + 𝜈 , (17)

where IoU represents the Intersection over Union between the predicted bounding box and
the ground truth bounding box. b and bgt denote the centers of the predicted and ground
truth boxes, respectively. 𝜌(b, bgt) is the Euclidean distance between the centers of the pre-
dicted and ground truth boxes. c represents the diagonal length of the minimum enclosing
box containing both the predicted and ground truth boxes. 𝜈 measures the consistency of the
aspect ratio between the predicted and ground truth boxes:

𝜈 = 4
𝜋2 (arctan

wgt

hgt
– arctan

w
h
)
2

. (18)

LDFL = –((yi+1 – y) log(
yi+1 – y
yi+1 – yi

) + (y – yi) log(
y – yi

yi+1 – yi
)) , (19)

where y represents the integral result, and yi and yi+1 are the results at the interval endpoints.

LVFL(p,q) =
⎧⎪⎪⎨⎪⎪⎩

–q (q log(p) + (1 – q) log(1 – p)) , q > 0
–𝛼p𝛾 log(1 – p), q = 0

, (20)

where p represents the IACS-predicted value for target confidence, q is the classification con-
dition, 𝛼 is a scaling factor, and 𝛾 is an adjustable ratio factor.

Combining the above components, the total loss function for training the model is:

Ltotal = 𝜆cls∑
i
LVFL(pi, qi) + 𝜆reg∑

i

⎛
⎝
LCIoU(bi, bgti ) +∑

k
LDFL(bi,k, bgti,k)

⎞
⎠
, (21)

where 𝜆cls and 𝜆reg are weighting coefficients.

Experiments
Dataset
In the experimental stage, we utilized two public UAV datasets. The VisDrone2019
dataset (All VisDrone2019 files are available from the https://github.com/VisDrone/
VisDrone-Dataset.) [44] is a large-scale dataset specifically designed for UAV vision tasks,
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collected by drones across 14 different cities in China. It includes a variety of weather con-
ditions, shooting angles, and lighting changes, presenting significant challenges for object
detection. This dataset includes 8,629 high-resolution images, divided into 6,471 for training,
548 for validation, and 1,610 for testing. It is annotated with 342,391 target instances across
10 categories: pedestrian, people, bicycle, car, van, truck, tricycle, awning-tricycle, bus, and
motor.

The RSOD dataset (All RSOD files are available from the https://github.com/RSIA-
LIESMARS-WHU/RSOD-Dataset-.) [45], designed for object detection in remote sensing
images, includes four typical categories: airplanes, playgrounds, overpasses, and oil drums. It
offers a variety of lighting conditions and contrasts, with challenges such as shadows, occlu-
sions, and deformations complicating detection tasks. After excluding some unlabeled images
from the original dataset, a total of 936 images were obtained and divided into training, val-
idation, and test sets in an 8:1:1 ratio, with 748 training images, 94 validation images, and 94
test images.

The NWPU VHR-10 dataset [46] is a publicly available remote sensing object detection
benchmark containing ten representative categories: airplane, ship, storage tank, baseball
diamond, tennis court, basketball court, ground track field, harbor, bridge, and vehicle. The
images were cropped from Google Earth and the Vaihingen dataset, then manually annotated
by domain experts to ensure high-quality ground truth labels. The dataset provides a total of
800 very high-resolution (VHR) remote sensing images, covering diverse geographic scenes
and complex backgrounds. For this study, the images were split into training, validation, and
test sets following an 8:1:1 ratio, resulting in 640 training images, 80 validation images, and 80
test images.

Evaluation metrics
To evaluate the performance of the proposed object detection method, we employed the
following metrics: Precision, Recall, Average Precision (AP), and Mean Average Precision
(mAP). Precision is defined as the ratio of correctly predicted positive samples (true posi-
tives) to all predicted positive samples (true positives and false positives). Recall is the ratio
of correctly predicted positive samples to all actual positive samples (true positives and false
negatives).

Precision = TP
TP + FP

(22)

Recall = TP
TP + FN

(23)

where TP denotes the number of correctly predicted remote sensing objects, FP refers the
number of incorrectly predicted remote sensing objects, and FN indicates the number of
remote sensing objects that were missed.

