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While recent foundational video generators produce vi-
sually rich output, they still struggle with appearance drift,
where objects gradually degrade or change inconsistently
across frames, breaking visual coherence. We hypothe-
size that this is because there is no explicit supervision in
terms of spatial tracking at the feature level. We propose
Track4Gen, a spatially aware video generator that com-
bines video diffusion loss with point tracking across frames,
providing enhanced spatial supervision on the diffusion fea-
tures. Track4Gen merges the video generation and point
tracking tasks into a single network by making minimal
changes to existing video generation architectures. Us-
ing Stable Video Diffusion [4] as a backbone, Track4Gen
demonstrates that it is possible to unify video generation
and point tracking, which are typically handled as sepa-
rate tasks. Our extensive evaluations show that Track4Gen
effectively reduces appearance drift, resulting in tempo-
rally stable and visually coherent video generation. Project
page: hyeonho99.github.io/track4gen

1. Introduction

Diffusion-based video generators [4, 6, 47] are making
rapid strides in creating temporally consistent and visually
rich video content. This progress marks a significant shift,
as the unification of generation and control has the potential
to transform the traditional workflow of first capturing and
then digitally editing video.

Despite impressive capabilities, video generators often
suffer from appearance drift, where visual elements grad-
ually change, mutate, or degrade over time, causing incon-
sistencies in the objects. For example, in Fig. 1, we observe
the horns of the cow distorting and morphing unrealistically
over time, breaking the plausibility of the generated content.
This is in striking contrast to humans, who develop a sense
of appearance constancy as early as infancy through obser-
vation and interaction with the world [72].

*Work done during internship at Adobe.
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Figure 1. Motivation. Vldeos generated by Stable Video Diffu-
sion [4] suffer from appearance drift, while those from our method,
Track4Gen, are free from such appearance inconsistency issues.

Unfortunately, appearance drift remains a persistent is-
sue in current video models, even with increased training
data and more advanced architectures. We speculate that
this limitation arises from supervision being based solely
on video diffusion loss (i.e., denoising score matching [64])
in the pixel/latent space, without explicit spatial awareness
guidance in the feature space. Hence, in this paper, we ask
if and how we can empower video diffusion models with ap-
pearance constancy by providing additional supervision.

We present Track4Gen as a spatially aware video gen-
erator that receives supervision both in terms of the origi-
nal diffusion-based objective as well as (dense) point corre-
spondence across frames, which we refer to as tracks. We
demonstrate that it is possible to provide such track-level su-
pervision in the diffusion feature space by making minimal
architecture changes. Our generated videos do not suffer
from degradation of video quality (according to the usual
video generation metrics), while being significantly more


https://hyeonho99.github.io/track4gen

spatially coherent as the highlight cow in Fig. 1.

We train Track4Gen using the latest Stable Video Diffu-
sion [4] as the backbone and evaluate on the publicly avail-
able VBench dataset [30]. We report significant improve-
ment in terms of appearance constancy of subjects, both in
quantitative and qualitative (i.e., via user studies) evalua-
tions. In summary, we demonstrate that it is possible to up-
grade existing video generators, by supervising them with
additional correspondence tracking loss, to produce videos
without significant appearance drifts, a problem commonly
encountered in diffusion-based video generators.

2. Related Work

Diffusion-based video generation. Building on the suc-
cess of diffusion models in image synthesis [11, 51],
diffusion-based video generators have seen significant ad-
vancements [4, 6, 29, 47]. A commonly adopted approach
is to extend text-to-image models to the video domain by in-
corporating temporal layers to facilitate interactions across
video frames [5, 22, 54]. While some works have adopted
cascaded approaches to produce both spatially and tempo-
rally high-resolution videos [28, 47, 54, 67, 76, 78], oth-
ers have utilized lower-dimensional latent space modeling
to reduce computational demands [5, 8, 24, 80]. We build
on top of one such approach, Stable Video Diffusion (SVD,
[4]), which introduces a latent image-to-video diffusion
model trained on a large-scale and curated video data.
With advances in generation, systematic evaluation of
generation quality has become crucial. Traditionally, met-
rics such as Fréchet Inception Distance (FID, [26]), Fréchet
Video Distance (FVD, [63]), and CLIPSIM [49] are used.
Additionally, comprehensive benchmark suites [30, 68]
have been introduced to provide a more robust evaluation
aligned with human perception. Inspired by such work,
we thoroughly evaluate our approach and demonstrate im-
proved video generation quality with respect to both con-
ventional metrics and the recent VBench metrics [30].

