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Multiple CPUs Cooperation for CF Massive MIMO
With MmWave Fronthaul and Backhaul

Feiyang Li ®, Qiang Sun

Abstract—Cell-free massive multiple-input multiple-output
(CF massive MIMO) is regarded as a promising technology
for next-generation wireless communication systems. However,
relying on a single central processing unit (CPU) in CF massive
MIMO systems is not scalable in practical networks, requiring
the introduction of multiple CPUs for more efficient and feasible
transmission. In this paper, we investigate a CF massive MIMO
system with multiple CPUs. To obtain flexible and cost-efficient
deployment, we propose to use wireless x-haul links instead
of wired ones. More specifically, we assume that both the
fronthaul links from the APs to the corresponding CPU and the
backhaul links between CPUs operate under millimeter wave
(mmWave) networks. Taking into account a tradeoff between
the degree of centralized coordination and the signal overhead
on the backhaul links, we consider four levels of multiple CPUs
cooperation schemes from fully centralized to fully distributed.
In addition, we propose a binary search method to allocate the
backhaul capacities for maximizing the sum spectral efficiency
(SE). Simulation results show that mmWave backhaul amplifies
the compression noise introduced by mmWave fronthaul, leading
to a more pronounced impact on the SE of systems. In this case,
the centralized processing scheme can generate more compression
noise due to the larger data overhead on the backhaul link,
making the distributed processing scheme a superior processing
scheme, especially when dealing with a large number of APs or
significant distances between CPUs.

Index Terms—Cell-free massive MIMO, multiple CPUs coop-
eration, mmWave fronthaul and backhaul, spectral efficiency.

I. INTRODUCTION

Cell-free massive multiple-input multiple-output (CF mas-
sive MIMO) is viewed as a prospective technology for future
wireless networks [1], [2]. In CF massive MIMO networks,
numerous access points (APs) are geographically distributed
across the coverage area, connecting to a central processing
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unit (CPU) via fronthaul links, and collectively provide coher-
ent service to multiple user equipments (UEs) [3].

Similar to cellular massive MIMO, CF massive MIMO
can employ the favorable propagation and channel hardening
properties when the number of APs is large to multiplex
many UEs sharing the same time-frequency resource [4], [5].
Therefore, it can provide high spectral efficiency (SE) with the
usage of simple signal processing [6], [7]. Nowadays, several
works on CF massive MIMO focused on the maximum ratio
(MR) processing [8], [9], while the work reported in [10]
found that higher SE is achieved when the minimum mean-
square error (MMSE) processing is applied. In particular, by
the CF massive MIMO configuration, the APs are placed close
to the UEs, which yields a high macro-diversity and low path-
loss fading [11]. As a result, numerous UEs can be served
simultaneously with uniformly good quality-of-service [12].

Most existing papers focused on CF massive MIMO systems
with a single CPU. However, relying on a single CPU is not
scalable due to factors such as signal processing complexity
and transmission overhead in practical networks. To this end,
some researchers explored the introduction of multiple CPUs
to facilitate more efficient and feasible transmission. More
specifically, the authors of [13] first proposed multiple CPUs
to achieve the scalability in CF massive MIMO systems. A
mixed coherent and non-coherent transmission scheme was
considered in [14] and [15], while [16] introduced a hybrid
configuration for virtualized CPUs to improve wireless com-
munication quality and throughput. Notably, multiple CPU
cooperation schemes gained significant attention for enabling
joint signal processing and enhancing system performance. In
[17], the authors demonstrated that systems without CPUs
cooperation experience a 28.66% performance degradation
compared to those with cooperation. [18] proposed a scalable
CPU cooperation scheme that focuses on power control to
address the performance degradation issue in the CPU edge
region. Despite these efforts, the current understanding of
CPU cooperation in CF massive MIMO systems remains
incomplete, lacking comprehensive comparison and analysis
across different levels of CPU cooperation. In addition, all
of these works assumed error-free information transmission
between CPUs, which is unfeasible for practical systems,
further highlighting the need for more accurate and practical
evaluations.

Moreover, x-haul links represent the networks that transmit
the signals between the APs and the CPUs in CF massive
MIMO, which can significantly affects the system performance
[19]. In fact, the limitations of the x-haul link between APs
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and the CPU, i.e., limited fronthaul link, have been widely
investigated [20]-[24]. For instance, [20] and [21] analyzed the
SE of CF massive MIMO systems with constrained fronthaul,
concluding that compression noise resulting from limited
fronthaul degrades the SE of system. the authors of [22]
further demonstrated that centralized operation outperforms
distributed operation even though more compression noise
is generated. In addition, employing optimization algorithms
for fronthaul capacity allocation was regarded as an effective
method for mitigating the negative effects of limited fronthaul
links [23], [24]. However, all of these works are built on the
wire-based fronthaul networks, which constrain the system
scalability as the network expands, i.e., the coverage area
increases or the number of APs grows. This limitation arises
because cables or fibers are not always readily available in
many urban locations. As a result, implementing a wireless
fronthaul network presents a more practical and scalable
solution compared to its wired counterpart, offering greater
flexibility and cost-efficient deployment [25].

Recently, wireless fronthaul networks attracted much atten-
tion from both academia and industry [26]. The authors of
[27] first proposed a CF massive MIMO architecture utilizing
higher-band fronthaul, e.g., a millimeter wave (mmWave) or
terahertz (THz) fronthaul, for sub-6GHz systems. [35] revealed
that the centralized operation demonstrates superior perfor-
mance in comparison to the distributed operation in mmWave
networks, particularly when the APs were equipped with de-
coding capabilities. Furthermore, the SINR with MMSE com-
bining scheme for different fronthaul schemes was provided
in [29]. However, the aforementioned studies only considered
the mmWave fronthaul from APs to the CPU [26], [27],
[29], [35]. In multi-CPU systems, since the distances between
CPUs are typically very long, the cost of deploying fibers or
cables may be significantly increased due to signal attenuation
necessitating additional equipment and the complexity of in-
stallation across difficult terrains. Thus, the usage of mmWave
for the x-haul links (which can be called “mmWave backhaul
link”) is a more cost-effective solution [27]. Nowadays, few
works have explored the utilization of mmWave for backhaul.
Though the authors considered the mmWave backhaul in
[30], they disregarded the cooperation between multiple CPUs,
instead adopting a non-cooperative signal processing approach.
This implies that [30] may underestimate the performance of
mmWave backhaul networks. Thus, it is imperative to build
a comprehensive analysis framework of CF massive MIMO
with mmWave backhaul networks.