AP represents the area under the Precision–Recall curve across different threshold settings.
It can be interpreted as the model’s average performance over all operating points, providing a
comprehensive assessment for individual categories.

AP =∫
1

0
P(r)dr (24)
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mAP represents the average of the APs across all categories and is commonly used for multi-
category object detection tasks.

mAP = 1
n

n
∑
i=1

APi (25)

GFLOPs (Giga Floating Point Operations per Second): Measures the total number of float-
ing point operations required by the model to process a single image, expressed in billions of
operations. It reflects the computational complexity. FPS (Frames Per Second): Represents the
number of images that can be processed by the model per second during inference, indicat-
ing the inference speed. APS (Average Precision for Small objects), APM (Average Precision
for Medium objects), and APL (Average Precision for Large objects): These metrics follow the
COCO evaluation protocol and represent the average precision calculated for different object
scales. They are defined as:

APS = 1
T

T
∑
t=1

AP(IoU(t)thr , area < 32
2) (26)

Implementation details
All experiments in this study were conducted in a consistent software and hardware environ-
ment, specifically: Ubuntu 20.04, an NVIDIA RTX 3070 GPU with 8 GB of VRAM, and the
PyTorch 1.12.1 framework with CUDA 11.3 and cuDNN 8.2. To ensure reproducibility, ran-
dom seeds (111, 222, 333, 444, 555, 666) were explicitly set for all experiments. Model initial-
ization parameters, including weights, were kept consistent across all runs. Evaluation metrics
(e.g., Precision, Recall, and mAP) are reported as the mean of values obtained from at least
five independent runs, ensuring the reliability and reproducibility of the results.

In this work, we applied widely used data augmentation techniques that are standard in
drone-based object detection benchmarks. Specifically, the training images were augmented
using random horizontal flipping, random scaling, random cropping, and photometric distor-
tions (including brightness, contrast, and saturation adjustments). These augmentations help
increase the diversity of small objects under various backgrounds and scales, which is critical
for robust detection performance. In addition, transfer learning was employed by initializing
the model backbone with weights pretrained on the COCO dataset, which is a common prac-
tice in UAV target detection to provide strong general-purpose feature representations. This
pretraining ensures better convergence and performance, especially when training datasets
are limited or contain challenging small-scale objects.

During training, the initial learning rate (LR) was set to 0.01, selected after testing candi-
date values of 0.001, 0.005, 0.01, and 0.02. Over the first three epochs, a linear warm-up grad-
ually increased the LR from 0 to 0.01, preventing instability caused by an excessively large
step size at the outset. To further suppress overfitting and ensure stable convergence, the LR
was maintained at 0.01 from epochs 1 to 200, after which a cosine annealing strategy was
applied until epoch 300, smoothly decaying the LR to 0.0001. Training was performed using
stochastic gradient descent (SGD) with a momentum parameter of 0.935 and a weight decay
of 0.0005. The batch size was fixed at 16, and training was conducted for a total of 300 epochs.
For data preprocessing, all input images were uniformly resized to 640×640 pixels to ensure
consistency in data dimensions.

Taking the VisDrone2019 dataset as an example, training for 300 epochs on a single
NVIDIA RTX 3070 GPU required approximately 5.0 hours for YOLOv5n, 7.5 hours for
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YOLOv5s, and about 6.5 hours for the proposed SRD-YOLOv5. Despite incorporating multi-
scale feature extraction and a high-resolution detection layer, the increase in training time
for SRD-YOLOv5 relative to YOLOv5n remained modest and acceptable, while yielding sig-
nificant improvements in detection accuracy—particularly for small-scale and densely dis-
tributed targets.

Experiment results and analysis
Comparison with state-of-the-art on VisDrone2019 dataset
To evaluate the performance of the proposed SRD-YOLOv5 model for UAV remote sensing
object detection, we conducted comprehensive experiments on the VisDrone2019 dataset
and compared the results against several state-of-the-art detection methods. Table 2 presents
the detection accuracies (mAP@0.5 and AP for individual categories) of various models,
including DetNet59 [47], DMNet [48], RefineDet [49], EfficientViT [51], YOLOv3-LITE
[50], DBAI-Det [47], YOLOv3-tiny [13], YOLOv5n [15], YOLOv5s [15], YOLOv7-T [17],
YOLOv8n [18], YOLOv9t [20], YOLOv10-N [21], and YOLO11-N [52].