Foundational models as feature extractors. Various
foundational models such as vision transformers [15] or
diffusion-based generators [50] have been utilized as fea-
ture extractors for various tasks including semantic match-
ing [16, 25, 41], classification [38], segmentation [66, 71],
and editing [19, 21, 61]. There have been efforts to boost
their performance by post-processing the feature maps ob-
tained from the pre-trained models, e.g., by upsampling [ 18,
58]. In arecent effort, Yue et al. [75] lift semantic per-frame
features from a foundational model into a 3D Gaussian rep-
resentation. They fine-tune the foundational model with
such 3D-aware features resulting in improved performance
in downstream tasks. Similarly, Sundaram et al. [57] fine-
tune state-of-the-art foundational models on human simi-
larity judgments yielding improved representations across
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downstream tasks. In a concurrent effort, Yu et al. [74] pro-
pose to align the internal features of an image generation
model with external discriminative features [45], which re-
sults in more effective training of the generator.

Our work also enhances the internal feature representa-
tion of a foundational generation model but with significant
differences compared to previous literature. First, unlike
most previous work that focus on image level foundational
models, we exploit the power of recently emerging video
models. Second, instead of post-processing, we enhance the
spatial awareness of the intermediate features by training
the generator to jointly perform an additional tracking task.
We show that this joint training boosts the performance of
intermediate features in correspondence tracking, leading to
improved video generation quality.

Tracking any point in a video. The task involves follow-
ing any arbitrary query point across a long video sequence.
First introduced by PIPs [23] and later re-framed by TAP-
Vid [12], several methods have emerged in recent years to
tackle long-term point tracking. PIPs [23] revisits the classi-
cal particle-based representation [53] and introduces MLP-
based networks that predict point tracks within an 8-frame
window. Subsequent works have improved performance by
capturing longer temporal context through advanced archi-
tectures [2, 13, 23, 33], as well as by enabling the simul-
taneous tracking of multiple queries [10, 33]. More re-
cent training-based trackers [10, 34, 40, 70] have achieved
remarkable performance by leveraging high-capacity neu-
ral networks to learn robust priors from large-scale training
data. While high-quality data is crucial for accurate track-
ing, manually annotating point tracks is prohibitively ex-
pensive. Hence, synthetic videos [20] with automatic anno-
tations, have become an alternative and have demonstrated
effectiveness in real-world video tracking. An alternative
approach is self-supervised adaptation at test time, where
tracking is learned without ground-truth labels [32, 62, 65].
In a recent study, Aydemir et al. [1] evaluate the effective-
ness of several image foundational model features for point
tracking both in zero-shot setting as well as with supervised
training using low-rank adapter layers. To the best of our
knowledge, we are the first to exploit the features of a foun-
dational video diffusion model for dense point tracking.

3. Method

In this section, we provide a comprehensive discussion
of the Track4Gen framework. We begin with a concise
overview of latent video diffusion models (Sec. 3.1). Next,
we discuss how video diffusion features relate to temporal
correspondences both for real and generated videos (Sec.
3.2). Finally, we detail the design of Track4Gen both in
terms of network architecture and the employed supervision
signals (Sec. 3.3). An overview is depicted in Fig. 2.
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Figure 2. Track4Gen overview. Red-colored blocks represent layers optimized by the diffusion loss Laisr, while green blocks are optimized
by the correspondence loss L. Blocks colored both red and green are influenced by the joint loss, Lair + ALcor. See text for details.