Motivated by the above observations, we consider a CF
massive MIMO system with multiple CPUs. We take into
account the usage of mmWave for the x-haul links. In par-
ticular, the backhaul link between CPUs is also applied by
mmWave communication. Moreover, we consider four levels
of multiple CPUs cooperation based on the signal overhead of
the backhaul links. Finally, we propose a binary search method
to allocate the backhaul capacities for maximizing the sum SE.
The major contributions of this paper are listed as follows:

1) We investigate a CF massive MIMO system with mul-

tiple CPUs, where mmWave is utilized for the x-haul
links. More specifically, both the fronthaul links from

the APs to the corresponding CPU and the backhaul
links between CPUs operate under mmWave networks.
Furthermore, we also introduce rate-distortion theory for
mmWave fronthaul and backhaul links.

2) Taking into account a tradeoff between the degree of
centralized coordination and the signal overhead on the
backhaul links, we consider four multi-CPU coopera-
tion schemes from fully centralized to fully distributed
inspired by [10]. Moreover, we derive novel closed-
form SE expressions for Level 2 and Level 3 using
the MR combining. In addition, we propose a binary
search method to allocate the backhaul capacities for
maximizing the sum SE.

3) Through the simulation results, we observe mmWave
backhaul amplifies the compression noise introduced by
the fronthaul, leading to a more pronounced impact on
the SE of systems. Nonetheless, the proposed CPU co-
operation schemes still outperform the non-cooperative
scheme, with the performance gains increasing as the
number of CPUs grows. Besides, as the number of
APs and the distance between CPUs increase, the fully
centralized processing scheme loses its advantage due to
the intensified compression noise, making the distributed
processing scheme with large-scale fading decoding
(LSFD) a more competitive option under these condi-
tions.

The rest of this paper is organized as follows. In Section
II, we propose and describe the system model of CF massive
MIMO with multiple CPUs. Next, we present the signal pro-
cessing schemes within CPUs in Section III. Then, four levels
of multi-CPU cooperation schemes are proposed in Section I'V.
In Section V, simulation results show the impact of mmWave
fronthaul and backhaul, comparing the SE performance across
various CPU cooperation levels. Finally, the conclusion of this
paper is presented in Section VI.

Notation: Bold lowercase letters denote column vectors,
while bold uppercase letters signify matrices. Superscripts
()%, ()T, and (-)¥ indicate conjugate, transpose, and con-
jugate transpose, respectively. Symbol 2 s employed for
definitions, and the identity matrix of size N x NN is showed
as Iy. We use notation NVc(0,R) to denote the multi-variate
circularly symmetric complex Gaussian distribution with a
correlation matrix R. The expected value of random variable
g is represented as E{g}.

II. SYSTEM MODEL
A. Network Architecture

The proposed CF massive MIMO system is illustrated in
Fig. 1, in which multiple CPUs are placed to control all APs
for transmission. More specifically, J CPUs, J x L APs, and
K single-antenna UEs are considered in the network. Each AP
is equipped with N antennas. We assume that each CPU is
connected to L APs via mmWave fronthaul. In particular, all
these CPUs are also connected to each other through mmWave
backhaul. In CPU j, the channel between AP [ and UE £k is
expressed as

hj; ~ Ne (0, Rjie) )]
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Fig. 1: CF massive MIMO with multiple CPUs system model.

(CN><N

where R, € is the spatial correlation matrix, which

characterizes the spatial properties of the channel and 8; 2
tr (Rjix) /N symbolizes the large-scale fading coefficient
related to geometric path-loss and shadowing.

The time-division duplex (TDD) protocol is applied, where
all APs serve all UEs using the same time-frequency resource.
In addition, this paper considers the uplink, which consists of
7, channel uses dedicated for pilots and 7. — 7, channel uses
for payload data.

B. Achievable Rate for Fronthaul and Backhaul

MmWave frequency band offers the advantages of the large
available bandwidth and the high beamforming gains, making
it suitable for supporting high-speed wireless fronthaul and
backhaul for different levels of cooperation. Since the distance
between the CPUs and their associated APs, as well as the
distance between the CPUs themselves, is typically very long,
the existence of line-of-sight (LoS) links cannot be guaranteed.
Therefore, we aspire to exam the systems under non-line-
of-sight (NLoS) conditions to better reflect the scenarios in
practice. The reasons for using the sub-6GHz band for the
access links and the mmWave band for the x-haul links are
as follows: (i) The natural frequency separation between the
sub-6GHz links and the higher mmWave links effectively miti-
gates the interference, simplifying systems resource scheduling
and RF design. (ii) The shorter wavelength of the higher-
frequency fronthaul signals enables high-precision synchro-
nization across the APs with sub-6GHz, which is crucial for
coherent joint processing [27]. Next, we present the path-
loss fading model using the link between the CPUs and their
associated APs as an example. From [27], [31], the reference
distance is set to 1 m, and the transmission power Py with
propagation distance r; of AP [ is attenuated by factor 7}
where « is the path-loss exponent. Thus, the corresponding
signal-to-noise ratio (SNR) of the AP [ can be written as

PGy
AT‘ZO‘N()B ’
where Ny represents the thermal noise power per Hz, A
characterizes the path-loss intercept, G+ is the total gain for the

link between the CPU and the associated APs, and B denotes
the link bandwidth.

7= @)

After determining the SNR for each AP, we need to calcu-
late the total fronthaul capacity allocated to all APs. For this
purpose, it is assumed that the available fronthaul bandwidth is
divided equally between these APs and is reused between the
CPUs with a factor of one. Therefore, the assigned bandwidth
to each AP is

By = xiBy, (3)

where x; is the bandwidth distribution (BD) factor for AP I.
Considering the noise-limited system for mmWave communi-
cation, the fronthaul capacity for the link between AP [ and
its associated CPU j can be defined as

C;l = Bf’l X 10g2(1 + 'Yl)
P 4
= xi1By x logs (1 + fGt ) . @

ATf‘NOXle

To assess how mmWave fronthaul link capacities affect the
system performance, it is essential to normalize the capacity
of these links relative to the access link bandwidth. Since all
UEs utilize the full available access bandwidth, the normalized
mmWave fronthaul capacity for access point [/ linked to CPU

7 can be expressed as
; B G
Cp o= 4t _ X124 # 5

P By T B U AN By )

Without loss of generality, we assume that the mmWave
backhaul link capacities between the CPUs also follow the
above setups [27]. Thus, backhaul capacity of CPU j is given
by

Ci  xiBe PGy
Cpj ==L =2L="x1 1l+—2——1|, (6
b,j BA BA 0g2 + AT?NOX] Bb ( )
where x; is the BD factor for AP j.
Remark 1. . It is observed that finding optimal values x; and

X; to maximize the achievable SE is a challenging task due
to the non-convex nature of the backhaul capacity. Thus, we
develop a low-complexity bandwidth distribution based on the
water-filling algorithm (WF-BD) scheme. More specifically,
the BD factor can be set as -/ anzl Ym for AP 1 and

X; =/ 2;21 Ym for CPU j, respectively.