The results indicate that SRD-YOLOv5 not only raises the overall detection performance
(with an mAP@0.5 of 35.9%) but also offers significant improvements in detecting small-scale
objects—a common challenge in UAV imagery. The model’s robust performance across vari-
ous categories, along with its advantages over recent YOLO variants, validates its state-of-the-
art capability for UAV remote sensing object detection tasks.

Detection performance for small targets is critical in UAV applications. In the Pedes-
trian category, SRD-YOLOv5 achieves an AP of 42.2%, compared to 31.7% for YOLOv5n—
an improvement of 10.5%. Similarly, for the People category, the AP increases from 25.3%
(YOLOv5n) to 34.7% (SRD-YOLOv5), a gain of 9.4%. For the Bicycle category, SRD-YOLOv5
attains 10.6% AP, compared to 6.45% with YOLOv5n, marking an improvement of 4.15%.
These results suggest that the model’s architecture—particularly its multi-scale feature fusion
and specialized detection layers—is highly effective for identifying small and densely dis-
tributed objects. While excelling in small object detection, SRD-YOLOv5 also maintains
strong performance for larger objects. The AP for the Car category reaches 80.0%, while

Table 2. Comparison of target detection accuracy with various state-of-the-art models on the VisDrone2019 dataset. Results are reported as mean ± 95%
confidence interval.
Methods mAP@0.5 Pedestrian People Bicycle Car Van Truck Tricyle Awning

Tricyle
Bus Motor

DetNet [47] 15.3 15.3 4.1 3.1 36.1 17.3 20.9 13.5 10.5 26.0 10.9
DMNet [48] 30.3 28.5 20.4 15.9 56.8 37.9 30.1 22.6 14.0 47.1 29.2
RefineDet [49] 14.9 14.9 3.7 2.02 30.1 16.3 18.1 9.0 10.3 21.9 8.38
YOLOv3-LITE [50] 28.5 34.5 23.4 7.9 70.8 31.3 21.9 15.3 6.2 40.9 32.7
DBAI-Det [47] 28.0 36.7 12.8 14.7 47.4 38.0 41.4 23.4 16.9 31.9 16.6
EfficientViT [51] 31.9 33.7 26.0 7.6 74.8 37.3 27.8 20.6 10.1 45.6 35.7
YOLOv3-tiny [13] 16.8 19.8 19.7 3.44 51.9 14.8 10.4 8.96 3.79 15.6 19.3
YOLOv5n [15] 28.8 31.7 25.3 6.45 67.6 23.3 18.8 12.0 8.8 32.6 31.0
YOLOv5s [15] 33.4 40.9 33.3 10.9 73.8 36.0 27.7 17.8 11.2 42.3 39.9
YOLOv7-T [17] 37.2 40.7 37.7 12.3 77.2 38.3 31.8 24.2 12.7 50.3 46.5
YOLOv8n [18] 33.7 35.0 27.6 8.48 76.0 39.4 28.7 21.4 12.5 49.6 38.0
YOLOv9t [20] 36.7 37.2 30.5 10.0 77.7 42.6 34.1 24.9 14.9 54.0 41.0
YOLOv10-N [21] 34.7 36.4 29.0 10.1 77.0 38.9 31.3 22.5 12.4 50.7 39.1
YOLO11-N [52] 34.7 37.1 28.6 9.7 76.5 40.3 31.8 23.2 12.3 48.2 39.5
SRD-YOLOv5 35.9±0.3 42.2 34.7 10.6 80.0 40.0 28.6 23.0 12.3 45.4 42.3

https://doi.org/10.1371/journal.pone.0332408.t002
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the Van and Motor categories achieve 40.0% and 42.3%, respectively. This indicates that the
model not only improves detection of small objects but also retains high accuracy for larger
targets, ensuring balanced performance across different object sizes.