3.1. Background: Stable Video Diffusion

Starting from random Gaussian noise, diffusion models aim
to generate clean images or videos via an iterative denois-
ing process [27, 55]. This process reverses a fixed, time-
dependent diffusion forward process, which gradually cor-
rupts the data by adding Gaussian noise. While our method
is applicable to general video diffusion models, in this pa-
per, we design our architecture based on Stable Video Diffu-
sion (SVD), a latent video diffusion model which employs
the EDM-framework [35]. The diffusion process operates
in the lower-dimensional latent space of a pre-trained VAE
[37], consisting of an encoder £(+) and a decoder D(-).
Given a clean sample 3" ~ pgu(x) of an N-frame
video sequence, the frames are first encoded into the latent
space as 2§V = £(x}N). Gaussian noise € ~ N(0,1) is
then added to the latents to produce the intermediate noisy
latents via the forward process z; N = a; 2§ +0y€, where
t represents the diffusion timestep, and o4, o, are the dis-
cretized noise scheduler parameters. The diffusion denoiser
fo is trained by minimizing the v-prediction loss:

HEHEENN(O,I)JNU[LT] | }|f9(zt1:Nat7C) - y||§], (1

where y is defined as y = aze — atz(l):N. In the image-
to-video variant of SVD, the condition c refers to the CLIP
image embedding [49], replacing the typical text embed-
dings. For the remainder of this paper, we will refer to Eq.
1 as the video diffusion loss L.

Once trained, the diffusion model generates videos by
iteratively denoising a noisy latent 2}V sequence sampled
from pure Gaussian distribution. At each diffusion step, the
model predicts the noise in the input latent. Once the clean
latent 2§ is obtained, the decoder D maps it to the higher-
dimensional pixel space ;N = D(2{*"). For further de-
tails, we refer to the Appendix D of [4].
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3.2. Video Diffusion Features

Previous studies have demonstrated that image diffusion
models learn discriminative features in their hidden states
that are effective for various analysis tasks and propose
methods for improving the representation power of such
features [9, 69, 73, 74]. Similarly, we argue that while
also being powerful, internal representations of pre-trained
video diffusion models may not be fully temporally consis-
tent, resulting in appearance drift in generated videos.

To better investigate this hypothesis, we first evaluate the
long-term video tracking capabilities of U-Net-based video
diffusion models [4, 56, 78]. Specifically, we evaluate the
effectiveness of the features from each block of the U-Net
for the task of point tracking. Given a real-world video, we
add a small amount of noise and extract feature maps from
each layer in each block. We perform a cosine-similarity-
based nearest-neighbor search [44, 59] over these feature
maps for a given set of fixed query points on the first frame
(we use a similarity threshold of 0.6 [62] in our experi-
ments). We also perform a similar analysis for generated
videos where we extract the feature maps corresponding to
diffusion steps with small amount of noise.

Based on this feature analysis, we make some important
observations. Notably, regardless of the model (we analyze
both Zeroscope T2V [56] and SVD 12V [4]), we find out
that output features from the upsampler layer of the third
decoder block consistently yield stronger temporal corre-
spondences, as shown in Fig. 3. Hence, we use this block
when extracting features for the remainder of our experi-
ments. Furthermore, when we analyze generated videos and
point tracks estimated based on the feature maps (as shown
in Fig. 4), we observe that there is a correlation between
tracking failures that reveal feature-space inconsistencies
and appearance drifts that reveal pixel-space inconsisten-
cies. Hence, we hypothesize that enriching feature consis-
tency can help mitigate such appearance drifts. Next, we
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Figure 3. Real-world video tracking using different video diffusion features. Given color-coded query points on the first frame (Leftmost
column), we display tracked points on target frames using features from different blocks (right columns). The 13th frame (first row) and
8th frame (second row) are shown as target frames. Full results are available in the supplementary and on our page.

introduce Track4Gen where we accomplish this goal by su-
pervising video diffusion models with a joint tracking loss.