C. Rate-Distortion Theory

To accurately represent an arbitrary real number, an infinite
number of bits is required. To this end, representing a continu-
ous random variable with a finite number of bits may introduce
distortion, a concept thoroughly analyzed in rate-distortion
theory [32]. Let us consider an ii.d. source X ~ fx(x),
with zero mean and bounded variance E{|X|?} = P. The
objective is to compress the entire n-length sequence X to

X (m), provided that E{d(X,ﬁ)} < @ for a sufficiently

large n, where m € 1,2,...,2"¢ and d(.,.) denotes the
distortion measure [32]. Thus, one can perfectly transmit
the compression index m through an error-free link with an
allocated link rate of C' bits/s/Hz. Therefore, based on the
[33, Theorem 3.5], the rate distortion function for mmWave
fronthaul is as follows:
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Theorem 1. The rate distortion function can be written as

R(Q I(X; X). ©)

= min
f(2]2): ]E{|X7X|2}§Q

To derive R(Q), it is beneficial to define a test channel X =
X + Z,, where Z; ~ CN(0,Q) is independent of X and
characterizes the quantization noise

C = I(X: X) = h(X) = h(X|X) 2 log(1 + P/Q), )

where (a) follows from the maximum differential entropy
lemma [33, Chapter 2].

Thus, the upper bound (8) overestimates the necessary link
rate C required to transfer the quantized signal over the
fronthaul/backhaul link. In other words, for a given fron-
thaul/backhaul rate, we assume the stronger quantization noise
with variance Q* = 2CP_ T

It is worth noting that the correlation among quantization
noise components is neglected in the analysis. It has been
shown in [34] that such simplification yields negligible error
in systems where each AP is equipped with a small number
of antennas. Thus, the model in (8) is accurate for the
performance analysis considered in this paper.

Remark 2. Since the proposed Shannon’s bound could over-
estimate the quantization noise, we further explore the scalar
quantization to exam the systems performance [35]. More
specifically, let C' be the scalar quantizer per real sample,
the quantization process divides the dynamic range of X into
M = 2Y equal-length intervals, each of width A. For A, we
use a common practical assumption that nearly all probability
mass of a Gaussian signal is contained within the range
[—V/P,\/P). Thus, the ﬁnal2equati0n for quantization noise
is Q(b) ~ %2 =5 (22#) = 3570

Remark 3. Note that analyzing the performance of CF mas-
sive MIMO with mmWave fronthaul/backhaul networks differs
significantly from that of a wired fronthaul/backhaul network.
In wired networks, data are exchanged through lossless links
(i.e., ideal channels) with fixed capacities. This means the main
controlling factor of the system performance is the capacity
of wired links according to which CPU/APs compress the
data to be transmitted in the links. In contrast, in mmWave
fronthaul/backhaul network, system performance is impacted
not only by data compression due to the limited capacity of the
links but also by the quality of the mmWave fronthaul/backhaul
channels through which the data is transmitted.

III. SIGNAL PROCESSING SCHEMES WITHIN CPUS

In the CF massive MIMO with multiple CPUs system, the
CPUs can cooperate to process signals to improve system
performance. However, a prerequisite for the multiple CPUs
cooperation is to transmit the signal from the APs to the
associated CPU via the fronthaul links. In this paper, we
apply the compress-forward-estimate (CFE) strategies between
the APs and the CPUs [22]. More specifically, each AP
compresses the received pilot and data signals separately and
forwards the compressed versions over the fronthaul link to the

associated CPU. The CPU then performs channel estimation
and data recoveries. Next, we use CPU j as an example to
show the signal processing schemes between the APs and the
corresponding CPU.

A. Pilot Transmission and Channel Estimation

For the channel estimation, let \/ﬁgokH € C™»*1, where
||<,okH2 = 1, be the pilot sequence utilized by the UE k. It is
considered that 7, < K. The received signal y,, , € CNX™ at
AP [ associated to CPU j is

K
Ypil =/ O VPihier +w, i1, ©)
=1

where p; represents the transmitted power of UE i, w,; €
CN*7r is the receiver noise at AP m with independent
Ne (0,0?) entries, and o denotes the noise power. Then, all
AP aspires to transmit these signals to the associated CPUs
via fronthaul. CPU j sees

Yp.i1 K hji; Wp,j1 dp,j1
= Z \/E Pt + )
Ypir | 7 h;L; Wp,jL UpiL
S Shy; Swp,j Say,;
(10)
where W ; [Wpj1s-- W] and qpp; =
[Qfp,j1s - »Afpir] ~ Nc(0,Qpp ) is the quantization
noise due to the finite fronthaul capacity. Note that
Qpp; = diag(@Qppln, -, Qpp rly) € CHVXEN,

In addition, hji = [hj1i7 s 7hjLi] ~ ./\/(C (O, Rﬂ) is
the collective channel between CPU j and UE i, where
R;; = diag (Rj1i, - ,Rjr;) € CEV*IN Based on the
above setups, (10) can be rewritten as a more compact form:
K
T
Yp,j = Z Vpibjie; + Wy i+ dgp;-
i=1
To estimate the channel of UE k, CPU j relates the signal
¥p,; to the relevant pilot signal ;. as

(1)

K

Vi =D VDihjip! ©r + Wy ik + App i
=1

(12)

Then, CPU j can estimate the channels by applying minimum
mean square error (MMSE) estimator, as

hji, = ¥iyp,j (13)

where

-1
K
A %2
W, = (Tp > piRjile! ¢l +021LN+pr,j> VP TR k-
i=1
(14)
Note that the channel estimate fljk ~ N¢ <O,Rjk) with

~

R = /P, 7pR;x ¥ i and the channel estimate error l~1jk ~
N(C (0, ﬁjk), where ﬁjk = Rj — f{jk.
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B. Uplink Data Transmission
For the uplink data transmission, the received data signal at
AP [ in CPU j can be written as
K

Yl = g hj;s; +wq i,
i=1

15)

where s; ~ N¢(0,p;) is the information-bearing signal sent
by UE i connected to CPU j with power p; and wg j ~
Nc(0,0%Iy) is the independent noise received at AP [ asso-
ciated to CPU j.