When compared to the latest variants such as YOLOv8n, YOLOv9t, YOLOv10-N, and
YOLO11-N, SRD-YOLOv5 consistently demonstrates competitive or superior performance.
YOLOv10-N and YOLOv11-N, while showing respectable results with mAPs around 34.7%,
still fall short in key categories (e.g., Pedestrian and People) compared to SRD-YOLOv5. This
suggests that the improvements introduced in SRD-YOLOv5—such as the Extremely Small
Target Detection Layer and the Decoupled Detection Head—play a critical role in boosting
performance.

Complexity and efficiency analysis
Table 3 presents the performance of various YOLO-based models and the proposed SRD-
YOLOv5, evaluated in terms of both detection effectiveness and computational complexity.

In terms of effectiveness, we assess four critical metrics: Precision, Recall, mAP0.5, and
mAP0.5:0.95. SRD-YOLOv5 consistently outperforms lightweight models such as YOLOv3-
tiny, YOLOv5n, YOLOv8n, YOLOv10-N, and YOLO11-N, achieving higher values in both
mAP0.5 and mAP0.5:0.95. Although certain heavier models, such as YOLO-HV and Drone-
YOLO (small), show marginally higher mAP0.5 and mAP0.5:0.95 scores, these gains come at
the cost of significantly increased model size and computation.

Regarding complexity, we consider three aspects: (1) the number of parameters (M), which
reflects memory footprint and deployability; (2) GFLOPs, which indicate the computational
cost per forward pass; and (3) FPS, which measures real-time inference capability. Notably,
SRD-YOLOv5 maintains a relatively lightweight configuration with only 4.18M parameters
and 12.5 GFLOPs, while achieving 102 FPS, which is comparable to the highest-speed mod-
els (e.g., YOLOv5n). Compared with small and nano variants like YOLOv5n and YOLOv8n,
SRD-YOLOv5 slightly increases resource usage but delivers substantial improvements in both
mAP0.5 and mAP0.5:0.95, particularly for challenging small-object detection tasks.

In contrast, larger models such as YOLO-PoolFormer and YOLO-HV deliver modest
improvements in detection performance. For example, YOLO-HV achieves slightly higher
Precision and mAP0.5, but its computational cost exceeds 111 GFLOPs—more than nine

Table 3. Comparison between SRD-YOLOv5 and YOLO series models on the VisDrone2019 dataset. Results are reported as mean ± 95% confidence interval.
Statistical significance compared to SRD-YOLOv5 is tested by paired t-test (: p<0.05, *: p<0.01, ns: not significant).
Models Precision (%) Recall (%) mAP@0.5 (%) mAP@0.5:0.95 (%) FPS Parameters (M) GFLOPs
YOLOv3-tiny [13] 30.4 19.3 16.8 - 46 8.68 12.9
YOLOv5n [15] 36.4 27.7 25.8 - 98 1.77 4.2
TPH-YOLOv5 [53] - - 35.4 - - 8.36 18.7
YOLOv5s [15] 44.4ns 34.6ns 33.4* 14.5 45 7.05 16.5
YOLOv8n [18] 44.5ns 33.6* 33.7* - 95 3.00 8.2
YOLOv10-N [21] 44.9ns 34.0ns 34.7ns - 88 2.30 6.7
YOLO11-N [52] 45.2ns 34.2ns 34.7ns - 90 2.60 6.5
Drone-YOLO (nano) [31] - - 31.0 17.5 - 3.05 -
Drone-YOLO (tiny) [31] - - 33.7 19.1 - 5.35 -
Drone-YOLO (small) [31] - - 35.6 20.4 - 10.90 -
YOLO-PoolFormer [54] 35.2 24.0 21.5 - - 39.26 114.2
YOLO-HV [55] 48.0* 38.8* 38.1* 19.90 - 38.54 111.9
SRD-YOLOv5 45.6 35.8 35.9±0.3 20.20±0.2 102 4.18 12.5

https://doi.org/10.1371/journal.pone.0332408.t003
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times that of SRD-YOLOv5. Such high complexity not only demands greater memory and
energy but also limits deployment on resource-constrained UAV platforms.