3.3. Track4Gen

Track4Gen aims to utilize point tracking as an additional su-
pervision signal to enhance the spatial-awareness of video
diffusion features. Given that we build on top of a pre-
trained video generation model, to retain the prior knowl-
edge and avoid tampering the original features directly, we
propose a novel architecture change as shown in Fig. 2.
Specifically, instead of directly using the raw diffusion fea-
tures for correspondence estimation, we propose a trainable
refiner module R4, which is designed to refine the raw fea-
tures by projecting them into a correspondence-rich feature
space. The refined features, which are spatially-aware, are
then both used to estimate point tracks with an explicit su-
pervision as well as feeding back to the generation back-
bone. We empirically find out that this design is more ef-
fective compared to fine-tuning the original model with no
refinement module (see Sec. 4.2).
1:N

Given an N-frame video sequence xy'"", its correspond-

Feature-space Inconsistency (SVD)

Feature-space Consistency (Track4Gen)

Figure 4. Generated video tracking using video diffusion fea-
tures. Tracks based on diffusion features are annotated on the
generated videos. Track4Gen generates more consistent results.
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ing latent z(l):N , and a diffusion timestep ¢, in order to train
Track4Gen we continue to utilize the standard diffusion
training loss as defined in Eq. (1), where we adopt the ve-
locity prediction objective [4, 35, 52] for L.

To enable tracking supervision, we assume access to a
dense set of point trajectories © = {(x*,x7)} across frames
where a point x* in frame i corresponds to a matching point
x7 in frame j and vice versa. Given the corresponding noisy
video latent sequence z}V, we first extract raw diffusion
features as the hidden states h'*Y € RNXHXWXC from 5
specific block b* within the U-Net, where b* is set to the
upsampler layer of the third decoder block (see Sec. 3.2).
We then pass these features through the refiner module to

~1:N .
obtain the refined feature map Y = Ry(h"M).
We sample a query point xé along with its ground-truth

target point xfrg from the correspondence set €. Given the

c R1><1><C

query point feature i’ (Xq) and the target feature

RHXWXC

map B’ IS , we calculate the cost volume S €

REXWX1 a5 follows:

S(p) = cos—sim(fzi(xq), h'(p)), 2)

where cos-sim denotes cosine similarity. The predicted tar-
get point Xy, is then determined using the differentiable
soft-argmax operation:

Zpeﬂ’ S(p) : Xp

, 3
> cer S) ©)

Xu-g ==

pr —Xpuclly < R}!. Thus, the tarJ%et
1:

point prediction can be expressed as Xyy = 5()(3, i h ),
and the predicted tracklet for xé is given by 7;3 = {X, :

where ' = {p :

. ~1:N
X, = g(xa,n,hl ),n =1, ..., N'}. Finally, the correspon-

The feature maps have a resolution of 44 x 81 for an input video
resolution of 320 x 576, and we set R = 35.
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When training Track4Gen, we initialize the refiner mod-
ule as an identity mapping to fully leverage the prior of the
base model at the start of finetuning. To re-route the refined
features to the backbone generator, we introduce a trainable
zero convolution layer [77], denoted as ¢, While the diffu-
sion loss Lg;gr back-propagates to all the blocks of the video

diffusion model, we detach the gradients of I~11:N before
passing into ¢, such that refiner module can solely focus on
acquiring the correspondence prior. Hence, given that the
output of block b* is hYY the input to the subsequent block
b*+1is computed as h' Y +Cy (stop-gradient( Ry (h'Y))).
Fig. 2 visualizes this architecture design, with red and green
colors indicating the objective that optimizes each module.

4. Experiments

4.1. Implementation Details

To train Track4Gen, we construct a training dataset con-
sisting of 567 video-trajectory pairs, with each video hav-
ing a resolution of 320 x 576 and a duration of 24 frames.
Since no real-world video with (dense) ground-truth trajec-
tory annotations exist at the time of this work, we utilize

=

Figure 5. Image-to-video generation results of the original SVD and Track4Gen. Please visit our page for full video view.
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optical flow to generate trajectory annotations. A key chal-
lenge is the need for accurate video segmentation maps to
ensure a balanced distribution of trajectory points between
foreground objects and the background [12]. To address
this, we utilize public video datasets paired with ground-
truth segmentation maps [7, 17, 39, 46, 48], where we split
longer videos into 24-frame segments.