Similar to the channel estimation phase, after receiving the
data signal, all APs compress the signals and send to the
corresponding CPUs through fronthaul links. The received
data signals at CPU j are

K
Yaj = Y _hjisi+Wa; + dsa;, (16)

i=1
where  wy ; = [Wd,jl,"' awd,jL] and  qya,; =
[Qfd,jh . 7Qfd,jL] ~ N(C (07 Qfd,j) is the quantization

noise with Q4 = (Qraj1In, -+, QrajrIn) € CLNXEN,

Let Cyp 1 and Cpq 4 represent the fronthaul rates for
forwarding the quantized pilot and data signals from the AP
l to the associated CPU j, respectively. It is required that
Cpjt + Cragi = Cpji-

Proposition 1. The fronthaul capacity for pilot transmission

is given by

K
. Z pitr (lei) + tr ((TQIN)
Cipgi = Flogy |1+ =

A7)

)

Qfp,ji

and the fronthaul capacity for uplink data transmission can
be written as

K
> pitr (Rjy;) + tr (O'QIN)

log, |14 =2
Te 82 Qra

Te—Tp

Cra i =

(18)

Proof: See Appendix A. [ |
Note that Proposition 1 has appeared in previous studies
on limited or mmWave fronthaul, e.g., [21], [22], and [30].
We put it here for completeness and to align with the specific
assumptions and notations of our system model.

Through this signal processing, each AP needs to send
T,N complex scalars for the pilot signals and (7. — 7,)N
complex scalars for the received signals via fronthaul in each
coherence block, resulting in 7./N complex scalars in total.
The number of complex scalars required for transmission
through the fronthaul and backhaul in each coherence block
is summarized in Table I.

Remark 4. After applying the CFE strategies, each CPU has
the knowledge of instantaneous CSI for all associated APs.
The CPUs can then choose to exchange either instantaneous
CSI or statistical CSI with each other for final signal decoding.
The specific discussion is presented in the next section.

5

TABLE I: Number of complex scalars exchanged from the APs
to the corresponding CPU and between the CPUs through the
fronthaul and backhaul in each coherence block.

Fronthaul Backhaul
Level 4 ((te = 1p)LN + LNK)(J — 1)
Level 3
Tovel 2| 7.N (te =) (J — 1)K
Level 1 —

Remark 5. It is assumed that both the fronthaul and backhaul
links operate over the same frequency bands. During system
operation, data is first transmitted from the APs to their as-
sociated CPUs via the fronthaul, and subsequently exchanged
among CPUs through the backhaul. Since these two processes
are temporally separated and do not occur simultaneously, it
is reasonable to assume that there is no mutual interference
between the fronthaul and backhaul links.

IV. FOUR LEVELS OF MULTIPLE CPUS COOPERATION

In the multiple CPUs system, all CPUs are interconnected
via backhaul links, enabling CPUs to exchange signals and
cooperate to improve system performance. Nevertheless, in-
creasing the signal overhead on the backhaul links may result
in amplifying the quantization noise from the backhaul. Thus,
it is essential to investigate different cooperation schemes
among multiple CPUs to provide valuable insights and results
for practical CF massive MIMO system with multiple CPUs.
To provide a clearer understanding of the proposed four levels
of CPU cooperation and the signals exchange in the x-haul
links, a comparison of these levels is presented in Fig. 2
(without loss of generality, the CPU performing the final data
processing is referred to as “Master CPU”) .

As shown in Fig. 2, the data overhead gradually decreases
from Level 4 to Level 1, while the degree of centralized co-
ordination increases. Note that the multiple CPUs cooperation
schemes is inspired by [10], which investigates the cooperation
levels between APs and the CPU. In this paper, we extend the
idea to the cooperation among CPUs and further adapt it to
the characteristics of mmWave x-haul links.

Notably, the larger data overhead results in more compres-
sion noise, whereas higher levels of centralized coordination
enhance interference suppression. Therefore, it is crucial to
strike a balance between centralized coordination and the
signal overhead on the backhaul links.

A. Level 4: Fully Centralized Processing

The highest cooperation level is that all CPUs transmit the
signals to one CPU for centralized processing. To calculate the
collective combining vector, all CPUs are required to transmit
the channel estimation results to Master CPU. The compressed
channel estimation at CPU j is as follows:

h;'k = fljk + Qbp,jk» (19)
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Fig. 2: Four CPUs cooperation levels.

where qpp ji ~ N (0, QupjxInn) is the quantization noise
due to the finite backhaul capacity. Thus, the collective channel
estimation h;, at Master CPU is

hy; hy, Qop, 1k
= [+ (20)
Jk hj, Abp, Jk
———— N———
Ap Ap T
=h, =h, p,k
where h, = |:fl/1k, e ,fli]k} is the collective channel esti-

mation at Master CPU. Note that lhl;C ~ N¢ (O,f{;€> with

’

ey A~/ A~/ H

R, = E{h, (hk> . Similarly, all the data signals are
needed to be transmitted from the other CPUs to Master CPU
via backhaul links. The received data signals at Master CPU
can be written as

K
Ya =Y Wisi+Wa+dpa+ dba, 2h

i=1

where wg = [Wa1, -+, Wp ], Ara = [Afdn, - Ard,g] ~
Nc (0,Qpq) is the quantization noise due to the finite
fronthaul capacity with Qrqs = (Qa1, - ,Qra,y) =
diag (QranIn, -+, QrajrIn i j =1,..,J) € CTENILN,
and qpqg = [Apd,1,- -+, Dba,s] ~ N (0, Qpq) is the quantiza-
tion noise due to the finite backhaul capacity with Quq =
(QoaIon, ++ QuasIrn)e C/LNXIEN Moreover, h; =
[hy, - ,hy] ~ Ng (0,R;) is the collective channel between
Master CPU and UE i, where R; = diag (Rq4,--- ,Ry;) €
C/ENXJLN For decoding the final signals, Master CPU can
select an arbitrary combining vector v, € C/EV>1 for UE k,
which is shown as follows:
K
Sk=vilya= ZVghi$i+vgwd+Vngd+V1€Ide' (22)
i=1
Based on (22), the achievable SE for Level 4 can be obtained
by the following proposition:

Proposition 2. The achievable SE of UE k for Level 4 is

SE(Y = (TT_T”) E{log, (1+SINR{V) ], @3)
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HYY
pk‘vk hk

2

SINR{" = —
> Di V;glh;
ik

(24)

2 K _
+ vyl (Z piRi + Qpq + Qpa + 021JLN> Vi
=1

where the instantaneous SINR is presented in (24) (see top of
this page).