Overall, SRD-YOLOv5 achieves an effective balance between detection accuracy and com-
putational efficiency. Its integration of multi-scale feature fusion and a dedicated detection
branch for extremely small targets contributes to improved Precision, Recall, mAP0.5, and
mAP0.5:0.95, while keeping the model compact and fast. This balance makes SRD-YOLOv5
well-suited for UAV-based remote sensing tasks where both high detection performance and
real-time processing are required.

Comparison with state-of-the-art on RSOD dataset and NWPU VHR-10
dataset
To validate the robustness and generalizability of the proposed SRD-YOLOv5 model, a series
of experiments were carried out on the RSOD remote sensing object detection dataset. As
summarized in Table 4, SRD-YOLOv5 consistently delivers improvements in Precision,
mAP@0.5, and mAP@0.5:0.95, while maintaining a high inference speed suitable for real-
time applications.

In detail, SRD-YOLOv5 achieves a Precision increase of 6.7% (from 83.9% to 90.6%), an
mAP@0.5 improvement of 4.2% (from 90.4% to 94.6%), and a gain of 1.9% in mAP@0.5:0.95
(from 81.5% to 83.4%) compared with YOLOv5n, while sustaining an inference speed of 117
FPS, which meets the requirements for real-time deployment.

When evaluated against representative two-stage detectors such as Faster R-CNN and SSD,
SRD-YOLOv5 achieves higher mAP@0.5 values by 5.9% and 6.7%, respectively, and signifi-
cantly improves the inference speed, reaching 117 FPS, in contrast to the 21 FPS and 27 FPS
achieved by the two-stage models.

Compared with YOLOv3-tiny, SRD-YOLOv5 demonstrates an increase of 0.8% in Preci-
sion, an enhancement of 1.2% in mAP@0.5 (from 93.4% to 94.6%), and an improvement of
1.3% in mAP@0.5:0.95 (from 82.1% to 83.4%), while maintaining more than twice the infer-
ence speed (117 FPS compared to 56 FPS). Furthermore, relative to YOLOv6, SRD-YOLOv5
achieves an mAP@0.5 improvement of 4.1% and a gain of 2.7% in mAP@0.5:0.95 (from 80.7%
to 83.4%), along with an 18 FPS increase in processing speed.

To further verify the generalization capability and practical effectiveness of SRD-YOLOv5
in remote sensing scenarios, additional experiments were conducted on the NWPU VHR-
10 dataset. As shown in Table 5, SRD-YOLOv5 demonstrates competitive advantages over
conventional CNN-based methods and state-of-the-art single-stage YOLO detectors.

For example, compared to representative CNN-based approaches such as DMNet, DSH-
Net, CDMNet, and UFMP-Net, SRD-YOLOv5 achieves consistent improvements in Precision

Table 4. Comparison experiments with various classic models on RSOD dataset.
Methods Precision (%) mAP@0.5 (%) mAP@0.5:0.95(%) FPS
Faster R-CNN [24] - 88.7 - 21
SSD [43] - 87.9 - 27
YOLOv5n [15] 83.9 90.4 81.5 135
YOLOv3-SPP [56] 90.9 95.0 83.6 30
YOLOv3-tiny [13] 89.8 93.4 82.1 56
YOLOv6 [16] 85.3 90.5 80.7 99
YOLOv8 [18] 90.3 89.7 80.2 76
LAR-YOLOv8 [10] 91.5 94.3 83.1 56
SRD-YOLOv5 90.6 94.6±0.4 83.4±0.4 117

https://doi.org/10.1371/journal.pone.0332408.t004

PLOS One https://doi.org/10.1371/journal.pone.0332408 October 8, 2025 18/ 26

https://doi.org/10.1371/journal.pone.0332408.t004
https://doi.org/10.1371/journal.pone.0332408


ID: pone.0332408 — 2025/10/3 — page 19 — #19

PLOS One Enhancing UAV object detection with an efficient multi-scale feature fusion framework