We use Stable Video Diffusion (SVD) image-to-video
pretrained checkpoints® as the base video generator. Our
proposed refiner module consists of eight stacked 2D con-
volution layers and is attached to the third decoder block of
the SVD UNet. The refiner module preserves the shape of
the hidden states throughout and is initialized as the identity
mapping. Further details are provided in the supplementary.
We finetune this enhanced video generator architecture for
20K steps with our joint loss Lgigr + ALcorr, Where A is set
to 8. Rather than finetuning the entire model, we finetune
only the temporal transformer blocks, the refiner module
R, and the zero convolution (. In each iteration, we sam-
ple 512 correspondence pairs from the precomputed trajec-
tories. We use the AdamW optimizer [43] with a learning
rate of le—b, $1=0.9, 52=0.999, and a weight decay of
le—2. We train the model on 4x H100 GPUs with a to-
tal batch size of 4. For sampling new videos, we apply the

2https : / / huggingface . co / stabilityai / stable —
video-diffusion-img2vid-xt


https://hyeonho99.github.io/track4gen/page2.html
https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt
https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt
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Track4Gen

Input Image

Figure 6. Qualitative ablation on video generation. Track4Gen is compared with finetuned SVD (SVD finetuned on the same training

videos without any correspondence supervision) and Track4Gen trained without the Refiner module.

default settings using 30 steps with the EDM sampler [35],
motion bucket id =127, and fps="7.

Table 1. Quantitative comparison on video generation per-
formance. We compare Track4Gen to the pre-trained SVD * as
well as a finetuned SVD on the same dataset (finetuned SVD). We
also train a variant of Track4Gen without the refiner module. All
videos are generated at 320x576 resolution, except SVD* (576p)
which operates at 576x1024 resolution.

Subject Temporal Motion
Consistency  Flickering  Smoothness
0.9535 0.9464 0.9774
0.9665 0.9800 0.9909
0.9506 0.9725 0.9791

Imaging
Quality
0.6648
0.6766
0.6653

Video-Image
Alignment
0.9539
0.9771
0.9614

SVD*
finetuned SVD
Track4Gen w/o refiner
Track4Gen

SVD* (576p) 0.9576

4.2. Track4Gen for Video Generation

We evaluate Track4Gen for the image-to-video generation
task via a series of experiments using multiple datasets, au-
tomated metrics, and human evaluations.

Evaluation Setup. We compare Track4Gen against the
original SVD (SVD*) [4], as well as a version of SVD that
is finetuned on the same videos as Track4Gen (finetuned
SVD). Furthermore, we train a variant of Track4Gen with-
out the refiner module. For VBench metrics [30], evalu-
ations are conducted on the VBench-I12V dataset, contain-
ing 355 diverse images. FID and FVD are measured using
the DAVIS [48] dataset as reference. We generate 24-frame
videos conditioned on each input image.

Automatic metrics. We first report five key met-
rics from VBench [30]: (1) Subject Consistency—assesses
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subject appearance consistency of the video by comput-
ing the similarity of DINO [45] features. (2) Temporal
Flickering—detects temporal consistency by taking static
frames and calculating the mean absolute difference across
frames. (3) Motion Smoothness—measures smoothness of
motion, and how well it adheres to real-world physics, us-
ing video frame interpolation priors [42]. (4) Image Qual-
ity—evaluates distortions (e.g., noise, blur) using a pre-
trained, multi-scale image quality predictor [36]. (5) Video-
Image Alignment—measures alignment between the subject
in the input image and in the generated video using DINO
features. We additionally report FID [26] and FVD [63].

Human evaluation. We further evaluate Track4Gen
against baselines through a user study. We ask 64 partici-
pants to compare our results with a randomly selected base-
line. We ask the users to evaluate how consistent main ob-
jects appear across the frames in a generated video as well
as how natural the depicted motion is. We provide further
details of the user study in the supplementary material.