Note that all signals are transmitted to Master CPU through
backhaul, thus allowing it to utilizing all CSI to design the
combining vector vi. Two combining schemes are considered
for Level 4: MR combining v; = h; and MMSE combining,
which is calculated by minimizing the mean—siuared error

(MSE) MSE,, with MSE;, = E {|Sk- —viTya| ‘ }A‘;} } as

1

K ~1 [~ H 7’\/
Vi = Dk (Zpi (hi (hl) +R¢) +Qfd+de+U2IJLN> hy.
i=1

(25)

For Level 4, the backhaul capacity C ; is allocated for pilot
transmission Cy,, ; and dara transmission Cpg ;. Similar to the
fronthaul capacity, it is needed that Cy, ; = Cyp j + Cpg ;. The
exact value of backhaul capacity is defined as follows:

Proposition 3. The backhaul capacity of CPU j during the
pilot transmission can be written as

K ~
Z tr (Rﬂ)
T, i=
Crp,j = 7_—”log2 14+ =L

= 1, (26)
pr,j

and the backhaul capacity of CPU j during the uplink data
transmission is

H
kT E {ywyd,j}
o _diTdg |
Te 82 Qvd,j

In each coherence block, all CPUs except Master CPU need
to transmit (7. —7,) LN complex scalars for data transmission
and LN K for channel estimation results transmission, becom-
ing ((7. — 7)LN + LNK)(J — 1) in total, which is shown
in Table I.

Cra,j = 27

Remark 6. Note that Master CPU does not need to transmit
information to itself. Therefore, the backhaul capacity of
Master CPU Cy, prc can be seen as infinite, and equivalently
the corresponding quantization noise Qy prc given in (21)
tends to zero, i.e., Cy prc = 00 and Qpy pc = 0.

Remark 7. It can be observed that the quantization noise
due to the limited fronthaul link is amplified during the signal
compression processing in the backhaul link. This means that
backhaul links exacerbate the impact of finite fronthaul, which
can seriously affect the system performance.

B. Level 3: Local Processing & Large-Scale Fading Decoding

Although Level 4 can suppress the interference with col-
lective combining at Master CPU, it assigns all computational

tasks to Master CPU. This may place excessive demands on
Master CPU while wasting the processing capabilities of the
other CPUs. Thus, we consider each CPU can preprocess its
signal and Master CPU only needs to do the final decoding.
More specifically, in Level 3, each CPU processes the signals
using the local CSI, and then transmits the signals via backhaul
to Master CPU for final decoding. The local estimate of the
signal s at CPU j is
K
Sik = Vﬁcyd’j = Zvﬁchﬁsi + Vﬁcwdd + Vf,gqfd,j, (28)
i=1
where v;;, € CEV*! s the local combining vector calculated
by CPU j. Note that arbitrary combining vector can be used
in the above equation. Nevertheless, only local estimation
{hj; :i=1,...,K} is available in CPU j. Similar to Level
4, two local combining schemes are considered: the simple
MR combining v;; = hj; and the local MMSE (L-MMSE)
combining, which is calculated by minimizing the MSE,
MSEjp = E{lsi — iy, | {hyi} ). is
-1

hjk.

(29)

A two-layer decoding scheme is considered at Level 3. After
the first layer decoding, all CPUs transmit the decoded signals
to Master CPU for the second layer decoding through the
backhaul links. Let {a;k g=1,..,J } represent the linearly

combined weights, the received signals at Master CPU is given
by

J K J J
8 — * a4 * Hy o * H .
Sk = E ajpSik = E E ajpviehjisi + E aEVikWd,j
=1 =1

i=1 j=1

K
Vik = Dk (sz (hjihﬁ + Rj') + Qfaj + UzILN>
i=1

J J
A5k kAdfd,; Ak Gbd,j
j=1 j=1

(30)
where gpq,; ~ CN (0, Qpq,;) is the quantization noise of CPU
7 due to the backhaul link. Then we can rewrite (30) in a more
compact form as

K
5 = a?gkk3k+z af grisitay war+ay dras+af dodk,
i£k
(31
where a; = [alk...aJk}T € C7*! is the weighting co-
efficient vector, wq = [vﬂwdﬁl...vffkwd_’,ﬂT e ¢/,
dfd,k [VﬁQfdJn.VJHkad,J]T € C/, and qpayr =

VI Qa1 - - .VJHkad,J] € C’*'. Furthermore, gj; =
v hy,...vEhy]T characterizes the L-dimensional vector
for the receive-combined channels between UE k and each of
the CPUs. Then, from (31), the achievable SE for Level 3 can

Authorized licensed use limited to: University College London. Downloaded on October 09,2025 at 12:20:32 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3611133

pk’akH]E {gkk}’2

SINR}Y = —

(33)

;piE {laf'gri|*} — pr|al’E {gkk}|2 +E{|afwd,k|2} +E {fakHQfd,k|2} +E{|akHde,k|2}

be computed as follows:

Proposition 4. An achievable SE of UE k at Level 3 is given

by
SE(® = (T_Tp) log, (1 + SINR,S’)) . ()

Te
where the effective SINR is shown in (33) (see top of this
page).

A second layer decoding structure, which can be called
“LSFD”, is investigated at Level 3. Note that only statistical
CSIs are available at CPU, we utilize the use-and-then-forget
(UatF) bound to calculate the achievable SE for the LSFD
scheme as follows:

Corollary 1. The deterministic weighting vector ay, for max-
imizing the achievable SE is

K
ay, :(ZPiE {grigrs} — prE{gw} E {g/k}
=1 (34)
+ E {Wd,k} E {ng} + E {qfd,k} E {q;{i,k}
+ E{avar} E{aghi} ) "E{grk}

which results in the maximum value as
K
SINR =piE {gfk} O piE {grigh} —prE {gri} E {gf}
i=1
+E{wart E{wi,} +E{asar} E{afy,}
+E{qart E{ajis}) "E{gw} 35)

Note that it follows from [2, Lemma B.10] by the observation
that (33) is a generalized Rayleigh quotient with respect to
the weighting vector ay.