Table 5. Comparison experiments with various classic models on NWPU VHR-10 dataset.
Methods Precision (%) mAP@0.5 (%) mAP@0.5:0.95(%) FPS
DMNet [57] 75.0 65.1 50.5 -
DSHNet [58] 76.2 66.3 55.1 -
CDMNet [59] 77.3 67.4 52.3 -
UFMP-Net [60] 80.4 70.9 55.7 -
YOLOv5m [15] 81.0 71.3. 57.2 147
YOLOv8m [18] 81.4 71.8±0.2 60.1±0.1 168
SRD-YOLOv5 81.6 74.4±0.3 60.5±0.2 109

https://doi.org/10.1371/journal.pone.0332408.t005

and mAP metrics. Specifically, SRD-YOLOv5 attains a Precision of 81.6%, exceeding UFMP-
Net’s 80.4%, and an mAP@0.5 of 74.4%, surpassing UFMP-Net’s 70.9%. These results illustrate
the model’s enhanced ability to detect diverse small targets in complex remote sensing scenes.

Furthermore, relative to mainstream single-stage detectors including YOLOv5m and
YOLOv8m, SRD-YOLOv5 attains slightly higher Precision—81.6% compared to 81.0% and
81.4%, respectively—and improved mAP@0.5 of 74.4%, outperforming their 71.3% and
71.8%. Despite these performance gains, SRD-YOLOv5 maintains a real-time inference speed
of 109 FPS, confirming its suitability for UAV- and satellite-based remote sensing applications.

These results collectively highlight that the proposed SRD-YOLOv5 model offers superior
detection performance and strong generalization capabilities across remote sensing object
detection datasets.

Ablation studies
To validate the effectiveness of the SRD-YOLOv5 model’s modules for small object detection
in UAV remote sensing imagery, we conducted detailed ablation experiments on the Vis-
Drone2019 dataset. The results, summarized in Table 6, show the performance impact when
each module is added individually to the YOLOv5n baseline.

To provide a fair baseline comparison for extremely small object detection, we first intro-
duce a P2 detection layer, which is a conventional shallow detection head commonly used to
enhance low-level feature resolution. Adding the P2 layer alone increases the mAP@0.5 from
25.8% to 30.3% and mAP@0.5:0.95 from 13.1% to 17.2%, with Precision and Recall also rising
to 40.5% and 29.8%, respectively. This demonstrates the benefit of including finer-resolution
features for small objects, although the P2 head is not our proposed contribution.

Next, incorporating the Decoupled Head into YOLOv5n improves Precision, Recall,
mAP@0.5, and mAP@0.5:0.95 from 36.4%, 27.7%, 25.8%, and 13.1% to 43.0%, 31.2%, 31.7%,
and 18.1%, respectively. This shows that decoupling the regression and classification tasks
effectively mitigates task conflict, enhancing both localization and classification precision. The
added computational cost remains moderate (GFLOPs increase from 4.2 to 7.1).

Table 6. Performance comparison of YOLOv5n with various modifications.
Models Precision (%) Recall (%) mAP@0.5 (%) mAP0.5:0.95(%) GFLOPs
YOLOv5n 36.4 27.7 25.8 13.1 4.2
+P2 detection 40.5 29.8 30.3 17.2 6.9
+Decoupled Head 43.0 31.2 31.7 18.1 7.1
+SSFF 41.9 30.7 31.2 17.1 2.8
+MSFE 42.5 31.1 31.4 17.8 5.1
+ESTDL 45.6 35.8 35.9 20.2 12.5

https://doi.org/10.1371/journal.pone.0332408.t006
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Adding the SSFF module alone improves mAP@0.5 to 31.2% and mAP@0.5:0.95 to 17.1%,
while Precision and Recall reach 41.9% and 30.7%, respectively. Notably, SSFF achieves this
gain with a lower GFLOPs (2.8) than the baseline, indicating that the selective scale-sequence
fusion effectively enhances multi-scale context representation with minimal computational
burden.

Similarly, integrating the MSFE module alone lifts mAP@0.5 to 31.4% and mAP@0.5:0.95
to 17.8%, with Precision and Recall increasing to 42.5% and 31.1%, respectively. This demon-
strates that MSFE enriches global contextual information and preserves fine-grained semantic
cues across scales while keeping the GFLOPs moderate (5.1).