Qualitative results. Qualitative comparisons with the
base SVD are shown in Fig. 5. As illustrated, Track4Gen
generates videos with strong appearance consistency, avoid-
ing issues of appearance drift. In contrast, videos produced
by the original SVD exhibit noticeable inconsistencies: the
sheep’s head (row 1) mutates, the plane’s wing (row 2)
shows unnatural transitions, and the cars (row 3) disappear.
Further comparisons with finetuned SVD and Track4Gen
without the refiner module are shown in Fig. 6 and highlight
the superior visual coherence of the proposed Track4Gen.
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Figure 7. Qualitative comparison of Track4Gen and baselines for real-world video tracking. The leftmost column displays query
points in the first frame, while the following three columns show tracking results using features from each model.

mTrack4Gen m Compared method mTrackdGen ® Compared method

Table 2. Quantitative zero-shot feature comparison on video

100% 100% .
o o tracking benchmarks. Track4Gen features are compared to the
o 0% features of SVD* [4], ZeroScope [56], and RAFT [60]. For all the
0% 0% metrics, higher values indicate better performance.
2% 20% DAVIS-480p BADJA DAVIS-480p BADJA
0% i ﬁ ‘ 0% | ﬁ ﬁ (24-frame) (24-frame) (whole duration) (whole duration)
SVD* finetuned SVD .TrackAGen SVWD* finetuned SVD Track4Gen Method 6;51“7 ‘ OA ‘ Al 5%es ‘ 63171 6;1“? ‘ OA ‘ Al %€ ‘ 531”5
) wimoutrefiner ] vitoutretner ZeroScope | 46.2 | 67.0 | 394 | 275 | 28 | 372 | 595 | 278 | 199 | 20
(a) Identity preservation (b) Motion naturalness SVD* | 424 | 797 | 364 | 262 | 29 || 354 | 70.1 | 265 | 194 | 22
. Track4Gen | 69.7 | 85.8 | 56.5 | 523 | 7.7 || 58.9 | 78.4 | 40.2 | 404 | 5.0
Figure 8. User study results. Our study shows that Track4Gen S B B B B e I e e b
better preserves object identity and produces more natural motion.

Quantitative results. As shown in Tab. 1, our method For RAFT, tracking is achieved by chaining optical flow dis-
achieves the highest scores across all 5 metrics from placements, while the others use nearest neighbor matching
VBench, along with the lowest FID and second-lowest FVD between its encoded features.
values, outperforming the base SVD by substantial margins. Datasets. We use TAP-Vid DAVIS [12] and BADJA [3]

Fig. 8 provides the user study results where the majority of as benchmark datasets. Additionally, we include two
the participants agreed that Track4Gen is superior both in shorter benchmarks, DAVIS (24-frame) and BADJA (24-
terms of identity preservation and naturalness of motion. frame), which focus on the first 24 frames with query and
4.3. Track4Gen for Video Tracking target points within this range. Details on encoding long
videos with the video models are in the supplemental.
Metrics. For evaluating the TAP-Vid benchmarks, we
use the following metrics: (i) Position Accuracy (67, ) eval-
uates the average accuracy of visible points, where each §*
represents the fraction of predicted points that lie within x
pixels of the ground-truth position, with z € {1, 2,4, 8,16}.
(i1) Occlusion Accuracy (OA) evaluates the correctness of
occlusion predictions. (iii) Average Jaccard (AJ) jointly
assesses both position and occlusion accuracy. For the
BADIJA dataset, we report §*“¢, which measures the accu-

We evaluate Track4Gen’s capability to track any point in
real videos by adding a small amount of noise to the input
video [59] and passing it through the video denoiser f, to
extract feature maps. We first compare tracking results with
such features against other raw features [4, 56, 60] in Sec.
4.3.1. In Sec. 4.3.2, we utilize Track4Gen’s features in
a test-time optimization method [62] and compare to both
self-supervised and fully supervised video trackers.

4.3.1. Zero-shot Feature Comparison

We evaluate the precision of predicted tracks using the fea- racy of tracked keypoints within a distance of 0.2v/A from
tures from Track4Gen, the original SVD model (SVD”), the ground-truth annotation, where A is the area of the fore-
and RAFT [60]. We also test another text-to-video model, ground object. We also report §°P, which assesses accu-
ZeroScope T2V [56], to demonstrate how raw features from racy within a 3-pixel threshold. A cosine similarity thresh-
pre-trained video generators typically work out of the box. old of 0.6 is used for occlusion prediction.
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Figure 9. Extending Track4Gen with test-time adaptation

[62].

Table 3. Quantitative comparison with video trackers. Al-
though primarily designed for video generation, Track4Gen com-
bined with a test-time optimization method [62] achieves perfor-
mance comparable to dedicated video tracking frameworks, even
when compared to supervised methods.