For Level 3, the backhaul links is only used for the data
transmission, i.e., Cypq; = Cp ;. Thus, the backhaul capacity
of CPU j is defined as

Proposition 5. The backhaul capacity of CPU j at Level 3 is

E{]5:/’}

1+
Quvd,j

Cha,j = log, (36)

It is worth noting that the closed-form expressions of SINR
given in (33) cannot be derived applying the L-MMSE com-
bining, due to the presence of random matrices in the inverse
matrix. Nevertheless, if the MR combining v, = h;y, is used,
we can calculate the expectations given in (33) over closed-
form and derive the closed-form SE expression as follows:

Theorem 2. The closed-form expression for the SINR given

in (33) can be written as

EJ:E {Virblib, | = \/@i“ (Rix), 6D
j=1 j=1

2
J J
E{ > vmhihy| o =p > tr (ﬁijj,;)
j=1 j=1
5 N 2
R.
+Pi|<PiT‘PZ|QZtr (le;:R”> ,
. ;
’ (38)
2
J N J N
EQ [ Bfiway| p =t (Ruo?).  (9)
j=1 j=1

2

J J
TH
E{ > hjidra,
j=1

=Y o (RuQpas),  40)

j=1
and
2
J J
ES Y @aj| = Qraj (41)
j=1 j=1
Proof. See Appendix B. O

C. Level 2: Local Processing & Simple Centralized Decoding

Although the SE can be maximized by using LSFD at
Level 3, it requires the knowledge of a number of statistical
parameters, which could be very large in CF massive MIMO.
As an alternative, we can simply take the average of the local
estimates. Thus, the local estimate at Master CPU is

<

(42)

where 5;;, is given in (28) and can be achieved by any local
combining vector. Note that it is equivalent to set the weighting
coefficient vector ay, as a, = [1/J...1/J]T, the result of SE
is as follows:

Corollary 2. An achievable SE of UE k at Level 2 can be
written as

SE? = (TT‘TP> log, (1 + SINR;”) ,

where the effective SINR is given in (44) (see top of the next
page).

It is worth noting that the closed-form SE expressions
of Level 2 can also be derived using the MR combining.

(43)

Authorized licensed use limited to: University College London. Downloaded on October 09,2025 at 12:20:32 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3611133

9
2
J
S E{ v
SINR\? = i (44)
k 2 2 2
K S J J J J
> S X ijhji|2 k|2 ijhﬂf Z ngdJ Edl X Vikdfd.j EQY dva,j
i=1 j=1 j=1 j=1 j=1 j=1
Nevertheless, we omit it because it is similar to the closed- Thus, the optimization problem can be formulated as
form expression of Level 3. K
For Level 2 and Level 3, all CPUs except Master CPU are max SSE@ — Z SE§4)
required to send (7. —7,) K complex scalars in each coherence a i=1 (48)

block, which become (7, — 7,)(J — 1)K in total. This result
is illustrated in Table I.

Remark 8. From (33) and (44), it is evident that the combin-
ing vector is not correlated with the associated quantization
noise introduced by the backhaul link at both Level 2 and Level
3. As a result, the combining process is unable to effectively
suppress the quantization noise caused by the backhaul link,
leading to the SE loss.

D. Level 1: No Cooperation

The lowest level of cooperation is no signal exchange on
the backhaul link, resulting in all CPUs having to decode the
signals alone. In this case, the decoding is done locally at
the CPU by using the locally instantaneous CSI, potentially
making it still competitive. Based on the equation given in
(28), the achievable SE at Level 1 is shown as follows:

Corollary 3. An achievable SE of UE k can be written as

B = (1) gy 2 s (1 s) )

(45)
where the instantaneous effective SINR of CPU j is given by

prlvichl?

1) _
SINR(}) = — - =
;Cpi|Vﬁchji|2‘|‘Vﬁc(;piRjﬁ‘Qfd,j"'UZILN)ij

(40)

Since no signal exchange occurs on the backhaul link in
this level, no compression noise is caused by the backhaul
link. Note that Level 1 is applied in [30], and it is compared
with the other levels in the section VI.

V. BACKHAUL CAPACITY ALLOCATION

For Level 4, the backhaul capacity C ; is allocated for
pilot transmission Cp, ; and data transmission Cpg j, i.e.,
Cy; = Chp,j + Cpq ;. To construct the optimization problem,
we introduce the backhaul capacity allocation (BCA) factor
A € (0,1), resulting in the following equation:

{ Ch.j = ACha,j

47
Chj = (1=X) Cp,; “n

subject to 0 < A < 1.

It is found that as BCA factor A increases, the compression
noise during the channel estimation phase increases, while that
during the data transmission phase undergoes a decrease. Thus,
it is essential to find an appropriate factor A for reducing the
impact of limited backhaul link!. To this end, we propose
a bisection search for solving (48), in which a sequence of
convex feasibility problems is resolved in each step.

Binary search is an algorithm used to find the position of
a target value within a sorted array. The algorithm works by
comparing the target value with the middle element of the
array. If they are not equal, the half of the array where the
target value cannot be eliminated. The search then continues
on the remaining half, comparing the target value to the new
middle element. This process is repeated until the target value
is located. By consistently discarding the half where the target
value cannot be, the algorithm efficiently narrows down the
search area with each iteration [36].

In this section, we use the binary search algorithm for
solving (48). Initially, the algorithm sets Amin = 0 and
Amax = 1 along with a tolerance ¢. It computes the sum SEs at
the boundaries and selects the maximum as the initial value.
Then, it is needed to iteratively narrow the search range by
updating Apin and A\pax based on the sum SEs of the midpoint
and a slightly increased value. The algorithm continues until

_ the difference between Apmax and Ay, is smaller than the

tolerance €. The final value of )\ is the result that maximizes
the sum SEs. The specific steps for solving (48) are outlined in
Algorithm 1. In addition, it is worth noting that the fronthaul
capacity is required to be allocated for pilot transmission and
data transmission at all levels, the proposed binary search
algorithm is also applied for finding the valuable fronthaul
capacity allocation factor.

VI.
A. Simulation Setup and Radio Propagation Model

We consider that J CPUs and K UEs are located in the
area, in which the distance between the other CPUs and Master
CPU is 500 m. Moreover, L APs equipped with /N antennas
are uniformly distributed at the area of a circle centered at
them corresponding CPU with a radius of 500 m. Note that
the total number of APs in this area is J X L.

NUMERICAL RESULTS

'Note that the backhaul capacity is only allocated for data transmission at
Level 2 and Level 3, so is no necessity for capacity allocation at these levels.
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Algorithm 1 Proposed Binary Search Algorithm for Solving
(43)

Result: the valuable BCA factor \.

Input: SSE(4), the tolerance ¢, the minimum value \;,, and
the maximum value Ap.x.