Finally, adding the ESTDL achieves the most significant performance improvement
among all modules, raising Precision to 45.6%, Recall to 35.8%, mAP@0.5 to 35.9%, and
mAP@0.5:0.95 to 20.2%. This confirms that ESTDL effectively retains high-resolution feature
details critical for detecting extremely small objects in UAV scenes, with an expected increase
in GFLOPs to 12.5 for the final configuration.

Together, these results demonstrate that each proposed module contributes meaningfully
to the overall performance improvements of SRD-YOLOv5 while maintaining an efficient
computational profile suitable for UAV-based deployment.

Table 7 summarizes the performance impact of different initial learning rates (LRs) tested
during hyperparameter tuning. Specifically, candidate LR values of 0.001, 0.002, 0.005, 0.01,
0.02, and 0.05 were evaluated. As shown, an initial LR of 0.01 achieved the highest mAP, with
35.9% at mAP@0.5 and 20.2% at mAP@0.5:0.95, outperforming other tested settings. This
confirms that setting the initial LR to 0.01 provides a good balance between stable conver-
gence and optimal detection performance.

Performance on small-scale object detection
To verify the effectiveness of the proposed SSFF, MSFE, and ESTDL modules for small-scale
object detection, we conducted a series of ablation experiments comparing the YOLOv5n
baseline with its enhanced variants that integrate each module individually. The results, sum-
marized in Table 8, report the COCOmetrics for average precision on small (APS), medium
(APM), and large (APL) objects, as well as inference speed (FPS).

Table 7. Effect of initial learning rate (LR) on mAP.
Value mAP@0.5 (%) mAP0.5:0.95(%)
LR=0.001 35.4 19.1
LR=0.002 33.8 18.2
LR=0.005 34.7 18.8
LR=0.01 35.9 20.2
LR=0.02 34.8 18.5
LR=0.05 35.2 19.6

https://doi.org/10.1371/journal.pone.0332408.t007

Table 8. Performance comparison of YOLOv5n and its enhanced versions incorporating the SSFF, MSFE, and
ESTDLmodules across object sizes.

APS (%) APM (%) APL (%) FPS
YOLOv5n 6.3 17.9 24.2 98
YOLOv5n+SSFF 6.5 (↑ 4.1%) 18.1 (↑ 1.2%) 24.8 (↑ 2.5%) 99(↑ 1s)
YOLOv5n+MSFE 6.7 (↑ 5.2%) 18.3 (↑ 2.4%) 25.1 (↑ 3.6%) 100(↑ 2s)
YOLOv5n+ESTDL 8.8 (↑39.7%) 21.4 (↑19.6%) 26.4 (↑9.1%) 102 (↑ 4s)

https://doi.org/10.1371/journal.pone.0332408.t008
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The inclusion of the SSFF module results in relative improvements of 4.1%, 1.2%, and 2.5%
in APS, APM, and APL, respectively, along with a slight increase in inference speed from 98
to 99 FPS. Incorporating the MSFE module yields relative gains of 5.2% in APS, 2.4% in APM,
and 3.6% in APL, while maintaining real-time processing at 100 FPS. These results indicate
that both SSFF and MSFE effectively enhance feature fusion and multi-scale representation,
which are particularly beneficial for detecting small and medium-sized objects.

Furthermore, integrating the ESTDL module leads to substantial improvements of 39.7%
in APS, 19.6% in APM, and 9.1% in APL, while increasing the inference speed to 102 FPS.
These results demonstrate that ESTDL significantly boosts the detection accuracy of small-
scale targets in remote sensing imagery without sacrificing real-time performance.

Visualization
To demonstrate the effectiveness of our proposed method, we selected several challenging
images from the VisDrone2019 test set, including scenes with dense road traffic, small objects
at high altitudes, crowded pedestrian areas, and multi-scale targets captured during nighttime.
Comparative visualization results are presented in Fig 6, where the left images (YOLOv5n)
depict baseline performance, and the right images illustrate the superior performance of
our method. It can be observed that our method significantly improves detection accuracy,
especially for small or densely distributed targets, accurately identifying targets missed or
incorrectly classified by the baseline model.