DAVIS-480 BADJA

Method daug | OA | AJ 5oeg | §3p

TAP-Net* 66.4 | 79.0 | 46.0 | 454 | 9.6

PIPs++* 73.6 - - 59.0 | 9.8

TAPIR* 77.3 | 89.5 | 65.7 | 68.7 | 10.5

Omnimotion’ 74.1 | 845 | 584 | 452 | 69
DINO-Tracker® 80.4 | 88.1 | 64.6 | 724 | 14.3
DINO-Tracker w/ Track4Gen' | 72.5 | 84.5 | 55.7 | 48.4 | 10.9

* _supervised. T — test-time training.

Table 4. Ablation on trainable modules and refiner.

Trainable Subject Temporal Motion Imaging Video-Image
modules Consistency ~ Flickering Smoothness  Quality Alignment
spatial 4+ temporal 0.9734 0.9811 0.9917 0.6863 0.9807
spatial 0.9726 0.9801 0.9919 0.6852 0.9811
temporal 0.9746 0.9806 0.9921 0.6835 0.9814
Refiner architecture
2D convolutions 0.9746 0.9806 0.9921 0.6835 0.9814

3D convolutions 0.9687 0.9734 0.9904 0.6833 0.9820

Results. We present the qualitative results in Fig. 7
and the quantitative results in Tab. 2. Although primarily
designed for video generation, Track4Gen boosts the poor
performance of the pre-trained video models significantly,
approaching the accuracy of RAFT optical flow chaining.

4.3.2. Extending Track4Gen with Test-time Adaptation

To further evaluate Track4Gen’s long-term tracking capa-
bilities, we integrate our features with test-time adaptation
algorithm of DINO-Tracker [62], where a per-video opti-
mization is performed using optical flow supervision. We
replace the originally used DINOv2 [45] with the features
from Track4Gen. We evaluate using the same datasets and
metrics outlined in Sec. 4.3.1, against both fully-supervised
trackers [12, 13, 79] and self-supervised methods [62, 65].
Tab. 3 shows that Track4Gen features optimized with
[62] achieve performance comparable to dedicated trackers.
Qualitative results are in Fig. 9 and in the supplemental.
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Table 5. Quantitative ablation on using annotated, but syn-
thetic videos [20]. Left: Video generation metrics. Right: Video
tracking metrics.

Dataset Subject Motion Imaging BADJA
composition Consistency Smoothness ~ Quality | §%¢  §%P%
real videos 0.9747 0.9921 0.6833 | 404 5.0
real + synthetic videos 0.9708 0.9892 0.6793 | 42.1 4.8

4.4. Ablation Studies

We present an ablation study in Tab. 4 where we train
different set of modules. Each spatio-temporal block of
SVD includes both spatial and temporal transformers. We
compare training only spatial transformers, only temporal
transformers, or both. We also ablate the architecture of
the refiner module using either 2D or 3D convolution lay-
ers. Our analysis shows that while results are similar across
settings, training only the temporal transformers in SVD
with 2D convolutions as the refiner module yields optimal
video generation quality. We further analyze our training
dataset by additionally incorporating Kubric [20] simulated
videos (1K video-track pairs from the Panning MOVi-E
data [10, 13]) with automatically annotated trajectories into
training. As shown in Tab. 5, optical flow-chained track-
lets from real provides provide as effective correspondence
guidance as tracklets from synthetic data, while synthetic
videos negatively impact the video generation quality.

5. Conclusion and Future Work

We have presented the first unified framework that bridges
two distinct tasks: video generation and dense point track-
ing. We demonstrated that this produces temporally con-
sistent feature representations and appearance-consistent
videos. As for limitations, videos generated by Track4Gen
tend to exhibit less dynamic motion compared to those from
other video generators. Additionally, failure cases are in-
cluded in the supplementary material.

Future work. Recently, cutting-edge video trackers [ 10,
14, 34] have emerged, enabling dense, accurate, and long-
term tracking, especially with better handling of occlusions.
This opens up promising future directions for extending our
work to utilize real-world videos, automatically annotated
by these advanced trackers.
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