Initialization: Set the initial values A\, = 0 and A = 1;
Set the tolerance € > 0 and an increase 0 < A\ < ¢;
SSE(4) = SSE™ (A%) =

max TSSEM) (Amin) ,SSE(4) ()\max)] } and A = \*;
while M.« — Anin > € do

Set )\nexl = ()\max + )\min) /2;

SSEW) SSE® (Aex) and SSEY) =
SSE™ (e + AN);

If SSE(A4) > SSEI(IZL))W then set Amin = Anext» €lse set
Amax = Anext;

If SSE'D > SSE( | then set SSE(Y) = SSE(Y), and
A= )\next;
end while

Output: .

For large-scale fading, the classical 3GPP Urban Microcell
model [10] with a 2 GHz carrier frequency is used as

BuyldB] = —30.5 — 36.7log; (f“

. ) + Quy, (49)
m

where d, is the 3D distance between AP x and UE y, which
accounts for the border wraparound and AP antenna mounted
at a height of 10 m. Moreover, Q, ~ CN (0, 4?) denotes the
shadow fading, and the shadowing terms between AP z and
different UEs are stipulated by

429 0ki/9m 1 — p

E{QuQn) = { o o

where Jy; is the distance between UE k and UE i. The second
term in (50) characterizes the correlation of shadowing terms
associated with two distinct APs. This correlation is negligible
due to the simulation setup, where there is a minimum
separation of at least 50 m between adjacent APs.

Furthermore, for the backhaul/fronthaul network communi-
cation under mmWave band, the transmission noise variance
in the backhaul/fronthaul is 012” =290 x kK X B4 x F, where
k = 1.380649 x 10723 is the Boltzman constant. The system
bandwidth is B4 = 20 MHz, and ' = 8.7 dB is the noise
figure [35]. Furthermore, we assume a path-loss exponent of
a = 2.92 and A = 72 dB with available contiguous bandwidth
By and By, up to 28 GHz as in [31]. The total antenna gain for
the backhaul/fronthaul link is set to G; = 10 dB, and Py =1
W is the transmit power [30]. All simulation parameters are
shown in Table II.

(50)

B. SE of Different Multiple CPUs Cooperation

We firstly investigate the function of multiple CPUs coop-
eration. Fig. 3 presents the cumulative distribution function
(CDF) of the uplink SE per UE for four CPU cooperation
levels over MMSE/L-MMSE combining and MR combining
with limited fronthaul and backhaul when J=5, L=12, N=2,

TABLE II: Simulation Parameters

Parameter Value
Communication bandwidth, B4 20 MHz
Available mmWave bandwidth, By and B, | 28 GHz
Noise figure, F' 8.7 dB

Path-loss intercept, A 72 dB

Path-loss exponent, « 2.92

AP antenna height 10 m

Noise power for communication, o2 -94 dBm

Coherence time, 7. 200 msec
Uplink training duration, 7, 6 msec
Number of CPUs, J 5
Number of APs per CPU, L 12
Number of antennas per AP, N 2
Number of UEs, K 12
Uplink transmit power per UE, p, 20 dBm
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(b) MR combining scheme.

Fig. 3: CDF of SE per UE for MMSE/L-MMSE combining
and MR combining with J=5, L=12, N=2, and K = 12.

and K = 12. From Fig. 3(a), it is evident that even though
more compression noise is generated, Level 4 still achieves
the highest SE with MMSE combining. Since the compression
noise can be suppressed by LSFD, the SE at Level 3 is second
only to it at Level 4. Moreover, as there is no compression
noise from backhaul link at Level 1, it is useful when UEs
have good channel conditions. This is due to the fact that the
curve of Level 1 crosses the curve of Level 2 at 30% likely
SE.

Fig. 3(b) examines the performance of the proposed system
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Fig. 4: Sum SE with MMSE/L-MMSE combining for Level 3
and Level 4 with K = 12 and 7. = 200.
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Fig. 5: Sum SE under different numbers of CPUs with K = 12
and L = 12.

when MR combining scheme is applied. Due to the weakened
immunity to compression noise and interference, the SEs
decrease at all levels. Particularly, Level 4 is almost coincident
with Level 2 at 95% likely SE since a large amounts of
compression noise cannot be eliminated. Moreover, Level 1
shows the sub-optimal performance due to the lowest amount
of compression noise created. In addition, Level 3 remains
competitive in mitigating compression noise and interference
through the usage of LSFD.

Fig. 4 presents the sum SE with MMSE/L-MMSE combin-
ing of Level 3 and Level 4, considering the usage of BCA
for Level 4. It can be found that Level 4 with BCA can
outperform the Level 3 and Level 4 without BCA. We also
find that the advantage of it can be further amplified when the
number of pilots is sufficient. Another observation from Fig. 4
is that both Level 3 and Level 4 can benefit from the increase
in the number of pilots, proving the importance of valuable
combining schemes.

Fig. 5 shows the sum SE with MMSE/L-MMSE combining
under different numbers of CPUs. It can be observed that
as the number of CPUs increases, the SE improves across
all levels, including Level 1. This is because Level 1 can
select a better CPU for service. However, the upward trend
quickly plateaus as an adequate number of CPUs becomes
available for selection. Meanwhile, the SE of Level 3 and

—a—14

——-o—9%

35+ L

2 3 4 5 6 7 8 9 10
Number of antennas per AP

Fig. 6: Sum SE under different number of antennas per AP
with L = 12.

60

50 i i

Sum SE [bit/s/Hz]

Without cluster With cluster
Fig. 7: Sum SE under different multiple CPUs cooperation
schemes with J = 5.

Level 4 continues to rise, highlighting the importance of
multiple CPUs cooperation. In addition, it is observed that the
performance gap in SEs between ideal wired and mmWave x-
haul links is larger at Level 4 than at Level 3. This is because
Level 4 introduces more quantization noise, making the impact
of increasing the number of CPUs more significant.

Fig. 6 illustrates the sum SE for different numbers of
antennas per AP using MMSE/L-MMSE combining. It is ob-
served that the SE increases across all levels as the number of
antennas per AP grows, indicating that the proposed schemes
remain effective when the number of antennas per AP is large.

Fig. 7 presents the sum SE of CF massive MIMO under
different multiple CPUs cooperation schemes. We take the
user-centric concept into consideration and achieve it through
dynamic cooperation clustering [9]. It can be found that
dynamic cooperation clustering can obtain about 90% SE
compared to the system without cluster, which shows that it
has a certain positive effect on CF massive MIMO systems
when x-haul links is connected by mmWave. This is due
to the fact that a small cluster size aids in reducing the
compression noise introduced bu the distant APs or CPUs.
Therefore, dynamic cooperation clustering can be adopted to
assist multiple CPUs cooperation schemes for enhancing the
scalability of systems.