In urban environments, SRD-YOLOv5 demonstrates superior detection capabilities, effec-
tively identifying complex targets in challenging scenarios such as dense road traffic. Its supe-
rior performance is evidenced by accurate recognition of densely packed targets, overcoming
limitations observed in YOLOv5n. Specifically, SRD-YOLOv5 benefits from the Extremely
Small Target Detection Layer (ESTDL), which enhances fine-grained detail preservation,
enabling more reliable detection of distant or extremely small targets, compared to YOLOv5n.
Furthermore, in scenes characterized by overlapping or densely clustered pedestrians, the
decoupled head structure of SRD-YOLOv5 reduces misdetections by separately optimizing
classification and localization tasks, yielding clearer distinctions between closely positioned
targets. Additionally, in challenging nighttime scenarios with multi-scale targets, the model
exhibits robust performance against adverse lighting conditions due to its effective integration
of multi-scale feature fusion and enhanced feature extraction modules. Consequently, SRD-
YOLOv5 maintains high detection accuracy and demonstrates enhanced robustness under
suboptimal lighting conditions.

Overall, SRD-YOLOv5 exhibits strong robustness against interference from complex back-
grounds, dense object distributions, and limited target information. As a result, it significantly
improves detection accuracy, effectively reducing both false positives and missed detections.
These advantages highlight the model’s capability to markedly enhance object detection per-
formance in UAV-based remote sensing applications, especially in challenging real-world
conditions.

Disscssion
To facilitate real-time detection on UAVs, we ensured that SRD-YOLOv5 remains lightweight
(approximately 8.4 MB with 4.18M parameters). This compact size is compatible with embed-
ded platforms such as the NVIDIA Jetson Nano and Xavier NX. By converting the model to
ONNX and optimizing it via TensorRT, we typically achieve around 30 FPS at a 640×640 res-
olution on a Jetson device, making the system well-suited for time-critical tasks such as aerial
surveillance and target tracking. Additionally, the typical 10–15 W power envelope of these
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Fig 6. Comparison of detection effects of YOLOv5n (left), and SRD-YOLOv5 (right) in dense road scenes, high-altitude
small objects, crowded 522 pedestrian scenes, and multi-scale targets captured at night.

https://doi.org/10.1371/journal.pone.0332408.g006

edge devices aligns with UAV battery constraints, enabling multi-rotor drones to perform
onboard object detection without significantly impacting flight time.

Limitations
In practical applications, although SRD-YOLOv5 has achieved significant improvements
in multi-scale feature fusion and extremely small target detection, several limitations and
challenges remain. Methodologically, the approach is still constrained by the inherent biases
and labeling precision of the training datasets, which may lead to generalization issues when
deployed in more complex or imbalanced real-world scenarios. In terms of performance, the
trade-off between detection accuracy and real-time processing must be carefully managed—
particularly under extreme weather conditions, low-light environments, or high-altitude
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settings—where the model’s stability and detection boundaries require further validation.
Finally, implementation challenges arise when deploying the model on resource-constrained
UAV platforms, including maintaining fast inference speeds, managing energy consump-
tion, and ensuring seamless integration with existing hardware. Therefore, techniques such
as ONNX/TensorRT optimization, model quantization, pruning, and the design of efficient
data processing pipelines are critical for maintaining reliable real-time detection under such
constraints.

Conclusion
In this paper, we introduced SRD-YOLOv5, an enhanced YOLOv5n-based framework for
UAV remote sensing object detection. By integrating the Scale Sequence Feature Fusion Mod-
ule (SSFF), Multi-Scale Feature Extraction Module (MSFE), and an Extremely Small Target
Detection Layer (ESTDL), our approach achieves significantly higher detection accuracy for
small and densely distributed targets while maintaining low computational overhead. The
Decoupled Head design further improves localization performance by independently opti-
mizing regression and classification tasks. Experimental evaluations on challenging UAV
datasets demonstrate that SRD-YOLOv5 outperforms existing methods in both accuracy
and efficiency, making it well-suited for real-time applications under resource-constrained
conditions.

Building on these findings, future work will focus on handling complex environmental
factors—such as extreme weather and low-light scenarios—and exploring advanced architec-
tures (e.g., attention mechanisms and transformers) to further enhance detection robustness
and scalability.
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