Authorized licensed use limited to: University College London. Downloaded on October 09,2025 at 12:20:32 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3611133

I S I E PP T

09F

08

07F

06

§

= i
2 05F K
S F;

04F i

i
03F §
E
F 4
0.2 s / B;=38 GHz and B,=38 GHz |
= = B;=2 GHz and B,=38 GHz
0.1 B;=38 GHz and B,=2 GHz
-------- Bj=2 GHz and B,=2 GHz
Py ‘ ‘ ‘ ‘
0 2 4 6 8 10 12

Spectral efficiency [bit/s/Hz
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C. Effects of MmWave Fronthaul and Backhaul

Based on the above simulation results, we have found that
it is important to exchange the signals via the backhaul link
for multiple CPUs cooperation. However, this can also result
in additional compression noise due to the consideration of
mmWave backhaul link. Thus, we provide some insights and
results into the effect of mmWave fronthaul and backhaul.

Fig. 8 illustrates the CDF of SE per UE for Level 4 under
different bandwidth of fronthaul and backhaul. We observe
that reducing the backhaul link bandwidth results in a more
significant SE loss. This indicates that limited backhaul has
a greater impact on system performance compared to limited
fronthaul.

Fig. 9 depicts the sum SE with MMSE/L-MMSE combining
under varying number of APs connected to the CPUs. Along
with the increase in the total number of APs comes a cor-
responding increase in the compression noise. It is clear that
when the number of APs is high, at Level 4, the increase in the
number of APs cannot compensate for the SE loss caused by
the additional compression noise. As a result, the SE at Level
4 cannot be further enhanced and thus be underperformed by
the SE at Level 3.

It is worth noting that increasing the distance between CPUs
can reduce backhaul capacity, thereby affecting the SE of each
cooperation level. Fig. 10 shows the sum SE with MMSE/L-
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MMSE combining under varying distances between CPUs.
Note that systems with ideal wired backhaul links are not
affected by the distance between CPUs, as no compression
noise is introduced. Simulation results show that the SEs of
all levels with mmWave backhaul decrease due to increased
compression noise. Moreover, Level 4 declines significantly
more than other levels, revealing that it is more affected by
mmWave backhaul. In contrast, Level 3 shows the slowest
decrease, as its LSFD effectively suppresses interference. In
addition, when the distance is large, Level 3 can outperform
Level 4. This underscores the importance of carefully consid-
ering signal processing schemes in CF massive MIMO systems
with multiple CPUs, particularly when the distance between
CPUs is large.

Fig. 11 shows the sum SE of system with respect to transmit
power, ranging from 50 to 300 mW. It is clear that Level 4
can effectively boost communication quality by increasing the
transmission power. But Level 3 cannot further enhance the
SE, implying that transmission power is not the limiting factor
for Level 3. Moreover, The usage of the mmWave x-haul links
does indeed result in the performance losses. Nevertheless, it
is still possible to make up for the loss by using appropriate
approachs, e.g., the MMSE combining with mmWave x-haul
can consistently outperform the MR combining with ideal
wired x-haul.
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Fig. 12(a) depicts the sum SE versus allocated capacity.
Note that when the capacity allocation factor A\ — 1, all
capacities are required for the pilot transmission, leaving little
data can be transmitted, i.e., sum SE tends to 0. When A\ — 0,
data can be transmitted unhindered but the channel estimation
is almost unusable. In this case, the beamforming vectors can
be regarded as random. Nevertheless, a few “fortunate” UEs
may still succeed in transmitting their signals, and therefore,
the sum SE does not drop to zero. Furthermore, it is clear that
there exists an optimal value, and both the proposed binary
search and evaluation algorithms can approximate this value.
Fig.12(b) shows the number of iterations for convergence
with MMSE combining. It is found that the proposed binary
search algorithm is able to converge faster with the similar
performance.

Fig. 13 compares the average SE of Level 3 and Level
4 with and without WF-BD scheme across varying UEs.
It is observed that WE-BD can obtain about 12% and 7%
gains for Level 4 and Level 3 when the number of UEs
is 15, demonstrating that Level 4 is more sensitive for the
compression noise. In addition, Level 4 with WF-BD exhibits
the slowest SE degradation, presenting the potential for scaling
in dense networks.

Fig. 14 illustrates the sum SE with MMSE/L-MMSE com-

bining under varying values of a. As « increases, both Level
3 and Level 4 experience a decline in SE due to increased
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Fig. 13: Average SE under different number of UEs with L =
12 and 7, = 5.
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path-loss. Notably, the SE of Level 3 decreases less sharply
compared to that of Level 4. Furthermore, the proposed WF-
BD scheme effectively mitigates the SE degradation caused by
large-scale fading, and its benefit becomes more pronounced
as the path-loss exponent grows.

Fig. 15 shows the sum SE under different distance between
CPUs with different quantization schemes. The first obser-
vation is that sclar quantization scheme can achieve about 8
bit/s/Hz and 2 bit/s/fHz SE gains for Level 4 and Level 3.
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But the overall trend remains unchanged, i.e., Level 4 still
declines significantly more than Level 3. This reflects that
Level 4 is more sensitive to the quantization noise resulting
from more severe compression. While scalar quantization can
help alleviate the SE degradation to some extent, it cannot
fully eliminate the addition noise especially for Level 4.

VII. CONCLUSION

In this paper, we conducted an investigation into the uplink
performance of CF massive MIMO with mmWave fronthaul
and backhaul. We considered four levels of multiple CPUs
cooperation schemes inspired by [10], aiming to balance the
degreenes significantly more than other levels of centralized
coordination with the signal overhead on the backhaul link.
Furthermore, we derived novel closed-form SE expressions
for Level 2 and Level 3 using the MR combining. In addition,
we also proposed a bisection search method to determine
the valuable BCA factor for maximizing the uplink sum
SE. Through simulation results, we examined the impact of
mmWave fronthaul and backhaul, comparing the SE per-
formance across various CPU cooperation levels. Notably,
mmWave backhaul amplifies the compression noise caused by
mmWave fronthaul, thereby having a more significant effect on
the system. Despite this, the proposed multi-CPU cooperation
schemes still outperform the non-cooperative scheme (Level
1), with the performance gains increasing as the number
of CPUs grows. Moreover, as the number of APs or the
distance between CPUs increase, Level 4 progressively loses
its advantage due to the intensified compression noise, making
Level 3 a more competitive option under these conditions.
Based on these findings, we recommend allocating higher
bandwidth for the backhaul link, as well as considering the
usage of Level 3 when dealing with a large number of APs or
significant distances between CPUs.
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